OpenDR: Open Deep Learning Toolkit for Robotics

OpenDR at a glance

- H2020 Research and Innovation Action
- Coordinated by Aristotle University of Thessaloniki (Prof. Anastasios Tefas)
- 8 Partners from 7 European countries
- 6.6 M € budget (EU funding)
 - Start date: January 1st 2020, duration: 36 months

OpenDR context

Deep Learning in robotics leads to research questions that are typically not fully addressed within the deep learning community

Difficult for robotics laboratories/companies to employ deep learning methodologies to their research/products

Provide a modular, open easy-to-use toolkit

Computational complexity

DL requires powerful and specialized hardware which makes using DL models on embedded systems difficult

Provide lightweight DL models

Passive Perception

Traditional Computer
Vision approaches do not
consider the interaction
between a robot and the
world

Provide active perception DL methods

OpenDR overall objectives

To develop a modular, open, and non-proprietary toolkit for core robotic functionalities by harnessing deep learning to provide advanced perception and cognition capabilities, meeting in this way the general requirements of robotics applications in different areas.

OpenDR technical objectives

Overcoming the **learning** curve barrier

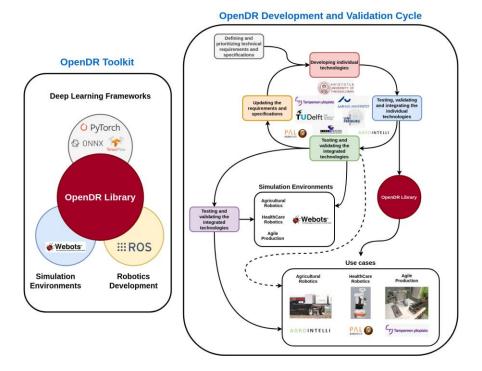
A library with a collection of ROS nodes and the necessary tools for training and deployment will be developed that will enable any ROS-based robotic architecture to easily integrate them for improving its technical capabilities.

Overcoming the computational complexity barrier

State-of-the-art lightweight deep learning models will be developed building upon the strong expertise of the involved partners. Models will provide real-time inference on embedded systems, while being able to process high-resolution data.

Overcoming the passive perception barrier

OpenDR aims to be the first project that will provide a complete framework for simulating and developing robotics applications that use deep learning methodologies. OpenDR will also provide tools for enhanced robot navigation, action and manipulation capabilities.

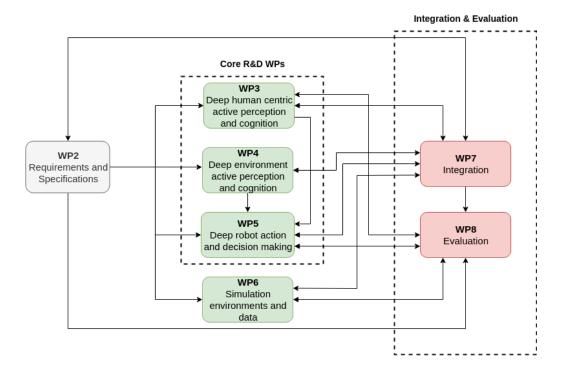

OpenDR expected impact

- Improve the technical capabilities in robotics by providing easily deployable, efficient and novel DL tools
- Enable a greater range of cognitive applications in agri-food, healthcare robotics and agile production (TRL 3+)
- Lower the technical barriers by providing a modular and open platform for developing DL models
- Strengthen the competitiveness of companies by lowering the cost to access robotics-oriented DL tools

OpenDR ecosystem & development cycles

OpenDR workplan

- Divided into 10 work packages (WP)
- WP 1 is dealing with project administration
- **WP 9** will deal with **disseminating** the research results through various channels (publications, links with robotics DIHs, exhibitions, ...)
- WP 10 will ensure compliance with ethics requirements


OpenDR workplan

- WP 2 will deal with the requirements and specifications of the toolkit and the specific use cases
- WPs 3 to 5 will provide lightweight active perception-based deep learning methods for human-centric and environment perception and cognition, as well as robot action and decision making
- WP 6 will provide a simulation framework aimed at training OpenDR tools
- WP 7 and 8 will integrate and evaluate OpenDR toolkit in simulation and real world environments and ensure its portability across various systems

OpenDR workplan

OpenDR consortium

- OpenDR brings together 8 partners from 7 European countries
- A multidisciplinary team with complementary expertise uniting
 - Academic institutions with expertise on
 - deep learning, computer vision, digital image/video processing and analysis, graphics,
 - robotics, control, planning, localization, navigation, as well as production engineering
 - Industrial partners with expertise on developing
 - robotics simulations
 - robots for *healthcare* and *agriculture applications*
- Collaboration for the development of a modular, open and non-proprietary toolkit for core robotic functionalities to enhance robotics autonomy

Academic partners:

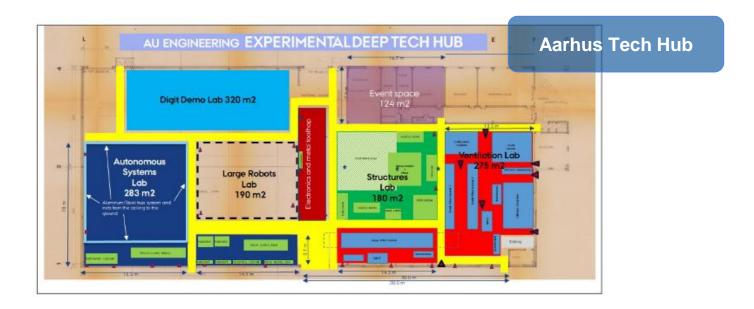
Aristotle University Thessaloniki (GR)
Tampere University (FN)
Aarhus University (DK)
Delft University of Technology (NL)
University of Freiburg (DE)

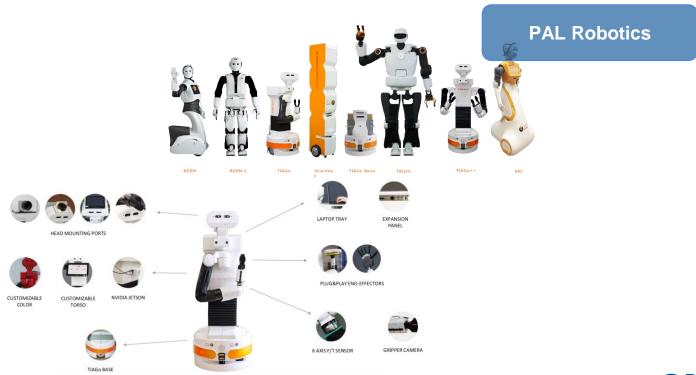
Industrial partners:

Cyberbotics (CH)
PAL Robotics (ES)
AgroIntelli (DK)

Created with mapchart.net ©







Use-case: Agile Production

Human-robot collaborative Diesel engine assembly

Tampere University

Use-case: Healthcare robotics

Robots supporting elderly people

PAL Robotics

Use-case: Agri-food

Intelligent Mechanical Weeding

Agrointelli

Collaboration with Robotics DIH

- OpenDR will co-organize one workshop per year with DIH Trinity
- Establish links to other DIHs networks

- Special focus on the prioritized areas: agri-food, healthcare robotics, agile production, infrastructure inspection
- OpenDR will contribute use-cases to other DIHs

Contacts

Project Coordinator

Prof. Anastasios Tefas

Dept. of Informatics
Aristotle University of
Thessaloniki
Tel. +30-231099.1932
tefas@csd.auth.gr

More info: www.opendr.eu

