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Abstract—Semantic scene segmentation plays a critical role in a
wide range of robotics applications, e.g., autonomous navigation.
These applications are accompanied by specific computational
restrictions, e.g., operation on low-power GPUs, at sufficient
speed, and also for high-resolution input. Existing state-of-the-art
segmentation models provide evaluation results under different
setups and mainly considering high-power GPUs. In this paper,
we investigate the behavior of the most successful semantic scene
segmentation models, in terms of deployment (inference) speed,
under various setups (GPUs, input sizes, etc.) in the context
of robotics applications. The target of this work is to provide
a comparative study of current state-of-the-art segmentation
models so as to select the most compliant with the robotics
applications requirements.

Index Terms—Semantic Scene Segmentation, Robotics,
Lightweight, Real-Time, Low Power GPUs, TX-2, Xavier, CPU,
Deployment.

I. INTRODUCTION

Semantic scene segmentation describes the task of assigning
a class label to each pixel of a given image, and thus it is
also referred to as pixel-level classification. It constitutes a
challenging step towards comprehensive scene understanding
accompanied by many robotics applications [1]–[4]. Recent
advances in Deep Learning (DL) provided effective models
for addressing the problem of semantic scene segmentation [5],
[6]. However, most of the existing state-of-the-art DL segmen-
tation models are usually computationally heavy, obstructing
their deployment on robotics scenarios, where the deployment
speed is critical. That is, in such scenarios, the segmentation
models should be able to operate at sufficient speed on low-
power GPUs, and also considering high-resolution input.

The performance reported by the existing segmentation
methods refers to different setups (GPUs, input sizes, etc.),
and mainly considering high-power GPUs. Thus, in this paper
we first discuss current state-of-the-art DL algorithms for
semantic scene segmentation, and then we extensively evaluate
them under different setups. That is, extensive evaluation of
the existing segmentation models on different embedded and
mobile platforms have been conducted, e.g., NVIDIA TX-2,
AGX Xavier, and also for various input resolutions, ranging
from lower ones, i.e., 512 × 512, to higher ones, i.e., 1024 ×
2048. The objective of this work is to provide a comparative
study of current segmentation models considering the inherent

computational restrictions in the context of robotics applica-
tions.

The remainder of the manuscript is structured as follows.
Section II discusses recent efficient segmentation models, con-
sidering the deployment speed and the segmentation accuracy.
The extensive evaluation of the most successful real-time
segmentation models is provided in Section III, and finally
conclusions are drawn in Section IV.

II. STATE-OF-THE-ART SEGMENTATION MODELS

During the recent years, several DL segmentation models
have been proposed [7], [8], achieving considerable perfor-
mance on several image segmentation benchmark datasets,
e.g., Cityscapes [9], Camvid [10], COCO-Stuff [11], ADE20k
[12], PASCAL-S [13], and PASCAL-Context [14].

More specifically, an efficient hierarchical multi-scale atten-
tion mechanism that allows the model to learn how to combine
predictions from multiple inference scales is proposed in
[15] achieving state-of-the-art performance in terms of mean
Intersection Over Union (mIOU) in the most widely used
dataset for evaluating the performance of semantic segmen-
tation methods, that is the Cityscapes test set. Subsequently, a
method for improving the semantic segmentation performance
by decoupling features into the body and the edge parts to
handle inner object consistency and fine-grained boundaries
jointly is proposed in [16] achieving considerable segmen-
tation performance. Furthermore, a method that proposes
object-contextual representations to characterize a pixel by
exploiting the representation of the corresponding object class
is proposed in [17], and achieves high performance in the
aforementioned segmentation datasets. However, the afore-
mentioned approaches focus on the segmentation accuracy
achieving state-of-the-art performance, without addressing the
issue of deployment speed. That is, they are computationally
heavy, and thus inappropriate for robotics applications.

On the other hand, in the recent literature there are works
that also focus on the deployment speed providing real-time
segmentation models, mainly considering high-power GPUs
(e.g., 1080Ti, 2080Ti). For example, a multi-resolution neural
architecture search framework is proposed in [18] achieving
high segmentation accuracy and deployment speed at the same
time. In addition, a fast segmentation model on high resolution
input which proposes a learning to downsapmle module for
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computing low-level features for multiple resolution branches
simultaneously is proposed in [19] achieving high performance
in terms of deployment speed, however comparatively lower
performance in terms of segmentation accuracy, while the
so-called Harmonic Densely Connected Network proposed in
[20] achieves high performance in terms of accuracy however
it runs at considerably fewer Frames Per Second (FPS) as
compared to the competitive methods.

Subsequently, a Bilateral Segmentation Network (BiseNet)
consisting of spatial path so as to preserve the spatial informa-
tion and generate high resolution features, and a context path
with a fast downsampling strategy so as to obtain sufficient
receptive field is proposed in [21] achieving considerable
performance both in terms of segmentation accuracy and
deployment speed. Subsequently, the second version of the
aforementioned method, proposing a detail branch so as to
capture low-level details and a lightweight semantic branch
so as to capture the high-level semantic context, as well as
a booster training strategy for improving the segmentation
performance without affecting the inference cost, is proposed
in [22]. Furthermore, a method that proposes to re-design
the commonly used residual layers so as to make them
more efficient without affecting the learning performance is
proposed in [23], while a model namely ESPNet is proposed
in [24] which based on an efficient spatial pyramid module,
achieves high performance in terms of deployment speed with
sufficient segmentation accuracy.

Subsequently, a method that employs an asymmetric
encoder-decoder architecture where the encoder adopts the
residual blocks and an attention pyramid network is employed
in the decoder, is proposed in [25], while a lightweight
segmentation model, namely LiteSeg, is proposed in [26].
The LiteSeg model, explores a new version of atrous spatial
pyramid pooling, and achieves a considerable performance
considering the accuracy-speed trade-off. Finally, a model
where the encoder both encodes and generates the weights
of the decoder is proposed in [27], while a deep dual-
resolution network, where a contextual information extractor
is designed to enlarge effective receptive fields and fuse multi-
scale context is proposed in [28], achieving also considerable
performance considering the accuracy-speed trade-off.

However, the performance reported by the aforementioned
segmentation methods refers to different setups (GPUs, input
sizes, etc.), and mainly considering high-power GPUs. Thus,
in this paper, we perform extensive experiments for evaluating
the performance of the existing real-time segmentation models
considering the deployment speed, with special emphasis on
low-power GPUs, since we consider robotics applications.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

The performance of the most successful real-time segmen-
tation models previously presented is tested using the same
setup on various GPUs, and also for various input sizes.
Specifically, we perform experiments utilizing the BiseNetv1
[21], BiseNetv2 [22], HardNet [20], LEDNet [25], ERFNet

[23], ESPNet [24], and LiteSeg [26] models. The speed
performance of the aforementioned models is tested on a RTX
2070, a Jetson TX2, a AGX Xavier, and a CPU. Experiments
also conducted for various input sizes, that is 512 × 512, 512
× 1024, 1024 × 1024, and 1024 × 2048. The deployment
speed is measured in terms of FPS.

B. Experimental Results

Evaluation results for all the utilized segmentation models
and on all the utilized GPUs, considering the four different
input resolutions are presented in Tables I-IV. Furthermore, the
comparison results considering the low-power GPUs, that is
Jetson TX2 and AGX Xavier, and high-resolution input sizes,
that is 1024×1024 and 1024×2048, are presented in Figs. 1
and2.

As it demonstrated, BiseNetv2 runs faster on all the consid-
ered GPUs, except for the RTX 2070, and also for all the input
resolutions. ESPNet, and LiteSeg achieve also considerable
performance. Furthermore, it can be observed, as it also
illustrated in Fig. 3 considering the AGX Xavier case, that
for lower input resolution there are higher differences in
terms of FPS among the most powerful considered models
(i.e., BiseNetv2, ESPNet, and LiteSeg), while for higher input
resolution there are slighter differences. Finally, in Fig. 4 the
segmentation accuracy-speed (in terms of mIOU and FPS,
respectively) trade-off considering the AGX Xavier case for
input size 512×512 is illustrated, and it can be observed that
the BiseNetv2 model is the most successful model considering
the aforementioned trade-off, while considerable performance
also achieve the LiteSeg and ESPNet models.

TABLE I: Semantic Segmentation Algorithms: Speed Evalua-
tion (FPS) Input Size: 512 × 512.

Method RTX 2070 TX2 AGX Xavier CPU
BiseNetv1 (ResNet18) [21] 170.43 11.25 39.06 8.32

BiseNetv2 [22] 261.81 21.53 66.28 15.69
HardNet [20] 68.57 4.84 15.53 3.67
LEDNet [25] 123.73 6.39 29.62 6.86
ERFNet [23] 124.01 5.70 19.71 6.86
ESPNet [24] 265.08 12.04 55.79 7.98

LiteSeg(MobileNet) [26] 203.43 16.72 54.22 7.50

TABLE II: Semantic Segmentation Algorithms: Speed Evalu-
ation (FPS) Input Size: 512 × 1024.

Method RTX 2070 TX2 AGX Xavier CPU
BiseNetv1 (ResNet18) [21] 93.84 5.92 20.83 4.10

BiseNetv2 [22] 165.69 10.94 36.25 6.84
HardNet [20] 39.80 2.60 8.14 1.86
LEDNet [25] 79.54 3.62 8.16 3.45
ERFNet [23] 63.15 3.21 10.31 3.07
ESPNet [24] 168.02 6.45 31.15 3.90

LiteSeg (MobileNet) [26] 125.18 8.44 30.03 3.80

IV. CONCLUSIONS

In this paper, we first discussed existing state-of-the-art
DL algorithms for semantic scene segmentation, and then we
extensively evaluated them under different setups (on different



(a) Input Size: 1024×1024. (b) Input Size: 1024×2048.

Fig. 1: Semantic Segmentation Algorithms: Speed Evaluation (FPS) on TX2.

(a) Input Size: 1024×1024. (b) Input Size: 1024×2048.

Fig. 2: Semantic Segmentation Algorithms: Speed Evaluation (FPS) on AGX Xavier.

TABLE III: Semantic Segmentation Algorithms: Speed Eval-
uation (FPS) Input Size: 1024 × 1024.

Method RTX 2070 TX2 AGX Xavier CPU
BiseNetv1 (ResNet18) [21] 49.11 3.03 11.02 2.02

BiseNetv2 [22] 85.55 5.62 19.13 3.37
HardNet [20] 21.29 1.37 4.18 0.93
LEDNet [25] 43.06 1.80 8.38 1.69
ERFNet [23] 34.14 1.62 5.47 1.37
ESPNet [24] 92.21 3.29 15.96 1.85

LiteSeg (MobileNet) [26] 66.83 4.31 15.55 1.82

embedded and mobile platforms, and also for various input
resolutions). The objective of this work is to serve as a com-
parative study of current segmentation models considering the
specific computational requirements in the context of robotics
applications. Future research plans include the investigation of

TABLE IV: Semantic Segmentation Algorithms: Speed Eval-
uation (FPS) Input Size: 1024 × 2048.

Method RTX 2070 TX2 AGX Xavier CPU
BiseNetv1 (ResNet18) [21] 25.07 1.50 5.44 0.94

BiseNetv2 [22] 44.56 2.81 9.13 1.62
HardNet [20] 10.97 0.68 2.09 0.48
LEDNet [25] 21.97 0.96 4.20 0.83
ERFNet [23] 17.61 0.80 2.81 0.66
ESPNet [24] 47.21 1.64 8.18 0.91

LiteSeg (MobileNet) [26] 34.43 2.18 7.91 0.89

techniques for further improving the deployment speed of the
most efficient models.
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Fig. 4: mIOU - FPS: Input Size 512×1024, AGX Xavier.
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