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Executive Summary
This document presents the status of the work performed for WP3–Deep human centric active
perception and cognition. This work package contains five main tasks. These are Task 3.1–
Deep person/face/body part active detection/recognition and pose estimation, Task 3.2–Deep
person/face/body part tracking, human activity recognition, Task 3.3–Social signal (facial ex-
pression, gesture, posture, etc.) analysis and recognition, Task 3.4–Deep speech and biosignals
analysis and recognition, and Task 3.5–Multi-modal human centric perception and cognition.
The document starts with a general introduction, providing an overview of the individual chap-
ters and linking them to the main objectives of the project. The introduction is followed by
chapters dedicated to each of the tasks. Each chapter provides (i) an overview on the state of
the art for the individual topics, (ii) details of the partners’ current work as well as initial perfor-
mance results (where available), and (iii) a description of the planned future steps. Finally, the
conclusion section provides a closing overview of the work and the total progress of the work
package.
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1 Introduction
This document describes the work done during the second year of the project in the five major
research areas of WP3, namely:

• Deep person/face/body part active detection/recognition and pose estimation;

• Deep person/face/body part tracking, human activity recognition;

• Social signal (facial expression, gesture, posture, etc.) analysis and recognition;

• Deep speech and biosignals analysis and recognition;

• Multi-modal human centric perception and cognition.

1.1 Deep person/face/body part active detection/recognition and pose es-
timation (T3.1)

AUTH and TAU developed a wide variety of novel methodologies and tools towards tackling the
challenges that arise in deep human centric active perception and cognition and more specif-
ically in T3.1 (Deep person/face/body part active detection/recognition and pose estimation).
The work conducted by OpenDR partners is briefly summarized below.

First, AUTH worked on models that support adaptive computational graphs allowing for
easily adapting the computations to the available resources by selecting the most appropriate
computational path (Section 2.1). However, such models are typically used in classification
settings, e.g., using early exits, despite the fact that DL models often aim at extracting represen-
tations (metric learning), e.g., for face recognition. In this work, AUTH provided a metric learn-
ing oriented early exit methodology for DL models. As it was demonstrated, employing early
exits in metric learning scenarios poses unique challenges compared to existing methodologies
for classification-oriented early exits. To this end, the Bag-of-Features model was employed,
building upon classification-oriented early exits, to efficiently extract compact representations
from any layer of a DL model that is then combined with an efficient linear regressor to match
the final representation of the model (without having to feedforward the whole computational
graph). The proposed method is agile and can be directly used with any pre-trained DL model,
while also being end-to-end differentiable, allowing for further fine-tuning the models towards
having multiple early exits. The effectiveness of the proposed method was demonstrated using
five face verification/recognition datasets.

In addition, AUTH also proposed a novel DNN-based Non-Maximum Suppression (NMS)
method (Section 2.3) for the person detection task. NMS is a final refinement step incorporated
to almost every visual object detection framework, assigned the duty of merging/filtering any
spatially overlapping detected Regions-of-Interest (ROIs), i.e., bounding boxes, which corre-
spond to the same visible object on an image. Person detection remains a challenging task for
most NMS methods, facing difficulties in identifying individuals within a crowd, due to vari-
ous levels of occlusions. Our method, named Seq2Seq NMMS, reformulates NMS for object
detection as a sequence-to-sequence problem and proposes a novel DNN-based architecture,
which relies on the Scaled Dot-Product Attention mechanism, in order to classify a ROI as
“correct” or as “potentially suppressed”. In addition, a new, GPU-based, fast and efficient
method for extracting appearance-based ROI representations is proposed and employed on the
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overall pipeline. Seq2Seq-NMS was evaluated on three separate datasets, achieving favourable
results compared to state-of-the-art NMS techniques.

Also, AUTH continued working on active vision approaches for human-centric perception
(Section 2.2), exploiting the ability of robots to interact with their environment in order to
better sense their surroundings. This key ability of robots is often ignored when developing
Deep Learning (DL) models since they are usually trained using static datasets. As a result,
this limits the ability of robots to perceive the environment in challenging scenarios, e.g., under
occlusions. On the other hand, integrating perception and action in tightly coupled systems,
typically known as active perception, holds the credentials for deploying DL-enabled robots in
such conditions, leading to more robust agents that can solve challenging tasks in real-world
scenarios more accurately. AUTH investigated whether active perception approaches can be
employed and integrated into robotic systems in order to improve the face recognition accuracy,
as well as study the effect of such an approach on the computational requirements. To this end,
AUTH proposed a DRL-based control approach for training agents that are able to identify and
focus on task-relevant objects, i.e., humans, as well as issue the appropriate control commands
accordingly to acquire better results. Through the conducted experimental evaluation it was
demonstrated that the proposed method leads to significant improvements in face recognition
over the rest of the evaluated approaches, improving the distance from which a human can be
recognized, as well as providing a much wider angle-invariance.

Also, AUTH proposed a novel approach for active face recognition using synthesized facial
views (Section 2.4), which allows for exploiting photorealistic facial view rendering to aid the
robot in deciding how to move in order to capture better facial views to use for face recognition.
More precisely, AUTH investigated an active vision algorithm that aims to direct a robot to
move in a position that will allow it to capture a good (in terms of face recognition accuracy)
facial view of a person. The method utilizes a state-of-the-art facial view synthesis method that
renders novel views based on a single facial image and an up-to-date Face Recognizer.

In addition, AUTH utilized a data generation method capable to generate realistic data, for
the training and testing of methods for human centric perception tasks. An extensive experi-
mental evaluation was performed, presented in Section 2.5, which validated that the generated
data are visually realistic enough and that they can successfully bridge the gap between the
virtual and real world data, by enabling deep learning methods trained on the synthetic and real
data to achieve highly accurate results on both.

AUTH also worked towards evaluating the impact of domain shifts for object detection mod-
els trained on well known datasets (Section 2.6). More specifically, a dataset collected in the
context of the agricultural use case using the Robotti robotic platform was employed to evaluate
the accuracy of human detectors trained on existing datasets, identifying important limitations
that these detectors face on such scenarios and highlighting the need for using domain adap-
tation and knowledge transfer approaches to ensure that they will perform as expected in such
scenarios.

TAU worked towards improving the robustness of Multilinear Compressive Learning (MCL),
which is an efficient signal acquisition and learning paradigm for multidimensional signals pro-
posed by OpenDR researchers in previous year. The level of signal compression affects the de-
tection or classification performance of a MCL model, with higher compression rates often as-
sociated with lower inference accuracy. However, higher compression rates are more amenable
to a wider range of applications, especially those that require low operating bandwidth and
minimal energy consumption. A novel optimization scheme was proposed (Section 2.7) that
improves the robustness of the MCL model with respect to the size of the compressed signal,
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and enables practical implementation of adaptive compressive signal acquisition and inference
systems.

1.2 Deep person/face/body part tracking, human activity recognition (T3.2)
AU has contributed novel methods for accelerating the online inference of both video- and
skeleton-based human activity recognition networks. A brief of this work is given below.

Extensive benchmarks of the current best in class lightweight video recognition methods
have been performed using various computational devices (Section 3.1.4). Here, only the small-
est models (with severely reduced accuracy) were able to perform in real-time on an embedded
GPU platform. Due to the convolutional architecture of these state-of-the-art lightweight mod-
els, and their requirement that the input be a spatio-temporal clip, a considerable computational
redundancy was observed due to overlapping clips for frame-by-frame predictions.

To alleviate this redundancy, AU researchers have proposed a new class of convolution, the
continual convolution, which can perform identical computations to those in a regular convo-
lution while considering only one time-step at a time. Existing convolutional architectures and
weights can thus be reused and accelerated through a continual inference mode. This principle
was used to reduce the per-prediction floating point operations of 3D CNNs for video-based
human action recognition by an order of magnitude (Section 3.1) as well as by two orders of
magnitude in Spatio-Temporal Graph Convolutional Neural Networks (ST-GCNs) for skeleton-
based action recognition (Section 3.2). Due to a local caching mechanism within each contin-
ual convolution (an operation, which common computational devices are not optimised for),
the throughput was increased by approx 6× for 3D CNNs and 18× for ST-GCNs. Given these
remarkable speed-ups, it is our hope that the contribution of AU will lead to the utilisation
of higher accuracy models and/or enable the use of computationally constrained hardware in
embedded applications and robotics.

1.3 Social signal (facial expression, gesture, posture, etc.) analysis and
recognition (T3.3)

AU developed a novel methodology and a corresponding tool for facial expression recognition
based on videos or image sequences. The work conducted by AU is briefly summarized below.

The spatio-temporal features of a facial expression depicted in a video or image sequence
can be effectively represented by the localized facial landmarks which are invariant to illu-
mination variations, face appearance and scale. Therefore, a facial expression video can be
modeled as a spatio-temporal graph, representing the dynamic motions of the key facial parts
for each specific facial expression, and this graph can be employed by a landmark-based facial
expression recognition method. AU had previously proposed and developed Spatio-Temporal
BiLinear Networks (ST-BLN) [51] for skeleton-based human action recognition, which have
been integrated into the OpenDR framework. The GCN-based methods defined for this task
can also be extended for landmark-based facial expression recognition, as these tasks share
similar ideas on processing a sequence of graph structured data instead of videos/image se-
quences. Accordingly, AU investigated the application of spatio-temporal GCN-based methods
on landmark-based facial expression recognition, and proposed the Progressive ST-BLN (PST-
BLN) method [52] which inherits the advantage of ST-BLN to learn graph structures at each
layer of the network and automatically learns an optimized data-dependent network structure
while simultaneously training the model parameters. The proposed method is evaluated on three
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widely-used facial expression recognition datasets and the experimental results indicate that it
has achieved comparable performance to more complex state-of-the-art methods, while it also
captures the model’s uncertainty using Monte Carlo Dropout technique [154].

1.4 Deep speech and biosignals analysis and recognition (T3.4)
AUTH worked towards developing a deep high-order Gaussian filtering method for time series
analysis (Section 5.1), including, but not limited to biosignal analysis, such as electrocardio-
grams. To this end, a discrete approximation of a Gaussian filter was appropriately constructed
to support training the resulting layer in an end-to-end fashion through backpropagation. To fur-
ther improve the performance of the proposed method, AUTH also proposed extracting multiple
features using high-order derivatives of the Gaussian function by convolving the derivatives of
the Gaussian filters with the input signal, leading to a smooth high-order representation of the
input. The proposed series of layers are lightweight, since they consist only of a few train-
able parameters, and can significantly improve time series classification, as demonstrated in the
experimental evaluation.

TAU worked on developing new attention methods for Neural Bag of Features (NBoF) for-
mulation for time series analysis (Section 5.3). The main focus was on the classification of
biosignals under the task of the atrial fibrillation detection from the ECG data. To this end,
self-attention based extensions to the previously-developed codebook and temporal attention
mechanisms of NBoF were formulated. In addition, a codebook-temporal self-attention block
was proposed as a way to mitigate the limitations of conventional attention approaches that
lie in the independence of their learnt feature representations from each other, even if applied
jointly. The proposed methodologies can be incorporated into any Bag of Features architecture.
Preliminary results show the superiority of the proposed approaches. TAU also worked on ex-
tending the capabilities of the standard speech command recognition models by incorporating
1-dimensional SelfONN layers in place of traditional convolutions (Section 5.2). SelfONN is
a more general and flexible operation that is capable of learning a wider range of behaviors,
increasing the model capacity and power without modifying its depth.

1.5 Multi-modal human centric perception and cognition (T3.5)
TAU has contributed to the task by developing an attention-based methodology (Section 6.1)
that can be used in CNNs for fusing information from different modalities in two-stream archi-
tectures [86]. Attention mechanisms in CNNs aim to explicitly identify and highlight relevant
regions of the image and pass the attended representation to further layers of the network, gen-
erally allowing to achieve improved performance. At the same time, it can be argued that
explicit learning of the parts of the image relevant to the given task is generally more chal-
lenging than learning which parts of the image are less relevant and, thus, should be ignored.
Following this intuition, TAU researchers proposed a learning mechanism aiming to explicitly
learn irrelevant information in the scene and suppress it in the produced representation, keeping
only relevant attributes, hence learning the attention implicitly. The resulting implicit atten-
tion can be incorporated into existing attention mechanism and the developed methodology was
evaluated using two state-of-the-art formulations, namely, SE and CBAM. The approach was
evaluated both as a standalone plug-in attention module, as well as a part of multimodal fusion
attention-based framework, evaluated for the task of action recognition from RGB+skeleton
data on NTU-RGBD dataset.
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In addition, TAU has worked towards multi-modal gesture recognition from RGB-D data
and has developed an early-fusion based gesture recognition method from image data (Sec-
tion 6.2). Early fusion is utilized due to a range of benefits that it is associated with, such as
possibility of transfer learning from larger datasets, as well as little computational overhead. In
the toolkit, several widely-used architecture backbones have been added, including lightweight
architectures such as MobileNet. The model thus developed has been evaluated and validated
on a 16-gesture dataset.

1.6 Connection to Project Objectives
The work performed within WP3, as summarized in the previous subsections, perfectly aligns
with the project objectives. More specifically, the conducted work progressed the state-of-the-
art towards meeting following objectives of the project:

O1 To provide a modular, open and non-proprietary toolkit for core robotic functionalities
enabled by lightweight deep learning

O1a To enhance the robotic autonomy exploiting lightweight deep learning for on-board de-
ployment

AUTH developed an adaptive inference approach for deep representation learning tasks,
such as face recognition (Section 2.1), which allows for meeting the strict speed and la-
tency requirements for many robotics applications by allowing for adapting the computa-
tional requirements to the available resources on-the-fly. Furthermore, AUTH developed
a deep high-order Gaussian filtering method (Section 5.1) for time series analysis, such
as biosignals, that can allow for achieving higher analysis accuracy, while using smaller
and faster architectures. AUTH also developed a DNN-based NMS method (Section 2.3)
capable of improving the performance of person detection methods, especially in the case
where humans appear in crowded areas, while maintaining relatively fast inference times
compared other DNN methods. AUTH also worked towards evaluating the impact of
domain shifts for object detection models trained on well known datasets (Section 2.6),
identifying critical limitations and training approaches to mitigate approaches that could
increase the robotic autonomy in the field. Finally, AUTH evaluated the use of mixed
image data for training DNN methods for human centric perception tasks (Section 2.5) in
order to validate whether they improve the performance of such methods on real-world
settings as well on simulation environments.

AU proposed and developed two methodologies for efficient continual human activity
recognition (Section 3.1 and Section 3.2), which allow to reduce the number of compu-
tations compared to the standard approach of sliding window-based classification. More-
over, AU proposed and developed an efficient facial expression recognition method based
on facial landmarks and the PSTBLN network (Section 4.1) which also provides a mea-
surement of the model’s uncertainty in its recognition result.

TAU proposed a method for improving robustness of Multilinear Compressive Learning
with respect to the size of the compressed signal and enables practical implementation
of adaptive signal acquisition and inference systems (Section 2.7), which can be used for
lightweight on-robot light-weight neural processing and offloading computations to more
powerful processor. Moreover, TAU is developing self-attention extensions to NBoF at-
tention approaches that would allow to improve robustness of the such lightweight models
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in time-series analysis in general, and biosignal classification in particular (Section 5.3).
The developed methods are architecture-independent and can be utilized to improve ro-
bustness of lightweight NBoF models. TAU is also working on improving the perfor-
mance of speech command recognition models with novel 1D SelfONN layers (Sec-
tion 5.2), which are lightweight neural networks offering higher flexibility and improved
learning capacity without losing the efficient inference properties of the original struc-
tures. In addition, TAU developed an attention-based methodology for Convolutional
Neural Networks (Section 6.1) that can be used in a variety of computer vision tasks both
as a standalone module, as well as for multimodal fusion in multi-stream CNN architec-
tures, including lightweight ones. The method was evaluated for image classification and
multimodal human action recognition tasks.

O1b To provide real-time deep learning tools for robotics visual perception on high-resolution
data

TAU developed and integrated an early fusion based method for multimodal hand gesture
recognition from RGBD data (Section 6.2), enabling efficient human-robot interaction.
The method achieves 38.1 FPS on XavierAGX.

O2b To provide specific deep human-centric active robot perception tools

AUTH proposed a deep reinforcement learning-based active face recognition methodol-
ogy, going beyond existing rule-based approaches for active vision (Section 2.2). AUTH
also proposed a novel approach for active face recognition using synthesized facial views
providing a more effective way to perform active perception with simulating the effects of
various control actions and exploiting photorealistic facial view rendering (Section 2.4).
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2 Deep person/face/body part active detection/recognition and
pose estimation

2.1 Adaptive Inference for Face Recognition leveraging Deep Metric Learning-
enabled Early Exits

2.1.1 Introduction, objectives and summary of state of the art

DL models are becoming increasingly powerful, following the continuous improvements in ded-
icated hardware accelerators, such as Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs) [161], which allowed for training and deploying deeper and more complicated
models. However, in many applications, such as robotics, we are often still limited to using less
powerful hardware, due to a number of limitations, ranging from energy and power constraints
to constrained physical form factors. As a result, numerous methods have been proposed to
allow for developing more lightweight DL models that will be deployed in such devices, while
meeting critical application-specific requirements, such as low latency and real-time operation.

These methods include quantization [46], for reducing the number of bits spent for each of
the parameters of the model, pruning methods [96], that discard parts of the model that are not
critical for its operation, models that are lightweight by design [56, 173], as well as knowledge
distillation approaches [54, 118], which aim to transfer the knowledge from a larger and more
complex neural network into a smaller and faster one. These approaches led to more lightweight
models that could operate faster in many embedded and mobile devices. However, most of
these methods are not capable of adapting to varying computational loads. In other words, the
inference time is constant regardless the environmental conditions, e.g., the difficulty of each
sample, the load of the system, etc.

This is a critical limiting factor in a number of embedded applications, where the load dy-
namically varies according to the environmental conditions. For example, for a face recognition
application the time needed for face recognition depends on the number of faces that appear in a
given frame. As a result, even through a model might operate in real time for a specific number
of faces, e.g., 2-3 faces, this might not be the case when a larger number of people appears in a
given frame. Therefore, in such cases, we need models that can effectively adapt to the current
conditions, providing faster (and possibly less accurate) predictions when the load is higher in
order to satisfy the processing time limitations of a given application. In this way, the models
can provide accurate answers, exploiting all the available processing time, while still meeting
the requirements of each application when the load is higher.

These limitations can be addressed by using models that support adaptive computational
graphs, such as [5, 115, 149]. These approaches work by altering the number of computations
in order to keep the load within certain limits. This is usually achieved by using multiple paths
over the computation graph of the model. Among the most straightforward ways to achieve
this is by using early exits [5, 115, 149]. By placing such early classification layers at various
intermediate layers of the network we can early stop the computation whenever it is deemed
appropriate (e.g., when the computational budget is spent or when the network is already confi-
dent enough regarding the provided prediction), obtaining an estimation for the representation
that would be extracted from the final output layer of the network.

Even though early exits provided a very powerful tool to address the aforementioned lim-
itations, its use is currently limited to classification settings [5, 115, 149]. However, in many
cases, deep learning models aim at extracting representations (metric learning) [140], instead of
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directly predicting the class to which the input sample belongs to. Perhaps the most well known
example of such metric learning task is face recognition [109] and content-based information
retrieval [82]. To the best of our knowledge there has been no attempt to use early exits in
such scenarios, such as metric learning-based face verification. Even though it could be argued
that using early exits in such scenarios could be deemed redundant, since we can directly ex-
tract a representation from any layer of a DL model without any modification, we demonstrate
that this naive approach has significant limitations and that we can achieve higher accuracy by
employing appropriately designed and trained early exit layers.

The main contribution of this work is to provide a metric learning-oriented early exit method-
ology for DL models. As we experimentally demonstrate, employing early exits in metric learn-
ing scenarios pose unique challenges compared to existing methodologies for classification-
oriented early exits. To this end, in this work we leverage the Bag-of-Features model to effi-
ciently extract compact representations from any layer of a neural network. Then, an additional
small linear regressor is used to regress the final output of the model at selected points of its
computational graph. In this way, a representation that can be used in place of the final rep-
resentation can be readily extracted from an early exit. This provides significant advantages
over existing metric learning approaches, which would require keeping a separate database for
the representations extracted from each exit layer, increasing the space required for using any
additional layer as an early exit and reducing the accuracy of the resulting models, as we demon-
strate in the experimental evaluation. The proposed method is agile and can be directly used
with any pre-trained metric learning DL model, while it is end-to-end differentiable, allowing
for further fine-tuning the models towards having multiple early exits. The effectiveness of the
proposed method is demonstrated using five face verification/recognition datasets, including
DL models trained on the large-scale MS-Celeb-1M dataset [45] and evaluated using a wide
range of datasets, as well as experiments conducted on two embedded platforms typically used
in robotics applications.

A summary of this work is provided hereafter. The corresponding publication is listed
below, and can be found in Appendix 8.1:

1. [120] N. Passalis, and A. Tefas, “Adaptive Inference for Face Recognition leveraging
Deep Metric Learning-enabled Early Exits”, European Signal Processing Conference
(EUSIPCO) 2021

2.1.2 Description of work performed so far

For the rest of this section, we assume that we employ a network that has already been trained
to perform a specific metric learning task [109, 17], and we will focus on training the early exits
on top of the representations y(i) extracted at specific points of its computational graph. Early
exits typically employ an additional estimator, fitted on top of the representation extracted at
various points of the computation graph of the model, to predict the final output of the model.
Classification-based early exits are trained to directly solve the original classification task of
the network [149, 115, 5]. However, for metric-learning oriented network this approach cannot
be employed, since even if we use the original loss used for training the network, e.g., the
contrastive loss [17], we will not learn representations in the same space as the one formed by
the last layer of the network. As a result, the representations extracted by the early exits would
not be useful for performing queries in a database that consists of representations extracted from
the final layer of the network.
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To overcome this limitation, in this work we proposed using a distillation inspired ap-
proach [54], i.e., to train the early exits in order to mimic the output of each layer. Perhaps
the most straightforward approach to ensure that the features extracted by the early exits, de-
noted by g(i)Wi

(·), will reside in the same space as the final representation of the network y is
to minimize the quadratic divergence between these two representations. Therefore, early exit
estimators are trained in order to minimize the following loss:

Li =
1
N

N

∑
j=1
||y j−g(i)Wi

(y(i)j )||22, (1)

where i denotes the early exit that we are training, ||·||2 denotes the l2 norm of a vector and the
notation y j is used to refer to the representation extracted when the j-th sample is fed into the
network.

Usually, early exits employ a feature aggregation approach to reduce the dimensionality
of the extracted feature maps, e.g., Global Average Pooling, that is then followed by a fully
connected layer. However, naive feature aggregation approaches, such as global average/max
pooling, have been shown to discard useful information [116]. Therefore, in this work we em-
ploy a Bag-of-Features (BoF)-based aggregation layer in order to reduce the dimensionality of
the extracted feature maps and extract a compact summary representation that can be further
adapted towards the task at hand [117]. This histogram representation extracted using BoF pro-
vides a summary of the concepts that appear in the corresponding features. By appropriately
tuning the codewords we can focus the representation on different concepts. For example, us-
ing k-means to learn the codebook leads to a generic representation that can be used for any
task, while finetuning the whole layer using gradient descent allows for learning task-specific
codewords (provided that the BoF layer is part of a network trained for a specific task). Fi-
nally, this histogram representation is fed into a linear layer that projects the histogram into the
desired space. In the case of metric-learning networks this would be the space formed by the
output layer of the network. Then, early exits can be trivially trained using gradient descent,
minimizing the loss provided in (1).

2.1.3 Performance evaluation

The proposed method was evaluated using the MS-Celeb-1M [45], Labeled Faces in the Wild
(LFW) [62, 61], Cross Pose LFW (CPLFW) [177], Cross Age LFW (CALFW) [178], and
VGGFace2 [14] datasets. More specifically, we follow a standard face verification setup [1],
where the models are trained on the MS-Celeb-1M dataset and evaluated on the remaining
four datasets, i.e., LFW, CPLFW, CALFW and VGGFace2. All images used for the conduncted
experiments were resized to 112×112 pixels. For the evaluation procedure we randomly sample
6,000 image pairs that either correspond to face images of the same person or to face images of
different persons (equally distributed among the two cases). A face pair is considered to belong
to the same person when the distance between the corresponding embeddings is lower than a
certain threshold. This threshold is selected to maximize the face verification accuracy on a
validation dataset. As a result, we report the average 10-fold cross validation accuracy for all
the conducted experiments, i.e., the threshold is selected according to the validation split and
the accuracy is reported on the corresponding test set. For all the conducted experiments we
used a ResNet-50 network [48], where inverted residual blocks were employed for improving
its efficiency [130]. The early exits were placed after the 1st, 2nd and 3nd residual block. The
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dimensionality of the feature vectors extracted from each of these blocks is 128, 256 and 256
respectively, while the dimensionality of the final representation of the network is 512.

Three different methods were evaluated along with the proposed one. For the first one
we directly extracted the feature vectors from each early exit, we employed global average
pooling and then we queried the database using these representations. This approach is called
“raw”, since it relies on directly using the raw feature vectors, as they are extracted from the
network. Even though the dimensionality of these feature vectors is lower, this method requires
keeping a separate database with the feature vectors extracted from each additional early exit,
significantly increasing the storage requirements. Next, we evaluated a linear regressor (denoted
by “LR”) that was trained to directly regress the output representation of the network based on
the (average) pooled representation extracted from each early exit. The same approach was
also repeated using the Bag-of-Feature model, where we used 512 codewords for building the
codebook (using the k-means algorithms and the feature vectors extracted from each early exit
for building the codebook). This method is denoted as “BoF”. Note that both the LR and BoF
methods can be regarded as a simplified (ablated) version of the proposed one, since, to the
best of our knowledge, neither has been proposed in the literature for constructing early exits.
Despite this, they consist a strong baseline, as we demonstrate in Table 1. Finally, we evaluated
the proposed method using again NK = 512 codewords (in order to be directly comparable with
the BoF baseline). More details regarding the experimental setup are provided in Appendix 8.1.

The experimental evaluation is provided in Table 1. The four evaluated methods are com-
pared on four different datasets using the three different added early exits. In all the cases, using
a subsequent early exit increases the obtained verification accuracy as expected. Furthermore,
just using a linear regressor (LR) to regress the final representation of the network leads to
a significant increase over directly using the raw representation. Indeed, in some cases (e.g.,
CALFW) the accuracy increases by over 25%. Then, using the BoF model further increases
the performance, while employing the proposed method leads to the overall best accuracy in all
the evaluated cases. It is worth noting that in some cases, the verification performance is very
close to the actual performance of the final output of the network, as reported in the full paper
provided in the appendix.

2.2 Learning active vision control policies for face recognition using deep
reinforcement learning

2.2.1 Introduction and objectives

There have been several recent attempts to integrate active perception principles into DL mod-
els [106, 119]. Most of them focused on robotics tasks, where they attempt to appropriately
manipulate a camera and/or robot in order to improve the accuracy of the models. However,
training DL models for such tasks is not trivial, since most datasets used for training DL models
do not provide the appropriate data and/or annotations that can be exploited in active perception
scenarios. Indeed, active perception requires an agent that can interact with its environment
and acquire an improved view of the world. To overcome this limitation, existing methods
either employ simple handcrafted rules for implementing active perception feedback [106], or
use multi-view datasets to simulate some of the effects of active perception feedback [119].
However, due to the lack of appropriate datasets, such methods are still usually trained with
simplistic rules, e.g., to predict if moving left/right will increase/decrease the confidence on
correctly recognizing a person [119]. Another closely related line of work employs Deep Rein-
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Table 1: Face verification accuracy on four different datasets using three different early exits.
The mean and standard deviation of the 10-fold cross-validation accuracy is reported.

Method Exit 1 Exit 2 Exit 3

Dataset: LFW

Raw 68.60±2.25 82.33±1.25 92.80±1.57
LR 75.05±2.00 88.98±1.42 94.15±0.69
BoF 79.93±1.59 92.33±1.22 92.58±1.23

Proposed 80.98±2.64 92.70±1.28 96.58±0.64

Dataset: CPLFW

Raw 52.75±1.95 51.98±1.74 63.83±2.38
LR 66.80±1.71 75.57±2.04 83.02±1.36
BoF 68.52±1.79 79.98±2.16 81.13±1.05

Proposed 68.98±1.18 80.05±1.70 84.20±1.56

Dataset: CALFW

Raw 55.00±1.62 61.72±1.50 68.10±1.98
LR 70.28±1.51 82.18±1.89 87.35±1.18
BoF 71.80±1.18 84.55±1.06 84.93±1.51

Proposed 73.65±1.82 84.78±1.50 89.37±1.37

Dataset: VGGFace2

Raw 56.88±2.07 64.24±1.12 78.88±1.43
LR 67.10±1.74 78.50±1.85 84.16±1.33
BoF 68.86±1.84 81.56±2.69 83.50±1.55

Proposed 71.34±2.04 82.32±2.32 88.10±1.43

OpenDR No. 871449



D3.2: Second report on deep human centric active perception and cognition 18/151

forcement Learning (DRL) algorithms to perform a specific control task [103, 132, 104], e.g.,
acquire a frontal view of a person [153]. Despite the effectiveness of DRL approaches in these
robotics tasks, applying them on challenging computer vision tasks typically require realistic
simulation environments and/or appropriate training methods, e.g., sim2real approaches [129].
At the same time, the lengthy training time of DRL methods further limits their applications
in robotics. As a result, despite its enormous potential for developing active perception ap-
proaches, its application faces significant obstacles.

The main contribution of this work is to propose a DRL-based active perception approach
integrated with state-of-the-art DL-based face recognition models. More specifically, our goal
is to investigate whether active perception approaches can be employed and integrated into
robotic systems in order to improve face recognition results, as well as study the effect of such
an approach on the computational requirements. To this end, we propose a DRL-based control
approach for training agents that are able to identify and focus on task-relevant objects, i.e.,
humans, as well as issue the appropriate control commands accordingly to acquire better re-
sults. To train and evaluate the proposed method we developed a simulation environment using
the Webots simulator [101] and generated several 3D human models using the MakeHuman
software [7]. The proposed method aims to control a drone, equipped with a camera, in order
to improve face recognition results over existing baseline and rule-based active perception ap-
proaches. Indeed, as the experimental results demonstrate, the proposed method managed to
lead to significant improvements in face recognition over the rest of the evaluated approaches,
improving the distance from which a human can be recognized, as well as providing a much
wider angle-invariance. Indeed, the trained agents showed an emergent behavior that can resem-
ble those of humans, e.g., move closer or around a person in order to more confidently identify
it. At the same time, it is demonstrated that the proposed method can also lead to computational
savings, under certain conditions.

2.2.2 Summary of state of the art

Face recognition research in the past years has made tremendous leaps. From traditional ap-
proaches that represent faces with hand-crafted features extracted from an image [170], to mod-
ern deep learning approaches that automatically learn the distinctive features of a face when
trained on massive datasets [23, 158, 93]. The face recognition pipeline of such approaches
typically consists of four stages: a) face detection and cropping, b) (optionally) face alignment,
c) feature extraction, and d) classification/verification. The two first stages are often considered
as preprocessing stages. A face recognition model requires an input image that is carefully
cropped and aligned. Then, this prepocessed image is fed into a DL model that extracts a dis-
criminative feature vector. Finally, this vector is compared to a set of feature vectors of people
of interest [23, 158, 93], performing the final classification or verification task. The method
proposed in this work is orthogonal to these approaches, since it can be readily combined with
any face recognition model and further increase its accuracy. Indeed, as demonstrated in the
conduncted experiments, the proposed method can be readily combined with a state-of-the-art
DL-based face recognition system and increase its accuracy by integrating it into a active vision
pipeline.

This work is also closely related to active perception approaches. According to Bajscy [6],
an actively perceiving agent is one which can, among others, appropriately control its mechan-
ical components in order to enable the best sensing of the surroundings, as well as select the
best viewpoint to achieve the task in hand. However, there are only a few recent approaches to
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active face recognition using DL [106, 119]. An active face recognition system that employs a
DL model to extract the facial features and a controller module to act based on the results of
the DL model was proposed in [106]. The controller module works as a rule-based controller
that selects the most appropriate action based on the face recognition confidence and predefined
thresholds for each action. A fully end-to-end trainable DL-based approach was also proposed
in [119], where a DL model was trained to output both the face feature embeddings, as well as a
suggested action. The network was trained on a small dataset containing facial images at various
pans and tilts, providing a proof-of-concept demonstration for a DL-based pipeline for active
face recognition. Also, this approach cannot fully exploit the potential of active perception,
since it only considered 1-step actions for training the control branch of the DL model.

The proposed method goes beyond these approaches by employing a powerful RL-based
formulation that is both end-to-end trainable and does not make any assumption regarding the
control policy. In this way, more advanced policies can be discovered without introducing any
strong prior, using handcrafted rules either for training or inference. However, at the same time,
the proposed method requires a realistic simulation environment for training, since the control
module cannot be trained using the existing static datasets. To overcome this limitation, in this
work we employed the realistic Webots simulator, along with 3D human models generated us-
ing the MakeHuman software. Furthermore, both of the aforementioned works require the use
of a face detector to appropriately crop the face image before feeding it to the face recognition
module. On the other hand, the proposed method allows for significantly reducing the compu-
tational requirements by working independently of the face recognition model. In this way, a
lightweight DL model is used for performing control and the heavy face recognition pipeline
(face detection and recognition) is only employed when deemed appropriate.

2.2.3 Description of work performed so far

Let x ∈ RW×H×C be an image that contains a face to be recognized, where W , H and C are
the width, height and number of channels of the corresponding image. As described before,
face recognition algorithms require to first employ a face detection model to detect and crop the
bounding box that encloses each face. Therefore, let

xp = fp(x) ∈ RWp×Hp×Cp , (2)

be the cropped face image, where the notation fp(·) is used to refer to the face detector and
prepossessing pipeline employed to crop the image and Wp, Hp, and Cp are the width, height
and number of channels of the cropped image. Most recent deep face recognition methods,
e.g., [93], aim at learning an appropriate model y = fr(xp) ∈ RD that will extract a discrimina-
tive identify-oriented representation from each face image, where D denotes the dimensionality
of the embedding space used for representing the input face images.

Different loss functions have been proposed to train the face recognition model fr to extract
discriminative embeddings. In this work, we employ the Additive Angular Margin Loss [23],
which is minimized when embeddings that belong to the same identity are as close as possible,
while the representations of face images that do not belong to the same person are as far as
possible. After training the model y = fr(xp), the identity of a person depicted in an image
xp can be obtained simply by calculating the Euclidean distance between the feature vector of
that image and the feature vectors on a database that contains images xi of known identities,
i.e., Xd = {(xi, li)}, where li is the identity of the person depicted in the i-th image. Therefore,
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Figure 1: Proposed Active Perception Approach: A DRL agent is employed to issue control
commands in order to acquire the most appropriate view for improve face recognition accuracy.

during inference the identity l of a person appearing in a novel image x is obtained as l = lk,
where

k = argmin
i
|| f (xi)− f (x)||2 (∀(xi, li) ∈Xd). (3)

The proposed method aims to learn an agent that can appropriately control a robot in order
to re-acquire an input image x in which the depicted person can be more confidently identified,
as shown in Fig. 1. To this end, another model fa,W(x) is introduced, where W denotes the
trainable parameters of the model. This model is responsible for controlling the position and
orientation of the robot in order to recognize the human in the scene with the greatest confidence
possible. Five possible actions are supported by this model:

1. stay, where the robot does not move and initiates the face recognition pipeline,

2. move forward/backward, where the robot moves forward/backward, and

3. move left/right, where the robot rotates and translates its position on a predefined arc
either on the left or right.

All the actions translate into discrete actions in the simulation environment, e.g., moving for-
ward/backward moves the agent 0.1m to the corresponding direction. Note that the face recog-
nition pipeline is only employed when the agent issues the stay command. This can significantly
reduce the computationally complexity of the employed pipeline, since both the face detection
and recognition models run only when the control agent is confident enough that the depicted
person can be indeed recognized. This is in contrast with other active vision approaches that
require all models to run simultaneously, e.g., [119].

The proposed agent is trained using DRL. More specifically, the Proximal Policy Optimiza-
tion (PPO) algorithm was used [132]. The reward used for training the DRL agent was defined
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based on the face recognition confidence of a pretrained face recognition model. If the per-
son was not correctly identified, the agent received a reward of 0. Therefore, after identifying
the embedding of the most similar person (k) in the database according to (3), the reward at
time-step t can be defined as:

rt =

{
c if ‖y−yk‖2< a
0 otherwise

, (4)

where yk = f (xk), c is the face recognition confidence, and a is a cut-off value for recognizing
a person, i.e., if the Euclidean distance is larger than a, then we assume that the person has
not been recognized. The face recognition confidence is calculated simply as the negative of
the normalized Euclidean distance between the current embedding vector and the embedding
vector of the most similar person in the database:

c = 1− ‖y−yl‖2

a
. (5)

Note that c is bounded between 0 and 1, since the Euclidean distance cannot exceed the value
of a, due to the used cut-off threshold.

A deep convolutional neural network, receiving input images of 400×300 pixels, was used
to implement the policy, i.e., fa,W(x), as well as estimate the advantage value. A lightweight
DL model was used to this end. The architecture of the model was the following: 2 convolu-
tional layers with 16 (8× 8) and 32 (4× 4) filters respectively utilizing the ReLU activation
function, one fully connected layer of 256 neurons and two output layers. The first one was
responsible for providing the policy function fa,W(x) function. This layer was composed of the
same number of neurons as the number of available actions and employed the softmax function
to provide the final action probabilities. The other one was used for implementing the critic
function and was composed of one output neuron providing the current advantage. To constrain
the advantage values the tanh activation function was employed for this branch.

Each training episode lasts 1.000 steps and the agent initially starts at a random position
around the human model, which also facing at different directions in each episode. The sim-
ulation world consists of a square room, a human model at the center of it and a drone robot,
which the DRL agent is controlling. After each time-step the agent must decide whether or not
its position and orientation must be adjusted. For training the network we employed the Adam
optimization algorithm with a learning rate of 0.0003, while a total for 10.000.000 steps where
performed during the training.

2.2.4 Performance evaluation

The proposed method was evaluated under two different setups. On the first setup, the agent
was trained to select one of the first three actions (“stay”, “move left” and “move right”). In
this setup, the human was always initialized to be in front of the drone and correctly centered.
The aim of this ablated setup was to evaluate the ability of the agent to control the movement in
just one axis in order to increase the face recognition model’s confidence. In the second setup,
the agent was allowed to select any of the available control actions, evaluating the ability of the
proposed method to perform more complicated sequences of actions in order to improve face
recognition accuracy.

The proposed method was also compared to two baselines. First, a face recognition pipeline
was employed to evaluate the ability of existing approaches to detect and recognize humans at
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Table 2: Evaluation for controlling one axis (Setup 1). Face recognition confidence is reported.
A value of zero is used when a person is not correctly recognized.

Distance Static Rule-based Proposed

1m 0.76 0.77 0.78
2m 0.55 0.77 0.78
3m 0.43 0.78 0.77
4m 0.19 0.76 0.76

5m 0 0.77 0.77
6m 0 0.63 0.75
7m 0 0 0.76
10m 0 0 0.71

15m 0 0 0.68
20m 0 0 0.48

In this setup the drone is initialized at a distance of 20m, which decreases by 1m in every evaluation episode. We
report the average face recognition confidence reached for 4 different human models at each distance.

different distances. This setup was called “static” in the conducted experiments. Then, we also
employed an active perception enabled agent that uses rules. The rule-based agent employed a
face detector to detect if a face exists in the scene. If a face is found it outputs the appropriate
control commands to center it to its field of view based on the detected bounding box and then
moves forward based on the face recognition model’s confidence, until it reaches the maximum
confidence. This method is called “rule-based” in the conducted experiments. For all methods
we used ArcFace [23] for the face recognition and RetinaFace [24] for the face detection. Also,
the database of known identities consists of one feature vector extracted from cropped frontal
face images of 5 different human models that were used for the conducted experiments.

The experimental results for the first setup are reported in Table 2. In this setup, the drone
was positioned at various distances in front of the human subject, ranging from 1m to 20m away.
Using a static setup, where the drone does not move, allows for recognizing the persons only up
to 4 meters. On the other hand, the rule-based based approach, which allows the drone to move
closer to the subject at hand, enables confident recognition up to 6 meters. This demonstrates
that active perception, even when implemented using simple rules, can indeed lead to improved
perception accuracy. The proposed method outperforms all the other evaluated methods since it
allows for confidently recognizing the persons even up to 15m, while it can work correctly even
from larger distances (up to 20m).

Similar conclusions can be also drawn for the evaluation results, reported in Table 3, using
the second setup. Again, the proposed method can significantly improve the view-invariance of
face recognition, allowing not only for recognizing the persons at different distances, but also
in a wide range of different angles, for some of which most face recognition pipelines typically
fail. It is worth noting that at a distance of 7m only the proposed method manages to work
correctly, while the provided face recognition accuracy is virtually the same with a robot that
was initially placed in close distance in front of a human subject. Also, note that the proposed
method does not need a face detector to actively perceive the surroundings, which can lead
to significant performance improvements. Indeed, the proposed method runs on 180 FPS on
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Table 3: Evaluation for controlling two axes (Setup 2). Face recognition confidence is reported.
A value of zero is used when a person is not correctly recognized.

Angle Static Rule-based Proposed

3m

0◦ 0.48 0.77 0.76
60◦ 0.24 0.32 0.78

120◦ 0 0 0.78
180◦ 0 0 0.76
240◦ 0 0 0.79
300◦ 0 0.14 0.78

5m

0◦ 0.18 0.53 0.79
60◦ 0 0.32 0.79

120◦ 0 0 0.79
180◦ 0 0 0.77
240◦ 0 0 0.78
300◦ 0 0.13 0.79

7m

0◦ 0 0 0.78
60◦ 0 0 0.78

120◦ 0 0 0.77
180◦ 0 0 0.76
240◦ 0 0 0.77
300◦ 0 0 0.77

In this setup the drone is initialized at three different distances, while for each distance we also evaluated the
performance of the agents at 6 different angles around the human model. We report the average face recognition
confidence reached for 4 different human models at each distance.

average, while the rule-based approach runs on 62 FPS. A GPU-enabled workstation (8 GB
VRAM, 9 TFLOPS) was used for measuring the performance of the evaluated agents.

2.3 Neural attention-driven Non-Maximum Suppression for person de-
tection

2.3.1 Introduction and objectives

Non-Maximum Suppression (NMS) is a final refinement step incorporated in almost every
visual object detection framework, performing the function of merging/filtering any spatially
overlapping detected Regions-of-Interest (ROIs), i.e., bounding boxes, which correspond to the
same visible object on an image. The problem it attempts to solve arises from the tendency
of many detectors to output multiple, neighbouring candidate object ROIs for a single visible
object, due to their implicit sliding-window nature. Thus, an NMS algorithm processes the raw
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(a) Raw ROIs/detections. (b) ROIs/detections after applying
GreedyNMS at 0.5 IoU.

(c) ROIs/detections after applying
the proposed method.

Figure 2: (a) Candidate ROIs/detections from Faster-RCNN in an image from the COCO [90]
dataset. (b)(c) ROIs/detections after the application of GreedyNMS and the proposed method.
Detections matched successfully to humans are colored green, while “incorrect” detections are
colored red.

object detector outputs identified on an input image and attempts to filter out the duplicate ROIs.
Person/Pedestrian detection still remains a challenging task for most NMS methods, fac-

ing difficulties in identifying individuals especially within a crowd, due to various levels of
occlusions. The majority of existing NMS methods are oriented towards fast execution, but per-
son detection in human crowds requires a high degree of accuracy; this is critical for ensuring
human safety in domains such as autonomous systems [16] [143] [72] [110].

The proposed NMS approach offers the following contributions:

• a novel reformulation of the NMS task for object detection as a sequence-to-sequence
problem.

• a novel deep neural architecture for NMS, called Seq2Seq-NMS, relying on the Scaled
Dot-Product Attention mechanism.

• a new, fast, efficient and GPU-based neural implementation of the low-level Frame Mo-
ments Descriptor (FMoD) [97], which is employed for feeding the proposed DNN with
appearance-based representations of detected candidate ROIs.

An example, where our proposed method outperforms Greedy NMS on an image from the
COCO dataset, is depicted in Fig. 2.

A summary of this work is provided hereafter. The corresponding preprint is listed below,
and can be found in Appendix 8.2:

• [145] C. Symeonidis, I. Mademlis, I. Pitas and N. Nikolaidis, “Neural attention-driven
Non-Maximum Suppression for person detection”, TechRxiv preprint,
10.36227/techrxiv.16940275, 2021.

Despite being studied so far for the person detection task, the proposed NMS approach can
obviously be also applied in other object detection problems.

2.3.2 Summary of state of the art

The de facto standard in NMS for object detection is GreedyNMS [36]. It selects high-scoring
detections and deletes less confident neighbours, since they most likely cover the same ob-
ject. An Intersection-over-Union (IOU) threshold determines which less-confident neighboring
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detections are suppressed. It is a simple, well-known, but limited method, leading to several
attempts for replacing it with much improved alternatives.

In Soft-NMS [10], a rescoring function decreases the score of neighboring less-confident
detections, instead of completely eliminating them, achieving better precision and recall rates
compared to GreedyNMS. The authors experiment with Gaussian and linear weighting func-
tions, which both require a hyper-parameter tuning similar to GreedyNMS. GossipNet [55] is
a DNN designed to perform NMS, by processing the coordinates and scores of the detections.
Overall, it jointly analyzes all detections in the image, so as not to directly prune them, but
to rescore them. In [58], an attention module is applied with the task to exploit relations be-
tween the input detections, in order to classify them as duplicate or not. The authors in [91]
proposed Adaptive-NMS, a dynamic thresholding version of GreedyNMS. A relatively shallow
neural network predicts a density map and sets adaptive IoU thresholds in NMS for different
detections according to the predicted density. An accelerated NMS method has been proposed
in [11], allowing shorter inference times in exchange for a small performance drop, due to the
large number of boxes that are likely to be over-suppressed.

GossipNet was modified in [144], for the specific case of person detection from aerial views,
so as to jointly process visual appearance and geometric properties of candidate ROIs. The
method exploited handcrafted descriptors encoding statistical ROI appearance characteristics,
which were computed on the spatial distribution of edges or interest-points detected within each
ROI. These distributions acted as a discriminant factor for identifying complete vs partial object
silhouettes, since the silhouette of any person seen from an aerial view is rather similar in shape.

2.3.3 Description of work performed so far

In this work, NMS for object detection is first reformulated as a sequence-to-sequence task.
This approach is highly related to the evaluation criteria established in object detection [90]
[33], where the candidate ROIs identified on an input image are assumed to indirectly form a
sequence, based on the scalar confidence score assigned to each of them by the detector (in
descending order). Traditionally, evaluating a detector’s accuracy on a known dataset involves
an analysis of this sequence. At each step, a candidate ROI is processed and matched to a
ground-truth object, if and only if: (a) their IoU is higher than a predefined threshold, and (b)
that ground-truth object has not been previously matched to a higher-scoring candidate detec-
tion. In the case where both (a) and (b) are fulfilled, the candidate ROI is marked as “correct”,
otherwise it is marked as “false”. In the special case where only (a) is fulfilled, the candidate
detection is marked as “false”, due to it being a ”duplicate” detection. Thus, the position of a
candidate ROI in the sequence can be a significant factor when taking the decision to classify it
as a “duplicate” or not.

This emphasis in the ordering is shared with problems traditionally viewed as sequence-to-
sequence ones. For instance, in machine translation, a sequence of words from one language
must be transformed into a sequence of words in another language. The order of each word (to-
ken) in the sentence is crucial and can modify its meaning (context). Similarly, in object detec-
tion evaluation, although a candidate ROI (token) can be successfully matched to a ground-truth
object, it can be classified as “duplicate” and therefore as “false”, instead of being classified as
“correct”, due to the fact that a higher-scoring candidate detection, which has been positioned
earlier in the sequence, has already been matched with the same ground-truth object.

Motivated by these notions, this work explicitly formulates the NMS task as a mapping
from an input sequence of candidate ROIs to a corresponding output sequence with identical
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length. Let Rin be the input sequence of candidate ROIs, in descending order based on their
scalar confidence scores assigned by the detector:

Rin = [rin
1 , ...,r

in
N |rscoredet

i ≥ rscoredet
i+1 ] (6)

where rin
i = [rxmin

i ,rymin
i ,rxmax

i ,rymax
i ,rscoredet

i ] is an input candidate ROI expressed through its spa-
tial 2D image coordinates, along with its corresponding score assigned by the detector, and N
is the number of candidate detections. Let Rout be the output sequence of candidate ROIs, in
descending order based on the scores assigned by the NMS method:

Rout = [rout
1 , ...,rout

N |rscoreNMS
i ≥ rscoreNMS

i+1 ] (7)

where rout
i = [rxmin

i ,rymin
i ,rxmax

i ,rymax
i ,rscoreNMS

i ] is an NMS-rescored candidate ROI. The proposed
formulation of the NMS task can be expressed as:

Rout = NMS(Rin) (8)

Building upon this novel view of the NMS task, the method proposed in this work, which
we call Seq2Seq-NMS, receives as input a sequence of candidate ROIs, generated by an ob-
ject detector, and extracts rich representations regarding their appearance and geometry. The
appearance-based ROI representations are extracted based on a new, fast, efficient and GPU-
based neural implementation of FMoD extraction, which has already proven its worth in NMS
for person detection from aerial viewpoints in [144]. An example of the appearance-based ROI
representation extraction is illustrated in Fig. 3. Since, a set of purely geometric attributes has
previously proven effective as an input descriptor, in the context of the GossipNet neural ar-
chitecture [55], a slightly similar, but enriched set of attributes has been devised, serving as an
additional, geometric representation for each candidate ROI. Additional details can be found in
the preprint 8.2 appended in this Deliverable.

The appearance-based and geometry-based representations are fed to a DNN which pro-
cesses them in parallel, while mainly paying attention to spatially neighboring, higher-scoring
candidates when analyzing each ROI. The Scaled Dot-Product Attention mechanism [156],
originally proposed for machine translation tasks, is employed to this end, since it has been
proven effective in various applications, such as image classification [30] or image generation
[114].

Finally, the proposed DNN outputs a sequence of scalar scores, each one defining the context
of a candidate detection. This is essentially the information that determines the final decision of
whether the respective ROI should be classified as “correct” or as “potentially suppressed”, after
the NMS task has been completed. In the proposed formulation, the context of the ith candidate
detection is expressed through the corresponding output score, which is a classification proba-
bility pi : {pi ∈R|0≤ pi ≤ 1} (1/0 means “correct”/“potentially suppressed”, respectively). Af-
ter the inference stage, simple thresholding can be applied on these output probabilities/scores,
in order to decide which candidate detections should be retained.

2.3.4 Performance evaluation

The performance of Seq2Seq-NMS was evaluated on three separate datasets for the person de-
tection task. In order to assess its accuracy regardless of the selected object detector, candidate
ROIs from three different detectors were employed. These differ significantly in the way they
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Figure 3: Computation of the visual appearance-based candidate ROI representations, by ap-
plying the fast FMoD implementation to an image with 3 ROIs and using 2 pyramid levels.

approach the object detection task in general. More details about the setting of the experimental
evaluation is shown on Table 4.

Table 4: The setting of the experimental evaluation.

Dataset Detector
PETS [37] Joint Person Detector [148]
COCO [90] Faster-RCNN [127]

CrowdHuman [135] Yolov4 [9]

As it is shown in Tables 5, 6 and 7, the proposed Seq2Seq-NMS DNN achieves top accu-
racy on the AP0.5 metric in all three datasets, being on par with GossipNet in CrowdHuman
and outperforming all competing methods in the remaining two datasets. The results show that
Seq2Seq-NMS can successfully capture interrelations between candidate detections for the per-
son detection task, based both on their visual appearance and their geometry. The three datasets
used for evaluation contain images with a great variety of visible persons density, ranging from
images of individual people to photographs of large crowds, indicating that Seq2Seq-NMS is
suitable for generic person detection.
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Table 5: Comparison of different NMS methods on the PETS dataset, using detections from
[148]. Bottom line reports on the proposed method.

Method Device
Max dets. = 400 Max dets.= 800 Max dets. = 1200 Max dets. = All

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

Original NMS IoU>0.4 GPU 75.4% 31.7% 3.8 76.5% 31.3% 4.5 76.3% 31.2% 5.0 76.3% 31.2% 6.3
Original NMS IoU>0.5 GPU 73.1% 31.0% 4.1 73.6% 30.8% 5.7 73.6% 30.8% 7.5 73.6% 30.8% 9.8
Original NMS IoU>0.6 GPU 65.7% 28.6% 6.8 65.7% 28.6% 10.0 65.7% 28.6% 12.8 65.7% 28.6% 16.0
Original NMS IoU>0.4
(TorchVision)

GPU 75.6% 31.7% 0.4 76.4% 31.3% 0.5 76.4% 31.3% 0.8 76.4% 31.3% 0.8

Original NMS IoU>0.5
(TorchVision)

GPU 72.7% 30.8% 0.6 73.2% 30.8% 0.5 73.2% 30.8% 0.7 73.2% 30.8% 0.8

Original NMS IoU>0.6
(TorchVision)

GPU 65.1% 28.5% 0.5 65.1% 28.5% 0.5 65.1% 28.5% 0.7 65.1% 28.5% 0.8

Soft-NMSL CPU 76.6% 31.8% 27.1 76.5% 31.3% 64.0 76.3% 31.2% 98.5 76.3% 31.2% 143.3
Soft-NMSG CPU 77.4% 32.7% 23.8 76.7% 32.0% 54.4 76.0% 31.8% 89.5 75.8% 31.7% 154.7
Fast-NMS GPU 75.3% 31.5% 3.2 75.0% 31.0% 1.5 74.5% 30.8% 2.8 74.4% 30.7% 3.5

Cluster-NMS GPU 75.9% 31.4% 2.9 76.4% 31.3% 3.7 76.4% 31.3% 5.5 76.4% 31.3% 8.0
Cluster-NMSS GPU 75.4% 31.6% 4.8 74.0% 30.8% 3.8 73.6% 30.7% 5.0 73.0% 30.6% 7.3
Cluster-NMSD GPU 76.2% 31.6% 5.4 76.5% 31.2% 5.1 76.5% 31.1% 7.7 76.5% 31.1% 10.0

Cluster-NMSS+D GPU 76.4% 31.9% 3.7 75.9% 31.3% 5.4 75.2% 31.0% 8.4 74.9% 30.9% 12.1
Cluster-NMSS+D+W GPU 76.4% 31.9% 28.3 75.9% 31.3% 88.2 75.2% 31.0% 171.9 74.9% 30.9% 292.3

GossipNet GPU 79.6% 34.4% 19.1 82.8% 35.6% 48.0 83.6% 35.9% 73.9 83.8% 36.1% 107.2
Seq2Seq-NMS GPU 80.9% 36.5% 11.1 83.9% 37.3% 11.9 84.7% 37.3% 14.7 - - -

Regarding the AP0.95
0.5 metric, Seq2Seq-NMS outperforms most competing methods but

achieves top accuracy only on the PETS dataset. Most likely, this behaviour can be explained
by the fact that the labels of the candidate detections for Seq2Seq-NMS training were created
based on [90] using an IoU threshold of 0.5. Moving on to required inference running times,
the proposed method is relatively slower than non-neural, mostly less accurate, GPU-executed
algorithms. However, when compared against DNN architectures for NMS, such as GossipNet,
the inference runtime of Seq2Seq-NMS seems less affected by the input sequence length (num-
ber of candidate detections), thus achieving faster inference when processing longer sequences,
as shown in Tables 5 and 6.

Table 6: Comparison of different NMS meth-
ods on the COCO dataset using detections
from Faster-RCNN [127]. Bottom line reports
on the proposed method.

Method Device
Minitest set Average

Inference
Time (ms)AP0.5 AP0.95

0.5

Original NMS IoU>0.4 GPU 65.4% 35.5% 4.3
Original NMS IoU>0.5 GPU 65.3% 35.8% 4.5
Original NMS IoU>0.6 GPU 63.2% 35.5% 4.8
Original NMS IoU>0.4
(TorchVision)

GPU 65.4% 35.6% 0.59

Original NMS IoU>0.5
(TorchVision)

GPU 65.2% 35.8% 0.60

Original NMS IoU>0.6
(TorchVision)

GPU 63.1% 35.5% 0.60

Soft-NMSL CPU 66.6% 36.9% 5.8
Soft-NMSG CPU 66.2% 36.7% 6.6
Fast-NMS GPU 64.1% 35.3% 2.5

Cluster-NMS GPU 65.4% 35.5% 4.9
Cluster-NMSS GPU 65.3% 36.0% 4.8
Cluster-NMSD GPU 65.5% 35.6% 7.6

Cluster-NMSS+D GPU 65.8% 36.6% 7.6

Cluster-NMSS+D+W GPU 65.8% 37.6% 9.7

GossipNet GPU 66.9% 36.0% 6.1

Seq2Seq-NMS GPU 67.5% 36.9% 10.1

Table 7: Comparison of different NMS meth-
ods on the CrowdHuman dataset using detec-
tions from Yolov4 [9]. Bottom line reports on
the proposed method.

Method Device
Validation set Average

Inference
Time (ms)AP0.5 AP0.95

0.5

Original NMS IoU>0.4 GPU 76.9% 44.8% 2.2
Original NMS IoU>0.5 GPU 80.6% 47.0% 2.9
Original NMS IoU>0.6 GPU 82.0% 48.2% 4.6
Original NMS IoU>0.4
(TorchVision)

GPU 77.1% 44.9% 0.4

Original NMS IoU>0.5
(TorchVision)

GPU 80.7% 47.0% 0.4

Original NMS IoU>0.6
(TorchVision)

GPU 82.0% 48.3% 0.4

Soft-NMSL CPU 82.5% 49.3% 30.8
Soft-NMSG CPU 81.7% 48.6% 39.8
Fast-NMS GPU 81.0% 48.0% 1.6

Cluster-NMS GPU 82.0% 48.2% 4.7
Cluster-NMSS GPU 80.3% 47.3% 3.4
Cluster-NMSD GPU 82.2% 48.6% 5.1

Cluster-NMSS+D GPU 81.4% 48.2% 5.5

Cluster-NMSS+D+W GPU 81.4% 48.2% 47.9

GossipNet GPU 83.7% 49.0% 16.1

Seq2Seq-NMS800 GPU 83.7% 49.1% 11.1
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2.3.5 Future Work

Future extensions may focus on a training strategy suitable for various IoU thresholds, as well as
on assessing method performance when using a different modality for describing the visual ap-
pearance of the cropped input detections (instead of edge maps). This may enable an extension
of the proposed method to multiclass object detection tasks.

2.4 Active Face Recognition Using Synthesized Facial Views
2.4.1 Introduction and objectives

In recent years, the robotics community has started focusing in the field of active vision and
exploration. More specifically, considering the problems of reconstructing [100, 22], [66] and
recognizing an object, active vision methods are concerned with obtaining more information
from the environment by actively choosing where and how to observe it using a camera [155].
This could be facilitated by camera motion, which plays a fundamental role in the reconstruc-
tion/recognition of the obtained scene [38], or by moving a mobile robot in different positions
that offer different views of the candidate object. More specifically, active vision methods al-
low robots to conduct maneuvers, possibly ensuring limited energy consumption and motion
complexity, in order to take novel views of a reconstructed/tracked scene or object.

An important application of vision in robotics is obviously face /person recognition. Deep
Learning has been recently dominating the interest of researchers in this due to the superior
performance achieved. Face recognition can be combined with methods that adopt an active
approach in controlling the robot movement. Indeed, the face recognizer on a robot can obtain
more robust results when perceiving the respective face in an active fashion. The robot that
performs the recognition can move to capture the face from more informative views, at the
expense of energy consumption and additional time needed. Synthesized novel views of faces
whose images were acquired through appropriate acquisition systems could be used for robot
guidance in an active face recognition setup. A synthesized facial view, could be used instead
of an image captured by the robot’s visual sensor. In other words, instead of having the robot
move itself or its camera for capturing a novel view in a physical way, it can use a synthesized
view, at least as an aid in its attempt to improve recognition.

In this subsection, we propose an active face recognition approach that utilizes facial views
produced by photorealistic facial image rendering. Essentially, the robot that takes the snapshots
and performs recognition selects the best among a number of candidate movements around the
face of interest by simulating their results through view synthesis. In other words, once the
robot, that is at a certain location with respect to the subject, acquires an image from the current
location, it feeds the face recognizer with this image as well as with synthesized views that differ
by ± degrees from the current view. Subsequently, it either stays in the same position or moves
to the position that corresponds to one of the two synthesized views. The respective decision is
based on the confidence of the three recognitions (on the real and the two synthesized views).
In case of a ”move” decision, it proceeds in acquiring a ”real” image from its new location. The
procedure repeats once again in the same manner, for this location. This line of work has started
in the previous period and continued in this one.

2.4.2 Summary of state of the art

Multi-view Facial Image Synthesis for improving Face Recognition
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A significant number of techniques for synthesizing facial images in novel views appeared
in the recent years, as such images can have a number of applications, e.g., in improving face
recognition accuracy. For example, since profile faces provide inferior recognition results com-
pared to frontal faces, generative adversarial network (GAN) based methods for the frontaliza-
tion of profile facial images [32] or generation of other facial views [64] have been proposed
for enhancing the face recognition results. Furthermore, a method for the generation of frontal
views from any view by a novel generative adversarial architecture called the Attention Selec-
tive Network (ASN) is described in [89]. Towards improving single-sample face recognition by
both generating additional samples and eliminating the influence of external factors (illumina-
tion, pose), [152] presents an end-to-end network for the estimation of intrinsic properties of a
facial image with recovery of the albedo UV map and the 3D facial shape. In [99] a facial image
rendering technique is used both in the training and the testing stages of a face recognition ap-
proach. Finally, a method that produces photorealistic facial image views is described in [179].
The basic idea of this approach is that rotating faces in the 3D space and re-rendering them to
the 2D plane can serve as a strong self-supervision. A 3D head model (obtained by utilizing
the 3D-fitting network 3DDFA), accompanied by the projected facial texture of a single view,
is being rotated and multi-view images of the face are rendered using the Neural 3D Differ-
ential Renderer [74] accompanied by 2D-to-3D style transfer and image-to-image translation
with GANs to fill in invisible parts. This last state-of-the-art method was selected due to its
robustness and photorealistic quality to be used in our method.

Active Face Recognition
Active-vision-based face recognition is an understudied field in current literature. A recent

active method is described in [106] and comprises of a neural network-based face recognizer
along with a classifier and a decision making controller to allow the change of the examined
facial snapshot viewpoint. Authors in [119] propose a DL-based active perception method for
embedding-based face recognition and examines its behavior on a real multi-view face image
dataset. In [68] another active vision-based object recognition approach is presented, among
other contributions. More a CNN-based approach is described that allows object recognition
over arbitrary camera trajectories, (which generate multi-view image sequences) without re-
quiring explicit training over the potentially infinite number of camera paths and lengths. This
is done by decomposing an image sequence into a set of image pairs, classifying each pair inde-
pendently, and then learning an object classifier by weighting the contribution of each pair. The
method is then extended to the next-best-view problem in an active recognition framework. This
is accomplished by training a second CNN to map from an observed image to next viewpoint
and incorporated into a trajectory optimisation task.

It shall be noted that active methods mentioned above, as well as the proposed method,
involve a face recognizer that is trained to recognize frontal or nearly frontal faces, while hav-
ing to deal with input facial images obtained from an arbitrary view point, a fact that makes
recognition challenging.

2.4.3 Description of work performed so far

Let us denote as database split G a set of facial images for the person identities that can be
recognized. The simple Deep Face Recognition method [41] is used by our approach. This
method first performs face detection using HOG features and template matching. Subsequently,
it uses landmark detection to identify 68 facial landmarks and then warps the image so that the
eyes and mouth are centered. Subsequently FaceNet [131] is used to evaluate a 128-dimensional
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feature vector from each centered image. Finally, the face recognizer performs recognition by
evaluating the database G image that is the nearest neighbor to the input image, using euclidean
distance on the corresponding feature vectors.

Simply put, the proposed active vision algorithm uses the face recognition confidence metric
and facial images synthesized for view angles around the current view, in order to select the
next robot action. Starting from an initial position, the robot can take one of the following three
decisions: stay at the current position, move by x◦ to the right or move by x◦ to the left, in
order to acquire a new image. Depending on the achieved recognition confidence, an additional
movement, towards the same direction as the first one, might be decided.

More specifically, given a facial query image Ir, captured by the robot camera at the robot
starting position, the face synthesis algorithm [179] is utilized to render/generate facial views
in 2 different viewing angles i.e. −15◦ and +15◦ in pan with respect to the pan of Ir (and
the same tilt as Ir). These two images are denoted by I−s and I+s respectively. Then, the face
recognizer is fed with these three images (one real, two synthetic ones). Depending on the image
that generated the biggest face recognition confidence (FRC), the robot stays in its current
position (if FRC was maximum in Ir) or moves −15◦ (+15◦) (if FRC was maximum in I−s
(I+s )) and acquires through its camera a new image I−r (I+r ). If a ”stay” decision was taken,
the algorithm outputs the ID of the person it recognized in Ir and terminates. If the robot
moved, face recognition is performed again in I−r (I+r ) and the obtained FRC is compared to a
threshold. In case a high enough confidence was observed, the algorithm outputs the ID of the
person it recognized in I−r (I+r ) and terminates. If not, it tries yet another 15◦ step (movement)
in pan, in the same direction as the first step. In more detail, it generates/synthesizes a facial
view −15◦ (+15◦) in pan from the current pan value (and the same tilt), denoted as I−−s (I++

s ),
and evaluates (by calling the face recogniser) FRC on this synthetic image. If FRC(I−r ) >
FRC(I−−s ) (FRC(I+r )> FRC(I++

s )) the algorithm outputs the ID of the person it recognized in
I−r (I+r ) and terminates. Otherwise, the robot moves −15◦ (+15◦), acquires through its camera
a new image I−−r (I++

r ) and the algorithm outputs the ID of the person it recognized in this
image. The procedure is summarized in Algorithm 1. It should be noted that the output ID is
always obtained by a real image, i.e., an image captured by the robot camera. The synthesized
views are only used to aid the robot in deciding whether to move in a new position (and acquire
a new image there) or stay in the current position. The rationale is that in case the initial robot
position is far from a frontal or nearly frontal one, the algorithm will direct it to move towards
a positions which is closer to a frontal one. Obviously, the procedure can be generalized to
include additional steps (movements), i.e., more than the two movements it currently has. It can
also work, in the same way, for tilt.

2.4.4 Performance evaluation

For the evaluation of the proposed active face recognition approach, the following experiment
is being conducted in the HPID dataset [43] which is a head pose image database of 2790
face images of 15 persons in variations of pan and tilt angles from −90◦ to +90◦ degrees.
Two series of images (each having a distinct pose) were captured for each person, having 93
images in each series. We use the setup “Set 1” in [119] to allow comparison with the ac-
tive recognition method presented therein. In this setup a test subset of 25% of the persons
(4 persons) is selected. Note that, unlike the method in [119] our proposed algorithm re-
quires no training. Images of the selected subjects were divided into a database split and a
query (test) split. Obviously, the database split contains different facial images from those used
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Figure 4: Active Vision Pipeline illustrated for an input query example.
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Algorithm 1: Active Vision Algorithm
1 Input: Query real world facial image Irw ;

Result: PersonID

2 Iencoding
rw ← extract deep feature vector

3 FRC← do face recognition
4 for Ii ∈ S do
5 Synthetic Camera Position in Posei(pan =±15◦, tilt);
6 Ii← render the image
7 Iencoding

i ← extract deep feature vector
8 FRCi← do face recognition

9 if FRC ≥ FRCi then
10 PersonID← do face recognition

11 else if FRC ≤ FRCi then
12 Ii

encoding
rw ← extract deep feature vector

13 PersonID← do face recognition

14

for query. This was done by choosing a specific pan range which entered the database (i.e.
the set of images G that the face recognizer uses to decide upon the ID of the query image
through a nearest neighbor classifier) and we did queries with different pans. These query im-
ages are meant to be the images captured by the robot camera in its initial position. More
specifically, the query subset contains face images with tilts [−30◦,−15◦,0◦,15◦,30◦] and pans
[−90◦,−75◦,−60◦,−45◦,−30◦,30◦,45◦,60◦, 75◦,90◦]. The database split contains facial im-
ages with tilt in angles [−30◦,−15◦,0◦,15◦,30◦] and pans [−15◦,0◦,15◦], i.e. nearly frontal
images. With the used setup we are simulating active vision where the robot is moving only in
the pan direction. The results (in terms of recognition accuracy) are illustrated in Table 8. The
second line in this table presents the result of the static equivalent of our approach, in which
only the initial query facial image is used by the same recogniser involved in the active ap-
proach, i.e. the one in [41]. As can be seen in Table 8, our proposed active method outperforms
both the active face recognition technique [119] and the static variant.

Table 8: Active Face Recognition Accuracy

Algorithm Accuracy
[119] Active 62.2%
[41] Static 58.33%
Proposed Active 91.09%

2.4.5 Future Work

As future work, we plan to evaluate the proposed algorithm in a larger dataset and also by
creating a simulation with human models in Webots [163, 101].
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2.5 Utilizing a Realistic Image Data Generation Framework for the Train-
ing and Evaluation of Human-centric Methods

AUTH has developed a method that generates mixed image datasets for training and evaluation
of: (a) pose estimation, (b) person detection, (c) identity recognition methods. Our method,
which utilizes real background images and DL-generated 3D human models, was first intro-
duced and described thoroughly in Section 2.2 of D6.1. Employing our method, a large-scale
mixed dataset was generated. Details about the dataset are provided in Section 2.1 of D6.2. In
this subsection we will present the experimental evaluation which was conducted on our dataset
for the three corresponding computer-vision tasks. We believe that the experimental evaluation
proves that the generated data are suitable for training DL models in most cases.

2.5.1 Introduction and objectives

The scale, diversity and quality of data used for training supervised deep learning methods have
a major impact on their performance. Algorithms that are intended to be deployed in real-
life conditions are usually trained on multiple datasets in order to improve their generalization
abilities and ensure their robustness.

COCO [90] and Cityscapes [20] are two of the examples of large and diverse datasets pro-
viding annotations for training and evaluation of deep learning algorithms for computer vision
tasks, such as object detection, human pose estimation, semantic image segmentation, etc. Col-
lecting and manually annotating such amounts of data is usually a challenging and exhausting
task, requiring a lot of time and resources. In the case of visual human-centric analysis, the col-
lection and distribution of such data may also face restrictions due to the legislation regarding
privacy. An alternative approach for collecting training data in a more automated manner [39],
[160] is to generate them through a simulator. On the downside, these datasets often suffer in
terms of realism and detail and/or are expensive to generate, requiring artists to carefully design
specific models and environments.

Furthermore, apart from using synthetic data to create new or enrich existing datasets, syn-
thetic data are also often implicitly employed during the validation of complex systems, such
as robots [101]. These systems are often designed and tested in simulation environments before
being deployed in real life conditions. However, deep learning methods trained on datasets con-
taining only real data often exhibit an unstable behaviour or fail to perform adequately, as they
have not adapted to the visual differences between the simulated and the real world data, as we
also experimentally demonstrate in this work.

To overcome these limitations, we proposed an effective and low-cost data generation method
for human-centric tasks that generates realistic and diverse data for person detection, pose es-
timation and face recognition. The method is capable of augmenting existing image datasets,
eliminating additional costs that often occur, as well as potential data collection restrictions
regarding privacy legislation. The proposed method consists of two stages. First, 3D human
models are generated and skeleton-related information is extracted for each of them. For this
task, we employ natural images, avoiding the need for using hand-crafted 3D models. Then,
the proposed pipeline proceeds with the second stage, which concerns data generation through
careful blending of real background images and 3D human models. The appropriate constraints
are enforced during this step to ensure realistic placement of objects. The procedure is illus-
trated in Fig. 5. Finally, the method provides automatically-generated and detailed annotations.
By employing our method, we generated a dataset that contains 50,000 images.
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Figure 5: Visualization of the data generation process. The depicted background image is
derived from the Cityscapes [20] dataset.

2.5.2 Description of work performed so far

Within WP3, an experimental evaluation was conducted using the dataset, in order to examine
whether (a) its images are visually realistic enough (b) the performance of DNN methods on the
three human centric perception tasks is improved when the data are used in their training. The
procedure and its results are described in the following paragraphs whereas more details about
the proposed pipeline can be found in the associated paper:

• [146] C. Symeonidis, P. Nousi, P. Tosidis, K. Tsampazis, N. Passalis, A. Tefas and N.
Nikolaidis, “Efficient Realistic Data Generation Framework Leveraging Deep Learning-
Based Human Digitization”, in Proceedings of the 22nd Engineering Applications of
Neural Networks Conference (EANN), 2021

The first conducted set of experiments on person detection aimed to evaluate the ability of
models pretrained on the COCO dataset [90] to effectively detect persons that appear in the
generated data, examining in this way whether the generated data are realistic enough. The
results are reported in Table 9, for the person class of the COCO validation set as well as for the
test set of the generated dataset. All detectors exhibited excellent precision on person detection
tasks, validating the aforementioned hypothesis. It should be noted that, apart from CenterNet,
the detectors generalize better on the proposed dataset compared to the validation set of COCO.

Table 9: Person Detection Evaluation (AP@0.5 is reported)

Model COCO Synthetic
CenterNet (RS-18) 38.2% 39.0%
SSD-512 (RS-50) 41.9% 86.8%
SSD-512 (VGG16) 41.5% 88.1%

“RS” refers to ResNet.

Similar results were obtained for the pose estimation using the lightweight OpenPose model
[113]. The results are reported in Table 10. For these experiments, instead of evaluating the
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precision of different pretrained models, we evaluated the effect of using only real data for
training (“R”), using only synthetic data (“S”) and combining both of them for the training
process (“R+S”). The training process ran for 140,000 iterations for all models following the
setup proposed in [113].

First, note that the ability of pretrained pose estimators to generalize to the synthetic data
is validated (“R” row). Then, training only with synthetic data leads to perfect generalization
on the test set of the synthetic data, but fails to generalize on real data. On the other hand,
when both synthetic and real data are combined, we observe a significant improvement on the
precision on the synthetic test set, compared to using only real training data. A small decrease
is observed on the COCO test, but this is probably due to using a lightweight model architecture
with relatively low learning capacity.

Table 10: Human Pose Estimation Evaluation (AP@0.5 is reported)

Data COCO Synthetic
R 37.7% 52.7%
S 1.2% 93.3%
R+S 34.0% 88.7%

“R” refers to using real data for training (COCO dataset), “S” refers to using the proposed synthetic data and
“R+S” to using both of them.

Finally, we evaluated the generated data for the task of face recognition, where we observed
several interesting phenomena. The results are reported in Table 11. The used models were a)
pretrained on the MSCeleb (trained for 120 epochs), b) trained both on the combined MSCeleb
and the proposed dataset (trained for 120 epochs), c) pretrained on the MSCeleb data and fine-
tuned on the combined dataset (trained for 5 epochs). An inverted residual model (IR-50) was
used as feature extractor [8]. The evaluation datasets consisted of: a) 5,000 positive and 5,000
negative pairs of images taken from the MSCeleb dataset, b) 5,000 positive and 5,000 negative
pairs of images of the test set of the generated synthetic data, c) the LFW dataset [62] and d)
the CFP FF dataset [133].

Table 11: Face Recognition Evaluation (face verification precision (%) is reported)

Training Setup MSCeleb Synthetic Data LFW CFP FF
R 95.01% 90.63% 99.80% 99.67%

R+S 98.44% 99.75% 99.20% 99.05%
R+S (finetuning) 97.70% 99.47% 99.38% 99.27%

Several interesting conclusions can be drawn from the results reported in Table 11. First,
note that the synthetic data are actually “harder” for a network trained on real data (“R” row).
This can be explained if we consider the loss of facial detail that often occurs in the 3D models.
Quite interesting, this is also the case for real face recognition systems that operate in-the-wild
with low resolution cameras (e.g., footage from CCTV systems), as well as for robotics systems
that are validated using simulators. Then, we observe that training using the combined real and
synthetic set leads to significant improvements both for the real and synthetic data, without
any significant impact on how the model generalizes on other real datasets (e.g., LFW and
CFP FF). Finally, we observed similar positive results even when we only fine-tuned the model
trained for 5 epochs using the combined set (last row), demonstrating that we can obtain similar

OpenDR No. 871449



D3.2: Second report on deep human centric active perception and cognition 37/151

improvements with full training (“R+S”) only spending a fraction of time for training (5 epochs
instead of 120).

2.6 Knowledge Transfer for Human Detection in Fields
2.6.1 Introduction and objectives

Object Detection combines the tasks of classification and localization, i.e., it refers to finding
what objects are pictured in an image, as well as where in the image they are located. In the
case of multiple object, multiple class object detection, a generic object detector should be able
to detect an unknown number of objects belonging to a number of different classes. Depending
on the training dataset, these classes can include people, animals, inanimate objects, etc. Such
datasets include the widely popular PASCAL VOC [33] and MS COCO [90] object detection
benchmarks, containing objects from 20 and 80 classes respectively. Deep Learning brought
significant improvements both in terms of effectiveness and efficiency and currently the top
performing object detection methods on these challenging benchmarks are all based on Deep
Convolutional Neural Networks (CNNs).

Despite improvements in these detectors on well-known object detection benchmarks, de-
ploying them on new datasets highlights the domain adaptation problem. Domain adaptation
refers to the process of alleviating the domain-shift between a source and target domain, i.e.,
how to effectively deploy a detector trained on a source domain onto a target domain, which
differs from the source in some way. Recent works in domain adaptation for object detection
propose a progressive shift towards the target domain [65, 57]. A somewhat more straightfor-
ward approach to domain adaptation is incremental learning [164]. In any case, knowledge
transfer is of significant importance when training a detector on a new dataset.

2.6.2 Summary of state of the art

Single-stage detectors have been shown to perform about as well as their two-stage, heavy-
weight counterparts, while running at much faster speeds. The seminal methods of YOLO
[125] and SSD [92] inspired many recent works which utilize the anchor-based, single-stage
architectures proposed by them. Multiple variations of both methods have emerged, attempt-
ing to improve either the speed or accuracy, some of the most popular of which use different
backbones to accommodate different tasks, like SSD Mobilenet [63].

Anchor-free object detectors aim to tackle issues arising from the use of predefined anchors,
such as the need for thousands of such anchors in order to train dense object detectors, or the
tedious hyperparameters they introduce, like the size, aspect ratio etc. CenterNet [31] is one
such anchor-free object detector, taking into consideration the center of objects as well as the
corners, to detect each object as a triplet. CenterNet also proposed three variants with different
feature extraction backbones to improve detection speed.

2.6.3 Description of work performed so far

A Robotti was deployed by AGI to collect images with a front and back camera, in a realistic
scenario to mimic the images that the robot might encounter in the agricultural use case. Of
the 818 collected images, 13 were discarded as they depicted unwilling participants to comply
with GDPR. The remaining images were annotated with bounding boxes, where one bounding
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(a) (b)

Figure 6: Examples of collected images: (a) Image depicting two humans, annotated with
bounding boxes, (b) Image depicting no humans.

(a) (b)

Figure 7: Examples of false positive detections.

box corresponds to one depicted person. The LabelImg1 tool was used for the annotation,
which outputs annotations in PASCAL VOC .xml format. Figure 6a is an image from this
dataset annotated with two bounding boxes for the two depicted humans. In total, 158 images
contained people, and 647 images did not. The latter were annotated with an empty bounding
box list, to be used as negative samples in object detection algorithms. Figure 6b is an example
of an image from this dataset containing no humans.

An SSD network, pretrained on the WIDER Person dataset and available for download on
the OpenDR server, was evaluated on this new dataset. The precision at 0.5 IOU dropped from
75.8 for WIDER Person to 24.8 for this dataset. The loss in performance can be attributed both
to the detector’s inability to detect small objects, as well as to the distribution shifts caused by
the use of different optics in the camera lens compared to those used in the dataset used for
the original training of the model. Figures 7a and 7b provide examples of detection on this
dataset, where the existence of false positive is evident. This observation signified the need to
incorporate images from this new dataset into the training process of detectors, to deal with the
problem of domain transfer.

1https://github.com/tzutalin/labelImg
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Method Train Dataset Human only Human + negative FPS

SSD WIDER 43.7 26.2 23.6
SSD VOC 53.5 42.2 23.6
SSD COCO 78.3 68.0 23.6

SSD - MobileNet VOC 40.8 18.8 35
SSD - MobileNet COCO 60.7 42.3 35

CenterNet VOC 43.4 28.6 16.1
CenterNet COCO 63.1 54.8 16.1

YOLOv3 VOC 63.4 60.9 15.2
YOLOv3 COCO 78.9 74.7 15.2

Table 12: Evaluation of pretrained detectors on the collected dataset depicting humans in field.

2.6.4 Performance evaluation

An extensive evaluation of pretrained detectors of the SSD [92], YOLOv3 [126] and CenterNet
[31] families, was conducted for this dataset. The results are summarized in Table 12 in terms of
precision at 0.5 IoU and FPS on Jetson AGX. The detectors are trained on either the PASCAL
VOC [33] and MS COCO [90] object detection benchmarks, containing objects of 20 and 80
classes respectively. The SSD detector is also trained on the WIDER Person dataset specifically
for person detection. Finally, the MobileNet version of SSD [63] is also evaluated.

As expected, the addition of images without people highlights the false positive accumula-
tion, due to the unseen backgrounds present in the dataset. Detectors trained on COCO seem
to perform significantly better than those trained on VOC, which can be attributed to the wider
range of appearance in people in the larger COCO dataset. The object scale in COCO is also
more varied, containing people as small as 10 pixels in height. The YOLOv3 detector in general
performs the best, but is the slowest of the evaluated detectors on the Jetson AGX. The SSD
MobileNet variant, especially when trained on COCO, seems to give off the best speed/accuracy
trade-off. Even so, the drop in precision is significant when considering negative-only samples.

2.6.5 Future Work

Based on the experimental study conducted for this dataset, further training of the detectors
is necessary to avoid false positive detections as well as to increase the true positive ratio.
Knowledge transfer from the COCO dataset seems to be the most promising direction for our
future research.

2.7 Remote Multilinear Compressive Learning with Adaptive Compres-
sion

2.7.1 Introduction and Objectives

In many robotic applications, the computational aspect of data acquisition and processing plays
an important role. This is especially important for robots that need to acquire data and make
decisions in a real-time manner. Depending on the computational and energy capacity of the
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robot, sensor signal processing and decision making are conducted either on-board, by the robot
itself, or the sensor signals can be transferred to a centralized server, which can efficiently
handle the intensive computation process. In the former scenario, computational efficiency
and energy-efficiency are not only required for the decision making models but also for the
sensor signal acquisition process. In the latter scenario, the sensor signals must be acquired and
transmitted faster than real-time so that the robot can receive the decisions from a centralized
server in a real-time manner. In both cases, sensor acquisition is a critical component.

The classical sample-based signal acquisition and manipulation approach usually involve
separate steps of signal sensing, compression, storing or transmitting, then the reconstruction.
This approach requires the signal to be sampled above the Nyquist rate in order to ensure high-
fidelity reconstruction. Since the introduction of spatial-multiplexing cameras, over the past
decade, Compressive Sensing (CS) [13] has become an efficient and a prominent approach
for signal acquisition at sub-Nyquist rates, combining the sensing and compression step at the
hardware level. That is, what we obtain from a CS device is the compressed measurement of
the original signal, which is several orders of magnitude more compressed than the classical
sample-based acquisition paradigm at the Nyquist rate. Based on certain assumptions, which
often hold for many types of data modalities such as visual or radar data, perfect reconstruction
of the original signal can be done from the compressed measurements even when the acquisition
rate is much lower than the Nyquist rate [12, 29].

In applications that employ hybrid solutions, data transmission and informational content
throughput, i.e., the amount of data content that can be analyzed under a given period, play
an important role. Compressive Learning (CL) is a hybrid framework that combines Compres-
sive Sensing and Machine Learning. With Compressive Learning, the signal is compressively
acquired and the inference model is built on top of the compressed measurements. In Compres-
sive Learning, smaller compressed measurements, i.e., higher compression rates, require less
transmission bandwidth. However, the level of signal compression affects the inference perfor-
mance of a Compressive Learning system, with higher compression rates often associated with
higher losses of content, thus lower classification or detection accuracy. Since the transmission
network’s condition can vary over time, many modern communication protocols provide im-
plementations for adaptive data transmission to maximize the throughput and minimize energy
consumption. By enabling Compressive Learning systems to acquire signals and make infer-
ences at an adaptive compression rate that is computed based on the adaptive transmission rate,
we can maximize the informational content of the entire application.

A summary of this work is provided hereafter. The corresponding publication is listed
below, and can be found in Appendix 8.3:

1. D. T. Tran, M. Gabbouj and A. Iosifidis, “Knowledge Distillation by Sparse Representa-
tion Matching”, IEEE Internet-of-Things 2021.

2.7.2 Description of the work performed so far

A Multilinear Compressive Learning (MCL) system [151] consists of three modules: the Multi-
linear Compressive Sensing (MCS) component, the Feature Synthesis (FS) component and the
task-specific neural network. The first component of MCL adopts multidimensional compres-
sive sensing which is implemented via separable sensing operators, each of which operates on a
mode of the input signal (tensor). The second component in MCL is the Feature Synthesis (FS)
component, which takes the compressed measurements as inputs and produces a tensor features.
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Figure 8: Illustration of compressed measurements of high compression rates Z̄ constructed
from the original compressed measurement Z .

The last component in MCL is the task-specific neural network, which takes the output of the
FS component and generates the predictions.

In compressive sensing, especially in remote compressive sensing applications, the ability
to adaptively adjust the compression rate, thus the signal fidelity, can greatly improve the infor-
mational content throughput of the applications. This is because many existing communication
protocols can support adaptive transmission rates to maximize the network’s throughput. By
combining the adaptive transmission rate feature and a compressive sensing device capturing
signals at an adaptive compression rate, the data content throughput can be maximized. From
the hardware point of view, it is infeasible to build an MCS sensor that utilizes multiple sets of
sensing operators to operate at different compression rates. However, with a single set of sens-
ing operators {Φk |k = 1, . . . ,K} that produces a compressed measurement Z ∈ RM1×...×MK ,
we can obtain a compressed measurement Z̄ of smaller dimensions (Z̄ ∈ Rm1×...×mK with
mk ≤Mk,∀k) that corresponds to a (higher) compression rate by forming Z̄ from the elements
of Z , i.e.:

Z̄ [i1, . . . , iK] ∈Z , ∀ ik ≤ mk | k = 1, . . . ,K, (9)

where Z̄ [i1, . . . , iK] denotes the element of Z̄ at position (i1, . . . , iK).
From a single compressed measurement Z , to construct multiple instances of Z̄ , each

of which retains the amount of signal information approximately proportional to its size, we
can optimize the set of sensing operators {Φk |k = 1, . . . ,K} such that Z has the following
semantic structure: elements in Z carrying the most relevant information for the learning task
concentrate around the zero-corner of Z , i.e., the corner at position (1, . . . ,1). In addition,
the elements of Z are arranged according to their importance, with the ones closer to position
(1, . . . ,1) being more relevant. With this semantic structure, a compressed measurement Z̄ that
corresponds to a higher compression rate can be constructed from Z as follows:

Z̄ [i1, . . . , iK] = Z [i1, . . . , iK], ∀ ik ≤ mk | k = 1, . . . ,K. (10)

The construction of Z̄ is illustrated in Figure 8. Since the proposed semantic structure al-
lows the construction of Z̄ from contiguous elements of Z , generating Z̄ is computationally
efficient since this step only requires accessing contiguous memory locations, which is more
hardware-friendly compared to accessing non-contiguous elements. It should be noted that Z̄
is constructed on the client side, before being transmitted to the computing server. The FS
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Figure 9: Illustration of the proposed training method with stochastic binary mask B.

component and the task-specific neural network N are implemented on the server side to make
predictions with incoming variable-sized compressed measurements. Thus, the FS component
must be able to handle inputs with variable dimensions. A simple approach is to set the input
dimensions of the FS component to the maximum dimensions of incoming compressed mea-
surements, i.e., the size of Z , and the incoming compressed measurements are appropriately
zero-padded to have the same dimensions as Z .

To this end, the proposed remote MCL model with an adaptive compression feature has the
following optimization criteria: (i) the MCS device captures Z that has the aforementioned
semantic structure, and (ii) the server side utilizes a single model instance to make predictions
with variable-sized compressed measurements. To fulfill both criteria, the effect of variable
compression rates is simulated during stochastic optimization by using a stochastic structural
dropout strategy. More specifically, after all components of the MCL model are initialized, a
stochastic gradient descent-based optimizer is used to train all parameters with the following
objective:

argmin
{Φk},{Θk},Ω

N

∑
n=1

L
(

fN( fFS(Zn�B)),cn

)
(11)

where� denotes the element-wise multiplication operator. fFS and fN denote the mathematical
functions induced by the FS component and task-specific neural network N, respectively. Ω

denotes the parameters of the task-specific neural network. B ∈RM1×...×MK is a random binary
tensor with the elements defined as follows:

B[i1, . . . , iK] =

{
1 if ik ≤ m(r)

k

0 else
∀k = 1, . . . ,K (12)

where m(r)
k denotes an integer value randomly drawn from the set {M(min)

k ,M(min)
k +1, . . . ,Mk}

for all k = 1, . . . ,K. M(min)
k and Mk denote predefined minimum and maximum values for the

k-th mode of the compressed measurement tensor.
The proposed training process with stochastic binary mask B is illustrated in Figure 9. The

intuition behind the stochastic dropout mask is as follows: with the binary mask that stochasti-
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cally changes its values during optimization, the optimizer is instructed to optimize all parame-
ters of the model so that the classification error is minimized for any compressed measurement
dimension that lies within the minimum and maximum values. In other words, the MCL model
is implicitly trained to perform sensing and learning with a compressed measurement of size
m(r)

1 × . . .×m(r)
k . . .×m(r)

K , with m(k)
k being randomly defined for k = 1, . . . ,K during stochastic

optimization.
On a final note, with the proposed adaptive compression mechanism, the computing server

is not strictly constrained to use a single instance of the FS component and task-specific neural
network. However, using separate instances of the FS component and task-specific neural net-
work for every supported compression rate could incur a high computational cost on the server
side. In cases where the server has sufficient computational power, the overall performance can
be enhanced by using a dedicated FS component and a dedicated task-specific neural network
for each compression rate. That is, after solving Eq. (11), we can freeze parameters of the MCS
component and finetune server-side components (FS and N) for each supported compression
rate.

2.7.3 Performance Evaluation

Experiments were conducted using a face recognition dataset: CelebA [94]) to evaluate the
efficiency of remote MCL model with the adaptive compression feature in comparisons with
the original MCL model. All images were resized to the resolution of 32× 32 pixels, i.e.,
Y ∈ R32×32×3. In the following, the results produced by the original MCL training method
described in [151] are denoted as single-rate, and results from the proposed one-shot training
method are denoted as adaptive-rate.

For the single-rate experiments, multiple MCL models were trained with the following
compressed measurement dimensions: 4× 6× 2, 6× 4× 2, 6× 8× 1, 8× 6× 1; 4× 7× 2,
7×4×2, 7×8×1, 8×7×1; 6×6×2, 8×9×1, 9×8×1, 12×6×1, 9×4×2; 10×10×
1, 10× 5× 2. For the proposed adaptive-rate training method, only one model instance
was trained for each dataset with the maximum and minimum dimensions of the compressed
measurements set to 15× 15× 2 and 4× 4× 1, respectively. After training, this single model
instance was evaluated with different compressed measurement sizes that were used to train the
single-rate models.

The results for the CelebA dataset are shown in Tables 13. In addition to the test accuracy
for each compressed measurement size, the average accuracy of each method, and the total
number of epochs used to train the model(s) are also provided. It is obvious that the proposed
(adaptive-rate) models clearly outperform the baseline models, indicating that the origi-
nal MCL training algorithm, without any modification, cannot be used to train a single model
instance that can work for multiple compression rates. Large test accuracy variances imply that
there is no semantic structure within the sub-tensors of the compressed measurement. On the
other hand, a single model instance trained with the proposed adaptive-rate method pro-
duced more consistent performances between different runs.

Comparing adaptive-rate models and single-rate models, we can see that a single
model trained using the proposed adaptive-rate approach achieved very competitive perfor-
mances across different compressed measurement dimensions. Even though all-in-one models
trained with the proposed adaptive-rate method are slightly inferior compared to dedicated
single-rate models, these small performance losses are compensated with significant compu-
tational and memory gains. Using the single-rate approach requires a total of 3150 epochs
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Table 13: Test Accuracy (%) on CelebA

single

-rate

one-shot

baseline
adaptive

-rate

4×6×2 49.12±00.17 06.42±00.17 45.60±00.31

6×4×2 53.38±00.13 08.02±00.52 51.37±00.17

6×8×1 61.00±00.17 09.65±02.66 57.60±00.48

8×6×1 63.38±00.88 16.60±00.52 62.12±00.54

4×7×2 51.79±00.24 07.06±00.12 49.33±00.74

7×4×2 60.17±00.12 11.42±00.13 56.56±00.35

7×8×1 68.08±00.37 16.31±01.31 64.21±00.25

8×7×1 68.75±00.82 17.58±00.12 64.77±00.56

6×6×2 60.40±01.54 13.17±01.37 58.00±00.23

8×9×1 73.06±00.19 23.50±00.58 69.44±00.17

9×8×1 74.40±00.52 28.35±00.77 71.31±00.39

12×6×1 74.48±00.23 30.92±01.46 72.23±00.29

9×4×2 66.40±00.19 17.02±00.15 64.44±00.35

10×10×1 80.00±00.21 44.71±01.88 76.75±00.29

10×5×2 72.92±00.25 22.73±02.02 70.00±00.41

average 65.16 18.23 62.25

∑epochs 3150 210 210

of gradient updates for each dataset when training 15 different models for 15 different com-
pressed measurement sizes. On the other hand, with adaptive-rate training, only a single
model instance was trained for all 15 different configurations of the compressed measurement,
requiring only 210 epochs.

From Table 13, we can see that with less than 3% of accuracy drop, the adaptive-rate

formulation allows us to efficiently train and deploy a single model that can be used for inference
with an adaptive compression rate. In addition to the single model setup, we also evaluated
the scenario when the computing server has sufficient computational power to run dedicated
instances of the FS component and the task-specific classifier. That is, after optimizing a single
model instance using the adaptive-rate method, parameters of the MCS component were
frozen while parameters of the FS component and the task-specific classifier were finetuned
for 30 epochs for each target compressed measurement size. The results, which are denoted
as adaptive-rate*, are shown in Table 14. It is obvious that the adaptive-rate* setup
leads to noticeable performance improvements, which are on-par or better compared to the
single-rate training approach. Thus, higher performance can be achieved under different
conditions in the case of varying transmission channel conditions, compared to the case of
having a MCL model suitable for single-rate based classification. We should note here that
for achieving similar performance in such cases one could opt for deploying multiple single-
rate MCL models, however this would lead to more inefficient inference compared to using
the proposed approach. Although the training complexity (total number of epochs) using the
adaptive-rate* approach is higher than using a single model instance (adaptive-rate), it
is still far below the training complexity of the single-rate training method.
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Table 14: Accuracy after Finetuning under adaptive-rate* on CelebA

single

-rate

adaptive

-rate

adaptive

-rate*

4×6×2 49.12±00.17 45.60±00.31 49.92±00.42

6×4×2 53.38±00.13 51.37±00.17 53.85±00.15

6×8×1 61.00±00.17 57.60±00.48 61.15±00.19

8×6×1 63.38±00.88 62.12±00.54 65.04±01.19

4×7×2 51.79±00.24 49.33±00.74 52.67±00.49

7×4×2 60.17±00.12 56.56±00.35 61.50±00.47

7×8×1 68.08±00.37 64.21±00.25 68.17±00.68

8×7×1 68.75±00.82 64.77±00.56 68.63±00.33

6×6×2 60.40±01.54 58.00±00.23 62.73±01.31

8×9×1 73.06±00.19 69.44±00.17 73.04±00.37

9×8×1 74.40±00.52 71.31±00.39 74.15±00.19

12×6×1 74.48±00.23 72.23±00.29 74.48±00.15

9×4×2 66.40±00.19 64.44±00.35 67.67±01.04

10×10×1 80.00±00.21 76.75±00.29 79.44±00.96

10×5×2 72.92±00.25 70.00±00.41 71.12±00.38

average 65.16 62.25 65.57

∑epochs 3150 210 660

3 Deep person/face/body part tracking, human activity recog-
nition

3.1 Continual 3D Convolutional Neural Networks for Real-time Process-
ing of Videos

3.1.1 Introduction and objectives

Video Recognition is a challenging and computationally costly task, which has been tackled
by many different computational approaches and neural network architectures. While multiple
works achieve good accuracy on Human Action Recognition benchmarks, such as the challeng-
ing Kinetics-400 [75], their computational cost per prediction is prohibitively high for deploy-
ment in both online scenarios and on embedded devices, and thereby for robotics applications
as such.

In the work presented here, we aim to tackle this issue with the introduction of Continual
3D Convolutional Neural Networks (Co3D CNNs). Co3D CNNs are able to reuse the weights
from existing efficient 3D CNNs, which operate on spatio-temporal input clips, and perform
the same computations frame by frame, thereby increasing the prediction frequency at marginal
cost. Co3D CNNs improve substantially on the state-of-the-art in efficient activity recognition
and can deliver 67.3% / 71.0% accuracy at 40.1 / 23.7 predictions per second on the embedded
device NVIDIA Xavier for continual input video streams. The accuracy/complexity trade-off
for the Continual X3D and recent state-of-the-art methods on Kinetics-400 dataset is shown
in Fig. 10. It is our hope that the improvements introduced here will make higher levels of
spatio-temporal reasoning viable for future robotics applications.
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Figure 10: Accuracy/complexity trade-off for Continual X3D (CoX3D) and recent state-of-
the-art methods on Kinetics-400 using 1-clip/frame testing. The � FLOPs per clip are noted for
regular networks, while the • FLOPs per frame are shown for the Continual 3D CNNs. Frames
per clip / global average pool size for each model is noted in the representative points. Diagonal
and vertical arrows indicate respectively a direct weight transfer from regular to Continual 3D
CNN and an extension of receptive field.

3.1.2 Summary of state of the art

Video Recognition has been tackled with multiple architectural approaches such as 2D CNNs
+ RNNs [27, 67], 3D CNNs [15, 150, 35, 34], and Transformer-based methods [3, 107]. While
some methods achieve high accuracy on common Human Activity Recognition benchmarks,
their high accuracy is usually accompanied by equally high computational complexity. Recent
research [85, 34, 180] has begun to tackle this computational burden by taking inspiration in
building blocks from lightweight image recognition research [56, 173, 147]. The Extended
3D (X3D) [34] is one such architecture family, which has produced state-of-the-art results in
the trade-off between accuracy and floating point operations (FLOPs). In essence, it can be
considered as a 3D EfficientNet [147] where the input resolutions, channels sizes and depth
were found by progressive search. Yet, X3D and all other 3D CNNs are limited in their online
inference capabilities, as they operate on clips instead of frames. When frame-wise predictions
are required, this could only be achieved with overlapping clips as seen in Fig. 11.

Some prior methods have proposed modifications to the spatio-temporal 3D convolution
to combat this issue. The Recurrent Convolutional Unit (RCU) [139] is one such method,
which replaces the 3D convolution with an aggregation of the spatial 2D convolution over the
current input with a 1D convolution over the prior output. Dissected 3D CNNs [81] (D3D)
define an architecture that caches the 1×nH ×nW frame-level features in the network residual
connections and concatenates them with the corresponding features in the next frame. This
produces intermediary spatio-temporal features of shape 2×nH ×nW , which are used as input
to a block of convolutional layers. With kernel sizes kT × kH × kW of 2× 3× 3 and 1× 3× 3,
the block produces features of shape 1× nH × nW to be cached once again. Here, n denotes
the feature map size and k the kernel size and subscripts T , H, and W denote the time, height,
and width dimensions. Both RCU and D3D are causal and operate frame-by-frame. Unlike our
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Figure 11: Redundant computations for a temporal convolutional layer during online pro-
cessing of video clips, as illustrated by the repeated convolution of inputs (green b,c,d) with
a kernel (blue α,β ) in the temporal dimension. Moreover, prior inputs (b,c,d) must be stored
between time-steps for online processing tasks.
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Figure 12: Continual Convolution. An input (green d or e) is convolved with a kernel (blue
α,β ). The intermediary feature-maps corresponding to all but the last temporal position are
stored, while the last feature map and prior memory are summed to produce the resulting output.
For a continual stream of inputs, Continual Convolutions produce identical outputs to regular
convolutions.

proposed Continual Convolutions, however, they are incompatible with pre-trained 3D CNNs,
and must be trained from scratch.

3.1.3 Description of work performed so far

Continual 3D Convolutional Neural Networks mirror regular 3D CNNs, but replace convolu-
tions, pooling operators and residual connections with corresponding weight-compatible con-
tinual versions.

As illustrated for the 1D-case in Fig. 12, Continual Convolutions (CoConvs) convolve each
frame with the kernel separately. The intermediary results are then cached and summed up at
the appropriate time-steps to produce the resulting output corresponding to a multi-frame con-
volution. Consider the scenario where a unique prediction is required for each frame. Compared
with regular convolutions, CoConvs reduce the computational burden in proportion to the size
of the input clip, that the prediction should cover.

In the context of a CNN, residuals are often added to representation following the down-
stream network layer. In the context of CoConv layers, however, the residual feature-map
cannot be added naively in this manner, as this would results in a temporal misalignment. Con-
sidering a CoConv layer with temporal dilation dT , kernel size kT and padding pT , the residual
must delayed by dT · (kT − pT −1) to be aligned.

Since the per-prediction computational complexity of Co3D CNNs is virtually independent
of the corresponding clip size, we can increase their receptive field at negligible cost to increase
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predictive performance. This can be easily done by increasing the temporal receptive field of
the final pooling layer, which is commonly found in 3D CNNs. The principles, properties and
limitations of Continual 3D CNNs are described in more detail in the associated paper, which
can be found in Appendix 8.4:

• [49] L. Hedegaard, and A. Iosifidis, “Continual 3D Convolutional Neural Networks for
Real-time Processing of Videos”, arXiv preprint, arXiv:2106.00050, 2021.

3.1.4 Performance evaluation

To serve as our baseline, we performed a comprehensive benchmark of per-prediction accuracy
on Kinetics-400 for prior 3D CNNs [15, 150, 35, 34], as well as their FLOPs and throughput
on various computational devices. This is presented in Table 15. To test our method, we imple-
mented continual versions of the X3D S, M, and L networks (CoX3D), which underwent the
same benchmark. Compared to the original X3D models, we see remarkable reductions in per
prediction FLOPs and throughput as summarized in Table 16. To further validate the method,
we evaluate the Slow [35] and CoSlow networks on Charades [138]. As seen in Table 17, we
again observe computational benefits in proportion to the clip-size of the original network.

Model Acc. (%) Params (M) FLOPs (G) Throughput (evaluations/s)
CPU TX2 Xavier RTX 2080 Ti

C
lip

I3D-R50 63.98 28.04 28.61 0.93 ± 0.04 2.54 ± 0.02 5.37 ± 0.01 77.15 ± 0.88
R(2+1)D-188 53.52 31.51 20.35 1.75 ± 0.11 3.19 ± 0.04 6.82 ± 0.01 130.88 ± 0.29
R(2+1)D-1816 59.29 31.51 40.71 0.83 ± 0.06 1.82 ± 0.01 3.77 ± 0.01 75.81 ± 0.21
SlowFast-8×8-R50 68.45 66.25 50.72 0.34 ± 0.01 0.87 ± 0.00 1.66 ± 0.03 30.72 ± 0.34
SlowFast-4×16-R50 67.06 34.48 36.46 0.55 ± 0.02 1.33 ± 0.01 2.13 ± 0.05 41.28 ± 0.51
X3D-L 69.29 6.15 19.17 0.25 ± 0.01 0.19 ± 0.00 0.88 ± 0.00 16.58 ± 0.13
X3D-M 67.24 3.79 4.97 0.83 ± 0.04 1.47 ± 0.00 3.69 ± 0.02 55.27 ± 0.67
X3D-S 64.71 3.79 2.06 2.23 ± 0.11 2.68 ± 0.01 8.07 ± 0.12 138.04 ± 1.69
X3D-XS 59.37 3.79 0.64 8.26 ± 0.11 8.20 ± 0.09 26.37 ± 0.03 430.15 ± 9.29

Fr
am

e

CoX3D-L16 63.03 6.15 1.54 2.30 ± 0.07 0.99 ± 0.00 6.30 ± 0.00 101.38 ± 3.36
CoX3D-L64 71.61 6.15 1.54 2.30 ± 0.08 0.99 ± 0.00 6.30 ± 0.01 111.53 ± 4.55
CoX3D-M16 62.80 3.79 0.40 7.57 ± 0.14 7.26 ± 0.13 23.70 ± 0.09 335.42 ± 9.91
CoX3D-M64 71.03 3.79 0.40 7.51 ± 0.17 7.04 ± 0.03 23.70 ± 0.09 323.56 ± 9.91
CoX3D-S13 60.18 3.79 0.21 13.16 ± 0.35 11.06 ± 0.03 40.09 ± 0.04 722.43 ± 56.95
CoX3D-S64 67.33 3.79 0.21 13.19 ± 0.37 11.13 ± 0.04 40.10 ± 0.04 726.81 ± 67.38

Table 15: Kinetics-400 benchmark. The noted accuracy is the single clip or frame top-1 score
using RGB as the only input-modality. The performance was evaluated using publicly available
pre-trained models without any further fine-tuning. For speed comparison, evaluations per sec-
ond denote frames per second for the CoX3D models and clips per second for the remaining
models. Speed results are the mean ± std of 100 measurements. Pareto-optimal models are
marked with bold.

3.1.5 Future work

Our research into continual formulations of common building blocks in deep neural networks is
ongoing. Specifically, we are exploring various approaches for weight transfer and fine-tuning
in the context of Graph Convolutional Neural Networks for Skeleton-based Action Recognition.
Our current results are presented in Section 3.2. Another exciting direction of future research is
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Model FLOPs Throughput (evaluations/s)
CPU TX2 Xavier RTX

CoX3D-L64 12.44× 9.20× 5.21× 7.16× 6.73×
CoX3D-M64 12.37× 9.05× 4.79× 6.42× 5.85×
CoX3D-S64 10.01× 5.91× 4.15× 4.97× 5.27×

Table 16: Relative improvements in frame-by-frame prediction in CoX3D-{S,M,L}64 net-
works compared to X3D. The improvements (× lower for FLOPs and × higher for throughput)
correspond to the results in Table 15.

Model FLOPs (G) × views mAP (%)

C
lip Slow8×8 [35]∗ 54.9×1 21.4

Slow8×8 (ours) 54.9×1 24.1

Fr
. CoSlow8 6.9×1 21.5

CoSlow64 6.9×1 25.2

Table 17: Charades benchmark. Noted are the FLOPs × views and video-level mean average
precision (mAP) on the validation set using pre-trained model weights. The result denoted with
‘∗’ was achieved using the publicly available SlowFast code [35].

the reformulation of the multi-head self-attention and Transformers for temporal sequences as
continual.

3.2 Continual Skeletons for Efficient Online Activity Recognition
3.2.1 Introduction and objectives

Skeleton-based human activity recognition has attracted research interest in recent years and
many deep-learning methods have been proposed in this area. In these methods, a human activ-
ity video is modeled as a spatio-temporal graph representing a sequence of human body poses
in a time period, and each each body pose is modeled as a skeleton formed by an arrangement of
2D or 3D coordinates of human body joints and the natural physical connections between them.
Accordingly, the human activity recognition is formulated as a spatio-temporal graph classifi-
cation problem. Graph Convolutional Networks (GCNs) have been successful when applied to
many classification tasks by generalizing the convolution operation from grid data into graph
data structures to take advantage of the non-Euclidean structure of graphs.

The recently proposed GCN-based methods have achieved promising performance in skeleton-
based human activity recognition. Their successful performance can be explained by their abil-
ity in capturing the embedded features in non-Euclidean data structures and treat the skeleton
data as a graph which represents the body joints (graph nodes) and the natural connections
(graph edges) between them. However the high computational complexity of these methods
make their applications infeasible for real-time scenarios with restricted computational capac-
ity. Minimizing the number of floating point operations (FLOPs) can make a large step towards
addressing the computational and memory efficiency in these methods. In this regard, we pro-
pose to capture the temporal features in a skeleton sequence by employing continual convolution
operation, instead of standard 2D convolution, to perform the computation in a streaming man-
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ner while storing the intermediate results. In the following, we provide a brief description of
the state-of-the-art, the proposed method, and the experimental results obtained so far.

3.2.2 Summary of state of the art

The ST-GCN method [168] is the first GCN-based method proposed for skeleton-based human
activity recognition. It is composed of several feature extraction layers applying graph con-
volutions in both spatial and temporal domains to aggregate action-related information in both
dimensions, and one classification layer to predict the activity labels. Recently, several methods
have built on top of ST-GCN to improve its performance by enhancing the feature extraction
or optimizing the model’s structure. 2s-AGCN [137] is one of the state-of-the-art methods pro-
posed on top of ST-GCN which adaptively updates the graph structure of the skeleton in each
layer of the model by learning a spatial attention mask and a data-dependant graph in an end-to-
end manner. Besides, it trains the model with two different data streams to utilize both joint and
bone features. GCN-NAS [123] is a neural architecture search method which has improved the
classification performance by exploring a search space to determine the best graph structure at
each layer of the ST-GCN. More recently, Shift-GCN [18] and SGN [172] methods have been
proposed to improve both the classification accuracy and computational efficiency. Shift-GCN
employs lightweight shift operation as an alternative of 2D convolution to reduce the number of
Floating Point Operations (FLOPs), and SGN utilises semantic information like joint type and
frame index as side information to design a compact semantics-guided neural network (SGN)
for capturing both spatial and temporal correlations in joint and frame level.

During the first year of the OpenDR project, we contributed in this area by proposing three
new methods, TA-GCN [50], PST-GCN [53] and ST-BLN [51], for skeleton-based human ac-
tivity recognition. TA-GCN tries to make the inference process of ST-GCN more efficient by
selecting a subset of key skeletons, which hold the most important features for activity recogni-
tion, PST-GCN tries to find an optimized data-dependent ST-GCN architecture to increase the
efficiency of the classification task, and in ST-BLN we proposed to formulate the spatial graph
convolution as a bilinear mapping which provides more design flexibility for the user. The
full description of our previously proposed methods was provided in deliverable D3.1, and the
model implementations are integrated in OpenDR toolkit. In our new work, our focus is on im-
proving the computational efficiency of the skeleton-based human activity recognition methods
in the online inference scenario, while preserving the state-of-the-art performance.

3.2.3 Description of work performed so far

An undirected spatio-temporal graph on a sequence of skeletons is denoted as G = (V ,E ),
where the set of nodes V indicates 2D or 3D coordinates of N body joints of a skeleton in a se-
quence of T time steps and E is the set of spatial (intra-skeleton) and temporal (inter-skeleton)
connections. The graph structure is captured by the adjacency matrix A ∈ RN×N which is a
symmetric binary matrix. Fig. 13 (right) shows the spatio-temporal graph on a sequence of
skeletons. Considering the spatial partitioning process [168], each node has 3 subsets of neigh-
bors, which is illustrated in Fig. 13 (left) where the nodes in different neighboring subsets
(partitions) are shown with different colors and the center of gravity is shown as a red dot. Ac-
cordingly, the adjacency matrix Ã = A+ IN = ∑p Ap is defined as the summation of 3 different
adjacency matrices which are indexed by p and A0 = IN represents the nodes’ self connections.

The normalized adjacency matrix for each subset is defined as Âp = D−
1
2

p ApD−
1
2

p , where Dp
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Figure 13: Illustration of an example human body poses encoded as a Spatio-temporal graph
(right), and the neighboring subsets in spatial partitioning process in different colors (left).

denotes the degree matrix.
In the baseline method ST-GCN and its extensions like 2s-AGCN, the model receives the

feature tensor X ∈RCin×T×V as input, where Cin denotes the number of input channels, T is the
number of skeletons and V is the number of body joints in each skeleton. The feature vectors
of the nodes are updated by applying successive layers of spatio-temporal graph convolutions.
The spatial graph convolution in layer l is defined as follows:

H(l)
s = ReLU

(
∑
p
(Âp +Mp)H(l−1)W(l)

p

)
, (13)

where Mp ∈RN×N is a learnable attention map which highlights the elements of each adjacency
matrix, and W(l)

p denotes the weight matrix which transforms the node features of each partition.
Practically, the feature transformation is performed by a standard 2D convolution operation
which applies C(l) filters of size C(l−1)×1×1 on the layer’s input H(l)

s .
To capture the temporal dynamics in a skeleton sequence and consider the motions taking

place in an action, a temporal convolution is applied on the output tensor of the spatial convo-
lution, i.e. H(l)

s ∈ RC(l)×T×V . In the baseline method ST-GCN and most of the state-of-the-art
methods such as 2s-AGCN, DGNN, and GCN-NAS, the temporal convolution is basically a
standard 2D convolutions applying C(l) filters of size C(l)× k× 1 to aggregate the features
through k consecutive skeletons in a sequence.

The primary contribution in this work is the application and exploration of Continual 2D
Convolutions as a replacement for the regular 2D convolutions. Continual Convolutions were
first proposed in [49] and are briefly described in Section 3.1. Since the ST-GCN method and its
extensions employ temporal convolutions over long sequences (≈ 300 frames) for many of the
standard benchmarks, they can greatly benefit from the continual formulation, as this reduces
the per-prediction complexity in proportion to the employed sequence length. CoST-GCNs
thus lead to new opportunities and challenges, that may contribute to uncover properties and
best practices for the transfer of “regular” spatio-temporal neural networks to continual ones.

3.2.4 Performance evaluation

Thus far, our experiments comprise the evaluation of multiple transfer approaches using the
(one-stream) ST-GCN and AGCN architectures on the human activity recognition dataset NTU-
RGBD-60 [134]. The ST-GCN-based architecture include convolutional layers with stride > 1.
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Model Frames Accuracy (%) Params (M) FLOPs (G) Throughput (preds/s)
per pred X-Sub X-View CPU

ST-GCN 300 86.0 93.4 3.14 16.73 2.3
ST-GCN∗ 300 87.2 (+1.2) 93.6 (+0.2) 3.14 36.90 (+2.2×) 1.1 (−2.1)
CoST-GCN 4 80.6 (−5.4) 89.9 (−3.5) 3.14 0.27 (−63.2×) 24.1 (−10.5×)
CoST-GCN∗ 1 86.5 (+0.5) 93.2 (−0.2) 3.14 0.16 (−107.7×) 45.8 (−19.9×)

AGCN 300 86.4 94.3 3.47 18.69 2.1
AGCN∗ 300 86.6 (+0.2) 94.3 (=) 3.47 40.87 (+2.2×) 1.0 (−2.1)
CoAGCN 4 80.3 (−6.1) 85.3 (−9.0) 3.47 0.30 (−63.2×) 14.6 (−7.0×)
CoAGCN∗ 1 - - 3.47 0.17 (−108.8×) 34.6 (−16.5×)

Table 18: NTU-RGBD-60 Transfer performance benchmarks. Noted is the top-1 validation
accuracy using joints as the only input-modality. The FLOPs and throughput on CPU (2.6
GHz 6-Core Intel Core i7) accounts for one new prediction. The colored figures in parentheses
denote the relative changes for the specific model relative to is source model.

In the continual inference scenario, this results in a reduction of the prediction rate. For instance,
two layers with stride 2 each would reduce predictions rate to a quarter. Therefore, we propose
to modify and finetune the ST-GCN architectures by setting their temporal strides to 1 in all
layers. The models marked with ‘∗’ in Table 18 enforce temporal stride 1, while the other
models follow the original architecture. Table 18 shows the evaluation of accuracy, parameter
counts, floating points operations (FLOPs) per prediction and the real-life throughput on a one
core of a 2.6 GHz Intel i7 CPU. These preliminary results are very encouraging, and showcase
a perfect use-case of continual convolution for online skeleton-based human action recognition.

3.2.5 Future work

The work on Continual Skeletons is still in progress, and it is our plan to extend the presented
results with additional models and datasets, as well as further on-hardware benchmarks.

4 Social signal (facial expression, gesture, posture, etc.) anal-
ysis and recognition

4.1 Landmark-based facial expression recognition
4.1.1 Introduction and objectives

Facial expression recognition has been widely studied in the past several years and it is of
great importance in different areas of computer vision such as sociable robotics and human-
computer interaction (HCI). Various machine learning and deep learning methods have been
proposed for facial expression recognition (FER) which utilize different data modalities such
as video streams and audio signals to encode 7 facial expressions which are anger, sadness,
happiness, fear, disgust, surprise and neutral. It has been shown that the FER performance can
be improved by utilizing the localized facial landmark coordinates for face alignment [105].
The facial landmarks do not only encode high-level features representing the most informative
face locations in a compact structure, but they are also invariant to the face scale, illumination
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Figure 14: Illustration of facial images in 3 different time steps and their corresponding ex-
tracted landmark points which are denoted as graph nodes in a spatio-temporal graph. The
images are from CK+ dataset [95].

and head pose variations, and face appearance. Deep learning algorithms which employ facial
landmark features instead of images, videos or other data modalities have been rarely studied
recently.

Similar to human body skeletons used for human activity recognition, facial landmarks are
non-Euclidean structured data that can be modeled by a graph in which the landmark points
are the graph nodes and the relationship between them denoted by the spatial arrangement of
the landmark points during the execution of facial expressions are the edges connected graph
nodes. Therefore, the Spatio-Temporal Graph Convolutional Networks (ST-GCNs) [168, 137],
the Progressive ST-GCN (PST-GCN) [53] which tries to find an optimized ST-GCN architec-
ture, or the recently introduced Spatio-Temporal Bilinear Network (ST-BLN) [51] can be em-
ployed to extract informative features from a sequence of graphs, encoding facial landmarks
through different time steps, for facial expression recognition.

Accordingly, we proposed the Progressive Spatio-Temporal Bilinear Network (PST-BLN)
method for landmark-based facial expression recognition, by inheriting the advantage of ST-
BLN [51] to learn graph structures at each layer of the network. The PST-BLN method au-
tomatically defines an optimized, compact and data-dependant network topology for ST-BLN
and also captures the model’s uncertainty by employing Monte Carlo Dropout [154] technique
in training and inference process which gives the users of FER system the possibility to treat
uncertain cases explicitly. A summary of this work is provided hereafter. The corresponding
publication is listed below, and can be found in Appendix 8.5:

1. [52] N. Heidari, and A. Iosifidis, “Progressive Spatio-Temporal Bilinear Network with
Monte Carlo Dropout for Landmark-based Facial Expression Recognition with Uncer-
tainty Estimation”, IEEE International Workshop on Multimedia Signal Processing (MMSP)
2021

4.1.2 Summary of state of the art

Recently, many real-time facial landmark detection methods have been developed which achieve
good performance in addition to their high efficiency [28]. In some studies [70, 80, 47], multi-
modal data fusion based on facial landmarks and images or videos are proposed to improve the
FER method’s performance. Fig. 14 shows a sequence of 3 facial images of a person perform-
ing the expression “surprise” at three different time steps (i.e. the start (left), the apex of the
expression (right) and an intermediate point in time (middle)) and the aligned landmark points
for each image, which are extracted using the method in [76].
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To the best of our knowledge, there is only one GCN-based method for landmark-based FER
which has been proposed in [108] and it adopts landmark extractor [28] to extract accurate 2D
coordinates of 68 landmark points from each facial image in an image sequence. The extracted
landmarks are modeled by a directed spatio-temporal graph which is formed using landmark
points as nodes and triangle meshes among all landmarks, built by Delaunay method, as edges.
Inspired by methods recently proposed for skeleton-based human action recognition, like the
DGNN [136], the FER method [108] also employs a multi-layer spatio-temporal GCN model
to extract features from the spatio-temporal facial landmark graph and introduces the extracted
features to a fully connected classification layer to predict the facial expression.

4.1.3 Description of work performed so far

In this work, we adopted the Dlib’s facial landmark extractor [76] to extract accurate 2D coor-
dinates of 68 landmark points from each facial image. A spatio-temporal graph G = (V ,E ) can
be constructed where V is the node set of 2D coordinates of the facial landmarks and E is the
set of graph edges encoding spatial and temporal connections between the landmarks through
different time steps. The triangle meshes among all landmarks obtained by Delaunay method
make the spatial graph edges and the temporal graph edges connect each landmark into its cor-
responding landmark in its previous and subsequent frames. We utilize the edge features of the
graph which encode the motion of the facial muscles instead of the landmark coordinates.

Therefore, the proposed PST-BLN model receives as input a tensor X ∈ RF×T×E encoding
a sequence of T spatial graphs expressing the connections of the graph edges each with F
feature dimension, and finds an optimized compact architecture for ST-BLN model based on the
received data. A ST-BLN model is composed of several Spatio-Temporal Bilinear Layers (ST-
BLLs) for feature extraction and one fully connected layer for classification. Each ST-BLL is
composed of a bilinear transformation and a temporal convolution. The bilinear transformation
receives as input H(l−1) which is the representations for the E(l−1) facial graph edges at layer
l−1, and transforms them by using a learnable weight matrix W(l) as follows:

H(l)
s = ReLU

(
U(l)H(l−1)W(l)

)
, (14)

where U(l) ∈RE(l)×E(l−1)
is a randomly initialized learnable matrix indicating the spatial weighted

connections between the facial graph edges. The spatially transformed feature tensor H(l)
s ∈

RF(l)×T (l)×E is introduced to the temporal convolution, which captures the motion of the facial
muscles by propagating the features through the time domain using a standard 2D convolution
with a predefined kernel size K× 1. The structure of the ST-BLL is shown in Fig. 15. The
output of the lth ST-BLL, is passed to a global average pooling layer to produce a feature vector
of size F(l)× 1 which is then classified by a fully connected layer which maps features from
F(l) to C dimensional subspace.

The PST-BLN method starts with an empty network and builds the ST-BLLs one by one
and adds them to the model until reaching convergence. Let us assume that a ST-BLN with
l−1 layers has been already built, and the method proceeds in building the lth layer. When the
method starts building the lth layer, the number of output channels in all the 2D convolutions
is set to a predefined fixed number F(l) = b and at each iteration, it is increased by F(l) =
F(l)+ b. While all the model’s parameters in the previously built layers are initialized by the
finetuned weights, the newly added neurons to the network are initialized randomly and all the
model parameters are fine-tuned in an end-to-end manner using back-propagation. The layer’s
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Figure 15: Illustration of spatio-temporal bilinear layer l. It receives H(l−1) of size F(l−1)×
T (l−1)×E as input and applies bilinear projection and temporal convolution to produce the
output representation H(l) of size F(l)× T (l)×E. The bilinear mapping block and the tem-
poral convolution block are both followed by batch-normalization (BN) and ReLU activation
function.

width progression at iteration t is evaluated according to the model’s performance in terms of
categorical loss value on training data, i.e. αw = (L

(l)
t−1−L

(l)
t )/L

(l)
t−1. If αw < εw with εw > 0, it

shows that increasing the layer’s width does not improve the model’s performance anymore and
the method stops progression in that layer. Otherwise, the newly added parameters are saved
and the next iteration starts increasing the layer’s width by adding b more output channels to
the filters of all the 2D convolutions in that layer. After building each layer of the network,
the method evaluates the model’s depth progression using the rate of improvement in model’s
performance, i.e. αd = (L (l−1)−L (l))/L (l−1), in terms of categorical loss value on training
data. When αd < εd with εd > 0, the method stops depth progression and the newly added layer
is removed. Finally, all the model’s parameters are fine-tuned together and the method returns
the optimized topology for the ST-BLN model and its performance on training and validation
data.

Since facial expression datasets are small in size, regularization of the network parameters
is needed to prevent overfitting. To address this, we add a dropout layer after each ST-BLL built
by the proposed method using a dropout rate p of 0.2. This choice also allows us to use Monte
Carlo Dropout [40] to capture the uncertainty of the model during inference. The main idea
of Monte Carlo Dropout is to activate dropout not only in the training phase, but also during
the inference. By repeating the inference for an input facial spatio-temporal graph with an
activated dropout, the outputs of the PST-BLN are combined as an ensemble of different PST-
BLN models and the variance in the outputs are used to capture the classification uncertainty.

4.1.4 Performance evaluation

Our method’s performance is evaluated on three widely used datasets, Extended Cohn–Kanade
(CK+) [95, 73], Oulu-CASIA [174], and Acted Facial Expressions in the Wild (AFEW) [26, 25].
The experiments are conducted with a single GeForce RTX 2080 GPU. The performance of
the proposed method is compared with both video-based and landmark-based state-of-the-art
methods on AFEW, Oulu-CASIA and CK+ datasets in Tables 19, 20, and 21, respectively. The
ST-GCN [168] and AGCN [137] methods are also included in the comparisons to evaluate their
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Table 19: Comparison of video/image-based and landmark-based methods on the validation set
of AFEW dataset

Method Acc(%) #Params Data type
SSE-HoloNet [60] 46.48 - Video
VGG-LSTM [157] 48.60 - Video
C3D-LSTM [157] 43.20 - Video
C3D-GRU [88] 49.87 - Video
ST-GCN [168] 28.17 131.3k Landmark
AGCN [137] 24.21 143.7k Landmark
DGNN [136] 32.64 538k Landmark
ST-BLN w/MCD 36.11 132.3k Landmark
ST-BLN wo/MCD 34.13 132.3k Landmark
PST-BLN w/MCD 33.33 10.8k Landmark
PST-BLN wo/MCD 30.15 10.8k Landmark

Table 20: Comparison of video-based and landmark-based methods on Oulu-CASIA dataset
using 10-fold cross validation

Method Acc(%) #Params Data type
DTAN [70] 74.38 - Video
DTGN [70] 74.17 177.6k Landmark
DTAGN [70] 81.46 - Video + Landmark
PPDN [176] 84.59 6.8m Video
PHRNN-MSCNN [171] 86.25 1.6m Video + Landmark
DCPN [169] 86.23 - Video
CDLM [83] 91.67 2.7m Video
FDRL [128] 88.26 - Video
ST-GCN [168] 77.08 131.3k Landmark
AGCN [137] 75.62 143.7k Landmark
DGNN [136] 81.46 535,7k Landmark
ST-BLN w/MCD 83.54 132.3k Landmark
ST-BLN wo/MCD 82.08 132.3k Landmark
PST-BLN w/MCD 79.79 7.59k Landmark
PST-BLN wo/MCD 78.74 7.59k Landmark
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Table 21: Comparison of the video-based and landmark-based methods on CK+ dataset using
10-fold cross validation

Method Acc(%) #Params Data type
DTAN [70] 91.44 - Video
DTGN [70] 92.35 177.6k Landmark
DTAGN [70] 97.25 - Video + Landmark
PPDN [176] 99.3 6.8m Video
PHRNN-MSCNN [171] 98.5 1.6m Video + Landmark
DCPN [169] 99.6 - Video
CDLM [83] 98.47 2.7m Video
FDRL [128] 99.54 - Video
ST-GCN [168] 93.64 131.3k Landmark
AGCN [137] 94.18 143.7k Landmark
DGNN [136] 96.02 535,7k Landmark
ST-BLN w/MCD 95.47 132.3k Landmark
ST-BLN wo/MCD 93.19 132.3k Landmark
PST-BLN w/MCD 93.34 9.79k Landmark
PST-BLN wo/MCD 93.1 9.79k Landmark

Figure 16: The distribution of 100 classification accuraceis obtained by the ST-BLN w/MCD
method on AFEW dataset. The vertical line in the left side indicates the classification accuracy
obtained by the ensembled predictions.
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Figure 17: Illustration of 3 frames of a sample video in AFEW dataset expressing ‘Surprise‘, top
row, and the distribution of 100 predictions for each class, obtained by our proposed ST-BLN
model.
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performance on the landmark-based facial expression recognition task. The experimental re-
sults show that the ST-BLN and PST-BLN outperform other all other state of the art methods
in terms of computational complexity while having similar or better classification performance
compared to other GCN-based methods. The best classification accuracy on all three dataset
belongs to a video/image-based method; however, since these methods train a CNN/RNN ar-
chitecture like ResNet-18, VGG16, LSTM, C3D, they have more computational complexity.

To capture the model’s uncertainty, we evaluated both ST-BLN and PST-BLN models with
activated dropout layers during the inference and we repeated the inference for 100 times on
each sample to get 100 different prediction vectors. ST-BLN w/MCD and PST-BLN w/MCD
denote the model’s classification accuracy obtained as the mean of 100 different predictions
and ST-BLN wo/MCD and PST-BLN wo/MCD report the classification accuracy obtained by
performing the inference only once. The results show that the model achieves better perfor-
mance when it ensembles the predictions of 100 models rather than performing the inference
only once. Fig. 16, shows the distribution of 100 classification accuracy values of the ST-BLN
w/MCD on AFEW dataset. The classification accuracy obtained by the ensembled predictions
is shown by a vertical line in the left side of the figure which is around 4% better than the mean
accuracy.

Fig. 17 illustrates 3 frames of a sample video and the prediction distribution for each expres-
sion class. The model classifies this sample correctly in the Surprise class with mean probability
of 0.69 while it can also be classified in Neutral and Happy classes with mean probabilities of
0.24, 0.04, respectively. The variance of the model predictions on classes Surprise, Neutral and
Happy is 0.1, 0.9, 0.02, respectively which is interpreted as the model’s uncertainty on each
class.

5 Deep speech and biosignals analysis and recognition

5.1 Deep Gaussian Filtering for Improving Biosignal Timeseries Classifi-
cation

5.1.1 Introduction, objectives, and state-of-the-art

Deep Learning (DL)-based approaches have been employed for several time series analysis
applications in different domains with many problems being successfully tackled, e.g., novel
DL architectures for classifying electrocardiograms (EEGs) [124]. Although DL approaches
had great success, such time series problems still pose significant challenges that are hard to
tackle by conventional DL methods. The inherently noisy and non-stationary nature of many
time-series data make the training process unstable, which usually results in their convergence
to a sub-optimal solution. This has led to the development of a wide range of methods, such as
deep normalization layers [122]. However, DL models are still vulnerable to such phenomena,
as we highlight later in this section.

In this work we aim to integrate a low-pass filtering procedure as an end-to-end trainable
component of DL models that can perform denoising that has been adapted to the task at hand.
Low pass filters are widely used to smooth the noisy signal and provide a more appropriate
form of the data for further processing/analysis. Yet, the cut-off frequency of such filters is
fixed and usually predetermined, leading to concealing important information from the model
that otherwise could have been exploited. Applying a trainable low-pass filter that can learn how
to extract meaningful features can overcome these limitations. For example, learning the cut-off
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frequency of the filters could be part of the learning process of DL models and be adapted to
the task at hand, significantly improving the performance of such models. To this end, AUTH
worked towards developing a deep high-order Gaussian filtering method for time series analysis.
We construct a discrete approximation of a Gaussian filter, which is trainable and can be learned
in an end-to-end fashion through backpropagation. To further improve the performance of the
proposed method, we propose extracting multiple features, using high-order derivatives of the
Gaussian function by convolving the derivatives of the Gaussian filters with the input signal,
leading to a smooth high-order representation of the input. The proposed series of layers are
lightweight, since they consist only of a few trainable parameters, and can significantly improve
time series classification, as demonstrated in the experimental evaluation.

5.1.2 Description of work performed so far

Let x be an input timeseries and fW(x) be a DL model trained for classification tasks, where
W are the trainable parameters of the model. This model can be trained for classification tasks
using gradient descent and an appropriate loss function, such as the cross entropy loss. Instead
of directly feeding the input x to the DL model fW(·), the proposed method uses low pass filters
to extract the filtered signal, along with its filtered high order derivatives, which can be more
appropriate for the task at hand. We define three filters, one for the Gaussian function and its
first two derivatives, as shown below:

g(x,σ) =
1

σ
√

2π
e−

x2

2σ2 , (15)

∂g(x,σ)

∂x
=

−x
σ3
√

2π
e−

x2

2σ2 , (16)

and
∂ 2g(x,σ)

∂x2 =
x2−σ2

σ5
√

2π
e−

x2

2σ2 , (17)

respectively. Note that instead of calculating the signal’s derivative and performing convolution
with a Gaussian filter, we can directly perform convolution with the filter’s derivative, exploiting
the properties of convolution. Using higher order derivatives allows for extracting more infor-
mation from the input signal that could improve the performance of the subsequent DL model.
Therefore, the kernels, which are discrete approximations of the above functions are convolved
with the input signal and their outputs are concatenated and fed to the rest of the network. The
kernels have the size of k, which is an odd number. To keep the same dimensionality between
the signal and the layer’s outputs, padding was applied to the input by expanding its first and
last value. Note that the denominator of the first term in each function can be skipped as it only
provides a scaling factor, which is redundant in the case in which trainable scaling factors are
used.

The proposed method aims to directly learn the optimal σ , which controls the width of the
Gaussian function, i.e., the amount of denoising that is applied to the signal. Note that a different
parameter is used for each kernel. Therefore, the proposed method does not lead to a signifi-
cant increase in models parameters, apart from a slight increase in feed-forward time due to the
additional filtering operation. However, as it is demonstrated in the next section, this process
can lead to significantly higher gains, often allowing to lower the complexity of the subsequent
model. Therefore, the proposed method can lead to an overall decrease in computational com-
plexity. Furthermore, every operation that has been applied is differentiable and therefore the
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gradients can be directly used to optimize the parameter σ through back-propagation, while the
existing highly-optimized GPU-based convolution algorithms can be easily employed to further
improve the performance of the proposed method.

5.1.3 Performance evaluation

Electrocardiograms (ECG) are produced by placing different electrodes on the skin and entail
information about the heart. They are commonly used by doctors to identify different heart
diseases. Past research has used the labeled data collected to build DL models for automated
disease classification [71]. For all the conducted experiments, the proposed method is evaluated
in binary disease classification tasks (healthy time series vs non-healthy time series) using the
following datasets: a) PTB Diagnostic ECG (PTBDB) dataset [2] and b) MIT-BIH Arrhythmia
(MITBIH) dataset.

Table 22: Deep Gaussian Filtering: Baseline evaluation with four different models and 2
datasets. The average of each metric for 5 different runs is reported.

Model Accuracy F1 Loss Precision Recall

Dataset PTBDB

MLP 0.9285 0.9096 0.1887 0.9118 0.9117
Proposed + MLP 0.9367 0.9190 0.1873 0.9266 0.9154
CNN 0.9412 0.9269 0.1563 0.9239 0.9332
Proposed + CNN 0.9542 0.9425 0.1362 0.9424 0.9452
LSTM 0.9553 0.9429 0.1280 0.9505 0.9378
Proposed + LSTM 0.9749 0.9683 0.0769 0.9694 0.9683
ResNet 0.9241 0.9047 0.1996 0.9051 0.9084
Proposed + ResNet 0.9446 0.9299 0.1757 0.9319 0.9320

Dataset MITBIH

MLP 0.9469 0.7178 0.2071 0.6214 0.8496
Proposed + MLP 0.9637 0.8202 0.1319 0.7639 0.8854

CNN 0.9603 0.8096 0.1485 0.7378 0.8969
Proposed + CNN 0.9671 0.8392 0.1246 0.7938 0.8901

LSTM 0.9658 0.8221 0.1297 0.7518 0.9070
Proposed + LSTM 0.9741 0.8603 0,0949 0.8123 0.9142

ResNet 0.9541 0.7808 0.1753 0.7073 0.8717
Proposed + ResNet 0.9661 0.8304 0,1251 0.7850 0.8814

For all the models the learning rate was set to 10−3, while the Adam optimizer [77] was used
for updating the model. The total epochs were set to 20 and 10 for the PTBDB and MITBIH
datasets, respectively. Each model was evaluated 5 different times and the average evaluated
metrics are reported. First, we evaluated the proposed method using a few baseline models: 1)
a multilayer perceptron (MLP) with 3 hidden layers having 16 neurons each. The activation
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function for the hidden layers was PReLU. 2) A ResNet [48] having a similar structure with
the MLP. 3) A convolutional network (CNN) comprising of one layer convolutional layer with
16 filters of size 3 whose output was fed to the MLP as previously defined. 4) A Long Short
Term Memory (LSTM) network with 1 layer, the output of which was also fed to an MLP as
previously defined.

In Table 22, we report the experimental evaluation, where we compare different baseline
architectures with and without the proposed trainable Gaussian approach on two datasets. In
virtually all the evaluated cases, the proposed method improves the accuracy over the baseline.
The ability of the proposed method to be combined with models proposed in the literature
was also evaluated in Table 23. Again the experimental evaluation highlights the ability of
the proposed method to improve over state-of-the-art architectures proposed in the literature,
demonstrating the potential of the proposed method for time series analysis tasks. Finally, in
Table 24 we demonstrate that the proposed method can achieve competitive performance even
when combined with more lightweight architectures, providing a way to further reduce the
complexity of the deployed models. The backbone network architecture presented in [42] was
employed for the conducted experiments.

Table 23: Deep Gaussian Filtering: Evaluating the ability of the proposed method to be com-
bined with state-of-the-art models proposed in the literature. The average of each metric for 5
different runs is reported.

Model Accuracy F1 Loss Precision Recall

Dataset PTBDB

[84] 0.9855 0.9815 0.0503 0.9844 0.9795
Proposed + [84] 0.9873 0.9840 0.0602 0.9861 0.9826
[167] 0.9759 0.9696 0.0812 0.9699 0.9705
Proposed + [167] 0.9920 0.9901 0.0465 0.9921 0.9886
[159](feed) 0.9940 0.9926 0.0243 0.9927 0.9929
Proposed + [159](feed) 0.9958 0.9948 0.0179 0.9947 0.9950
[159](concat) 0.9918 0.9898 0.0261 0.9901 0.9900
Proposed + [159](concat) 0.9943 0.9927 0.0255 0.9933 0.9925
[71] 0.9901 0.9874 0.0323 0.9876 9878
Proposed + [71] 0.9934 0.9918 0.0286 0.9932 0.9907

Dataset MITBIH

[84] 0.9787 0.8834 0.0834 0.8496 0.9199
Proposed + [84] 0.9799 0.8945 0.0802 0.8679 0.9228
Model [167] 0.9751 0.8640 0.0947 0.8235 0.9086
Proposed + Model [167] 0.9826 0.9084 0.0695 0.8768 0.9424
Model [159] (feed setup) 0.9830 0.9076 0.0648 0.8815 0.9354
Proposed + Model [159] (feed setup) 0.9847 0.9143 0.0589 0.8964 0.9330
Model [159] (concat setup) 0.9836 0.9102 0.0634 0.8834 0.9388
Proposed + Model [159] (concat setup) 0.9840 0.9139 0.0597 0.8891 0.9401
Model [71] 0.9820 0.9034 0.0655 0.8745 0.9342
Proposed + Model [71] 0.9828 0.9068 0.0652 0.8871 0.9273
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Table 24: Deep Gaussian Filtering: Evaluating the performance of the proposed method when
combined with [42] and appropriately tuned to reduce the number of parameters for the base-
line model. The average of each metric of 5 different runs is reported. The total number of
parameters is also reported.

Model Accuracy F1 Loss Precision Recall Parameters

Dataset PTBDB

Lightweight 0.9886 0.9856 0.0305 0.9876 0.9844 3.1M
Lightweight + Proposed 0.9948 0.9933 0.0197 0.9955 0.9915 3.1M

Baseline 0.9937 0.9932 0.0199 0.9930 0.9914 5.5M

Dataset MITBIH

Lightweight 0.9818 0.9040 0.0643 0.8715 0.9390 3.1M
Lightweight + Proposed 0.9846 0.9124 0.0581 0.8734 0.9551 3.1M

Baseline 0.9818 0.9052 0.0661 0.8707 0.9429 5.5M
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5.2 Hybrid Speech Command Recognition Models with Self-organized
Operational Layers

5.2.1 Introduction, objectives, and state-of-the-art

Spoken commands recognition (SCR), also referred to in literature as keyword spotting (KWS),
is a subcategory of Automatic Speech recognition (ASR) in which the machines identify short
spoken commands. It is a key technology which enables machines to understand human com-
mands and act based on them. There are a huge number of potential applications for SCR
including smart-phones with mobile assistants, robots following human spoken instructions,
and smart home assistants. SCR is also of particular importance to OpenDR project, as it of-
fers possibilities of basic voice-driven communication and control in a computationally limited
environment (such as on-board devices of robots).

Classical SCR approaches rely on extracting discriminative features from the raw speech.
Frequency domain features like fast Fourier transform are among the most widely used fea-
tures to convert the time domain speech into frequency space. After extraction of meaningful
attributes, an acoustic model such as hidden Markov model (HMM) is classically used to rep-
resent the sequence of words of phonemes. Combination of neural networks and HMM-based
approaches have also been in use since more than 20 years ago. Recently, deep learning-based
approaches have dominated, in terms of performance accuracy, over conventional machine
learning methods for SCR applications. Neural networks, like convolutional neural networks
(CNNs) and long short term memory (LSTM) networks, have raised the accuracy of SCR be-
yond what was ever achievable with classical methods. These deep models can be applied on the
raw audio or on separately extracted features. However, these structures, especially those with
high recognition rates, often rely on complex architectures and therefore require great amounts
of memory and processing power to achieve real-time operation. Their energy consumption is
also very high. These factors significantly limit the SCR applications on robots or hand-held
devices. In fact, lower computational power and memory limitations of the embedded devices
are still serious barriers to full exploitation of the benefits of highly accurate, but complex neu-
ral models. As robotics applications mainly target computationally constrained environments,
fast and lightweight implementations are required for practical operation.

To tackle the problem of computational complexity on embedded devices, two general ap-
proaches are commonly used. One is of network compression [19, 102], whereas the state of
the art deep models are compressed by a variety of methods to reduce the computational costs
without severely degrading the task performance (e.g. recognition accuracy). Alternatively,
more efficient deep networks and methods can be employed from the beginning in order to
achieve better accuracy rates with lower computational costs. The second approach especially
becomes important when training examples are scarce or the input signals are of low quality
or resolution. Using either of these ways, one can implement a reasonable classifier on energy
constrained embedded devices.

We have previously proposed and validated a concept of self organized operational neural
networks (SelfONNs) [79, 141]. We now build upon previously reported work and propose to
hybridise existing SCR architectures with SelfONN formulation, allowing us to keep the advan-
tages of the models’ original designs while expanding on their learning capacity and flexibility
of representation. We are currently considering MatchBoxNet [98] as a base architecture, due
to its highly computationally efficient design and simultaneously high recognition accuracy,
but the core approach is applicable to a wide array of other models. We describe the specific
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modifications and their outcomes in the following subsections.

5.2.2 Description of the work performed so far

Operational Neural Networks (ONNs) [78] are heterogeneous networks with a generalized neu-
ron model that include a dictionary of nodal operators (instead of just an ordinary convolution)
to boost the performance of the conventional CNNs. However, they require an expensive greedy
search to find the optimal operators that achieve the best possible accuracy. The performance is
also highly dependent on the selection of the initial operator set dictionary. In order to resolve
these issues, SelfONNs were proposed in [79], defining generative neurons which are able to
adapt the nodal operators of each neuron during the training phase. This removes the need for
a fixed operator set and a greedy search within that set to find the optimal operators. SelfONNs
were subsequently applied together with quadratic form kernels for the speech command recog-
nition tasks [141] as part of OpenDR project, the development and integration concluding in the
previous reporting period.

The main concept behind SelfONN is to use Taylor series expansion of the nodal function
at each layer instead of the applying the ordinary convolution. A standard convolutional layer
computes the convolution of the input with the layer weights as follows:

Y = X~W +b, (18)

where X , W , b, and Y , are input, weight, bias, and output tensors, respectively.
ONN formulation generalizes the above to the following form:

YONN = Ψ(X ,W )+b, (19)

where Ψ is an arbitrary nodal operator and may be a combination of different functions. If we
set Ψ function equal to the regular convolution operator (~), the ONN layer yields an equivalent
of the standard convolution.

In SelfONNs, instead of using a specific function Ψ as the nodal operator (and therefore hav-
ing to select it), an operation is instead approximated with a truncated Taylor series expansion.
So, the SelfONN layer is defined as:

YSelfONN =WT0 +(X−A)~WT1 +(X−A)2~WT2+

. . .+(X−A)q~WTq +bS

=
q

∑
i=0

(X−A)i~WTi +bS,

(20)

where A is the point around which Ψ is expanded. WTi =
1
i!

∂Ψ

∂X i is the i’th order partial derivative
of Ψ with respect to the input, and q controls the order of approximating polynomial. bS is the
bias term associated with the SelfONN layer. It is argued in [79] that the bias term (bS) and
the DC term in Taylor expansion (WT0) can be merged into a single term. In practice, the input
is assumed to be centered around zero (A = 0). As the goal is not to estimate any particular
function Ψ, but to learn the most suitable nodal function, WTis are learned via a training process
(each WTi is a learnable weight which can be learned via back propagation).

MatchboxNet [98] is a computationally efficient model for speech command recongition,
which has been previously integrated into OpenDR toolkit as a baseline. It takes advantage
of 1D time-channel separable convolutions to reduce the overall number of parameters. As is

OpenDR No. 871449



D3.2: Second report on deep human centric active perception and cognition 66/151

common for SCR models, MatchboxNet takes as input the mel-frequency cepstral coefficients
(MFCC) of the audio signal. Dimensionality of such features may vary, but we follow the origi-
nal model and use 64 MFCC values, calculated from 25 ms windows with 10 ms overlap. Struc-
turally MatchBoxNet is composed of B residual blocks (where B is an adjustable parameter for
model scaling), preceded by a prologue layer and followed by three epilogue layers. Prologue
and epilogue both use standard convolutions, while each residual block contains R sub-blocks,
where 1D time-channel separable convolution is followed by 1x1 pointwise convolution. Batch
normalization is used throughout the model.

The proposed hybridization involves replacing convolutional layers of the model with Self-
ONN layers. Specifically, the following configurations have been considered so far:

• A: original MatchboxNet

• B: prologue layer replaced with SelfONN, q = 7

• C: final epilogue layer replaced with SelfONN, q = 7

• D: both prologue and epilogue replaced with SelfONN, q = 5

• E: both prologue and epilogue replaced with SelfONN, q = 7

• F: pointwise convolutions inside residual blocks replaced with SelfONN, q = 7

The network structure (specifically configuration E) is depicted on Figure 18. The only addi-
tional constraint imposed by the substitution of layers is the assumption for the SelfONN input
to be zero centered. While for the prologue layer this can be addressed by normalizing the
data, intermediate inputs inside the network also violate this assumption. For this reason we
additionally insert hyperbolic tangent functions into the model just before the SelfONN layers,
where appropriate. This ensures the values to be between -1 and 1, preserving the Taylor series
approximation.

5.2.3 Performance evaluation

Preliminary evaluation results for the hybrid models are reported in the Table 25. Google Speech
Commands dataset [162] was used for experiments as a de-facto standard for speech command
recognition tasks. Every reported value is an average of 3 independent runs. Other training
parameters follow the standard MatchboxNet setup as closely as possible for compatibility and
reproducibility. Specifically, Novograd optimizer is used with β1 = 0.95 and β2 = 0.5. The
learning rate is determined via Warmup-Hold-Decay scheduler, with ratios of different schedul-
ing stages being 5%, 45% and 50% respectively and the learning rate being capped in the
interval between 0.001 and 0.05. The training is performed for 500 epochs.

While configurations B through D demonstrate results comparable to the baseline, config-
uration E proves capable of surpassing the original MatchboxNet. A wider range of model
configurations and settings are being investigated to establish the potential benefits of using the
hybrid approach.
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Figure 18: Example of the hybrid MatchboxNet model with SelfONN layers.

Table 25: Classification accuracy of different model configurations on Google Speech Com-
mands dataset

Configuration Accuracy, %
A (baseline) 97.1789

B 97.1763
C 96.3570
D 96.6057
E 97.7105
F 93.8259
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5.3 Biosignal Classification with Codeword-Temporal Self-Attention Neu-
ral Bag of Features

5.3.1 Introduction, objectives, and state-of-the-art

Timely diagnostics of potential heart abnormalities, such as atrial fibrillation or other cardio-
vascular diseases is an important problem in the modern world, with a multitude of solutions
proposed to address it. Most of these methods operate on multi-dimensional time-series data,
where the signal is represented by sequence of features, where multiple features are present at
each timestamp. One successful approach for such problems has been developed during the
first year of OpenDR, where a 2D attention for matrix data was developed as an extension to
the Neural Bag-of-Features (NBoF) model, including three different formulations with differ-
ent interpretations, as a way to improve the robustness of the model. In our work, we aim to
extend this approach further, by proposing a codeword-temporal attention formulation as well
as reformulating independent codeword and temporal attention formulations.

Neural Bag of Features is a neural extension of the Bag of Features feature extraction algo-
rithm. NBoF receives as input a variable-size representation and quantizes it into a fixed-size
histogram representation. Quantization is performed using a learned dictionary that can be op-
timized jointly with the whole architecture in an end-to-end manner. The extracted histogram
representations, known as codewords, are aggregated by averaging. Several feature quantiza-
tion approaches have been proposed to date, including those based on Radial Basis Function
(RBF) and hyperbolic kernel [121].

During the first year of OpenDR, an attention module for sequence data was developed and
utilized together with Neural Bag of Features formulation for heart anomaly classification prob-
lems. The developed methodology defines 2D-attention, referred to as 2DA, that can be utilized
as a plug-in extension in a variety of sequence data problems and architectures. Specifically,
codeword attention, temporal attention, an input attention variants were proposed to highlight
most relevant features of intermediate representations, temporal timestamps, or input data fea-
tures, respectively. During the second year, work towards extending this approach has been
performed, as described in Section 6.2.2.

The goal of codeword attention is to highlight most relevant codewords obtained at quanti-
zation step of the NBoF model while suppressing the non-relevant ones, under the assumption
that the output of each quantization neuron contributes differently to the final prediction. Given
the output of the quantization step Φ∈RK×N , an attention mask A∈RK×N of attention weights
is applied to the features Φ in order to highlight or suppress its rows, i.e., codewords, by aply-
ing the 2DA to ΦT . Similarly, 2DA can be applied directly on the input of NBoF rather than its
quantized output in order to improve the robustness of the model towards noise. Since we would
like to highlight individual series in the input data, the process is similar to codeword attention,
and 2DA is applied to XT . This type of attention is referred to as input attention. Temporal
attention aims to highlight relevant timestamps in the sequence during the aggregation step of
he NBoF model. Formally, it is achieved by applying 2DA on columns of Φ.

5.3.2 Description of the work performed so far

Formally, 2DA is defined as follows. Given a feature representation Φ, 2DA learns an attention
matrix A:

A = so f tmax(ΦW), (21)
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where softmax() function is applied row-wise to encourage competition between columns of
Φ, and W is a learnable weight matrix with diagonal elements fixed at 1

N . The learnt attention
matrix i subsequetly applied as:

F2DA(Φ) = Φ̃ = α(Φ�A)+(1−α)Φ, (22)

where α is a learnt parameter controlling the strength of attention matrix.
Although the proposed 2DA approach addresses certain limitations of the NBoF model

in terms of highlighting most relevant attributes in the quantized feature representation, we
hypothesise that further improvement can be achieved by reformulating the attention learning
methodology.

One limitation of previously-proposed 2DA attention mechanism is that attention is applied
separately to either codebook or temporal dimensions. Even if both attention masks are applied
simultaneously, being learned independently, this approach does not take into account potential
relationships of learned codewords with the temporal representations. At the same time, they are
not necessarily independent in real scenario, as certain codewords can have different importance
at different timestamps. We therefore hypothesize that learning of joint codeword-temporal
attention map can be beneficial for learning better feature representations and therefore assist in
classification task.

Formally, we define the codeword-temporal attention as follows, building on top of the well
studied self-attention module. Considering a NBoF-learned feature representation Φ ∈ RK×N ,
where K denotes the number of codewords and N denotes the temporal length, we obtain the
attention matrix by quantifying the relations of codeword and temporal features in a joint learnt
space. Formally, we define two learnable projection matrices Wn

q ∈ d×N, Wn
k ∈ d×K and

project the representation Φ temporally and codeword-wise into a joint d-dimensional space.

qn =ΦWn
q

T ∈ K×d

kn =Φ
T Wn

k
T ∈ N×d

(23)

Further, we calculate the scaled dot-product similarity between representations learned from
temporal dimension and the ones learned from the codebook and apply an activation function σ ,
such as softmax, to scale the values and promote competition between different elements. The
learnt attention matrix is applied element-wise to the input feature representation. Following the
widely-used definition of multi-head self-attention [156], n attention matrices can be calculated
independently, with the outputs of all heads subsequently concatenated.

An = σ(
qnkT

n√
d

) ∈ K×N (24)

Φ̃n = αnΦ+(1−αn)An�Φ

Φ̃ = [Φ̃1, ...,Φ̃n]
(25)

A similar idea can be further developed into enhancing the independent codebook and tem-
poral attetions in 2DA. In the current definition, the projection matrix mathb fW outlined in
equation 21 is fully learnt from scratch, with a role of highlighting relevant codewords or tem-
poral features in Φ. Instead of learning this weight matrix directly from scratch, we propose
to follow a different self-attention based approach and learn the attention matrix by quantify-
ing the relative importance of each codeword or temporal dimension in a learnt latent space.
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That is, considering the codeword attention, we define two projection matrices Wn
q ∈ d×N and

Wn
k ∈ d×N from which latent representations of Φ are learnt as:

qn =ΦWn
q

T ∈ K×d

kn =ΦWn
k

T ∈ K×d
(26)

Following this, we can calculate the codeword attention as a K×K matrix following equation
24. The learnt attention matrix is subsequently multiplied with a feature representation Φ to
highlight the most relevant codewords and multi-head approach can be followed here as well,
as follows:

Φ̃n = αnΦ+(1−αn)AnΦ

Φ̃ = [Φ̃1, ...,Φ̃n].
(27)

Similarly, temporal attention can be calculated by transposing the feature representation Φ,
leading to N×N attention matrix encoding relative importance of each temporal dimension.

5.3.3 Performance evaluation

To evaluate the performance of the developed methodology, we perform experiments on time
series classification of biosignals. Specifically, we utilize Phonocardiogram (PCG) and Electro-
cardiogram (ECG) signals to predict cardiovascular diseases. PCG signal is used to evaluate the
hemodynamic status of the patient and predict presence of any cardiovascular abnormalities,
and we employ Physionet challenge dataset for this purpose. Additionally, on this dataset we
predict the quality of the given phonogram (high vs low). For evaluation we perform experi-
ments on 5 second segments of the recordings and extract 24-band Mel-spectrogram as features.
AF dataset poses the problem of detection of atrial fibrillation, with the task of classifying the
ECG signals into normal sinus rhythm, atrial fibrillation, alternative rhythm, and noise. Here,
we utilize 30-second segments and train the model on the raw signals.

In both cases, we preprocess the data with several 1d-convolutional layers prior to passing
the feature to the NBoF model. In addition to previously-described NBoF formulation, we
utilize recently-propozed TNBoF formulation as well. The average F1-score over 3 or 5 folds
for PCG and AF datasets, respectively, are reported in Table 26. Here, CA and TA correspond
to standard codebook and temporal attention, and CsA, TsA, and CTsA correspond to codebook
self-attention, temporal self-attention, and joint codebook-temporal self-attention. We employ
architecture with 3 heads and dropout applied on the attention matrix of CsA and TsA, and
report results with latent spaces of two different dimensionalities of 512 and 1024.

As can be seen, in most cases codebook-temporal attention provides competitive perfor-
mance outperforming the vanilla NBoF, and both codebook and temporal attentions. Addition-
ally, it can be seen that in most cases conventional 2DA in both codebook and temporal formu-
lations is outperformed by the proposed self-attention based counterparts. Further experiments
evaluating the proposed approach remain for future work.
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Table 26: Average F1 score of proposed self-attention based approaches (CsA, TsA, CTsA) and
competing approaches (CA, TA)

PCG-AD PCG-QE AF
NBoF 87.88 + 0.39 72.61 + 1.35 76.59 + 1.24
NBoF-CA 88.05 + 0.65 73.7 + 0.58 77.02 + 2.11
NBoF-TA 87.25 + 0.44 73.51 + 1.54 77.24 + 2.08
NBoF-CsA 88.55 + 0.18 74.12 + 0.8 76.77 + 1.71
NBoF-CsA 87.97 + 0.59 74.07 + 0.79 77.0 + 1.84
NBoF-TsA 87.79 + 0.27 74.45 + 0.76 76.32 + 2.3
NBoF-TsA 87.88 + 0.51 74.7 + 0.8 76.04 + 1.83
NBoF-CTsA 87.27 + 0.32 73.85 + 0.6 77.75 + 1.31
NBoF-CTsA 87.53 + 0.66 74.16 + 0.68 76.62 + 1.77
TNBoF 87.94 + 0.82 73.05 + 1.26 76.77 + 1.16
TNBoF-CA 87.31 + 0.79 73.32 + 0.46 77.06 + 1.74
TNBoF-TA 87.38 + 0.58 74.0 + 1.0 77.33 + 2.19
TNBoF-CsA 87.48 + 0.87 74.08 + 1.07 77.95 + 1.78
TNBoF-CsA 87.95 + 0.87 73.9 + 1.13 77.25 + 1.64
TNBoF-TsA 87.68 + 0.61 73.45 + 0.45 76.2 + 0.75
TNBoF-TsA 87.43 + 0.93 73.49 + 1.59 77.07 + 1.16
TNBoF-CTsA 88.02 + 0.17 74.02 + 0.98 77.01 + 1.15
TNBoF-CTsA 88.03 + 0.87 73.61 + 0.57 78.0 + 1.74

6 Multi-modal human centric perception and cognition

6.1 Learning to ignore in Convolutional Neural Networks
6.1.1 Introduction and objectives

Attention mechanisms in Convolutional Neural Networks (CNNs) are developing rapidly due
to their improved performance in a wide range of computer vision tasks. Majority of these
approaches aim to explicitly identify and highlight relevant regions of the image and pass the
attended representation to further layers of the network. On the other hand, it can be argued
that explicit learning of the parts of the image relevant to the given task is generally more chal-
lenging than learning which parts of the image are less relevant and, thus, should be ignored.
Especially in computer vision problems, oftentimes many easy-to-identify patterns of irrelevant
features can be present in a data sample. For example, image regions located closer to the
center of the task are generally more likely to contain useful information compared to the bor-
derline pixels. Following this intuition, we propose to reformulate the attention mechanism in
CNNs to learn to ignore instead of learning to attend. More specifically, we propose a learning
mechanism aiming to explicitly learn irrelevant information in the scene and suppress it in the
produced representation, keeping only relevant attributes. The resulting implicit attention can
be incorporated into existing attention mechanism and we specifically validate our method us-
ing two of the widely-used attention mechanisms, namely, Squeeze and Excitation (SE) block
[59] and Convolutional Block Attention Module (CBAM) [165]. Furthermore, as utilization
of these attention approaches have been successfully utilized for multimodal fusion, we extend
our approach to this domain and present an approach for multimodal fusion in vision tasks via
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ignoring.
A summary of this work is provided hereafter. The corresponding publication is listed

below, and can be found in Appendix 8.6.

• [86] Laakom, F., Chumachenko, K., Raitoharju, J., Iosifidis, A., & Gabbouj, M, “Learn-
ing to ignore: rethinking attention in CNNs”, British Machine Vision Conference 2021.

6.1.2 Summary of state of the art

Attention in computer vision is inspired from the human visual system, leading to development
of a wide range of attention approaches aimed at improving the performance of models in a
variety of tasks. A set of these methods is directed at Convolutional Neural Networks, and aim
to learn to select and emphasize relevant features or regions in images. This is conventionally
achieved by learning an attention mask over an intermediate feature representation, whether
spatial or channel-wise, where the mask encodes the importance of each given attribute. The
attention mask is subsequently applied to the feature representation, hence emphasizing the
relevant features and making the learning problem easier for the subsequent layers.

Notable works in this field include Squeeze-and-Excitation block (SE) [59] and Convolu-
tional Block Attention Module (CBAM) [165], where SE learns attention weights channel-wise,
and CBAM extends the approach of SE to include spatial attributes. Specifically, in SE, an at-
tention mask is learned based on global average-pooled features of intermediate representations
and applied at multiple layers of the ResNet architecture. CBAM enriches the SE mechanism by
additional max-pooled input, hence leading to learning of spatial attention. The learned atten-
tion weight masks are then applied channel-wise or pixel-wise to corresponding feature maps.
Futhermore, utilization of channel-wise attention has been shown to be beneficial for multi-
modal fusion in multi-stream architectures on a wide range of tasks [69, 142]. In these methods,
attention is used for knowledge transfer between two streams of the multi-modal architecture,
where a joint feature representation is learnt between the streams similarly to “squeeze” stage of
SE-block, and the joint representation is subsequently “excited” to each of the streams, resulting
in two attention matrices applied to each of the two modalities.

Concurrently, some works have focused on the ignoring paradigm rather than explicit atten-
tion in a variety of applications. This idea has been shown useful in saliency estimation [4] and
color constancy [87], where auxiliary variables are used to encode prior knowledge on regions
to be ignored, such as dark regions, as it is assumed that they are less-likely to contain salient
object. Other applications include machine translation [44] and domain adaptation [175].

6.1.3 Description of work performed so far

We present a methodology that reformulates conventional attention into learning-by-ignoring
paradigm. Formally, given a feature map F, attention mask in CNN can be defined as follows:

F′ = F⊗ fθ (F), (28)

where F′ is the attended feature map output,⊗ is the element-wise multiplication and fθ (·) is an
attention function with learnable parameters θ , which takes as input a feature map F and returns
an attention mask fθ (F) ∈ [0,1]. This mask is then element-wise multiplied with the original
map F in order to produce the output map F′. The mask fθ (F) is expected to identify relevant
spatial or channel information and output the ‘importance score’ for each attribute, producing
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high response for most relevant regions and smaller values for regions of lesser interest. This
can be seen as an explicit attention mechanism, where the model fθ (·) learns to directly identify
and highlight relevant information.

In our ignoring approach, we train the model to predict irrelevance of features, rather than
their importance, and by this we expect to simplify the training objective, hence leading to im-
proved performance. Our approach consists of a function which learns to identify irrelevant or
confusing parts of the feature map in order to suppress them, followed by inversion of predicted
irrelevance scores. Formally, this can be formulated as follows:

F′ = F⊗T (gθ (F)), (29)

where gθ (·) is a function with learned parameters θ that is expected to learn to highlight infor-
mation in the feature map that is irrelevant or confusing for the prediction. This can be seen as
an ignoring mask that outputs high values for attributes and regions that should be suppressed in
the feature map. The function T (·) is a function with an output T (x) inversely proportional to x,
hence flipping the learned ignoring mask and transforming it into an attention mask. Similarly
to Eq. (28), the final feature map F′ is obtained by element-wise multiplication of the input map
F and the flipped ignoring mask T (gθ (F)).

Given an ignoring mask gθ (F), the function T (·) can be any function satisfying the condi-
tion of being inversely proportional to its input and bounded between [0,1]. We propose three
variants:

T1(x) = 1−αx, (30)

T2(x) = sigmoid(
1
x
), (31)

T3(x) = sigmoid(−x). (32)

The first variant T1(·) linearly converts the ignoring mask to an attention one, and α is a hyper-
parameter controlling this linear scaling. The extreme case α = 0 corresponds to the extreme
case F′ = F, i.e., none of the features are emphasized or suppressed. For the second and third
variants T2 and T3, a sigmoid function is applied to ensure that the output is bounded between
[0,1].

The main difference between implicit and explicit attention formulations is the presence of
a flipping function T (·). It can be seen from Eq. (28) and Eq. (29) that fθ (·) can be directly
replaced by T (gθ (·)). This makes it straightforward to reformulate any existing explicit atten-
tion method to learn to ignore instead of learning to attend by applying an inversion function
T (·) on top of the learned mask. This way, the model gθ (·) can be learned as the model fθ (·)
in conventional attention methods, while its parameters will be optimized to detect irrelevant or
confusing regions instead of relevant ones. To utilize our approach for multimodal fusion, we
rely on Squeeze-and-Excitation (SE) block, defined as follows:

fθ (F) = σ(W2δ (W1GAP(F))), (33)

where GAP(·) denotes Global Average Pooling, δ is a ReLU activation, σ is the sigmoid func-
tion, W1 ∈ Rc× c

r and W2 ∈ R c
r×c are linear layers, c is the number of channels in F, and r is

the reduction rate in the bottleneck block. Given the output fθ (F), the attended feature map
is obtained by applying the learned mask element-wise between corresponding channels. To
incorporate our ignoring paradigm into SE, we apply T (·) to the output fθ (F), hence trans-
forming its objective into learning features that should be ignored. Specifically, we define
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the three variants as: f 1
θ
(F) = 1− ασ(W2δ (W1GAP(F))); f 2

θ
(F) = σ( 1

σ(W2δ (W1GAP(F))));

f 3
θ
(F) = σ(−W2δ (W1GAP(F))) using the definitions of T1, T2, and T3, respectively. As can

be noticed, in the first two variants T (·) is applied directly on fθ (F), while in the third case it is
applied on pre-sigmoid output to ensure sufficiently wide range for attention scores.

For multimodal fusion, this ignoring-based SE-block is placed between the streams of a
multi-modal architecture, aggregating the information from both modalities to a joint squeezed
representation and subsequently expanding it into each modality following our ignoring paradigm.
Specifically, considering a two-stream scenario, intermediate feature representations from two
network branches corresponding to two modalities are first spatially squeezed into channel de-
scriptors by applying global average pooling in each branch. The squeezed representations are
subsequently concatenated and projected into a joint lower-dimensional space. The resulting
features are transformed with two projection matrices corresponding to each of the two modal-
ities to the spaces of original dimensionalities, and the proposed ignoring approach is then
applied to obtain attention masks. The masks are further multiplied element-wise with original
feature representations in each branch.

6.1.4 Performance evaluation

Here, we report the results of both multimodal fusion in human action recognition task from
RGB and skeleton data based on NTU-RGBD dataset. We initialize the model from Ima-
geNet+Kinectics pretrained weights, finetune for 10 epochs with batch size 8, and report the
test set performance of the model that performed best on validation set. To further validate
the effectiveness of our learning to ignore framework, we perform additional experiments on
a more generic image classification task on Cifar10 and Cifar100 datasets using ResNet50 and
DenseNet. Optimization is done with SGD with momentum of 0.9. Each experiment is re-
peated three times and the average performance is reported. 40k images are used for training
and 10k for validation. Standard data augmentation is used. Results of SE and SE via ignoring
framework on Cifar10 and Cifar100 can be seen from Table 27. As can be noticed, SE-Ign ap-
proaches outperform both vanilla architectures and standard SE in vast majority of cases, with
the differences being especially high in CIFAR100 dataset. For example, SE-Ign3 outperforms
SE and vanilla ResNet50 by 1.9 and 3.1 percent, respectively. Table 28 shows similar results,
where most variants following the ignoring framework outperform the standard approach on
NTU-RGBD dataset.

6.2 RGBD Hand-gesture Recognition via Early Fusion
6.2.1 Introduction, objectives and state-of-the-arts

With the advent of new technologies and intelligent systems, industrial automation and robotics
have undergone major revolution. There is an increasing demand for automated systems in in-
dustrial environments in order to increase production output and reduce production cost. As
the need to automate complex tasks increases, there is also increasing need to improve the
efficiency in those tasks that inherently require human interaction. In order to enable fluid in-
teraction between human and robots, there must be an efficient way for the human controller to
communicate with the robots. There are several communication approaches that have been pro-
posed for human-machine interaction. In the most basic and traditional form of communication,
commands are delivered by the human via keyboard inputs. Despite the simplicity of the setup,
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CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50
Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
SE 07.63 ± 0.37 32.80 ± 0.11 09.97 ± 0.50
SE-Ign1(α=1) 07.42 ± 0.29 32.50 ± 0.26 09.92 ± 0.37
SE-Ign1(α=0.5) 07.61 ± 0.46 31.40 ± 0.68 09.39 ± 0.19
SE-Ign1(α=0.8) 07.76 ± 0.73 32.71 ± 1.15 10.07 ± 0.64
SE-Ign2 07.66 ± 0.13 32.78 ± 0.77 10.11 ± 0.56
SE-Ign3 07.28 ± 0.17 30.95 ± 0.08 09.49 ± 0.36

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
SE 06.96 ± 0.05 29.43 ± 0.44 08.36 ± 0.33
SE-Ign1(α=1) 06.94 ± 0.07 29.17 ± 0.07 08.22 ± 0.13
SE-Ign1(α=0.5) 06.69 ± 0.04 27.64 ± 0.30 07.30 ± 0.10
SE-Ign1(α=0.8) 06.95 ± 0.14 27.73 ± 0.41 07.39 ± 0.07
SE-Ign2 06.80 ± 0.09 28.08 ± 0.35 07.39 ± 0.23
SE-Ign3 06.41 ± 0.08 27.77 ± 0.54 07.65 ± 0.20

Table 27: Results of SE variants on CIFAR10 and CIFAR100 datasets.

MMTM Ign1(α=1) Ign1(α=0.5) Ign1(α=0.8) Ign2 Ign3
NTU-RGBD 89.98 89.99 90.52 88.70 90.21 90.36

Table 28: Accuracy on NTU-RGBD dataset

this approach is very rigid and has many limitations in practice. A more flexible communica-
tion approach is through voice interaction, which allows faster and more natural communication
from the human controller. One drawback in interaction via voice commands is that in many
industrial environments, the level of ambient noise is often very high, making it challenging for
the speech recognition task.

To program a robot, either Industrial or Collaborative, different programming methods can
be adopted. Conventional approaches are subdivided into online and offline programming meth-
ods: in the former case, the robot cell is actively used during the programming process, while
in the latter the robot cell is not involved in the task definition, thus non-productive robot time
is kept at a minimum. Online teaching methods involve walk-through programming, where
the operator manually moves the robot along the trajectory to be reproduced, and lead-through
programming, where the operator defines the robot program using only the teach pendant, a
method that does not require any contact with the robot. Both methods require the operator to
have proper knowledge of the robot to be used and a suitable programming experience. Offline
programming methods require a higher knowledge of both programming languages and robotics
fundamentals and are usually adopted in a simulated environment to build complex robotic cell
programs. These methods are extremely time consuming and often stress the operator. Col-
laborative Robots often adopt a hybrid programming method combining both typologies: the
logic of the program can be developed offline in a simulated environment, while the motion
instructions and the positioning can be programmed online.

Recently, in the search for a flexible and robust communication method between human and
robots, hand gestures have been proposed as a communication medium. This communication
medium allows the robot to operate behind a safety cage while communicating with the human
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controller intuitively and naturally. In the present work, this idea has been applied as well
by means of a human-robot communication language based on a Gestures Dictionary, where
simple gestures can be combined to form powerful, customized operations. Body language, for
example, hand gestures, allows a natural and robust interaction. Hand gesture recognition is a
topic that has been vastly explored through the years [166, 112, 111] and a plethora of sensors
may be used according to the type of communication methods, for example by using wearable
sensors such as haptic gloves or EMG or IMU devices. In later years, vision has become the
preferred method to perform a plethora of different tasks, including hand-gesture recognition,
robot teleoperation, scene monitoring, and scene reconstruction. This is due to the fact that
these sensors are contactless, reliable, and cost-effective, considering that a single camera can
be adopted in combination with a suitable Computer Vision or Deep Learning algorithm to
achieve satisfactory results depending on the task. Adopting vision sensors to monitor the
surroundings of the robot also allows the definition of safety strategies based on human-robot
relative positions in parallel with the human-robot communication system.

In this work, we adopted Gesture Dictionary proposed by [112] to construct a vision based
hand gesture recognition model, which utilizes both the RGB and depth information to perform
the recognition task. The two modalities are combined in a early fusion manner, enabling
efficient processing and the ease to use pretrained vision models, i.e., transfer learning.

6.2.2 Description of the work performed so far

Our hand gesture recognition method adopts and modifies the approach proposed in [112]. In
[112], the authors proposed a Gesture Dictionary of 16 static hand gestures, which are depicted
in Figure 19. Each static gesture can be mapped to a specific command, or they can be combined
in sequence to generate more complex commands. Here we should note that although [112]
proposes a specific set of machine commands that correspond to these gestures, a user of the
OpenDR toolkit can simply utilize the recognition of these hand gestures to re-define the set of
commands/meanings they correspond to.

In order to recognize the hand gestures, a color and a depth image of the person depicting the
gesture must be captured. The color and depth information are combined into a four-channel
image, which is then introduced to the recognition model. This approach is also known as
early fusion when processing data from multiple modalities. This is different from the late
fusion approach in which different modalities are often processed separately before their deep
features are combined in the later stage of the pipeline. One advantage of the early fusion is
that transfer learning can be easily utilized. More specifically, since the RGB and the depth
map are combined into a single image frame having four channels, any state-of-the-art image
recognition architecture can be used for finetuning for this task. This exempts us from the task
of designing and validating a suitable architecture for the given task. In addition, there are many
state-of-the-art architectures with pretrained models publicly available, thus enabling efficient
transfer learning. Since all pretrained models are available only for RGB images, the weight of
the first convolution layer is not used.

In [112], the authors proposed to utilize an object detector network, more specifically, the R-
FCN object detector [21], in order to recognize the hand gestures. To achieve a computationally
efficient solution, we combine transfer learning and simplify the hand gesture recognition model
by utilizing pretrained convolutional neural network classifiers that have been trained on the
ImageNet dataset. Since the main objective is to recognize the hand gestures, rather than the
localization of the hand gestures, the implementation in the toolkit turns to a classification
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Figure 19: The set of hand gestures proposed in [112]. Gestures from (a) to (i) depict num-
bers from one to nine. Gesture (j) depicts punch, which corresponds to the confirm command.
Gesture (k) depicts span, which corresponds to the delete command. Gesture (l) depicts the
left direction (alternatively, there is also a similar gesture for right direction). Gesture (m) is
the collab gesture, which corresponds to the open file command. Gesture (n) depicts an x sign,
which corresponds to the exit command. Gesture (o) is the time out gesture, which corresponds
to the pause command.
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approach, which is much more computationally efficient compared to a detection pipeline.
In the toolkit, several convolutional neural network architectures are implemented, such as

VGG architectures, ResNet architectures and their variants, DenseNet architectures. In addition,
light-weight architectures for mobile and embedded devices such as the MobileNet architecture
or the MNasNet architecture are also supported. All of these models are modified to take a
four-channel image as input and outputs a class label.

6.2.3 Performance Evaluation

In order to evaluate the performance of the proposed approach, we used the HANDS dataset
curated by [111]. The dataset contains both RGB and 2D depth map that were acquired using
Kinect V2 sensor. The frames have been calibrated and aligned so that the RGB and the depth
map match. The resolution of the images provided in by [111] are 960× 540. However, to
conduct the experiments, we resized the images to a lower resolution: 224× 224. The images
were collected from five subjects performing the task, with each gesture captured in 150 frames.

Since one of the objectives of the OpenDR toolkit is to provide computationally efficient
models for a given task, we evaluated the pretrained mobilenet v2 model, which achieves an
accuracy of 85% when evaluating on the HANDS dataset, on different platforms, namely the
NVIDIA RTX 2080 Ti (GPU device), AMD Ryzen 3970X (desktop CPU device) and NVIDIA
Xavier AGX (embedded device). The time taken (in seconds) to infer a single RGBD sample
on different platforms, and the corresponding Frames per Second (FPS), are shown in Table 29.

Table 29: Time taken for the mobilenet v2 architecture to make inference on a single RGBD
image and the corresponding FPS on different platforms. The results are averaged over 1000
runs.

Platform Inference Time (in seconds) FPS
RTX 2080 Ti 0.0076 131.5
Ryzen 3970X 0.1208 8.2
Xavier AGX 0.0263 38.0
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7 Conclusions
AUTH worked towards objective O1a by developing an adaptive inference approach for deep
representation learning tasks, such as face recognition (Section 2.1), which allows for meeting
the strict speed and latency requirements for many robotics applications. In addition, AUTH
developed a DNN-based NMS method (Section 2.3) capable to improve the performance of
person detection methods, especially in the case where humans appear in crowded areas. Fur-
thermore, AUTH worked towards evaluating the impact of domain shifts for object detection
models trained on well known datasets (Section 2.6), identifying critical limitations and training
approaches to mitigate approaches that could increase the robotic autonomy in the field. AUTH
also evaluated the impact of using mixed image data for training DNN methods for human
centric perception tasks (Section 2.5), demonstrating that they can improve the performance of
such methods on real-world settings as well on simulation environments. Also, AUTH worked
towards objective O2b by developing an active vision approach for human-centric perception
(Section 2.2), exploiting the ability of robots to interact with their environment in order to better
sense their surroundings. To this end, a DRL-based control approach was proposed for training
agents that are able to identify and focus on task-relevant objects, i.e., humans, as well as is-
sue the appropriate control commands accordingly to acquire better results. Moreover, AUTH
in Section 2.4 proposed a novel approach for active face recognition using synthesized facial
views, which allows for exploiting photorealistic facial view rendering to discover the best fa-
cial view to use for face recognition. Also, AUTH worked towards O1a by developing an deep
high-order Gaussian filtering method for time series analysis (Section 5.1), such as biosignals,
that can allow for achieving higher analysis accuracy, while using smaller and faster architec-
tures.

TAU worked towards objective O1 by developing an attention-based methodology for Con-
volutional Neural Networks that can be used both as a standalone module for a variety of com-
puter vision tasks, as well as a multimodal fusion method in multi-stream CNN architectures
(Section 6.1). Specifically, the method was evaluated for image classification and human ac-
tion recognition from RGB+skeleton tasks. In addition, TAU has developed and integrated
into the toolkit a hand gesture recognition method that operates on RGB and Depth images
(Section 6.2). The developed model exploits early fusion resulting in lightweight architec-
ture with fast inference. TAU has also worked towards development of new attention methods
for Neural Bag of Features models for time-series analysis (Section 5.3). Specifically, self-
attention based extensions to previously-developed codebook and temporal attention of NBoF
were formulated, along with a codebook-temporal self-attention block that allows to jointly
learn codebook-temporal representations. The developed methodology has been shown bene-
ficial for the task of biosignal classification. Moreover, TAU worked towards Objective O1 by
proposing a new optimization process for training Multilinear Compressive Learning models
(Section 2.7), which leads to increased robustness with respect to the size of the compressed
signal, and enables practical implementation of adaptive compressive signal acquisition and in-
ference systems. Finally, TAU has improved upon the previously integrated speech command
recognition models (Section 5.2) by replacing the standard convolutional layers with more gen-
eral and adaptive SelfONN layers, achieving better recognition accuracy in some scenarios.

AU worked towards objective O1 by developing two methodologies for efficient continual
human activity recognition based on video data (Section 3.1) and skeletal data (Section 3.2),
which reduce the per-prediction floating point operations by an order of magnitude. Moreover,
AU proposed an efficient methodology for landmark-based facial expression recognition (Sec-
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tion 4.1) which has achieved comparable performance to video-based state-of-the-art methods
while capturing the model’s uncertainty and having much less computational complexity.

Altogether the approaches and methods developed during the second year of the project are
well aligned with the stated project objectives, build upon the work done in the first project
year, and include new promising directions. Most of the described methodologies will be im-
plemented and integrated to the OpenDR toolkit, expanding its capabilities. The progress so far
gives us confidence to achieve the overall project goals within the targeted time frame and to
deliver a capable and practical set of tools for human centric perception and cognition.
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from near-infrared videos. Image and Vision Computing, 29(9):607–619, 2011.

[175] X. Zhao, X. He, and P. Xie. Learning by ignoring, with application to domain adaptation.
arXiv preprint arXiv:2012.14288, 2020.

[176] X. Zhao, X. Liang, L. Liu, T. Li, Y. Han, N. Vasconcelos, and S. Yan. Peak-piloted deep
network for facial expression recognition. In European Conference on Computer Vision,
2016.

[177] T. Zheng and W. Deng. Cross-pose lfw: A database for studying cross-pose face recogni-
tion in unconstrained environments. Beijing University of Posts and Telecommunications,
Tech. Rep, 5, 2018.

[178] T. Zheng, W. Deng, and J. Hu. Cross-age lfw: A database for studying cross-age face
recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.

[179] H. Zhou, J. Liu, Z. Liu, Y. Liu, and X. Wang. Rotate-and-render: Unsupervised photore-
alistic face rotation from single-view images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 5911–5920, 2020.

[180] L. Zhu, L. Sevilla-Lara, Y. Yang, M. Feiszli, and H. Wang. Faster recurrent networks for
efficient video classification. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34:13098–13105, 2020.

8 Appendix

8.1 Adaptive Inference for Face Recognition leveraging Deep Metric Learning-
enabled Early Exits

The appended paper follows.
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Abstract—Deep Learning (DL) models that support adaptive
computational graphs allow for easily adapting the computations
to the available resources by selecting the most appropriate
computational path. However, such models are typically used
in classification settings, e.g., using early exits, despite that DL
models often aim at extracting representations, e.g., for face
recognition. In this work, we provide a metric-learning oriented
early exit methodology for DL models. As we demonstrate,
employing early exits in metric learning scenarios pose unique
challenges compared to existing methodologies for classification-
oriented early exits. To this end, we employ the Bag-of-Features
model to efficiently extract compact representations from any
layer of a DL model that is then combined with an efficient linear
regressor to match the final representation of the model (without
having to feedforward the whole computational graph). The
proposed method is agile and can be directly used with any pre-
trained DL model, while it is end-to-end differentiable, allowing
for further fine-tuning the models towards having multiple early
exits. The effectiveness of the proposed method is demonstrated
using five face verification/recognition datasets.

Index Terms—Adaptive Inference, Early Exits, Deep Metric
Learning, Lightweight Deep Learning

I. INTRODUCTION

A number of impressive applications, ranging from accu-
rate robotics perception [1] to precise disease prognosis and
diagnosis [2], are enabled by powerful Deep Learning (DL)
models [3]. Indeed, DL models are becoming increasingly
powerful, following the continuous improvements in dedicated
hardware accelerators, such as Graphics Processing Units
(GPUs) and Tensor Processing Units (TPUs) [4], which al-
lowed for training and deploying deeper and more complicated
models. However, in many applications, such as robotics [1]
and Internet-of-Things (IoT) [5], we are often still limited to
using less powerful hardware, due to a number of limitations,
ranging from energy and power constraints to constrained
physical form factors. As a result, numerous methods have
been proposed to allow for developing more lightweight DL
models that will be deployed in such devices, while meeting
critical application-specific requirements, such as low latency
and real-time operation.

These methods include quantization [6], for reducing the
number of bits spent for each of the parameters of the model,
pruning methods [7], that discard parts of the model that are
not critical for its operation, models that are lightweight by de-
sign [8], [9], as well as knowledge distillation approaches [10],

[11], which aim to transfer the knolwedge from a larger
and more complex neural network into a smaller and faster
one. These approaches led to more lightweight models that
could operate faster in many embedded and mobile devices.
However, most of these methods are not capable of adapting
to varying computational loads. In other words, the inference
time is constant regardless the environmental conditions, e.g.,
the difficulty of each sample, the load of the system, etc.

This is a critical limiting factor in a number of embedded
applications, where the load dynamically varies according
to the environmental conditions. For example, for a face
recognition application the time needed for face recognition
depends on the number of faces that appear in a given frame.
As a result, even through a model might operate in real time
for a specific number of faces, e.g., 2-3 faces, this might
not be the case when a larger number of people appears in
a given frame. Therefore, in such cases, we need models
that can effectively adapt to the current conditions, providing
faster (and possibly less accurate) predictions when the load
is higher in order to satisfy the processing time limitations
of a given application. In this way, the models can provide
accurate answers, exploiting all the available processing time,
while still meeting the requirements of each application when
the load is higher.

These limitations can be addressed by using models that
support adaptive computational graphs, such as [12]–[14].
These approaches work by altering the number of computa-
tions in order to keep the load within certain limits. This is
usually achieved by using multiple paths over the computation
graph of the model. Among the most straightforward ways
to achieve this is by using early exits [12]–[14]. By placing
such early classification layers at various intermediate layers
of the network we can early stop the computation whenever it
is deemed appropriate (e.g., when the computational budget
is spent or when the network is already confident enough
regarding the provided prediction), obtaining an estimation for
the representation that would be extracted from the final output
layer of the network.

Even though early exits provided a very powerful tool to
address the aforementioned limitations, its use is currently
limited to classification settings [12]–[14]. However, in many
cases, deep learning models aim at extracting representations
(metric learning) [15], instead of directly predicting the class



to which the input sample belongs to. Perhaps the most
well known example of such metric learning task is face
recognition [16] and content-based information retrieval [17].
To the best of our knowledge there has been no attempt to
use early exits in such scenarios, such as metric learning-
based face verification. Even though it could be argued that
using early exits in such scenarios could be deemed redundant,
since we can directly extract a representation from any layer
of a DL model without any modification, we demonstrate that
this naive approach has significant limitations and that we can
achieve higher accuracy by employing appropriately designed
and trained early exit layers.

The main contribution of this work is to provide a met-
ric learning-oriented early exit methodology for DL models.
As we experimentally demonstrate, employing early exits in
metric learning scenarios pose unique challenges compared to
existing methodologies for classification-oriented early exits.
To this end, in this work we leverage the Bag-of-Features
model to efficiently extract compact representations from any
layer of a neural network. Then, an additional small linear
regressor is used to regress the final output of the model
at selected points of its computational graph. In this way, a
representation that can be used in place of the final repre-
sentation can be readily extracted from an early exit. This
provides significant advantages over existing metric learning
approaches, which would require keeping a separate database
for the representations extracted from each exit layer, increas-
ing the space required for using any additional layer as an
early exit and reducing the accuracy of the resulting models,
as we demonstrate in Section III. The proposed method is agile
and can be directly used with any pre-trained metric learning
DL model, while it is end-to-end differentiable, allowing
for further fine-tuning the models towards having multiple
early exits. The effectiveness of the proposed method is
demonstrated using five face verification/recognition datasets,
including DL models trained on the large-scale MS-Celeb-1M
dataset [18] and evaluated using a wide range of datasets, as
well as experiments conducted on two embedded platforms
typically used in robotics applications.

The rest of the paper is structured as follows. The proposed
method is introduced in Section II. Then, Section III provides
the experimental setup and experimental evaluation, while
Section IV concludes this paper.

II. PROPOSED METHOD

In this Section we present the proposed method. First, we
introduce the used notation and then we present the proposed
early exit strategy. Let fW(x, i) denote the response of the i-
th layer of a neural network that is composed of a total of m
layers. We used the notation W to refer to the trainable param-
eters of the network, while x denotes the input to the network.
In this work we focus on convolutional neural networks that
handle images as input, i.e., x ∈ RW×H×C , where W is the
width, H is the height, and C is the number of channels of
the image. However, this is without loss of generality, since
the proposed method can be directly employed for any other

type of DL model. To simplify the used notation, we denote
by y(i) = fW(x, i) ∈ RWi×Hi×Ci the output of the i-th
layer, where Wi, Hi and Ci refer to the width, height and
number of channels of the extracted feature map. The notation
y = fW(x,m) ∈ RM is used to refer the final output of the
network, where M is the dimensionality of the output layer.
Finally, we use the notation X = {x1,x2, . . . ,xN} to refer to
a training set of N images that will be used for training the
early exits.

For the rest of this Section, we assume that the network
has already been trained to perform a specific metric learning
task [16], [19], and we will focus on training the early
exits on top of the representations y(i) extracted at specific
points of its computational graph. Early exits typically employ
an additional estimator, fitted on top of the representation
extracted at various points of the computation graph of the
model, to predict the final output of the model. Therefore, we
can use an estimator g(i)Wi

(·) at the i-th layer of the network
as:

g
(i)
Wi

(
y(i)
)
= g

(i)
Wi

(fW(x, i)) ∈ RM . (1)

The notation Wi is used to refer to the parameters each early
exit. Classification-based early exits are trained to directly
solve the original classification task of the network [12]–[14].
However, for metric-learning oriented network this approach
cannot be employed, since even if we use the original loss used
for training the network, e.g., the contrastive loss [19], we will
not learn representations in the same space as the one formed
by the last layer of the network. As a result, the representations
extracted by the early exits would not be useful for performing
queries in a database that consists of representations extracted
from the final layer of the network.

To overcome this limitation, in this work we proposed
using a distillation inspired approach [10], i.e., to train the
early exits in order to mimic the output of each layer. Per-
haps the most straightforward approach to ensure that the
features extracted by the early exits g

(i)
Wi

(·) will reside in
the same space as the final representation of the network y
is to minimize the quadratic divergence between these two
representations. Therefore, early exit estimators are trained in
order to minimize the following loss:

Li =
1

N

N∑

j=1

||yj − g(i)Wi
(y

(i)
j )||22, (2)

where i denotes the early exit that we are training, || · ||2
denotes the l2 norm of a vector and the notation yj is used to
refer to the representation extracted when the j-th sample is
fed into the network, i.e., yj = fW(xj ,m) ∈ RNC .

Usually, early exits employ a feature aggregation approach
to reduce the dimensionality of the extracted feature maps,
e.g., Global Average Pooling, that is then followed by a
fully connected layer. However, naive feature aggregation
approaches, such as global average/max pooling, have been
shown to discard useful information [20]. Therefore, in this
work we employ a Bag-of-Features (BoF)-based aggregation



layer in order to reduce the dimensionality of the extracted
feature maps and extract a compact summary representation
that can be further adapted towards the task at hand [21].

BoF-based pooling works as follows. First, we quantize each
feature vector extracted from a feature map using a set of NK

codewords. In this work, we use the notation vij to denote
each codeword, where i is the layer to which the codeword
belongs to (a separate codebook is used for each layer) and
j refers to a specific codeword (out of NK possible ones). In
this way, we can then extract a membership vector for each
feature vector that belongs to the i-th exit as:

[uikl]j =
K([y(i)]kl,vij)∑NK

m=1K([y(i)]kl,vim)
∈ [0, 1]. (3)

The notation (k, l) is used to refer to the location of the
feature map from which the feature vector is extracted, while
K(·) denotes the kernel used for measuring the similarity
between codewords and feature vectors. In this work, we use
a Gaussian-based kernel to this end:

K(x,vij) = exp(−||x− vij ||2
2σ2

i

), (4)

where σi is a trainable scaling factor that scales the distances
between feature vectors and codewords to the appropriate
range. For non-trainable BoF models, σi is typically set to
the average distance between the feature vectors and the
codewords.

After extracting the membership vectors uikl we can di-
rectly extract a compact histogram representation for each exit
as:

s(i) =
1

WiHi

Wi∑

k=1

Hi∑

l=1

uikl ∈ RNK , (5)

This histogram representation provides a summary of the
concepts that appear in the corresponding features. By appro-
priately tuning the codewords we can focus the representation
on different concepts. For example, using k-means to learn the
codebook leads to a generic representation that can be used
for any task, while finetuning the whole layer using gradient
descent allows for learning task-specific codewords (provided
that the BoF layer is part of a network trained for a specific
task). Finally, this histogram representation is fed into a linear
layer that projects the histogram into the desired space, i.e.,
g
(i)
Wi

(y(i)) = s(i)(y(i))Wl
i, where Wl

i ∈ RNK×M . In the case
of metric-learning networks this would be the space formed
by the output layer of the network. Then, early exits can be
trivially trained using gradient descent, minimizing the loss
provided in (2).

III. EXPERIMENTAL EVALUATION

The proposed method was evaluated using the MS-Celeb-
1M [18], Labeled Faces in the Wild (LFW) [22], [23], Cross
Pose LFW (CPLFW) [24], Cross Age LFW (CALFW) [25],
and VGGFace2 [26] datasets. More specifically, we follow a
standard face verification setup [27], where the models are
trained on the MS-Celeb-1M dataset and evaluated on the

TABLE I
NUMBER OF ADDITIONAL PARAMETERS REQUIRED FOR EACH METHOD

Method Exit 1 Exit 2 Exit 3

Raw* 1.2-1.4M 2.4-2.7M 2.4-2.7M
LR 66k 131k 131k
BoF 327k 393k 393k
Proposed 327k 393k 393k

*For the raw method we assume that we employ a database that contains
3,000 feature vectors, which corresponds to the evaluation setup used in this
paper.

remaining four datasets, i.e., LFW, CPLFW, CALFW and
VGGFace2. All images used for the conduncted experiments
were resized to 112×112 pixels. For the evaluation procedure
we randomly sample 6,000 image pairs that either correspond
to face images of the same person or to face images of different
persons (equally distributed among the two cases). A face
pair is considered to belong to the same person when the
distance between the corresponding embeddings is lower than
a certain threshold. This threshold is selected to maximize the
face verification accuracy on a validation dataset. As a result,
we report the average 10-fold cross validation accuracy for
all the conducted experiments, i.e., the threshold is selected
according to the validation split and the accuracy is reported on
the corresponding test set. For all the conducted experiments
we used a ResNet-50 network [28], where inverted residual
blocks were employed for improving its efficiency [29]. The
early exits were placed after the 1st, 2nd and 3nd residual
block. The dimensionality of the feature vectors extracted from
each of these blocks is 128, 256 and 256 respectively, while
the dimensionality of the final representation of the network
is 512.

Three different methods were evaluated along with the
proposed one. For the first one we directly extracted the
feature vectors from each early exit, we employed global
average pooling and then we queried the database using
these representations. This approach is called “raw” in the
rest of this paper, since it relies on directly using the raw
feature vectors, as they are extracted from the network. Even
though the dimensionality of these feature vectors is lower, this
method requires keeping a separate database with the feature
vectors extracted from each additional early exit, significantly
increasing the storage requirements as shown in Table I. Next,
we evaluated a linear regressor (denoted by “LR”) that was
trained to directly regress the output representation of the
network based on the (average) pooled representation extracted
from each early exit. The same approach was also repeated us-
ing the Bag-of-Feature model, where we used 512 codewords
for building the codebook (using the k-means algorithms and
the feature vectors extracted from each early exit for building
the codebook). This method is denoted as “BoF”. Note that
both the LR and BoF methods can be regarded as a simplified
(ablated) version of the proposed one, since, to the best of
our knowledge, neither has been proposed in the literature for



constructing early exits. Despite this, they consist a strong
baseline, as we demonstrate later in this Section.

Finally, we evaluated the proposed method using again
NK = 512 codewords (in order to be directly comparable
with the BoF baseline). The number of training iterations was
set to 2,000 with a learning rate of 0.001 for the parameters
of the BoF model, while the linear regressor was fine-tuned
using a learning rate of 0.0001. The Adam algorithm with its
default parameters was used for the optimization [30], while
the batch size was set to 32. After training the BoF-based
layers, the linear regressor was fitted again using the closed
form solution to ensure a fair comparison with the LR method
(16,000 training samples were used for fitting the regressor).
A comparison between the number of parameters required for
adding the early exits to the base model are summarized in
Table I. All the methods (LR, BoF, Proposed) significantly
reduce the number of required parameters over the naive raw
baseline. Using the BoF layer increases, to a small extent, the
number of required parameters, but as we demonstrate later,
this is also accompanied by a corresponding increase in the
face verification accuracy. Furthermore, in all cases (except
from the raw baseline) the number of parameters is kept
within reasonable limits. It is also worth noting that for the
BoF/Proposed method the number of the added parameters can
be further controlled by decreasing the number of codewords
NK .

The experimental evaluation is provided in Table II. The
four evaluated methods are compared on four different datasets
using the three different added early exits. In all the cases,
using a subsequent early exit increases the obtained verifi-
cation accuracy as expected. Furthermore, just using a lin-
ear regressor (LR) to regress the final representation of the
network leads to a significant increase over directly using
the raw representation. Indeed, in some cases (e.g., CALFW)
the accuracy increases by over 25%. Then, using the BoF
model further increases the performance, while employing
the proposed method leads to the overall best accuracy in
all the evaluated cases. It is worth noting that in some
cases, the verification performance is very close to the actual
performance of the final output of the network, as reported in
Table III.

To further verify that using the proposed method leads to
actual performance improvements we evaluated all the em-
ployed methods using two embedded platforms, the NVIDIA
Jetson TX-2 and the NVIDIA Jetson AGX. The obtained
results are summarized in Table IV. Indeed, using early exits
leads to a significant speedup , e.g., about 4× for the first
exit compared to the final output of the network. Using the
proposed method leads to a slight overhead (about 10%)
compared to the raw and LR methods. However, it still leads
to enormous performance improvements over the final output
of the network, while achieving higher verification accuracy,
as demonstrated before.

TABLE II
FACE VERIFICATION ACCURACY ON FOUR DIFFERENT DATASETS USING

THREE DIFFERENT EARLY EXITS. THE MEAN AND STANDARD DEVIATION
OF THE 10-FOLD CROSS-VALIDATION ACCURACY IS REPORTED.

Method Exit 1 Exit 2 Exit 3

Dataset: LFW

Raw 68.60± 2.25 82.33± 1.25 92.80± 1.57
LR 75.05± 2.00 88.98± 1.42 94.15± 0.69
BoF 79.93± 1.59 92.33± 1.22 92.58± 1.23

Proposed 80.98± 2.64 92.70± 1.28 96.58± 0.64

Dataset: CPLFW

Raw 52.75± 1.95 51.98± 1.74 63.83± 2.38
LR 66.80± 1.71 75.57± 2.04 83.02± 1.36
BoF 68.52± 1.79 79.98± 2.16 81.13± 1.05

Proposed 68.98± 1.18 80.05± 1.70 84.20± 1.56

Dataset: CALFW

Raw 55.00± 1.62 61.72± 1.50 68.10± 1.98
LR 70.28± 1.51 82.18± 1.89 87.35± 1.18
BoF 71.80± 1.18 84.55± 1.06 84.93± 1.51

Proposed 73.65± 1.82 84.78± 1.50 89.37± 1.37

Dataset: VGGFace2

Raw 56.88± 2.07 64.24± 1.12 78.88± 1.43
LR 67.10± 1.74 78.50± 1.85 84.16± 1.33
BoF 68.86± 1.84 81.56± 2.69 83.50± 1.55

Proposed 71.34± 2.04 82.32± 2.32 88.10± 1.43

TABLE III
FACE VERIFICATION ACCURACY ON FOUR DIFFERENT DATASETS USING

THE FINAL OUTPUT OF THE EMPLOYED NETWORK.

Dataset Accuracy

LFW 99.78± 0.22
CPLFW 92.05± 1.36
CALFW 95.78± 1.20
VGGFace2 94.98± 0.71

The mean and standard deviation of the 10-fold cross-validation accuracy is reported.

IV. CONCLUSIONS

In this work we proposed a metric learning-oriented early
exit methodology that can be effectively used with any DL
model. To this end, we employed the Bag-of-Features model
in order to extract compact representations from enormous
feature maps, that were then fed into lightweight linear re-
gressors trained to approximate the final representaiton of the
model. In this way, it is possible to estimate the final output
of a large and complex DL model at various points of its
computational graph. As we experimentally demonstrated, this
approach allows for effectively adapting the computations to
the available resources. At the same time, the proposed method
works significantly better than naive approaches that were used
until now, such as directly using the representation extracted
from a layer and building separate databases for each layer.
Furthermore, the proposed method is easy to use and agile,
since it can be readily combined with any DL model. At the
same time, it can be used to train the models in an end-to-end
fashion, in order to better adapt to the task at hand, since it



TABLE IV
SPEED (FPS) COMPARISON BETWEEN DIFFERENT METHODS AND EXITS

Method Exit 1 Exit 2 Exit 3

Jetson TX-2 (≈ 0.8 FP32 TFLOPS)

Default 5.6
Raw 23.4 13.2 9.6
LR 23.1 13.2 9.6

BoF/Proposed 20.8 12.9 9.5

Jetson AGX (≈ 1.4 FP32 TFLOPS)

Default 8.6
Raw 41.2 24.5 18.7
LR 40.8 24.3 18.7

BoF/Proposed 38.1 23.9 18.4

Frames Per Second (FPS) are reported. FPS are measured using batches of 4 input
images, to ensure more consistent measurements. The average of 100 runs is reported.

relies on a fully differentiable formulation.
In this way, the proposed method paves the way for building

more advanced early exit methodologies for representation
learning tasks. For example, the early exits at subsequent
layers can be trained to regress the residual error [20], instead
of the raw final representation. We expect that this will
allow for further increasing the performance of the method,
since each exit could be finetuned to just refine the previous
output. Furthermore, the models can be also used to adapt the
model to the difficulty of each sample, in a similar fashion
as in [31], allowing for skipping layers of the networks for
easier samples. This could allow for further increasing the
inference speed and reducing the energy requirements of the
models.
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8.2 Neural attention-driven Non-Maximum Suppression for person de-
tection

The appended paper follows.
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Abstract—Non-maximum suppression (NMS) is a post-
processing step in almost every visual object detector. NMS aims
to prune the number of overlapping detected candidate regions-
of-interest (ROIs) on an image, in order to assign a single and
spatially accurate detection to each object. The default NMS
algorithm (GreedyNMS) is fairly simple and suffers from severe
drawbacks, due to its need for manual tuning. A typical case
of failure with high application relevance is pedestrian/person
detection in dense human crowds, where GreedyNMS doesn’t
provide accurate results. This paper proposes an efficient deep
neural architecture for NMS in the person detection scenario, by
capturing relations of neighbouring ROIs and aiming to ideally
assign precisely one detection per person. The presented Seq2Seq-
NMS architecture assumes a sequence-to-sequence formulation
of the NMS problem, exploits the Multihead Scale-Dot Product
Attention mechanism and jointly processes both geometric and
visual properties of the input candidate ROIs. Thorough experi-
mental evaluation on three public person detection datasets shows
favourable results against competing methods, with acceptable
inference runtime requirements and good behaviour for large
numbers of raw candidate ROIs per image.

Index Terms—Non-Maximum Suppression, Object Detection,
Scaled-Dot Product Attention, Sequence-to-Sequence Learning,
Person Detection

I. INTRODUCTION

Non-Maximum Suppression (NMS) is a final refinement
step incorporated to almost every visual object detection
framework, assigned the duty of merging/filtering any spatially
overlapping detected Regions-of-Interest (ROIs), i.e., bound-
ing boxes, which correspond to the same visible object on
an image. The problem it attempts to solve arises from the
tendency of many detectors to output multiple, neighbouring
candidate object ROIs for a single visible object, due to
their implicit sliding-window nature. Thus, an NMS algorithm
processes the raw object detector outputs identified on an input
image and attempts to filter out the duplicate ROIs.

The de facto dominant NMS method for object detection
is GreedyNMS. It selects high-scoring detections and deletes
less confident neighbours, since they most likely cover the
same object. Its simplicity, speed and unexpectedly good
behaviour in most cases make it competitive against proposed
alternatives, since rapid execution is very important for NMS.
An Intersection-over-Union (IoU) threshold determines which
less-confident neighbors are suppressed by a detection. This
fixed IoU threshold leads GreedyNMS to failure in certain
cases. Too powerful a suppression, using a low threshold, may
remove detections that cover different spatially overlapped
objects, while a too high threshold may be unable to suppress
duplicate detections.

Due to these limitations of traditional algorithms, modern
Deep Neural Network (DNN)-based methods for performing
NMS have emerged during the past few years. While some
DNNs are assigned with auxiliary tasks complementing the
original NMS scheme (e.g., estimate target density maps in
order to apply dynamic suppression thresholding [1]), others
provide a more straightforward solution (e.g., outputting a
score for each candidate detection, thus indicating whether
it corresponds to a “duplicate” detection or not [2]). The latter
type of methods relies on building representations for each
candidate detection, typically based on their corresponding
geometric/spatial relations [2], while ignoring ROI visual ap-
pearance. This is either because CNN-based features can blur
the boundaries between highly overlapping true positives and
duplicates, or due to the difficulties DNNs are faced with when
trying to extract accurate representations for highly occluded
objects. However, evidence has recently surfaced indicating
that appearance-based input may improve the performance
of DNN-based NMS methods [3] [4], if that information is
properly fused with the geometry-based input.

An additional issue stems from the fact that the NMS
problem for object detection purposes is essentially sequential
in nature. The output ROIs are sequentially processed by
the common object detection evaluation protocols [5] [6],
ordered according to the scalar confidence scores assigned
to them by the NMS method. Similarly, the input candidate
ROIs, i.e., the raw output of the object detector which is
fed as input to the NMS algorithm, must also be ordered
according to the initial confidence scores assigned to them
by the detector. Thus, essentially, an NMS method actually
decides whether a candidate ROI is duplicate, or not, based on
the decisions it has previously taken for the preceding, higher-
scoring candidate ROIs along the input sequence. However,
to the best of our knowledge, NMS has not been previously
explicitly formulated as a problem of processing sequences,
thus related algorithms have not been applied to solving it.

Motivated by these issues of existing neural NMS ap-
proaches, this paper offers the following contributions:

• a novel reformulation of the NMS task for object detec-
tion as a sequence-to-sequence problem.

• a novel deep neural architecture for NMS, relying on
the Scaled Dot-Product Attention mechanism, called
Seq2Seq-NMS.

• a new, fast, efficient and GPU-based neural implementa-
tion of the low-level Frame Moments Descriptor (FMoD)
[7], which is employed for feeding the proposed DNN



with appearance-based representations of detected candi-
date ROIs.

The proposed method is highly applicable to the per-
son/pedestrian detection task, where most NMS algorithms
face difficulties in identifying individuals within a crowd,
due to various levels of occlusions. The majority of exist-
ing NMS methods are oriented towards fast execution, but
person detection in human crowds requires a high degree
of accuracy; this is critical for ensuring human safety in
domains such as autonomous systems [8] [9] [10] [11] [12]
[13] [14] [15]. Moreover, the visual appearance representation
approach adopted by Seq2Seq-NMS, i.e., FMoD descriptors
computed on edge maps of cropped candidate ROIs, is most
accurate in cases where the visible silhouette of the target
object class remains approximately identical in shape across
the training and test images. This is true in the person detection
case, bar abnormally extensive viewpoint variations across the
employed dataset. Adopting FMoD, which has already proven
its worth in NMS for person detection from aerial viewpoints
[3], renders the applicability of the proposed method focused
to similar scenarios.

Extensive quantitative evaluation using well-known metrics
and public person detection datasets indicates favourable re-
sults in comparison to several competing NMS methods, both
neural and non-neural, leading to state-of-the-art results.

II. RELATED WORK

NMS is the final step of typical object detection pipelines,
thus this Section first briefly reviews state-of-the-art detectors.
Subsequently, NMS algorithms and related loss functions are
presented. Finally, the motivation behind the proposed method
is discussed in the context of the existing approaches to NMS.

A. Object Detection

Object detection is a long-standing, fundamental problem in
computer vision. Its task is to generate bounding boxes (in 2D
pixel coordinates) for objects detected on an image that belong
to prespecified object classes and to assign classification
scores to them. Most of the early object detection algorithms
[16] [17] relied mainly on local handcrafted descriptors and
discriminative classifiers. The Deformable Part-based Model
(DPM) [18] is a special case, where an object is represented by
its component parts arranged in a deformable configuration. In
[19], the authors designed a joint person detector, based on the
DPM architecture, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes.

Object detection has been tremendously improved thanks
to Deep Neural Networks (DNNs), with Convolutional Neural
Networks (CNNs) being the most relevant architectures. DNN-
based object detectors are usually grouped into two categories:
two-stage and one-stage object detectors. Typically, the for-
mer ones (e.g., [20] [21]) first create object proposals from
input images, using a method such as selective search or a
separate DNN, and then extract features from these proposals
using CNNs. These features are then fed to a classifier that
determines the existence and the class of any object in each

proposal. Although two-stage detectors achieve state-of-the-art
performance, their running speed is typically slow. One-stage
object detectors, such as [22] [23] [24] and [25] perform region
proposal and object classification in a single, unified DNN.
Initial regions are predefined bounding boxes with various
scales and ratios placed densely on the image, which are
generally referenced as anchors. From the initial anchors, the
detectors find those that likely contain objects. Compared to
two-stage detectors, their one-stage competitors are usually
much faster, but less accurate.

B. Non-Maximum Suppression

The de facto standard in NMS for object detection is Gree-
dyNMS [26]. It selects high-scoring detections and deletes
less confident neighbours, since they most likely cover the
same object. An Intersection-over-Union (IOU) threshold de-
termines which less-confident neighboring detections are sup-
pressed. It is a simple, well-known, but limited method, lead-
ing to several attempts for replacing it with much improved
alternatives.

In Soft-NMS [27], a rescoring function decreases the score
of neighboring less-confident detections, instead of completely
eliminating them, achieving better precision and recall rates
compared to GreedyNMS. The authors experiment with Gaus-
sian and linear weighting functions, which both require a
hyper-parameter tuning similar to GreedyNMS. In [28], the
final coordinates of a detection are being reformulated as
the weighted-average of the coordinates of all neighboring
detections, given an IoU threshold. GossipNet [2] is a DNN
designed to perform NMS, by processing the coordinates
and scores of the detections. Overall, it jointly analyzes all
detections in the image, so as not to directly prune them,
but to rescore them. In [29], the authors replace the classi-
fication scores of candidate detections, used in GreedyNMS,
with learned localization confidences to guide NMS towards
preserving more accurately localized bounding boxes. In [4],
an attention module is applied with the task to exploit relations
between the input detections, in order to classify them as
duplicate or not. [1] proposes Adaptive-NMS, a dynamic
thresholding version of GreedyNMS. A relatively shallow
neural network predicts a density map and sets adaptive
IoU thresholds in NMS for different detections according to
the predicted density. An accelerated NMS method has been
proposed in [30], allowing higher inference times in exchange
for a small performance drop, due to the large number of boxes
that are likely to be over-suppressed.

GossipNet was modified in [3], for the specific case of per-
son detection from aerial views, so as to jointly process visual
appearance and geometric properties of candidate ROIs. The
method exploited handcrafted descriptors encoding statistical
ROI appearance characteristics, which were computed on the
spatial distribution of edges or interest-points detected within
each ROI. These distributions acted as a discriminant factor
for identifying complete vs partial object silhouettes, since the
silhouette of any person seen from an aerial view is rather
similar in shape.



(a) Raw ROIs/detections. (b) ROIs/detections after applying Gree-
dyNMS at 0.5 IOU.

(c) ROIs/detections after applying the pro-
posed Seq2Seq-NMS method.

Fig. 1: Candidate ROIs/detections from Faster-RCNN in an image from the COCO dataset. Detections matched successfully
to humans are colored green, while “incorrect” detections are colored red.

More recently, [31] proposed Distance-IoU (DIoU), a new
metric which can replace the typical IoU metric in Gree-
dyNMS. This work suggested that the suppression proce-
dure should take into account not only the overlap of two
neighboring detections, but also the distances between their
centers. Alternatively, Cluster-NMS was proposed in [32], i.e.,
a technique where NMS is performed by implicitly clustering
candidate detections. Cluster-NMS can incorporate geometric
factors to improve both precision and recall rates and can effi-
ciently run on a GPU, achieving very fast inference runtimes.

C. Loss Functions for Bounding Box Regression

In DNN-based methods for visual object detection, predic-
tion of spatially accurate ROIs/bounding boxes is enforced by
an additional loss term during model training. The regressed
ROI parameters are position, shape and scale, in terms of
2D pixel coordinates. These parameters are predicted either
directly, or as offsets relative to “anchor boxes”, in the case of
anchor-based detectors. It is common to use the Ln-norm for
calculating the corresponding loss term (e.g., [21] [22] [24]).
However, [33] indicates that the correlation between training
with such Ln-norm loss terms and improving test accuracy,
as measured by the Intersection-over-Union (IoU) metric, is
not strong at all. On the other hand, directly incorporating
the IoU metric in a loss function would implicitly force the
detector itself to also perform a rudimentary degree of NMS,
but this is unsuitable for cases where two bounding boxes
are non-overlapping, due to their zero loss gradient. Thus,
[33] proposes the Generalized-IoU (GIoU) loss term, which
handles similar scenarios but suffers from slow convergence
and inaccurate regression. Thus, in [31], a loss term relying
on the DIoU metric was formulated, by adding to the IoU
loss a penalty based on the 2D center point coordinates of
two bounding boxes. This was shown to converge faster than
GIoU. [31] also proposed the Complete-IoU (CIoU) loss, an
extension of DIoU with an additional term which can be tuned
so as to impose aspect ratio consistency between two bounding
boxes, thus leading to further increases in test accuracy.

D. Motivation

State-of-the-art object detectors continue to require NMS
as a final step [25], even when they use sophisticated loss
functions for bounding box regression during training. A
typical scenario showcasing the indispensability of a reliable
NMS method is when object detection is performed to images
depicting dense human crowds, with high levels of occlusions
[1] [34]; ironically, this constitutes a challenge even to state-
of-the-art NMS algorithms.

Although the geometric properties of candidate ROIs have
been considerably exploited by various NMS approaches [2]
[32] [31] [30], only a couple of methods [1] [4] [3] have
attempted to take advantage of both visual appearance and
geometric/spatial ROI information. Therefore, joint exploita-
tion of appearance and geometry for NMS in object detection
is underexplored. In addition, despite a vast amount of effort
expended towards achieving short inference times [30] [31],
since fast execution is an important aspect of NMS, one can
easily identify real-world scenarios where a potential improve-
ment in accuracy may equally matter (e.g., pedestrian/person
detection in human safety-centric applications).

Despite the sequential nature of the NMS task in object
detection, since at least the input candidate ROIs are always
ordered according to their confidence score, no previous
method has relied on formulating the problem as a sequence-
to-sequence task. Thus, the recent rise of self-attention neural
modules [35], capable of efficiently capturing interrelations
within a sequence, has not yet significantly affected NMS
algorithms. To the best of our knowledge, the only relevant
method employing self-attention mechanisms is [4], tailored
for the duplicate removal task and not for pure NMS. Thus, it
does not perform free rescoring: an input candidate ROI which
was assigned a low confidence score by the detector (e.g.,
due to occlusion) cannot be rescored higher by the duplicate
removal DNN; only lower. An unconstrained NMS method
exploiting the powerful self-attention neural mechanism has
yet to emerge.

Based on the above considerations, this paper presents: a)
a reformulation of the NMS task as a sequence-to-sequence



problem, and b) a novel DNN architecture for solving it, called
Seq2Seq-NMS. Out of the existing literature, the proposed
method is most related to [2] [3] and [4]. Like GossipNet in
[2], Seq2Seq-NMS approaches NMS as a rescoring problem.
However, an optimized geometric representation for each
candidate ROI is proposed here, slightly similar, but different
and enriched compared to the GossipNet input descriptor.
Like [3], Seq2Seq-NMS jointly processes visual and geometric
representations of the input candidate ROIs, using the FMoD
descriptor [7] computed on edge maps of cropped detections.
However, in this paper, the FMoD descriptor has been re-
implemented neurally, leading to significant runtime gains
thanks to GP-GPU-based parallel processing, while a novel
deep neural architecture is proposed here, so as to exploit the
sequence-to-sequence formulation, instead of relying on Gos-
sipNet. Finally, similarly to [4], the Seq2Seq-NMS architecture
employs the powerful self-attention neural mechanism, but
since the proposed method is a complete, free rescoring NMS
DNN it is able to search for and fully exploit interrelations
between the candidate ROI representations, without being
constrained by the original confidence score assigned by the
object detector.

III. ATTENTION-DRIVEN NON-MAXIMUM SUPPRESSION

In this paper, NMS for object detection is first reformulated
as a sequence-to-sequence task. This approach is highly related
to the evaluation criteria established in object detection [5] [6],
where the candidate ROIs identified on an input image are
assumed to indirectly form a sequence, based on the scalar
confidence score assigned to each of them by the detector
(in descending order). Traditionally, evaluating a detector’s
accuracy on a known dataset involves an analysis of this
sequence. At each step, a candidate ROI is processed and
matched to a ground-truth object, if and only if: (a) their IoU
is higher than a predefined threshold, and (b) that ground-
truth object hasn’t been previously matched to a higher-scoring
candidate detection. In the case where both (a) and (b) are
fulfilled, the candidate ROI is marked as “correct”, otherwise
it is marked as “false”. In the special case where only (a) is
fulfilled, the candidate detection is marked as “false”, due to it
being a ”duplicate” detection. Thus, the position of a candidate
ROI in the sequence can be a significant factor when taking
the decision to classify it as a “duplicate” or not.

This emphasis in the ordering is shared with problems tradi-
tionally viewed as sequence-to-sequence ones. For instance, in
machine translation, a sequence of words from one language
must be transformed into a sequence of words in another
language. The order of each word (token) in the sentence is
crucial and can modify its meaning (context). Similarly, in
object detection evaluation, although a candidate ROI (token)
can be successfully matched to a ground-truth object, it can
be classified as “duplicate” and therefore as “false”, instead
of being classified as “correct”, due to the fact that a higher-
scoring candidate detection, which has been positioned earlier
in the sequence, has already been matched with the same
ground-truth object.

Motivated by these notions, this paper explicitly formulates
the NMS task as a mapping from an input sequence of candi-
date ROIs to a corresponding output sequence with identical
length. Let Rin be the input sequence of candidate ROIs,
in descending order based on their scalar confidence scores
assigned by the detector:

Rin = [rin1 , ..., rinN |r
scoredet
i ≥ rscoredeti+1 ] (1)

where rini = [rxmin
i , rymin

i , rxmax
i , rymax

i , rscoredeti ] is an input
candidate ROI expressed through its spatial 2D image coor-
dinates, along with its corresponding score assigned by the
detector, and N is the number of candidate detections. Let
Rout be the output sequence of candidate ROIs, in descending
order based on the scores assigned by the NMS method:

Rout = [rout1 , ..., routN |r
scoreNMS
i ≥ rscoreNMS

i+1 ] (2)

where routi = [rxmin
i , rymin

i , rxmax
i , rymax

i , rscoreNMS
i ] is an

NMS-rescored candidate ROI. The proposed formulation of
the NMS task can be expressed as:

Rout = NMS(Rin) (3)

Building upon this novel view of the NMS task, the method
proposed in this paper, which we call Seq2Seq-NMS, receives
as input a sequence of candidate ROIs, generated by an
object detector, and extracts rich representations regarding
their appearance and geometry. Subsequently, these represen-
tations are fed to a DNN which processes them in parallel,
while mainly paying attention to spatially neighboring, higher-
scoring candidates when analyzing each ROI. Finally, it out-
puts a sequence of scalar scores, each one defining the context
of a candidate detection. This is essentially information that
determines the final decision of whether the respective ROI
should be classified as “correct” or as “potentially suppressed”,
after the NMS task has been completed. In the proposed
formulation, the context of the ith candidate detection is
expressed through the corresponding output score, which is a
classification probability pi : {pi ∈ R|0 ≤ pi ≤ 1} (1/0 means
“correct”/“potentially suppressed”, respectively). After the in-
ference stage, simple thresholding can be applied on these
output probabilities/scores, in order to decide which candidate
detections should be retained. This formulation avoids hard
discarding/pruning of ROIs at the inference phase itself, thus
allowing us to find a balance in the trade-off between False
Positive Rate (FPR) and True Negative Rate (TNR), depending
on the application (e.g., using a low threshold in human safety-
centric applications such as pedestrian detection).

Seq2Seq-NMS relies on building rich representations for
each candidate detection, based on their visual appearance,
their geometry and their interrelations, in order to solve the
NMS task. Abstractly, it consists of the following three steps:

• Appearance-based ROI representations extraction.
• Geometry-based ROI representations extraction.
• Detections rescoring through the attention-driven NMS

DNN.



These steps are detailed below.

A. Appearance-based ROI Representations Extraction

This step can be considered optional, since ROI represen-
tations that have been already computed at the intermediate
feature extraction layers of the DNN-based object detector
itself can be used instead. However, the use of ROI rep-
resentations computed solely for the NMS procedure makes
the NMS DNN less detector-specific and more robust against
variations in the effectiveness and the performance of the
deployed detector. In [3], where the goal was person detection
from aerial views, representations consisting of statistical ROI
appearance properties were used, which were computed on the
spatial distribution of edges or interest-points detected within
each ROI. These distributions acted as a discriminant factor
for identifying complete vs partial object silhouettes, since the
silhouette of any person seen from an aerial view is rather
similar in shape. However, the same argument can be made
for people seen from a ground perspective (e.g., pedestrians
perceived by an autonomous car), therefore this is a solution
applicable to most person detection scenarios.

In [3], a CPU implementation of the low-level FMoD visual
descriptor was employed for representing each candidate ROI.
FMoD was originally devised in a global [7] and in a local
[36] variant (LMoD), respectively applied to movie [37] and
activity video [38] [39] [40] summarization via key-frame
extraction. Typically, FMoD and LMoD capture informative
image statistics from various available image channels (e.g.,
luminance, color/hue, optical flow magnitude, edge map,
and/or stereoscopic disparity), both in a global and in various
local scales, under a spatial pyramid video frame partitioning
scheme. In both [3] and in this paper, only the luminance
channel is employed for the special use-case of describing a
ROI interest-point map instead of a typical image/video frame.
The intent is to compactly capture the spatial distribution
of the interest-points within the ROI interest-point map in a
single numerical description vector. However, in [3] ROIs were
processed sequentially and not simultaneously, thus achieving
very long inference times, nowhere close to real-time. To
tackle this limitation in this paper, FMoD was re-implemented
neurally so that it can run in parallel on modern GPUs and,
given as input a set of candidate ROIs of different shape
and scale, simultaneously extract several feature maps before
computing in parallel their FMoD descriptors/representations.
This fast neural implementation was rendered feasible thanks
to the recently proposed operations [20] and [41].

The appearance-based ROI representations extraction pro-
cess can be divided into three separate operations. The first
one involves the computation of edges/interest-point maps
of the input RGB image, which is a relatively fast and
efficient process. The second step is using the ROIAlign [41]
operator to extract, in parallel, fixed-size regions across one or
multiple maps. Finally, deriving the FMoD representations of
these fixed-size maps involves in-parallel computation of the
following 15 scalar statistical attributes:

• (1-3) horizontal/vertical/vectorized-block mean values.

Algorithm 1: Appearance-based ROI representations
extraction using FMoD

Input: (a) an RGB image I
(b) a set of N ROIs expressed in 2D pixel
coordinates B = [b0,b1, ..,bN ] ∈ RN×4

(c) FMoD pyramid levels L, L ≥ 1
Output: Appearance-based representations

A ∈ RN×5(4L−1)

1 begin
2 Resize image I to a fixed size of Wf ×Hf .
3 E(I)← Compute the edge/interest-point map of

image I.
4 Extract in parallel the 0th-level ROI maps

M0 = [M0
0,M0

1, ..,M0
N ], where M0

i ∈ R1×W0×H0 ,
through the ROIAlign operator on E(I).

5 Compute in parallel the 0th-level FMoD
representations A0 = [A0

0,A0
1, ..,A0

N ] of M0,
where A0

i ∈ R15.
6 for j ← 1 to (L− 1) do
7 Extract in parallel the jth-level ROI maps

Mj = [Mj
0,Mj

1, ..,Mj
N ], where

Mj
i ∈ R4j×W0

2j
×H0

2j , through subdivision of
M0 ROI maps into four quadrants for j times,
using the ROIAlign operator.

8 Compute in parallel the jth-level FMoD
representations Aj = [Aj

0,Aj
1, ..,Aj

N ] of Mj ,
where Aj

i ∈ R15×4j .
9 end

10 Concatenate FMoD representations across all
pyramid levels A ∈ RN×5(4L−1), where
Ai = [A0

i , ..,AL
i ].

11 end

• (4-6) horizontal/vertical/vectorized-block standard devia-
tion values.

• (7-9) horizontal/vertical/vectorized-block skew values.
• (10-12) horizontal/vertical/vectorized-block kurtosis val-

ues.
• (13-15) horizontal/vertical/vectorized-block signal power

values.

The corresponding procedure is described on Algorithm
1. Initially, the RGB input image I, of an arbitrary resolu-
tion, is resized to a fixed resolution of Wf × Hf and its
corresponding edge/interest-point map E(I) is computed. To
make actual inference times even shorter, this operation is
carried out here in parallel with the corresponding detector’s
inference phase. Similarly to [3], the FMoD representations
of all ROIs are computed under a spatial pyramid partitioning
scheme [42]. At the pyramid base, the 0th-level ROI maps
M0 = [M0

0,M0
1, ..,M0

N ], M0
i ∈ R1×W0×H0 are extracted in

parallel by applying the ROIAlign operator on E(I), assuming
that N candidate ROIs (expressed as rectangles in 2D pixel
coordinates) have been identified by the object detector for



Fig. 2: Computation of the visual appearance-based candidate
ROI representations, by applying the fast FMoD implementa-
tion to an image with 3 ROIs and using 2 pyramid levels.

input I. Using M0, the 0th-level FMoD representations A0 =
[A0

0,A0
1, ..,A0

N ], A0
i ∈ R15 are computed in parallel. Subse-

quently, the representations at the remaining spatial pyramid
levels are computed iteratively, by the in-parallel computation
first of Mj and then of the corresponding partial FMoD
descriptors Aj . Once the latter ones have been computed for
all L pyramid levels, where L is predefined and fixed, they
are concatenated along them. For example, in an image with
N = 5 candidate ROIs and L = 2 pyramid levels, A ∈ R5×75.
This example is illustrated in Figure 2.

B. Geometry-based ROI Representations Extraction

The spatial/geometric interrelations between the various
candidate ROIs detected on an input image, based only on
their 2D pixel coordinates and not on their visual appearance,
is crucial for solving the NMS problem. Such a set of purely
geometric attributes has previously proven effective as an input
descriptor, in the context of the GossipNet neural architecture
[2]. Thus, in this paper, a slightly similar, but enriched
set of attributes has been devised, serving as an additional
representation for each candidate ROI.

Given a set of N candidate ROIs expressed in 2D pixel
coordinates, along with their corresponding detection scores,
the tensor G ∈ RN×N×14 is computed, where each entry
Gij ∈ R14 contains the following attributes:

• (1-3) the normalized horizontal/vertical/euclidean dis-
tances1 defined between the centers of the jth and the
ith ROI.

• (4-7) the normalized width/height/area/aspect-ratio of the
jth ROI.

• (8-11) the width/height/area/aspect-ratio differences (e.g.,
wj

wi
) between the jth and the ith ROI.

1Horizontal and vertical distances are signed distances.

• (12) the detector’s confidence score for the jth ROI.
• (13) the detector’s confidence score differences between

the jth (e.g., sj − si) and the ith ROI.
• (14) the IoU between the jth and the ith ROI.
Therefore, each diagonal entry Gii ∈ R14 contains the geo-

metric representation of the i-th input candidate ROI/detection.

C. Detetions rescoring through the attention-driven NMS
DNN

The goal of the proposed DNN architecture is to perform
one-class Non-Maximum Suppression on a set of candidate
ROIs/detections through rescoring them, instead of directly
pruning them. For a given set of N candidate ROIs detected
on an input image, the DNN receives as input a sequence
of corresponding representations (A and G, encoding the
appearance and the geometry of all ROIs in the sequence),
sorted in a descending order based on the respective scalar
detection confidence score.

During inference, these two types of information are fused
and each candidate ROI refines its representation by attending
to the representations of all detections in the provided set.
The Scaled Dot-Product Attention mechanism [35], originally
proposed for machine translation tasks, is employed to this
end, since it has been proven effective in various applications,
such as image classification [43], or image generation [44].
It is briefly described in the next Subsection. In the context
of the proposed DNN, the candidate detections used as keys
are represented in a relative-to-each-query manner within this
attention mechanism. Although this choice leads to slightly
increased computational and memory costs, it allows the DNN
to more effectively capture the interrelations between the
candidate detections.

Finally, the model predicts a new scalar score for each ROI,
indicating whether it should be suppressed or not. The output
sequence is formed by sorting the candidate ROIs, based on
their new scores in descending order.

Multihead Self-Attention Module: The Scaled Dot-Product
Attention, also known as self-attention, was presented in [35]
and formulated as follows:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (4)

where Q ∈ RNq×dk are the queries, K ∈ RNk×dk are the keys
and V ∈ RNk×dv are the values. Each query and each key has
a dimension of dk, while each value has a dimension of dv .
Multihead Attention was also proposed in [35], as a module
which allows various attention mechanisms, including self-
attention, to run in parallel. This module can be formulated
as:

Multihead(Q,K,V) = [h1, ...,hH ]WO, (5)

where
hi = Attention(QWQ

i ,KWK
i ,VWV

i ). (6)



Fig. 3: Illustration of the Multihead Self-Attention Module.

In this formulation, WQ
i ∈ Rda×dk , WK

i ∈ Rda×dk , WV
i ∈

Rda×dv , WO
i ∈ RHdv×da are projection parameter matrices,

H is the number of heads, dk = dv = da

H , and the operator
[...] implies concatenation.

The proposed DNN architecture relies on these mechanisms
in order to identify relations between candidate detections,
based both on their visual appearance and on their geometric
properties. Such relations can help the model in determining
whether a candidate detection should be suppressed or not. For
example, the DNN can decide that a higher-scoring candidate
ROI should possibly suppress other less-scoring detections
having similar appearance and geometric representations.

In [35] the authors introduced positional encoding for
Natual Language Processing (NLP) tasks, which uses a com-
bination of sines and cosines at multiple frequencies, in order
to encode the position of a word in a sequence. In theory, this
approach could also be adopted for encoding ROI geometry
(e.g., the position of ROI centers in the image along a certain
axis). However, this may fail to capture the interrelations
of candidate ROIs in a relative manner, as the encoded
information in the NMS task is far more complex compared
to [35]. As an alternative, in this paper we approached the
task by encoding all the representations of the N input
candidate detections in a relative-to-each-ROI manner. Thus,
the keys and values of the Scale Dot-Product Attention are
represented in a relative-to-each-query representation scheme.
For example, the jth key may be represented differently for
the ith query, compared to its representation for the (i+ 1)th

query. Although this increases the presented method’s memory
complexity, each query is allowed to represent the keys and
the values relatively to itself. Thus, for N candidate detections,
Q ∈ RN×1×da , K ∈ RN×N×da and V ∈ RN×N×da , the
output is FD ∈ RN×1×da . A residual connection [45] is
applied between Q and FD. Due to the increased number
of dimensions of Q, K and V, batch matrix multiplication is
employed in Eq. (4) to speed up the process. The architecture
of this module is illustrated in Figure 3.

Fig. 4: Illustration of the Joint Processing Module.

Joint Processing Module: In this neural module, the repre-
sentations of the candidate detections are jointly and simulta-
neously refined, mainly through the Multihead Self-Attention
mechanism. The Joint Processing Module receives as its input
FQ
t ∈ RN×1×dm , which holds the current representations

of all candidate detections, as well as FK
t ∈ RN×N×da ,

which holds the current relative-to-each-candidate-detection
representations, for all N candidate detection. The architecture
of the Joint Processing Module is shown in Fig. 4. The queries
and keys are formed as:

Q = FQ
t CQ,

K = FK
t ,

V = K,

(7)

where CQ ∈ Rdm×da stands for the weights of a fully con-
nected neural layer. The new representations of the candidate
detections, which is the output of this module, are formed as:

FQ
t+1 = FDCD + FQ

t ,

FD = Multihead(Q,K,V),
(8)

where CD ∈ Rda×dm also denotes the weights of a fully
connected layer.

Finally, the relative-to-each-candidate-detection representa-
tions FK are refined as:

FK
t+1 = FK

t + FS ⊗ CK , (9)



where FS is derived from FD, by repeating it N times
along its second dimension, and CK are learned weights of
a Scale Layer that we introduce, performing an element-wise
multiplication between its weights and an input representation.
Its purpose is to select the degree of information which will
flow from FS to FK

t+1 in each Joint Processing Module.
Masking: A masking approach has been integrated into the
self-attention mechanism of the proposed architecture. For N
candidate detections, sorted in descending order based on the
detector’s score values, we mask the values of the input of
the softmax function in Eq. (4). Without loss of generality,
masking is detailed below for the simplest case, where the
number of heads H = 1.

Given a candidate ROI rini , an its associate ROI rinj and
S = QKT

√
dk

, masking is defined as:

Sij =


−∞, if IoU(rini , rinj ) < 0.2

0.1 · Sij , if IoU(rini , rinj ) ≥ 0.2 and j > i

Sij , otherwise
(10)

This masking operation is employed for two reasons. First,
each ROI must be prevented from attending to spatially distant
candidate detections. The overlap of ROIs is used to determine
whether Sij should be set to −∞, before applying the softmax
function. If yes, the attention weight linking rini to rinj (after
the softmax has been applied) will be zeroed out. Second, an
additional motivation is our attempt to replicate the behaviour
of Greedy NMS, where a candidate detection is characterized
as duplicate, thus marked for suppression, when another,
higher-scoring detection spatially covers the same object. In
the proposed neural architecture this can be accomplished
by forcing (through masking) the internal representation of
a candidate detection to be modified by attending mainly to
representations that correspond to ROIs higher-scoring than
itself.
Network Architecture: For a set of N candidate detections,
sorted in descending order based on the detector’s confi-
dence score values, the proposed DNN uses as input their
corresponding appearance-based representations A and their
geometry-based representations G. FMoD representations of
3 pyramid levels are employed as A ∈ RN×1×315. The
extracted geometry-based ROI representations, which is G ∈
RN×N×14, are assigned to GK as it contains the relative-to-
each-candidate-detection representations. Its diagonal, derived
from the first two dimensions, forms GQ ∈ RN×1×14. The
representations derived from a fusion between A and GQ

form FQ ∈ RN×1×dm . This fusion is mainly accomplished by
concatenating and applying fully-connected layers between the
two types of representations. In addition, the representations
derived from a fusion between A and GK form FK ∈
RN×N×da . Both FQ and FK are used as input to the first
Joint Processing Module.

A stack of Joint Processing Modules, sequentially con-
nected, are in charge of refining representations FQ and FK .
Finally, after applying two fully connected layers on FQ, the

DNN uses a softmax function to output the final NMS scores.
The described architecture of the model is depicted in Fig. 5.
The Gaussian Error Linear Unit (GELU) is used as activation
function by the network. Layer normalization [46] is applied
on the output of residual connections and dropout [47] is used
for regularization, similarly to [35].
Training: The weighted binary cross entropy was selected as
the training objective of the proposed neural architecture. In
particular, the loss function is defined as:

L = −
∑N

i=1(w1yi log(r
scoresNMS
i ) + w0(1− yi) log(1− rscoresNMS

i )), (11)

where N is the number of candidate detections, rscoresNMS

are the output NMS scores, w are class weights and y are
the labels derived from a matching function, given a specific
IoU value. In particular, yi ∈ {1, 0} indicates whether the
ith detection was successfully matched to an object or not. A
detection is matched successfully to an object, when the IoU
between its ROI and an object’s 2D bounding box is higher or
equal to a matching threshold, and that specific object hasn’t
been matched to any higher scoring detection. In this paper,
this matching threshold was set to 0.5. The class weights, are
defined as:

wj=(1−j)(1−cj)
∑M

m=1(count(Gm)+max(0,count(Rm)−count(Gm)))∑M
m=1(max(0,count(Rm))−count(Gm))

+jcj

∑M
m=1(count(Gm)+max(0,count(Rm)−count(Gm)))∑M

m=1 count(Gm)
,

(12)
where, M is the number of images in a dataset, Rm are the
candidate ROIs in the mth image, Gm are the ground-truth
ROIs in the mth image, and c1 is a predefined scalar (e.g.,
0.1) to balance the class weights.

IV. EXPERIMENTAL EVALUATION

The performance of Seq2Seq-NMS was evaluated on three
separate datasets for the person detection task. In order to
assess its accuracy regardless of the selected object detector,
candidate ROIs from three different detectors were employed.
These differ significantly in the way they approach the object
detection task in general.

The neural architecture used for evaluation consists of 4
Joint Processing Modules. We set dm = 256, and da =
dm

2 = 128. The Multihead Self-Attention module uses H = 2
attention heads and thus dq = dk = dv = 128

H = 64.
Appearance-based ROI representations computed from 3-level
FMoD were used, with 0th level ROI maps extracted at
resolution W0 ×H0 = 160× 160 pixels.

In each dataset, Seq2Seq-NMS was compared against both
neural and non-neural NMS algorithms. While some are
focused more on achieving state-of-the-art results, others suc-
ceed in attaining ultra-fast inference times. The first competing
method is a baseline Greedy NMS approach running on GPU.
The second is TorchVision’s2 GreedyNMS implemented to run
very fast on GPUs. Additionally, Soft-NMS [27] was tested,
i.e., a non-neural NMS method widely used as a more accurate
replacement for Greedy NMS. Evaluation was conducted

2https://pytorch.org/vision/stable/ops.html#torchvision.ops.nms

https://pytorch.org/vision/stable/ops.html#torchvision.ops.nms


Fig. 5: Seq2Seq-NMS architecture. N is the number of input candidate ROIs/detections.

using both the linear and the Gaussian weighting functions
(referred to as Soft-NMSL and Soft-NMSG, respectively). The
method was executed on CPU. Another competing algorithm
we employed is Fast-NMS [30], a generally faster, non-
neural replacement for standard NMS, that suffers a marginal
penalty regarding accuracy. Fast-NMS is executed on GPU.
Additionally, several variants of Cluster-NMS [32], i.e., a more
recent non-neural method, was also selected for comparison
purposes. Below, the term Cluster-NMSS is used to imply
the case where the score penalty mechanism is used, and
Cluster-NMSD the scenario where the normalized central point
distance is added. In the latter case, the method is equivalent
to DIoU-NMS [31]. Moreover, the term Cluster-NMSS+D is
used when both of these mechanisms are utilized. Finally,
Cluster-NMSS+D+W indicates the case where a weighted strat-
egy similar to [28] is followed. More details regarding these
variations can be found in [32]. The last approach selected for
comparison purposes is GossipNet [2], a neural NMS method
achieving state-of-the-art accuracy.

The hyperparameters of all non-neural methods were tuned
so as to report the best achieved results on 0.5 IoU matching
threshold. Both for GossipNet and for the proposed method,
the class weights are computed through Eq. (12), using a
common, dataset-specific c1 value. Evaluation was performed
on a PC using an Intel Core i7-7700 CPU and an NVIDIA
GeForce GTX 1070 Ti GPU with 8GB of memory, both
for training and inference. The employed evaluation metrics
are AP0.5, AP0.95

0.5 and inference times. AP0.5 corresponds
to the average precision for 0.5 IoU, while AP0.95

0.5 to the
mean average precision for IoU ranging from 0.5 to 0.95 with
a step size of 0.05. Finally, for all methods, all candidate
detections were used during the evaluation process, without
any thresholding.

A. PETS

PETS [48] is a relatively small dataset, whose images were
collected from static surveillance cameras and provide diverse
levels of occlusion. The average number of people depicted in
an image is about 14. We use candidate detections from [19],
a non-neural person detection method, designed specifically to
handle occlusions. Due to the fact that the number of ROIs is
extremely large in some images, we first apply TorchVision
NMS with the relaxed 0.8 IoU threshold on all deployed
methods as a typical preprocessing step, commonly utilized in
NMS literature. Since the number of candidate detections for
the NMS step remains huge even after applying TorchVision
NMS, we report results for various ROI retention thresholds,
with only a maximum number of higher-scoring detections
kept in each case. Typically, candidate ROIs with near-zero
confidence scores, as assigned by the detector, are not true
positive samples and, thus, do not significantly affect the
accuracy of traditional non-neural NMS methods.

The proposed method was trained using the ADAM [49]
optimizer with β1 = 0.9, β2 = 0.99 and ϵ = 10−9 for 8 epochs.
The learning rate was set to 10−4 for the first 4 epochs, then to
10−5 for the next 3 epochs and finally it as to 10−6 for the final
epoch. At most the 600 highest-scoring candidate detections
were only used as the input sequence for each image when
training the network, due to memory limitations. Regarding
GossipNet, architecture and training process was based on [2].

Table I reports the results of the proposed method, as
well as of competing NMS approaches. As mentioned above,
the employed object detector [19] outputs a large number
of candidate ROIs, thus leading to increased GPU memory
consumption for both the proposed method and GossipNet.
Typically, most candidate detections that can be successfully
matched to ground-truth objects are assigned higher confi-
dence scores by the detector, compared to ROIs with lower
scores (e.g., < 0.1) which are mostly false positive samples.



TABLE I: COMPARISON OF DIFFERENT NMS METHODS ON THE PETS DATASET, USING DETECTIONS FROM
[19]. BOTTOM LINE REPORTS ON THE PROPOSED METHOD.

Method Device

Max dets. = 400 Max dets. = 600 Max dets.= 800 Max dets. = 1200 Max dets. = All

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

Original NMS IoU>0.4 GPU 75.4% 31.7% 3.8 76.2% 31.6% 2.5 76.5% 31.3% 4.5 76.3% 31.2% 5.0 76.3% 31.2% 6.3
Original NMS IoU>0.5 GPU 73.1% 31.0% 4.1 73.6% 30.8% 3.6 73.6% 30.8% 5.7 73.6% 30.8% 7.5 73.6% 30.8% 9.8
Original NMS IoU>0.6 GPU 65.7% 28.6% 6.8 65.7% 28.6% 5.5 65.7% 28.6% 10.0 65.7% 28.6% 12.8 65.7% 28.6% 16.0
Original NMS IoU>0.4
(TorchVision) GPU 75.6% 31.7% 0.4 76.1% 31.6% 0.5 76.4% 31.3% 0.5 76.4% 31.3% 0.8 76.4% 31.3% 0.8

Original NMS IoU>0.5
(TorchVision) GPU 72.7% 30.8% 0.6 73.2% 30.8% 0.5 73.2% 30.8% 0.5 73.2% 30.8% 0.7 73.2% 30.8% 0.8

Original NMS IoU>0.6
(TorchVision) GPU 65.1% 28.5% 0.5 65.1% 28.5% 0.5 65.1% 28.5% 0.5 65.1% 28.5% 0.7 65.1% 28.5% 0.8

Soft-NMSL CPU 76.6% 31.8% 27.1 76.6% 31.5% 50.3 76.5% 31.3% 64.0 76.3% 31.2% 98.5 76.3% 31.2% 143.3

Soft-NMSG CPU 77.4% 32.7% 23.8 77.2% 32.3 39.2 76.7% 32.0% 54.4 76.0% 31.8% 89.5 75.8% 31.7% 154.7

Fast-NMS GPU 75.3% 31.5% 3.2 75.2% 31.1% 1.6 75.0% 31.0% 1.5 74.5% 30.8% 2.8 74.4% 30.7% 3.5

Cluster-NMS GPU 75.9% 31.4% 2.9 76.4% 31.3% 3.6 76.4% 31.3% 3.7 76.4% 31.3% 5.5 76.4% 31.3% 8.0

Cluster-NMSS GPU 75.4% 31.6% 4.8 74.6% 31.2% 2.9 74.0% 30.8% 3.8 73.6% 30.7% 5.0 73.0% 30.6% 7.3

Cluster-NMSD GPU 76.2% 31.6% 5.4 76.6% 31.3% 4.1 76.5% 31.2% 5.1 76.5% 31.1% 7.7 76.5% 31.1% 10.0

Cluster-NMSS+D GPU 76.4% 31.9% 3.7 76.3% 31.6% 4.2 75.9% 31.3% 5.4 75.2% 31.0% 8.4 74.9% 30.9% 12.1

Cluster-NMSS+D+W GPU 76.4% 31.9% 28.3 76.3% 31.6% 55.7 75.9% 31.3% 88.2 75.2% 31.0% 171.9 74.9% 30.9% 292.3

GossipNet GPU 79.6% 34.4% 19.1 81.7% 35.1% 32.5 82.8% 35.6% 48.0 83.6% 35.9% 73.9 83.8% 36.1% 107.2

Seq2Seq-NMS GPU 80.9% 36.5% 11.1 82.9% 37.1% 11.3 83.9% 37.3% 11.9 84.7% 37.3% 14.7 - - -

Thus, in this paper, we attempt to evaluate whether the lowest
scoring detections have an impact on the performance of the
proposed and of the competing NMS methods. In Table I,
the results of each method are reported using N candidate
detections as input, for different values of N . As it can
be seen, the performance of the non-neural methods is not
improved when the lowest-scoring detections (N > 800) are
used. In contrast, both GossipNet and the proposed method
achieve more accurate results for longer input sequences (more
candidate ROIs per image).

This advantage of the neural NMS methods most likely
stems from the inability of non-neural algorithms to jointly
process the candidate detections in order to rescore/suppress
them. Regarding the proposed method, its performance im-
proves as more relations between a corresponding candidate
detection and other neighboring ROIs are built. Additionally,
it is able to handle “hard” True Positive (TP) candidate detec-
tions and classify them as correct ones, even if the employed
detector originally assigned them very low confidence scores.

Overall, the proposed method achieved both the best AP0.5

and the best AP0.95
0.5 , against all competing approaches, when

using an input sequence of 1200 detections. The obtained
AP0.5 was 84.7%, which is a +7.3% improvement against
Soft-NMSG, the non-neural method with the best AP0.5, and
a +0.9% improvement against GossipNet. Notably, when
using only a small number of the highest-scoring candidate
detections (e.g, N = 400), the proposed method still achieves
better results compared to all non-neural NMS algorithms.
Regarding inference runtimes, it needs 14.7 ms to run per
image when N = 1200, since the required edge maps are
computed in parallel with the object detector’s inference. Thus
it is faster than GossipNet, as well as less affected by the
number of candidate detections used as input. However, it is

slower than the non-neural methods running on GPU.

B. COCO Person

COCO 2014 is a large dataset consisting 82,783 images for
training and 40,504 images for validation/testing. Although
it contains 80 labeled classes, only the “person” class was
used for evaluating the proposed method. Candidate detections
(extracted by Faster R-CNN [21]) and validation set splits from
[2] were also employed here. The first data subset, referred to
as “minival”, contains 5000 images, while the second subset,
referred to as “minitest”, contains 35000 images. The average
ground-truth number of people depicted in an image is about
2.17. However, when taking into account only the images
that actually contain visible people, this average ground-truth
number is 4.01.

The proposed method was trained using the ADAM opti-
mizer with β1 = 0.9, β2 = 0.99 and ϵ = 10−9 for 8 epochs.
The learning rate was set to 10−4 for the first 4 epochs,
then to 10−5 for the next 3 epochs and, finally, to 10−6 for
the final epoch. At most the 600 highest-scoring candidate
detections per image were employed as input at the training
stage. GossipNet architecture and training again followed [2].
Final model parameters were selected according to achieved
accuracy in the minival (validation) set during training, both
for the proposed method and for GossipNet.

As it is shown in Table II, the proposed method achieves
the best AP0.5 against all competing NMS methods, in both
the minival and the minitest sets. It leads to an AP0.5 = 68.1%
in the minival set, which is an +0.8% improvement against
Soft-NMSL, the best non-neural method, and +0.4% against
GossipNet. In the minitest set, it achieved AP0.5 = 67.5%,
which is an +0.9% improvement against Soft-NMSL and
+0.6% against GossipNet. As far as AP0.95

0.5 is concerned, the



proposed method is outperformed only by Cluster-NMSS+D+W,
achieving AP0.95

0.5 = 37.2% and AP0.95
0.5 = 36.9% in the minival

and the minitest sets, respectively. These figures are on par
with the results of Soft-NMSL. Regarding inference times, the
proposed method is close to that of Cluster-NMSS+D+W.

TABLE II: COMPARISON OF DIFFERENT NMS METH-
ODS ON THE COCO DATASET, USING DETECTIONS
FROM FASTER-RCNN. BOTTOM LINE REPORTS ON
THE PROPOSED METHOD.

Method Device
Minival set Minitest set Average

Inference
Time (ms)AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

Original NMS IoU>0.4 GPU 66.1% 35.7% 65.4% 35.5% 4.3
Original NMS IoU>0.5 GPU 66.0% 36.0% 65.3% 35.8% 4.5
Original NMS IoU>0.6 GPU 64.1% 35.9% 63.2% 35.5% 4.8
Original NMS IoU>0.4
(TorchVision) GPU 66.2% 35.8% 65.4% 35.6% 0.59

Original NMS IoU>0.5
(TorchVision) GPU 66.0% 36.0% 65.2% 35.8% 0.60

Original NMS IoU>0.6
(TorchVision) GPU 64.0% 35.9% 63.1% 35.5% 0.60

Soft-NMSL CPU 67.3% 37.2% 66.6% 36.9% 5.8
Soft-NMSG CPU 67.0% 37.0% 66.2% 36.7% 6.6
Fast-NMS GPU 65.0% 35.5% 64.1% 35.3% 2.5

Cluster-NMS GPU 66.2% 35.6% 65.4% 35.5% 4.9
Cluster-NMSS GPU 66.0% 36.0% 65.3% 36.0% 4.8

Cluster-NMSD GPU 66.2% 35.8% 65.5% 35.6% 7.6

Cluster-NMSS+D GPU 66.5% 36.8% 65.8% 36.6% 7.6

Cluster-NMSS+D+W GPU 66.7% 37.8% 65.8% 37.6% 9.7

GossipNet GPU 67.7% 36.1% 66.9% 36.0% 6.1

Seq2Seq-NMS GPU 68.1% 37.2% 67.5% 36.9% 10.1

C. CrowdHuman

The CrowdHuman dataset has been recently released to
specifically target human detection in crowded areas. It con-
tains 15000 images for training, 4370 images for validation
and 5000 images for testing. The average number of persons
in an image is 22.64, with various types of occlusions. All
methods were trained on the CrowdHuman training set and
evaluated on its validation set, since annotations weren’t
provided for the test set.

Candidate detections were extracted using YOLOv4 [25] for
this dataset. The detector was trained for 6000 steps, using the
Nesterov Accelerated Gradient [50] (NAG) optimizer with a
momentum equal to 0.95. Mini-batch size was set to 64 with
64 subdivisions, while images were re-scaled to a resolution of
608×608 pixels. The learning rate was set to 10−3, decreasing
by 0.1 at the 4800-th and the 5400-th step.

The proposed NMS DNN was trained using the ADAM
optimizer with β1 = 0.9, β2 = 0.999 and ϵ = 10−8 for 12
epochs. The learning rate was set to 10−4 for the first 5
epochs, then to 10−5 for the next 5 epochs and finally to
10−6 for the final 2 epochs. Once more, at most the 600
highest-scoring candidate detections per image were employed
as input at the training stage. During inference, the maximum
number of detections per image was set to 800, due to memory
constraints. GossipNet was trained for 120000 iterations, with

a learning rate set to 10−4 and decreasing by 0.1 at the 60000-
th and the 90000-th iteration. Due to the very large number of
candidate ROIs on several images, TorchVision NMS with the
relaxed 0.8 IoU threshold was again applied as a preprocessing
step, before feeding the proposed DNN and the GossipNet
model with input. This strategy was followed during both the
training and the inference stage.

As shown in Table III, the proposed method achieves the
best AP0.5, along with GossipNet, against all competing NMS
methods. In particular, it leads to an AP0.5 of 83.7%, which
is a +1.2% improvement against Soft-NMSL. Moving on to
the AP0.95

0.5 metric, the proposed method was slightly outper-
formed only by Soft-NMSL. Overall, it achieves a AP0.95

0.5 of
49.1%. Regarding inference runtimes, the proposed method
is faster than all non-GPU approaches and than GossipNet,
since the latter’s required inference time depends strongly on
the number of candidate detections per image. The average
inference time of the proposed method was 11.1 ms, given
that the edge maps needed for the appearance-based ROI
representations extraction are computed in parallel with the
detector’s inference stage.

TABLE III: COMPARISON OF DIFFERENT NMS METH-
ODS ON THE CROWDHUMAN DATASET, USING DE-
TECTIONS FROM YOLOv4. BOTTOM LINE REPORTS
ON THE PROPOSED METHOD.

Method Device
Validation set Average

Inference
Time (ms)AP0.5 AP0.95

0.5

Original NMS IoU>0.4 GPU 76.9% 44.8% 2.2
Original NMS IoU>0.5 GPU 80.6% 47.0% 2.9
Original NMS IoU>0.6 GPU 82.0% 48.2% 4.6
Original NMS IoU>0.4
(TorchVision) GPU 77.1% 44.9% 0.4

Original NMS IoU>0.5
(TorchVision) GPU 80.7% 47.0% 0.4

Original NMS IoU>0.6
(TorchVision) GPU 82.0% 48.3% 0.4

Soft-NMSL CPU 82.5% 49.3% 30.8
Soft-NMSG CPU 81.7% 48.6% 39.8
Fast-NMS GPU 81.0% 48.0% 1.6

Cluster-NMS GPU 82.0% 48.2% 4.7
Cluster-NMSS GPU 80.3% 47.3% 3.4

Cluster-NMSD GPU 82.2% 48.6% 5.1

Cluster-NMSS+D GPU 81.4% 48.2% 5.5

Cluster-NMSS+D+W GPU 81.4% 48.2% 47.9

GossipNet GPU 83.7% 49.0% 16.1

Seq2Seq-NMS800 GPU 83.7% 49.1% 11.1

D. Discussion

Overall, the proposed Seq2Seq-NMS DNN achieves top
accuracy on the AP0.5 metric in all three datasets, being on
par with GossipNet in CrowdHuman and outperforming all



competing methods in the remaining two datasets. The results
show that Seq2Seq-NMS can successfully capture interrela-
tions between candidate detections for the person detection
task, based both on their visual appearance and their geometry.
The three datasets used for evaluation contain images with a
great variety of visible persons density, ranging from images
of individual people to photographs of large crowds, indicating
that Seq2Seq is suitable for generic person detection.

Besides the measurements reported in Tables I, II and III,
an ablation study was also performed regarding the proposed
masking operation (as described in Section III-C) of the
self-attention mechanism. Omitting masking led to reduced
accuracy rates, or to training convergence failures in cases with
huge numbers of candidate ROIs per image. Most likely, the
importance of masking stems from the fact that it enforces
an ordering constraint on how the internal representation
of each candidate detection is shaped: thanks to masking,
its form is finalized by attending mainly to representations
that correspond to ROIs higher-scoring than itself, using the
Scaled Dot-Product Attention mechanism. Thus, in our view,
this finding supports the validity of the sequence-to-sequence
formulation of the NMS task.

Regarding the AP 0.95
0.5 metric, Seq2Seq-NMS outperforms

most competing methods but achieves top accuracy only on
the PETS dataset. Most likely, this behaviour can be explained
by the fact that the labels of the candidate detections for
Seq2Seq-NMS training were created based on [5] using an
IoU threshold of 0.5.

Moving on to required inference running times, the pro-
posed method is relatively slower than non-neural, mostly less
accurate, GPU-executed algorithms. However, when compared
against DNN architectures for NMS, such as GossipNet, the
inference runtime of Seq2Seq-NMS seems less affected by the
input sequence length (number of candidate detections), thus
achieving faster inference when processing longer sequences,
as shown in Tables I and III.

Finally, evaluation in this paper was performed using can-
didate detections from: (a) a non-neural detector [19], (b) a
two-stage DNN-based detector [21], and (c) a one-stage DNN-
based detector [25]. Therefore, it can be claimed that the
behaviour of Seq2Seq-NMS is rather invariant to the type of
the deployed person detector, achieving an improved AP0.5

performance against several competing NMS methods. This
can be easily explained by the use of FMoD for visual appear-
ance representation of the cropped candidate ROIs, instead of
relying on learnt convolutional representations computed by
the DNN-based person detector.

V. CONCLUSIONS

Non-Maximum Suppression (NMS) is the last step in a
typical object detection system. Heavy occlusions when de-
tecting humans in images of crowded areas imposes great
challenges to most NMS methods, despite the importance of
such a task for human safety-centric applications. This paper
presented Seq2Seq-NMS, a novel deep neural architecture
for performing NMS in similar hard cases, which relies on

reformulating NMS as a sequence-to-sequence problem. The
proposed method relies on the Multihead Scaled Dot-Product
Attention mechanism in order to efficiently capture interrela-
tions across the sequence of candidate detections, while also
jointly exploiting visual appearance and geometric properties
of the input ROIs in order to better represent them. Quan-
titative evaluation on three public person detection datasets,
each one using a different detector, showed that Seq2Seq-NMS
can provide state-of-the-art results at the IoU threshold used
for annotating its training dataset, with acceptable inference
runtime requirements and good behaviour for large numbers
of raw candidate ROIs per image. Future extensions may focus
on a training strategy suitable for various IoU thresholds,
as well as on assessing method performance when using a
different modality for describing the visual appearance of the
cropped input detections (instead of edge maps). This may
enable an extension of the proposed method to multiclass
object detection tasks.
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Abstract—Multilinear Compressive Learning (MCL) is an
efficient signal acquisition and learning paradigm for multidi-
mensional signals. The level of signal compression affects the
detection or classification performance of a MCL model, with
higher compression rates often associated with lower inference
accuracy. However, higher compression rates are more amenable
to a wider range of applications, especially those that require
low operating bandwidth and minimal energy consumption
such as Internet-of-Things (IoT) applications. A large majority
of communication protocols have supports for adaptive data
transmission to maximize the throughput and minimize energy
consumption. By developing compressive sensing and learning
models that can operate with an adaptive compression rate,
we can maximize the informational content throughput of the
whole application. In this paper, we propose a novel optimization
and formulation that enable such a feature for MCL models.
Our proposal not only speeds up the experimentation process
required for training and validation but also enables practical
implementation of adaptive compressive signal acquisition and
inference systems.

I. INTRODUCTION

Nowadays, Internet-of-Things (IoT) technologies can allow
us to deploy smart sensors to every corner of the world, even
in the most remote areas. This is thanks to the development
of low-cost electronics and embedded devices, as well as the
advancements in wireless communication technologies such
as those in Low Power Wide Area Network (LPWAN). An
IoT system is a cyber-physical system in which the physical
(client) side often consists of a network of smart sensors
and embedded devices deployed in various physical locations,
with capability to acquire signals and perform light-weight
computation before transmitting them to a network cloud. On
the cyber (server) side, the collected data, which is aggregated
and analyzed by the network server, can be used for automatic
decision making and intelligent services. Since the whole idea
of IoT systems is built on information gathering, efficient
signal acquisition and transmission play an important role in
IoT applications. Among different factors, energy consumption
and computational complexity are key factors that determine
the efficiency of data collection in IoT services since deployed
sensors are often small, low-power embedded devices having
small computational capacity and limited energy source.

Under such system requirements, Compressive Sensing [1],
which is an efficient signal acquisition technology, is a suitable

solution for sensor data collection in an IoT stack. The
efficiency in CS devices comes from the fact that signals are
sampled, discretized and compressed at the same time, at the
hardware level, i.e., on the sensors. This is different from
traditional sensors from which we obtain a high amount of
discrete samples or raw measurements from the signal, and the
compression step is conducted after the acquision step, at the
software level. In CS, the signal is measured and compressed
at the same time, before being registered on memory during
the sampling phase. Because of this, the CS sensor requires
a much smaller memory size to store temporary data, and
outputs a discrete signal with a significantly lower number
of measurements for storage and transmission.

Given an input signal that has been sampled and discretized
y ∈ RI , instead of outputing y, a CS device outputs a
compressed version of y by linearly projecting y onto a lower
dimensional space as follows:

z = Φy (1)

where z ∈ RM denotes the measurement of the input signal
and Φ ∈ RM×I denotes the projection matrix. The number of
measurements obtained by a CS device is often significantly
lower than the dimension of y, i.e., M � I , so Φ is a fat
matrix. Φ is also referred to as the sensing operator or sensing
matrix.

Here we should note that what we obtain from a traditional
sensor is y, which is often sampled at a sampling rate higher
than the Nyquist rate to ensure perfect reconstruction of the
input signal. Since the dimension of z is lower than y, the
signal is undersampled in a CS device. Although the Shanon
theorem on ideal sampling specifies that a signal must be
obtained at a higher rate than the Nyquist rate to guarantee
perfect reconstruction, the undersampled signal outputed by
a CS device can still be recovered near perfection if the
input signal can be expressed with a sparse representation
in some domain and the sensing matrix Φ possesses certain
properties [2], [3]. These results are known as the CS theory,
which is the foundation and motivation for the developments
of compressive sensing and learning methods.

Although signals can be acquired at a very low cost using
the CS paradigm, reversing them to the original domains is a



daunting task since it involves solving an optimization problem
to determine the sparse representation and the corresponding
bases of the signal. Under some use cases, signal recovery
is necessary and the quality of signal reconstruction plays an
important role. For example in medical imaging for health
expert diagnosis, the higher the resolution and fidelity of the
reconstructed signal are, the better chance of distinguishing
between health abnormality and noise generated from the
imaging process. However, for many applications, the purpose
of acquiring signals is to perform classification or regression
of some kind, rather than reconstructing the original signals.
For example, in forest fire detection and monitoring via
unmanned aerial vehicles, the objective of forest imaging is
to automatically detect and locate potential fires. In some
applications that involve human such as smart buildings, the
reconstruction of data should be avoided since this step can
potentially disclose private information. In fact, the majority
of IoT services and automation systems gather data mainly for
intelligence purposes, rather than high-fidelity reconstruction.

Because of the aforementioned reasons, researchers have
proposed machine learning models that are tailored to work
directly with the compressed measurements obtained from
CS devices without going through a proxy signal recovery
step. Methodologies developped under this objective form a
research topic known as Compressive Learning (CL). The
early works in CL took a similar approach to CS literature,
relying on random valued sensing operators and focusing on
theoretical guarantees for models operating on compressed
measurements [4], [5], [6], [7]. The reliance on random
sensing matrices not only exempt us from the problem of joint
estimation of model’s parameters and the sensing operator but
also allows us to take advantage of existing theoretical results
on random linear projections [8]. Besides, theoretical results
on perfect signal reconstruction in CS were derived from
random sensing matrices. Since the ability for high-fidelity
signal recovery also implies the preservation of signal content
in the compressed measurement, there is an assurance that the
machine learning model is estimated with the same degree of
informational content in such cases.

With wide adoption of modern stochastic optimization
methods in the past decade, more recent works in CL have
switched from random sensing matrices to optimized ones,
which are jointly estimated with the model’s parameters. Al-
though theoretical results for the end-to-end learning approach
are yet to be derived, several works have demonstrated its
superior performance over prior setups using random sensing
operators [9], [10], [11], [12], [13], [14]. Among these end-
to-end compressive learning models, Multilinear Compressive
Learning (MCL) [13] is the leading solution in both inference
performance as well as computational efficiency for multidi-
mensional signals. This stems from the fact that MCL em-
ploys sensing and feature extraction modules that are natively
designed to operate on tensors using multilinear operations.
Since a multidimensional input signal is linearly projected
along each tensor mode in MCL, the amount of computation
used to compress the given signal is significantly less than

the one in Eq. (1) while the multidimensional structure of the
input is still retained after the projections.

Regardless of the approach, existing CL formulations re-
quire training separate model configurations for different com-
pression rates. This usually results in long experimentation
processes in order to determine a suitable trade-off between
the compression rate and the inference performance when
deploying a CL system. For applications that employ remote
compressive sensing, a fixed compression rate for signal acqui-
sition is undesirable. This is because the majority of modern
communication standards support adaptive transmission rate
to maximize throughput and minimize energy consumption as
the transmission environment changes. For example, Adaptive
Data Rate (ADR) scheme is a key feature of Long-Range
Wide Area Networks (LoRaWAN), an IoT technology. If the
signal can be acquired at an adaptive compression rate on the
sensor level, hence adaptive degree of signal fidelity, which
is adjusted according to the network status, we can further
maximize the signal content throughput of a CL system.

In this paper, we propose a novel optimization scheme
and deployment setup for MCL that enables training mul-
tiple model configurations with different compression rates
in one shot. The resulting system can be used to evaluate
and benchmark different compressed measurement shapes,
which significantly reduces experimentation efforts to find an
optimal trade-off between data compression rate and inference
performance. In addition, using the proposed optimization
scheme, we can obtain sensing operators that produce highly
structured compressed measurements, which allow us to im-
plement a CS device that is capable of signal acquisition at an
adaptive compression rate, thereby solving the aforementioned
shortcoming of existing systems.

The remaining of our paper is organized as follows. Section
II reviews the MCL model and related literature. Section III
provides details of our proposed optimization scheme and
deployment setup. In Section IV, we provide detailed informa-
tion about our experimental protocol, qualitative and quantitive
analyses of the empirical results. Section V concludes our
work with remarks on the implication of our contribution.

II. RELATED WORK

Slightly related to our work is the work in [15], which
studies a surrogate performance indicator that allows fast esti-
mation of the ranking between different model configurations
in MCL. In [15], the authors found out that the mean-squared
error obtained during the initialization step in MCL can be
used as a performance indicator since this quantity exhibits a
high correlation with the final classification error. The work in
[16] also bears some similarity to our work in the sense that the
method is also capable of learning single neural network that
can classify different measurement sizes. However, the method
in [16] is different from our work since it was proposed
for vector-based CL utilizing a random sensing operator, and
trains the classifier via means of data augmentation. In the
following, we describe the details of MCL, which are the basis
of our method in Section III.



A Multilinear Compressive Learning (MCL) model [13]
comprises of three elements: the Multilinear Compressive
Sensing (MCS) module, the Feature Synthesis (FS) module
and the task-specific neural network N.

Different from the sensing model described in Eq. (1),
which only considers input signals of vector form, the Multi-
linear Compressive Sensing (MCS) model employed in MCL
performs separate linear sensing steps along each dimension of
the input, given a multidimensional signal. Thus, the sensing
is executed via a set of sensing matrices, also known as
separable sensing operators. More specifically, let us denote
the discretized input signal and the compressed measurement
obtained from the MCS module as Y ∈ RI1×···×IK and
Z ∈ RM1×···×MK , respectively. In this case, I1 × · · · × IK
represents the signal resolution that the sensor initially samples
and discretizes. The MCS compression model is described by
the following equation:

Z = Y ×1 Φ1 × · · · ×K ΦK (2)

where {Φk ∈ RMk×Ik | k = 1, . . . ,K} denotes the set
of separable sensing operators and ×k denotes the mode-k
product between a tensor and a matrix. Detailed description
of the mode-k product can be found in [17]. Basically, this
operation linearly transforms every k-th dimensional slice of
the tensor using the matrix.

Here we should note that at deployment the compressive
sensing step described in the above equation and also in Eq. (1)
is implemented at the hardware level, on the sensing device.
What we obtain from this device is z or Z , the compressed
measurement. Thus, the sensing step in Eq. (1) and Eq. (2)
should not be viewed as a feature extraction step since they
are inherent in the signal acquisition procedure of the CS
device. For end-to-end CL approaches, during development
and optimization, we often simulate this signal acquisition step
at the software level, using the high resolution signal Y that
was sampled above the Nyquist rate using a standard sensor
in order to optimize the sensing operators.

Given the compressed measurement Z , MCL synthesizes
a high-dimensional tensor feature that is relevant for the
learning task by the FS module. In order to preserve the
multidimensional structure of the compressed measurement,
the FS module proposed in [13] also employs a multilinear
transform. However, since the FS module is implemented at
the software level, usually on the computing cloud for remote
sensing applications, the FS module is not constrained to the
use of multilinear operations, as long as the tensor structure
of the signal is preserved. For example, the authors in [14]
extended the original design of the MCL model in [13] with
an FS module that contains several layers of convolution and
up-sampling. The choice of the FS module mainly depends on
the operating power of the computing server. In this work, we
investigate our optimization scheme using the original design
in [13] for the FS component, which can be described by the
following equation:

T = fFS(Z) = Z ×1 Θ1 × · · · ×K ΘK (3)

where T ∈ RI1×···×IK denotes the synthesized feature, {Θk ∈
RIk×Mk | k = 1, . . . ,K} denotes the parameters of the FS
component, and fFS denotes its functional form.

Finally, T is fed to a task-specific neural network N to
produce a prediction for the given compressed measurement.
The architecture of N, which depends on the given problem at
hand, is the same architecture that one would use to classify
uncompressed signals, i.e., the high-resolution signal Y . For
this reason, in Eq. (3), we can see that the dimensions of T
are similar to Y , the high-resolution signal.

In MCL, all model’s parameters are optimized in an end-to-
end manner by stochastic gradient descent optimizer. Different
from the conventional approach where the parameters are
initialized with random values, MCL determines the initial
values of each component’s parameters by solving two opti-
mization objectives: one for the MCS and FS modules and
the other for the task-specific neural network. As we have
mentioned previously, for methods that optimize the sensing
operator, we need a labeled set of high-resolution signals,
which is obtained using a standard sensor sensing at higher-
than-Nyquist rate, in order to simulate the compressive sensing
step during optimization. Let us denote N as the number of
samples in the training set. In addition, we also denote the n-th
high-resolution sample in the training set as Yn, its compressed
measurement as Zn, the corresponding synthesized feature as
Tn and the label as cn. The initial parameters’ values of the
MCS and FS modules are obtained by solving Higher Order
Singular Value Decomposition (HOSVD) [18] using the set of
high-resolution signals {Yn |n = 1, . . . , N}. That is, if:

Yn = Sn ×1 U1 × · · · ×K UK (4)

denotes the HOSVD decomposition of Yn, the sensing opera-
tors are initialized by setting Φk = UT

k , and the FS parameters
are initialized by setting Θk = Uk. Here Sn ∈ RM1×···×MK

denotes the tensor core that contains the singular values and
Uk ∈ RMk×Ik (k = 1, . . . ,K) denotes the factor matrices of
the decomposition. This initialization scheme of the sensing
and the feature extraction matrices helps preserve the energy
of Yn in Tn.

The parameters of the task-specific neural network N is
initialized by training on the high-resolution signals with
labels:

argmin
Ω

N∑
n=1

L
(
fN(Yn), cn

)
(5)

where Ω denotes the parameters of N, and fN(Yn) denotes its
prediction, given the input Yn. The learning loss function is
denoted by L.

III. PROPOSED METHOD

As we have mentioned in the introduction, the main motiva-
tion of our work is to develop a remote compressive learning



Fig. 1. Illustration of how different compressed measurements of smaller sizes (Z̄) are constructed from Z from the zero-corner

system that is capable of compressive signal acquisition and
learning with an adaptive compression rate. The ability to
adaptively adjust the compression rate, hence the degree of
signal fidelity and the amount of data transmitted for each
signal sample, can significantly enhance the informational con-
tent throughput of the remote sensing and learning application.
This is because in real-world scenarios, the conditions of data
transmission medium, especially in wireless communication,
vary from time to time, thus, the majority of communication
protocols has support for adaptive transmission rates. This fea-
ture from a communication protocol enables a network to max-
imize its throughput while minimize the energy consumption.
However, this feature alone cannot maximize the data content
throughput, i.e., the amount of signal information transmitted
in a period of time. For example, in video streaming services,
in addition to the ability to adjust the transmission rate, a
streaming server must be able to send video frames with a
resolution that is adaptive to the network strength in order
to ensure consistent frames per second, thus smooth view
experience.

From the hardware point of view, it is infeasible to imple-
ment a MCS sensor with an adaptive compression rate through
the use of multiple sets of sensing operators, each of which
corresponds to a compression rate. However, with a single set
of sensing operators {Φk | k = 1, . . . ,K}, which produces a
compressed measurement Z ∈ RM1×···×MK , we can obtain a
compressed measurement of a given size Z̄ ∈ Rm1×···×mK

(mk ≤ Mk,∀k) that corresponds to a (higher) compression
rate by forming Z̄ from elements in Z:

Z̄[i1, . . . , iK ] ∈ Z, ∀ ik ≤ mk | k = 1, . . . ,K (6)

where Z̄[i1, . . . , iK ] denotes the element at position
(i1, . . . , iK) of Z̄ .

In order to construct multiple instances of Z̄ , each of
which carries the amount of signal information approximately
proportional to its size, there must be a way to determine
which subset of elements in Z that corresponds to such level of
information. Alternatively, we can optimize the set of sensing

operators {Φk | k = 1, . . . ,K} in such a way that the resulting
Z possesses a predefined semantic structure. In this work, we
adopt the latter approach and propose an optimization scheme
that induces a predefined semantic structure in Z that allows us
to generate multiple compressed measurements having smaller
sizes than Z by sampling from Z .

Specifically, we aim to learn a set of sensing operators that
results in Z such that elements in Z , which carry the most
relevant signal information for the learning task, concentrate
around the zero-corner of Z , i.e., the corner at position
(1, . . . , 1). Furthermore, the elements are arranged according
to their importance, with elements closer to position (1, . . . , 1)
are more relevant.

With Z having the aforementioned structure, a another
compressed measurement Z̄ , which correponds to a higher
compression rate, can be obtained by taking the corresponding
sub-tensor of the same size from the zero-corner of Z , that is:

Z̄[i1, . . . , iK ] = Z[i1, . . . , iK ]

∀ ik ≤ mk | k = 1, . . . ,K
(7)

The construction of Z̄ is illustrated in Figure 1. One feature
of the proposed semantic structure for Z is the computational
efficiency. Since this structure allows the construction of Z̄
from contiguous elements of Z , the indexing operation to
create Z only requires accessing contiguous memory loca-
tions, which is more hardware-friendly compared to a set of
noncontiguous indices.

Here we should note that Z̄ is constructed on the client
side, before being transmitted to the computing server. On
the server side, where the FS module and task-specific neural
network N are implemented, to make predictions with incom-
ing compressed measurements of different sizes using a single
instance of the FS module and N, the FS module must be
able to handle variable-size inputs. A simple solution to this
requirement is to set the input size of the FS module to the
maximum size of incoming compressed measurements, i.e.,
the size of Z , and the incoming compressed measurements
are padded appropriately with zeros to form tensors of a fixed



Fig. 2. Illustration of the proposed training method with stochastic binary mask B

size.
To this end, we have defined the following criteria for

optimizing a remote MCL system: (i) the sensing step pro-
duces Z that has the proposed semantic structure, and (ii) the
server side utilizes a single model instance to make predic-
tions with variable-size compressed measurements. In order to
satisfy both criteria using end-to-end training with stochastic
gradient descent, we propose to stochastically simulate the
effect of variable compression rates via the means of stochas-
tic structural dropout. Dropout [19], which randomly zeroes
out intermediate representations in a neural network during
optimization, is a regularization technique. This technique can
be considered as training a virtual ensemble of sub-networks
within the main model, thus, is effective at reducing overfit-
ting. In our case, we use dropout masks having predefined
structures not only to train sub-networks that correspond to
different compression rates but also to enforce a semantic
structure in Z . More specifically, after the initialization steps
of MCL described in Section II, a stochastic gradient descent
optimizer is used to train all components in MCL with the
following objective:

argmin
{Φk},{Θk},Ω

N∑
n=1

L
(
fN(fFS(Zn � B)), cn

)
(8)

where � denotes the element-wise multiplication operator.
B ∈ RM1×···×MK is a random binary matrix having the
following structure:

B[i1, . . . , iK ] =

{
1 if ik ≤ m(r)

k

0 else
∀k = 1, . . . ,K (9)

where m(r)
k denotes an integer value randomly drawn from the

set {M (min)
k ,M

(min)
k + 1, . . . ,Mk} for all k = 1, . . . ,K, with

M
(min)
k and Mk denote predefined minimum and maximum

values for a given dimension of the compressed measurement.

The proposed training technique with stochastic binary
mask B is illustrated in Figure 2. By applying the binary
mask B to Zn, we implicitly train the MCL model to perform
sensing and learning with a compressed measurement of size
m

(r)
1 ×· · ·×m

(r)
k · · ·×m

(r)
K , which is randomly defined during

stochastic optimization. To do so, the value of B is changed in
every forward pass for every training sample during stochastic
optimization.

Finally, we should remark that in order to implement the
adaptive compression rate feature, the server side is not
constrained to only use a single instance of the FS module
and task-specific neural network. While the client side, i.e., the
sensing device has critical limitation in terms of computational
power and especially energy, there is no inherent limitation of
the computing server. In case there is enough computational
power, we can increase the performance of the whole system
by running multiple FS modules and task-specific neural
networks to make predictions given different compressed mea-
surement sizes. That is, after optimizing Eq. (8), we can fix the
sensing operators and only finetune the parameters of server
side’s components (FS and N) for each compression rate. In
deployment, on the sensing device, we still implement a single
set of sensing operators, and compressed measurements of
different sizes are constructed adaptively with sub-tensors of
the output of the sensing device as described previously. On
the server side, based on the size of the received compressed
measurement, prediction is generated with the corresponding
FS and N modules. In Section IV, we will show that this
approach can significantly enhance the overall performance of
the whole system.



TABLE I
TEST ACCURACY (%) ON CIFAR10

single
-rate

one-shot

baseline
adaptive
-rate

4× 6× 2 64.92±00.89 19.48±02.69 61.08±00.30

6× 4× 2 64.83±00.21 20.16±00.74 61.25±00.37

6× 8× 1 62.87±00.54 23.27±02.78 61.28±00.13

8× 6× 1 62.40±00.23 23.25±00.56 61.41±00.25

4× 7× 2 66.28±00.16 20.34±03.00 62.92±00.16

7× 4× 2 66.85±00.55 21.38±00.14 63.36±00.21

7× 8× 1 65.02±00.17 26.75±02.89 63.46±00.52

8× 7× 1 64.87±00.13 26.54±01.90 63.86±00.65

6× 6× 2 69.87±00.20 26.42±04.00 68.98±00.15

8× 9× 1 68.17±00.27 33.93±02.57 67.28±00.34

9× 8× 1 67.69±00.41 33.62±02.89 67.52±00.14

12× 6× 1 67.29±00.25 25.91±00.63 65.72±00.23

9× 4× 2 69.20±00.33 22.88±02.03 66.16±00.25

10× 10× 1 71.45±00.20 47.19±01.61 71.42±00.28

10× 5× 2 73.66±00.77 29.83±00.91 72.57±00.48

average 67.02 26.73 65.22∑
epochs 3150 210 210

IV. EXPERIMENTS

This section provides detailed information about the em-
pirical analysis that we conducted to benchmark our training
scheme for MCL models. Information about the datasets and
experimental protocol are presented first, followed by the
experimental results and discussions.

A. Datasets and Experiment Protocol

Our experimental simulation was developed for object clas-
sification and face recognition tasks. Object and face recogni-
tion are necessary features in smart buildings and surveillance
systems. As we have mentioned before, in order to train end-
to-end compressive learning models, we need labeled data that
has been collected by standard sensors. For this reason, we
used CIFAR [20] and CelebA datasets [21] in our experiments,
both of which are publicly available. A brief description of the
datasets and our data split are provided below:
• CIFAR dataset [20] is an RGB image dataset, which

contains thumbnail-size images of resolution 32 × 32
pixels. The whole dataset contains 60K images that are
divided into train (50K) and test set (10K). The dataset
contains two label sets, each of which has 10 and 100
classes. We refer to the two versions as CIFAR10 and
CIFAR100. In order to perform proper validation, we
randomly selected 5K images from the training set to
form the validation set. Images in different classes are
uniformly distributed in both CIFAR10 and CIFAR100.

• CelebA [21] is a large-scale face attributes dataset with
more than 200K images of about 10K different people
at varying resolutions. For this dataset, we followed the

TABLE II
TEST ACCURACY (%) ON CIFAR100

single
-rate

one-shot

baseline
adaptive
-rate

4× 6× 2 36.13±00.88 03.33±01.44 33.05±00.71

6× 4× 2 36.69±00.18 03.64±00.91 35.77±00.36

6× 8× 1 30.84±00.26 04.96±00.87 30.53±00.92

8× 6× 1 30.93±00.33 04.37±01.39 30.92±00.08

4× 7× 2 38.26±00.91 04.10±01.47 35.44±01.26

7× 4× 2 38.19±00.27 04.36±02.14 37.66±00.39

7× 8× 1 32.94±00.29 06.22±00.92 32.78±00.16

8× 7× 1 32.65±00.15 05.93±01.64 33.15±00.03

6× 6× 2 39.67±01.42 05.19±02.25 41.08±00.20

8× 9× 1 35.63±00.17 09.45±00.86 36.52±00.13

9× 8× 1 35.63±01.36 09.22±00.87 36.04±00.10

12× 6× 1 34.82±00.30 07.36±01.74 34.59±00.19

9× 4× 2 40.73±01.02 05.40±02.12 40.43±00.15

10× 10× 1 39.82±00.89 16.54±01.37 40.34±00.14

10× 5× 2 44.82±00.53 07.05±00.85 44.86±00.24

average 36.52 06.47 36.21∑
epochs 3150 210 210

same experimental setup as in [13] and used a subset
of 100 people to train and benchmark the performance
in face recognition. The training, validation and test set
contain 7063, 2373 and 2400 images, respectively. All
images were resized to a fixed resolution, 32× 32.

In our experiments, we adopted the same task-specific
neural network architecture that was used in the experiments
of [13], namely the AllCNN architecture proposed by [22].
AllCNN is a feed-forward architecture that contains only
convolution layers, without any residual connection. For the
details of AllCNN network, we refer the readers to [13].

For stochastic gradient descent optimization, we used
ADAM optimizer [23] with β1 = 0.9 and β2 = 0.999. All
models were trained for 230 epochs with an initial learning
rate of 0.001, which is reduced by a factor of 10 at epoch
51 and 190, respectively. Weight decay of magnitude 0.00005
was used for regularization. The input pixel values were
scaled into the range [0, 1], and we performed a simple data
augmentation technique during training by random horizontal
flipping and random shifting by 4 pixels in both horizontal and
vertical axes. For every experiment configuration, we repeated
five times and reported the mean and standard deviation of
accuracy measured on the test set.

B. Results

Since both CIFAR10, CIFAR100 and CelebA datasets were
set to the same resolution, the size of Yn is 32 × 32 × 3 in
all of the experiments. In the following, we will denote the
results produced by the original training method proposed in



TABLE III
TEST ACCURACY (%) ON CELEBA

single
-rate

one-shot

baseline
adaptive
-rate

4× 6× 2 49.12±00.17 06.42±00.17 45.60±00.31

6× 4× 2 53.38±00.13 08.02±00.52 51.37±00.17

6× 8× 1 61.00±00.17 09.65±02.66 57.60±00.48

8× 6× 1 63.38±00.88 16.60±00.52 62.12±00.54

4× 7× 2 51.79±00.24 07.06±00.12 49.33±00.74

7× 4× 2 60.17±00.12 11.42±00.13 56.56±00.35

7× 8× 1 68.08±00.37 16.31±01.31 64.21±00.25

8× 7× 1 68.75±00.82 17.58±00.12 64.77±00.56

6× 6× 2 60.40±01.54 13.17±01.37 58.00±00.23

8× 9× 1 73.06±00.19 23.50±00.58 69.44±00.17

9× 8× 1 74.40±00.52 28.35±00.77 71.31±00.39

12× 6× 1 74.48±00.23 30.92±01.46 72.23±00.29

9× 4× 2 66.40±00.19 17.02±00.15 64.44±00.35

10× 10× 1 80.00±00.21 44.71±01.88 76.75±00.29

10× 5× 2 72.92±00.25 22.73±02.02 70.00±00.41

average 65.16 18.23 62.25∑
epochs 3150 210 210

[13] as single-rate, and our one-shot training method as
adaptive-rate.

For the single-rate training, we trained different mod-
els for the following compressed measurement sizes: 4×6×2,
6× 4× 2, 6× 8× 1, 8× 6× 1; 4× 7× 2, 7× 4× 2, 7× 8× 1,
8×7×1; 6×6×2, 8×9×1, 9×8×1, 12×6×1, 9×4×2;
10× 10× 1, 10× 5× 2.

For our adaptive-rate training method, with each
dataset, we only trained one model with the maximum and
minimum dimensions of the compressed measurements set
to 15 × 15 × 2 and 4 × 4 × 1. That is, the size of Zn in
Eq. (8) is 15× 15× 2, and M

(min)
1 = M

(min)
2 = 4 and

M
(min)
3 = 1 when sampling B in Eq. (9). After training,

we simply evaluated this model with different compressed
measurement sizes that were used to train the single-rate
models.

In addition, to demonstrate the effectiveness of the stochas-
tic mask B, we also train a MCL model with the compressed
measurement of size 15 × 15 × 2, using the original training
method in [13]. This model, denoted as baseline, is then
used to evaluate the target set of compressed measurements
mentioned above, using the same evaluation procedure as in
adaptive-rate models. Thus, baseline and our model
(adaptive-rate) have the same setup that represents a
one-shot training setting in which one model was trained for
multiple compressed measurement sizes.

The results for CIFAR10, CIFAR100 and CelebA datasets
are shown in Table I, II and III, respectively. The average
accuracy of each method and the total number of epochs used
to train all configurations are shown at the bottom section.

TABLE IV
FINETUNING PERFORMANCE OF ADAPTIVE-RATE* ON CIFAR10

single
-rate

adaptive
-rate

adaptive
-rate*

4× 6× 2 64.92±00.89 61.08±00.30 65.22±00.20

6× 4× 2 64.83±00.21 61.25±00.37 65.48±00.89

6× 8× 1 62.87±00.54 61.28±00.13 62.97±00.44

8× 6× 1 62.40±00.23 61.41±00.25 62.73±00.29

4× 7× 2 66.28±00.16 62.92±00.16 67.11±00.78

7× 4× 2 66.85±00.55 63.36±00.21 67.74±00.41

7× 8× 1 65.02±00.17 63.46±00.52 65.22±00.45

8× 7× 1 64.87±00.13 63.86±00.65 65.09±00.79

6× 6× 2 69.87±00.20 68.98±00.15 70.62±00.53

8× 9× 1 68.17±00.27 67.28±00.34 68.61±00.41

9× 8× 1 67.69±00.41 67.52±00.14 68.45±00.82

12× 6× 1 67.29±00.25 65.72±00.23 67.76±00.43

9× 4× 2 69.20±00.33 66.16±00.25 70.35±00.45

10× 10× 1 71.45±00.20 71.42±00.28 72.58±00.91

10× 5× 2 73.66±00.77 72.57±00.48 74.63±00.75

average 67.02 65.22 67.64∑
epochs 3150 210 660

In addition, the results are shown in groups according to the
compression rate, i.e., compressed measurement sizes that lead
to the same compression rate are grouped together.

From Table I, II and III, it is obvious that the results ob-
tained from our method (adaptive-rate) are significantly
better than the baseline method. In fact, from the results
of baseline, we can see that without any modification to
the original training algorithm, the model trained with a large
compressed measurement size (15×15×2 in our case) cannot
be used for other configurations with higher compression rates
(smaller measurement sizes). The large variations between
different runs of the baseline indicate that there’s no
semantic structure existing in the sub-tensors of the default
compressed measurement, i.e., the compressed measurement
of the maximum size. On the other hand, the results from
adaptive-rate are more consistent between different ex-
periment runs. This means that from the default compressed
measurement of size 15 × 15 × 2, we can directly generate
compressed measurements of smaller sizes with consistent
performances, indicating the existence of a semantic structure
between elements in the compressed measurement trained by
the proposed method.

Regarding the comparison with the conventional
single-rate training method, on average,
adaptive-rate achieved close performance on
CIFAR100 dataset, and performed slightly less accurate
on CIFAR10 and CelebA datasets with an average of
1.8% and 2.91% performance degradation, respectively.
However, the reductions in accuracy in adaptive-rate
are compensated with significant computational gains from
the experimentation process. For single-rate training,



TABLE V
FINETUNING PERFORMANCE OF ADAPTIVE-RATE* ON CIFAR100

single
-rate

adaptive
-rate

adaptive
-rate*

4× 6× 2 36.13±00.88 33.05±00.71 37.27±01.03

6× 4× 2 36.69±00.18 35.77±00.36 38.25±00.95

6× 8× 1 30.84±00.26 30.53±00.92 31.97±00.33

8× 6× 1 30.93±00.33 30.92±00.08 32.10±01.25

4× 7× 2 38.26±00.91 35.44±01.26 39.70±00.76

7× 4× 2 38.19±00.27 37.66±00.39 40.30±00.23

7× 8× 1 32.94±00.29 32.78±00.16 33.88±00.43

8× 7× 1 32.65±00.15 33.15±00.03 34.04±01.09

6× 6× 2 39.67±01.42 41.08±00.20 42.71±00.74

8× 9× 1 35.63±00.17 36.52±00.13 36.97±00.29

9× 8× 1 35.63±01.36 36.04±00.10 36.87±00.17

12× 6× 1 34.82±00.30 34.59±00.19 36.14±00.62

9× 4× 2 40.73±01.02 40.43±00.15 42.94±00.77

10× 10× 1 39.82±00.89 40.34±00.14 40.88±00.31

10× 5× 2 44.82±00.53 44.86±00.24 46.20±00.13

average 36.52 36.21 38.01∑
epochs 3150 210 660

experimenting with 15 different compressed measurements
required us to run 3150 epochs of gradient updates. On the
other hand, with adaptive-rate training, we needed
to train only a single model to evaluate all 15 different
configurations. As the number of compressed measurement
configurations increases, the saving factor increases when
using adaptive-rate instead of single-rate training.

Another benefit from using the proposed training technique
is that we can also use adaptive-rate training technique
to quickly identify the best configurations given a compression
rate. For example, in CelebA dataset, even though with the
same compression rate, 8×6×1 and 6×8×1 yield much better
accuracy than 4×6×2 and 6×4×2 when each configuration
is optimized separately. Using adaptive-rate training, we
can also observe this phenomenon, using only 25% computa-
tion compared to the former case. On CIFAR100, with the
same compression rate, the ranking is reversed (4× 6× 2 and
6× 4× 2 perform much better than 8× 6× 1 and 6× 8× 1),
which is also seen from the results of adaptive-rate.

Up until now, we have shown that with less than 3% of
accuracy drop, we can speedily train and deploy a single model
instance to achieve the adaptive compression rate feature.
However, as we have described at the end of Section III,
the server side is not constrained to run a single instance
of FS module and task-specific neural network. That is, after
optimizing a single model instance using adaptive-rate
method, we can fix the sensing operators and finetune the FS
module and task-specific neural network for each compressed
measurement size. To demonstrate this, we performed fine-
tuning for 30 epochs for each compressed measurement size.
The results, denoted as adaptive-rate*, are shown in

TABLE VI
FINETUNING PERFORMANCE OF ADAPTIVE-RATE* ON CELEBA

single
-rate

adaptive
-rate

adaptive
-rate*

4× 6× 2 49.12±00.17 45.60±00.31 49.92±00.42

6× 4× 2 53.38±00.13 51.37±00.17 53.85±00.15

6× 8× 1 61.00±00.17 57.60±00.48 61.15±00.19

8× 6× 1 63.38±00.88 62.12±00.54 65.04±01.19

4× 7× 2 51.79±00.24 49.33±00.74 52.67±00.49

7× 4× 2 60.17±00.12 56.56±00.35 61.50±00.47

7× 8× 1 68.08±00.37 64.21±00.25 68.17±00.68

8× 7× 1 68.75±00.82 64.77±00.56 68.63±00.33

6× 6× 2 60.40±01.54 58.00±00.23 62.73±01.31

8× 9× 1 73.06±00.19 69.44±00.17 73.04±00.37

9× 8× 1 74.40±00.52 71.31±00.39 74.15±00.19

12× 6× 1 74.48±00.23 72.23±00.29 74.48±00.15

9× 4× 2 66.40±00.19 64.44±00.35 67.67±01.04

10× 10× 1 80.00±00.21 76.75±00.29 79.44±00.96

10× 5× 2 72.92±00.25 70.00±00.41 71.12±00.38

average 65.16 62.25 65.57∑
epochs 3150 210 660

Table IV, V, and VI. It is clear from these tables that by
allowing separate model instances on the server side with
adaptive-rate*, we obtained noticeable enhancements
in the overall performances, which are on-par with the per-
formances obtained from single-rate training method
on CIFAR10 and CelebA datasets, and clearly better on
CIFAR100 dataset. Although the training complexity (total
number of epochs) using single-rate* is higher than
using a single model instance, it is still far below what is
required for single-rate.

V. CONCLUSIONS

In this paper, we proposed a novel training method and
practical implementation of Multilinear Compressive Learning
models that are capable of compressive signal acquisition and
prediction with an adaptive compression rate. By enabling
such a feature in remote compressive learning systems, the
degree of signal fidelity, hence amount of data transmitted for
each sample, can be adjusted according to the transmission
condition. This can result in major improvements of informa-
tional content throughput of a remote sensing and learning
application. Our empirical evaluation of the proposed training
technique showed that with a few percents of accuracy drop,
we can save a significant amount of computation during the
training phase. Furthermore, when the server side can handle
multiple model instances, we can achieve on-par performances
compared to the standard setup while still having the adaptive
compression rate feature on the sensing devices and requiring
less computation for training. Our work, as well as future
works in adaptive sensing and learning systems will comple-
ment the developments in IoT technologies, creating a world



of intelligent services and systems that make everyday life
effortless and comfortable.
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8.4 Continual 3D Convolutional Neural Networks for Real-time Process-
ing of Videos

The appended paper follows.
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Abstract

This paper introduces Continual 3D Convolutional Neu-
ral Networks (Co3D CNNs), a new computational formu-
lation of spatio-temporal 3D CNNs, in which videos are
processed frame-by-frame rather than by clip. In online
processing tasks demanding frame-wise predictions, Co3D
CNNs dispense with the computational redundancies of
regular 3D CNNs, namely the repeated convolutions over
frames, which appear in multiple clips. While yielding an
order of magnitude in computational savings, Co3D CNNs
have memory requirements comparable with that of corre-
sponding regular 3D CNNs and are less affected by changes
in the size of the temporal receptive field. We show that
Continual 3D CNNs initialised on the weights from preex-
isting state-of-the-art video recognition models reduce the
floating point operations for frame-wise computations by
10.0−12.4× while improving accuracy on Kinetics-400 by
2.3−3.8%. Moreover, we investigate the transient start-up
response of Co3D CNNs and perform an extensive bench-
mark of online processing speed as well as accuracy for
publicly available state-of-the-art 3D CNNs on modern
hardware.

1. Introduction

Through the availability of large-scale open-source
datasets such as ImageNet [30] and Kinetics [21, 2],
deep, over-parameterized Convolutional Neural Networks
(CNNs) have achieved impressive results in the field of
computer vision. In video recognition specifically, 3D
CNNs have lead the recent state-of-the-art [3, 36, 8, 7], gen-
erally outperforming RNN-based approaches [5, 17]. De-
spite their success in competitions and benchmarks where
only prediction quality is evaluated, their computational
cost and processing time remains a challenge to the deploy-
ment in many real-life use-cases with energy constraints
and/or real-time needs. To combat this general issue, mul-
tiple approaches have been explored. These include com-
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Figure 1: Accuracy/complexity trade-off for Continual
X3D (CoX3D) and recent state-of-the-art 3D CNNs on
Kinetics-400 using 1-clip/frame testing. For regular 3D
CNNs, the FLOPs per clip � are noted, while the FLOPs
per frame • are shown for the Continual 3D CNNs. The
CoX3D models used the weights from the X3D models
without further fine-tuning. The global average pool size
for the network is noted in each point. The diagonal and
vertical arrows indicate respectively a transfer from regular
to Continual 3D CNN and an extension of receptive field.

putationally efficient architectures for image [13, 42, 34]
and video recognition [24, 7, 43], pruning of network
weights [4, 10, 11], knowledge distillation [12, 41, 29], and
network quantisation [15, 1, 9].

The contribution in this paper is complementary to all of
the above. It exploits the computational redundancies in the
application of regular spatio-temporal 3D CNNs to a con-
tinual video stream in a sliding window fashion (Fig. 2).
This redundancy was also explored recently [22, 31] using
specialised architectures. However, these are not weight-
compatible with regular 3D CNNs. In this work, we present
a weight-compatible reformulation of the 3D CNN and
its components as a Continual 3D Convolutional Neural



Network (Co3D CNN). Co3D CNNs process input videos
frame-by-frame rather than clip-wise and can reuse the
weights of regular 3D CNNs, producing identical outputs
for networks without temporal zero-padding. To explore
the characteristics of Continual CNNs and validate their ef-
ficacy, we perform conversions from three state-of-the-art
3D CNNs, each at different points on the accuracy/speed
pareto-frontier, and evaluate their frame-wise performance.
While there is a slight reduction in accuracy in the conver-
sion due to zero-padding in the regular 3D CNNs, a sim-
ple network modification of extending the temporal recep-
tive field recovers and improves the accuracy significantly
without any fine-tuning at a negligible increase in computa-
tional cost. Furthermore, we measure the transient network
response at start-up, and perform extensive benchmarking
on common hardware and embedded devices to gauge the
expected inference speeds for real-life scenarios. We find
that Continual 3D CNNs offer a 10.0−12.4× reduction in
floating point operations (FLOPs), a 5.9−9.2× speed in-
crease on CPU and a 2.8−3.8% accuracy improvement on
Kinetics-400 over regular 3D CNNs.

2. Related Works

2.1. 3D CNNs for video recognition

Convolutional Neural Networks with spatio-temporal 3D
kernels may be considered the natural extension from 2D
CNNs for image recognition to CNNs for video recogni-
tion. Although they did not surpass their 2D CNN + RNN
competitors [5, 17] initially [16, 20, 35], arguably due to
a high parameter count and insufficient dataset size, 3D
CNNs have produced state-of-the-art results [3, 36, 8] since
the Kinetics dataset [21] was introduced. Yet, high accuracy
comes with a high computational cost, which is prohibitive
to many real-life use cases.

In image recognition, efficient architectures such as Mo-
bileNet [13], ShuffleNet [42], and EfficientNet [34] at-
tained improved accuracy-complexity trade-offs. These ar-
chitectures were extended to 3D-convolutional versions 3D-
MobileNet [24], 3D-ShuffleNet [24] and X3D [7] (≈3D-
EfficientNet) with similarly improved pareto-frontier in
video-recognition tasks. While these efficient 3D CNNs
work well for offline processing of videos, they are limited
in the context of online processing, where we wish to make
multiple predictions per second; real-time processing rates
can still be achieved only at the price of severely reduced
accuracy. At the heart of the limitation of 3D CNNs is the
restriction that they must process a whole “clip” (spatio-
temporal volume) at a time. When predictions are needed
for each frame, this imposes a significant overhead due to
repeated computations. In our work, we overcome this chal-
lenge by introducing an alternative computational scheme
for spatio-temporal convolutions, -pooling, and -residuals,

which lets us compute 3D CNN outputs frame-wise (contin-
ually) and dispose of the redundancies produced by regular
3D CNNs.

2.2. Architectures for online video recognition

In vision tasks with a temporal dimension, a straightfor-
ward and well-explored approach [5, 17, 18, 32] is to let
each frame pass through a 2D CNN trained on ImageNet in
one stream alongside a second stream of Optical Flow [6].
The outputs can then be integrated using a recurrent net-
work to model long-term temporal dependencies [5, 17] or
used for spatio-temporal action detection tasks [18, 32]. It
has the advantage that it requires no network modification
for deployment in online-processing scenarios, lends itself
to caching [40], and is free of the computational redundan-
cies experienced in 3D CNNs. It has the disadvantage that
the inclusion of optical flow introduces a large computa-
tional overhead.

Another approach is to utilise 3D CNNs for spatio-
temporal feature extraction. In [27], spatio-temporal fea-
tures from non-overlaping clips are used to train a recurrent
network for hand gesture recognition. In [23], a 3D CNN
operating on a sliding window of the input performs spatio-
temporal action detection. These 3D CNN-based methods
have the disadvantage of either not producing predictions
for each input frame [27] or suffering from redundant com-
putations from overlapping input clips [23].

Exploring modifications of the spatio-temporal 3D con-
volution operating frame by frame, the Recurrent Convo-
lutional Unit (RCU) [31] replaces the 3D convolution by
aggregating a spatial 2D convolution over the current in-
put with a 1D convolution over the prior output. Closest
to our work are Dissected 3D CNNs [22] (D3D). They de-
fine an architecture that caches the 1 × nH × nW frame-
level features of network residual connections and con-
catenates them with the corresponding features in the next
frame. This produces intermediary spatio-temporal features
of shape 2× nH × nW , which become inputs to a block of
convolutional layers. With kernel sizes kT × kH × kW of
2×3×3 and 1×3×3, the block produces features of shape
1×nH ×nW to be cached once again. Here, n denotes the
feature map size and k the kernel size and subscripts T , H ,
and W denote the time, height, and width dimensions. An
LSTM is then used for late spatio-temporal modelling prior
to prediction. Like the Continual Convolutions that we pro-
pose, both RCU and D3D are causal and operate frame-by-
frame. However, they are incompatible with pre-trained 3D
CNNs, and must be trained from scratch. While the idea of
caching features is also central to our work, we reformulate
spatio-temporal 3D convolutions in a one-to-one compati-
ble manner, allowing us to reuse existing model weights. In
fact, all of the results presented in this paper were achieved
without any training!
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Figure 2: Redundant computations for a temporal con-
volutional layer during online processing of video clips,
as illustrated by the repeated convolution of inputs (green
b, c,d) with a kernel (blue α, β) in the temporal dimen-
sion. Moreover, prior inputs (b, c,d) must be stored be-
tween time-steps for online processing tasks.

3. Continual Convolutional Neural Networks
3.1. Regular 3D-convolutions lead to redundancy

Currently, the best performing architectures (X3D [7],
SlowFast [8], etc.) employ variations on 3D convolutions
as their main building block and perform predictions for a
spatio-temporal input volume (video-clip). These architec-
tures achieve high accuracy with reasonable computational
cost for predictions on clips in the offline setting. They are,
however, ill-suited for online video classification, where the
input is a continual stream of video frames and a class pre-
diction is needed for each frame. For regular 3D CNNs pro-
cessing clips of mT frames to be used in this context, prior
mT − 1 input frames need to be stored between temporal
time-steps and assembled to form a new video-clip when
the next frame is sampled. This is illustrated in Fig. 2.

Recall the computational complexity for a 3D convolu-
tion:

O([kH · kW · kT + b] · cI · cO · nH · nW · nT ), (1)

where k denotes the kernel size, T , H , and W are time,
height, and width dimension subscripts, b ∈ {0, 1} indi-
cates whether bias is used, and cI and cO are the number
of input and output channels. The size of the output fea-
ture map is n = (m + 2p − d · (k − 1) − 1)/s + 1 for
an input of size m and a convolution with padding p, dila-
tion d, and stride s. During online processing, every frame
in the continual video-stream will be processed nT times
(once for each position in the clip), leading to a redundancy
proportional with nT − 1. Moreover, the memory-overhead
of storing prior input frames is

O(cI ·mH ·mW · [mT − 1])), (2)

and during inference the network has to transiently store
feature-maps of size

O(cO · nH · nW · nT ). (3)
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Figure 3: Continual Convolution. An input (green d or
e) is convolved with a kernel (blue α, β). The intermediary
feature-maps corresponding to all but the last temporal posi-
tion are stored, while the last feature map and prior memory
are summed to produce the resulting output. For a continual
stream of inputs, Continual Convolutions produce identical
outputs to regular convolutions.

3.2. Continual Convolutions

We can remedy the issue described in Section 3.1 by
employing an alternative sequence of computational steps.
In essence, we reformulate the repeated convolution of a
(3D) kernel with a (3D) input-clip that continually shifts
along the temporal dimension as a Continual Convolution
(CoConv), where all convolution computations (bar the fi-
nal sum) for the (3D) kernel with each (2D) input-frame are
performed in one time-step. Intermediary results are stored
as states to be used in subsequent steps, while previous and
current results are summed up to produce the output. The
process for a 1D input and kernel, which corresponds to
the regular convolution in Fig. 2, is illustrated in Fig. 3. In
general, this scheme can be applied for online-processing
of any ND input, where one dimension is a temporal con-
tinual stream. Continual Convolutions are causal [37] with
no information leaking from future to past and can be effi-
ciently implemented by zero-padding the input frame along
the temporal dimension with p = floor(k/2). Python-style
pseudo-code of the implementation is shown in Listing 1.

In terms of computational cost, we can now perform
frame-by-frame computations much more efficiently than
a regular 3D convolution. The complexity of processing a
frame becomes:

O([kH · kW · kT + b] · cI · cO · nH · nW ). (4)

This reduction in computational complexity comes at the
cost of a memory-overhead in each layer due to the state
that is kept between time-steps. The additional overhead of
storing the partially computed feature-maps for a frame is:

O(dT · [kT − 1] · cO · nH · nW ). (5)

However, in the context of inference in a deep neural net-
work, the transient memory usage within each time-step is
reduced by a factor of nT to

O(cO · nH · nW ). (6)



def coconv3d(frame, prev_state = (mem, i)):
frame = spatial_padding(frame)
frame = temporal_padding(frame)
feat = conv3d(frame, weights)
output, rest_feat = feat[0], feat[1:]

mem, i = prev_state or init_state(output)
M = len(mem)

for m in range(M):
output += mem[(i + m) % M, M - m - 1]

output += bias

mem[i] = rest_feat
i = (i + 1) % M

return output, (mem, i)

Listing 1: Pseudo-code for Continual Convolution.
The full implementation is available at
https://github.com/lukashedegaard/co3d.

The benefits of Continual Convolutions thus include the
independence of clip length on the computational complex-
ity, state overhead, and transient memory consumption. The
change from (non-causal) regular convolutions to (causal)
Continual Convolutions has the side-effect of introducing a
delay to the output. This is because some intermediary re-
sults of convolving a frame with the kernel are only added
up at a later point in time (see Fig. 3). The delay for a con-
tinual convolution is

O(dT · [kT − 1]). (7)

3.3. Continual Residuals

The delay from Continual Convolutions has an adverse
side-effect on residual connections. Despite their simplicity
in regular CNNs, we cannot simply add the input to a Con-
tinual Convolution with its output because the CoConv may
delay the output. Residual connections to a CoConv must
therefore be delayed by an equivalent amount (see Eq. (7)).
This produces a memory overhead of

O(dT · [kT − 1] · cO ·mH ·mW ). (8)

3.4. Continual Pooling

The associative property of pooling operations allows
for pooling to be decomposed across dimensions, i.e.
poolT,H,W (X) = poolT (poolH,W (X)). For continual
spatio-temporal pooling, the pooling over spatial dimen-
sions is equivalent to a regular pooling, while the intermedi-
ary pooling results must be stored for prior temporal frames.
For a pooling with temporal kernel size kT and spatial out-
put size nH · nW , the memory consumption is

O([kT − 1] · nH · nW ), (9)

and the delay is
O(kT − 1). (10)

Both memory consumption and delay scale linearly with the
temporal kernel size. Fortunately, the memory consumed
by temporal pooling layers is relatively modest for most
CNN architectures (1.5% for CoX3D-M, see Appendix A).
Hence, the delay rather than memory consumption may be
of primary concern for real-life applications. For some net-
work modules it may even make sense to skip the pooling
in the conversion to a Continual CNN. One such example
is the 3D Squeeze-and-Excitation (SE) block [14] in X3D,
where global spatio-temporal average-pooling is used in the
computation of channel-wise self-attention. Discarding the
temporal pooling component (making it a 2D SE block)
shifts the attention slightly (assuming the frame contents
change slowly relative to the sampling rate) but avoids a
considerable temporal delay.

3.5. The issue with temporal padding

Zero-padding of convolutional layers is a popular strat-
egy for retaining the spatio-temporal dimension of a
feature-map between consecutive layers in a CNN. For Con-
tinual CNNs, however, temporal zero-padding poses a prob-
lem, as illustrated in Fig. 4. Consider a 2-layer 1D CNN
where each layer has a kernel size of 3 and zero padding
of 1. For each new frame in a continual stream of inputs,
the first layer l should produce two output feature-maps:
One by the convolution of the two prior frames and the new
frame, and another by convolving with one prior frame, the
new frame, and a zero-pad. The next layer l + 1 thus re-
ceives two inputs and produces three outputs which are de-
pendent on the new input frame of the first layer (one for
each input and another from zero-padding). In effect, each
zero padding in a convolution forces the next layer to ret-
rospectively update its output for a previous time-step in a
non-causal manner. As we move through layers, the avail-
able computational redundancy to be exploited by Contin-
ual Convolutions is gradually reduced. Thus, there is a con-
siderable downside to the use of padding.

This questions the necessity of zero padding along the
temporal dimension. In regular CNNs, zero padding has
two benefits: It helps to avoid spatio-temporal shrinkage
of feature-maps when propagated through a deep CNN,
and it prevents information at the boarders from “wash-
ing away” [19]. The use of zero-padding, however, has
the downside that it alters the input-distribution along the
boarders significantly [25, 28]. For input data which is a
continual stream of frames, a shrinkage of the feature-size
in the temporal dimension is not a concern, and an input
frame (which may be considered a border frame in regu-
lar 3D CNN) has no risk of “washing away” because it is a
middle frame in subsequent time steps. Temporal padding is
thus omitted in Continual CNNs. As can be seen in the ex-
perimental evaluations presented in the following, this con-
stitutes an approximation error in the conversion from reg-

https://github.com/lukashedegaard/co3d
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Figure 4: Issue with temporal padding: The latest frame
x is propagated through a CNN with (purple) temporal ker-
nels of size 3 (a) without or (b) with zero padding. High-
lighted cubes can be produced only in the latest frame, with
yellow boarder indicating independence of padded zero and
red boarders dependence. In the zero-padded case (b), the
number of frame features dependent on x following a layer
l increases with the number of padded zeros.

ular to Continual 3D CNN if the former was trained with
temporal padding.

3.6. Initialisation

Before a Continual CNN reaches a steady state of oper-
ation, it must have processed rT − 1 frames where rT is
the receptive field size of the network in the temporal di-
mension. For example, the Continual X3D-{S,M,L} mod-
els have receptive fields of size {69, 72, 130}. There is thus
a transient network response at start-up. This response de-
pends on how internal state variables are initialised. Here,
we propose two variants: 1) Initialisation with zeros and
2) by repeating a replicate of the features corresponding to
the first input-frame. The latter corresponds to operating in
a steady state for a “boring video” [3] which has one frame
repeated in the entire clip.

3.7. Memory consumption: A case study

Where does this leave us with regards to the mem-
ory consumption during inference in online-scenarios? To
gauge this, we can compare the worst-case memory con-
sumption for the regular X3D-M model [7] with the cor-
responding Continual X3D-M (CoX3D-M) model. Dis-
regarding the storage requirement of the model weights
(which is identical for both regular and continual model
versions), the memory consumption of storing input-frames
between time-steps for the regular model is computed by
Eq. (2): For a clip size ofmT×mH×mW = 16×224×224,
the memory requirement is 3·(16−1)·224·224 = 2,257,920
floating point numbers (floats). The final consumption in
bytes depends on the floating-point precision. In addition,
we need to account for the transient memory consumption,

which occurs while storing the intermediary feature-maps.
The worst case is the output of the first convolution which
is of size 24× 16× 112× 112 corresponding to 4,816,896
floats. Thus, the regular X3D-M has a worst-case total
memory-consumption of 7,074,816 floats.

The continual version of X3D-M (CoX3D-M) has no
need to store input frames between time-steps, but it must
keep state for the Continual Convolutions, Continual Pool-
ing and Continual Residuals. 6,107,568 floats are stored
as state within the CoX3D-M model (see Appendix A).
The worst-case transient memory again occurs while stor-
ing the first feature-map, but this time it is only of size
24 × 1 × 112 × 112, or 301,056 floats. The Continual
X3D-M thus has a worst case total memory-consumption
of 6,408,624 floats. This corresponds to a 9.4% reduction
in total memory-requirements relative to the regular model.

3.8. Design considerations

It should be noted that the result of the comparison in
Section 3.7 is highly dependent on the clip size used by the
regular model. For a clip size of 4 frames (as in X3D-XS),
X3D-M4 would have a worst-case memory consumption of
1,655,808 floats. Its continual counterpart, in which the
temporal kernel size of the final pooling layer is reduced to
4, needs 6,403,440 floats. Thus, it may still be worth con-
sidering the use of the regular CNN in some embedded sys-
tems, which are severely constrained on memory, if lower-
ing the spatial resolution is not an option. On the other hand,
using a larger clip size of 64, X3D-M64 would consume
28,449,792 floats, whereas CoX3D-M64 has a worst-case
consumption of only 6,429,360 floats. This simple example
demonstrates that Continual CNNs utilise longer effective
clip sizes much more efficiently than regular CNNs in on-
line processing scenarios. In networks intended for embed-
ded systems or online processing scenarios, we may thus
increase the clip size to achieve higher accuracy with min-
imal penalty in computational complexity and worst-case
memory consumption.

Another design-consideration, which has a considerable
influence on memory consumption is the temporal kernel
size and dilation of CoConv layers. Fortunately, the trend to
employ small kernel sizes leaves the memory consumption
reasonable for current state-of-the-art networks [3, 36, 8, 7].
A larger temporal kernel size would not only affect the
memory growth through the CoConv filter, but also for co-
occuring residual connections, since these consume a sig-
nificant fraction of the total state-memory for real-life net-
works; in a Continual X3D-M model (CoX3D-M) the mem-
ory of residual constitutes 31.6% of the total model state
memory (see Appendix A).



Model Acc. (%) Params (M) FLOPs (G) Speed (evaluations/s)
CPU TX2 Xavier RTX 2080 Ti

C
lip

I3D-R50 63.98 28.04 28.61 0.93 ± 0.04 2.54 ± 0.02 5.37 ± 0.01 77.15 ± 0.88
R(2+1)D-188 53.52 31.51 20.35 1.75 ± 0.11 3.19 ± 0.04 6.82 ± 0.01 130.88 ± 0.29
R(2+1)D-1816 59.29 31.51 40.71 0.83 ± 0.06 1.82 ± 0.01 3.77 ± 0.01 75.81 ± 0.21
SlowFast-8×8-R50 68.45 66.25 50.72 0.34 ± 0.01 0.87 ± 0.00 1.66 ± 0.03 30.72 ± 0.34
SlowFast-4×16-R50 67.06 34.48 36.46 0.55 ± 0.02 1.33 ± 0.01 2.13 ± 0.05 41.28 ± 0.51
X3D-L 69.29 6.15 19.17 0.25 ± 0.01 0.19 ± 0.00 0.88 ± 0.00 16.58 ± 0.13
X3D-M 67.24 3.79 4.97 0.83 ± 0.04 1.47 ± 0.00 3.69 ± 0.02 55.27 ± 0.67
X3D-S 64.71 3.79 2.06 2.23 ± 0.11 2.68 ± 0.01 8.07 ± 0.12 138.04 ± 1.69
X3D-XS 59.37 3.79 0.64 8.26 ± 0.11 8.20 ± 0.09 26.37 ± 0.03 430.15 ± 9.29

Fr
am

e

CoX3D-L16 63.03 6.15 1.54 2.30 ± 0.07 0.99 ± 0.00 6.30 ± 0.00 101.38 ± 3.36
CoX3D-L64 71.61 6.15 1.54 2.30 ± 0.08 0.99 ± 0.00 6.30 ± 0.01 111.53 ± 4.55
CoX3D-M16 62.80 3.79 0.40 7.57 ± 0.14 7.26 ± 0.13 23.70 ± 0.09 335.42 ± 9.91
CoX3D-M64 71.03 3.79 0.40 7.51 ± 0.17 7.04 ± 0.03 23.70 ± 0.09 323.56 ± 9.91
CoX3D-S13 60.18 3.79 0.21 13.16 ± 0.35 11.06 ± 0.03 40.09 ± 0.04 722.43 ± 56.95
CoX3D-S64 67.33 3.79 0.21 13.19 ± 0.37 11.13 ± 0.04 40.10 ± 0.04 726.81 ± 67.38

Table 1: Benchmark of state-of-the-art methods on Kinetics-400. The noted accuracy is the single clip or frame top-1
score using RGB as the only input-modality. The performance was evaluated using publicly available pre-trained models
without any further fine-tuning. For speed comparison, evaluations per second denote frames per second for the CoX3D
models and clips per second for the remaining models. Speed results are the mean ± std of 100 measurements.

4. Experiments
The experiments in this section aim to show the char-

acteristics and advantages of Continual 3D CNNs as com-
pared with regular 3D CNNs. One of the main benefits of
Co3D CNNs is their ability to reuse the network weights of
regular 3D CNNs. As such, all Co3D CNNs in these ex-
periments use network weights that were pre-trained with
Kinetics-400 [21] on regular 3D CNNs without further fine-
tuning. Unless stated otherwise, we use the data same pre-
processing steps as [8, 7].

The section is laid out as follows: First, we showcase
the network performance following weight transfer from
regular to Continual 3D. This is followed by a study on
the transient response of Co3D CNNs at startup. Further-
more, we show how the computational advantages of Co3D
CNNs can be exploited to improve accuracy by extending
the temporal receptive field. Finally, we perform an exten-
sive benchmark of prior state-of-the-art methods and Con-
tinual 3D CNNs, measuring the 1-clip/frame accuracy of
publicly available models, as well as their inference speed
on various computational devices.

4.1. Transfer from regular to Continual CNNs

There is a one-to-one correspondence between the
weights in a regular CNN and the continual version of the
same network. Because Continual CNNs do not utilise
zero-padding, however, there is a computational discrep-
ancy between them. To gauge the direct transferability
of knowledge to Continual CNNs, we initialise a set of

Continual X3D (CoX3D) networks with Kinetics-400 pre-
trained X3D network weights [7]. The publicly available
X3D network variants XS, S, M, and L were evaluated on
the Kinetics-400 test set using one temporally centred clip
from each video. We omit the XS network in the trans-
fer to CoX3D, given that it is architecturally equivalent to
S, but with fewer frames per clip. In evaluation of the
continual networks, we faced the challenge that the Ki-
netics videos were all limited to 10 seconds. Due to the
relatively long transient response of Continual CNNs (see
Section 4.2) and low frame-rate used for training the X3D
models (5.0, 6.0, 6.0 FPS for S, M, and L respectively), the
video-length was insufficient to reach steady-state. As a
practical measure to evaluate near steady-state, we repeated
the last video-frame for a padded video length of ≈ 80%
of the network receptive field as a heuristic choice. The
Continual CNNs were thus tested on the last frame of the
padded video and initialised with the prior frames.

The results of the transfer are shown in Table 1 and
Fig. 1. For all networks, the transfer from regular to Con-
tinual 3D CNN results in significant computational savings.
For the S, M, and L networks the reduction in FLOPs is
10.0×, 12.4×, and 12.4× respectively. These savings are
less than the clip size due to the final pooling and predic-
tion layers, which are in use for each frame in the Contin-
ual CNN, but only once per clip in regular CNNs. As a
side-effect of the transfer from zero-padded regular CNN to
Continual CNN without zero-padding, we see a noticeable
reduction in accuracy. This reduction is easily improved by



using an extended pooling size for the network (discussed
in Section 3.8 and in Section 4.3). Using a global average
pooling with temporal kernel size 64, we improve the ac-
curacy of X3D by 2.6%, 3.8%, and 2.3% in the Continual
S, M, and L network variants. As noted earlier, the Kinet-
ics dataset did not have sufficient frames to fill the temporal
receptive field of the Continual CNNs in these tests. The
results in Table 1 are thus lower than what may be expected
for online scenarios given enough frames. We explore this
further in Sections 4.2 and 4.3.

4.2. Transient response of Continual CNNs

As described in Section 3.6, Continual CNNs exhibit a
transient response during their up-start. In order to gauge
this response, we perform a set of experiments on the
Kinetics-400 validation set, this time sampled at 15 FPS
to have a sufficient number of frames available. This cor-
responds to a data domain shift [38] relative to the pre-
trained weights, where time advances slower. First, we
check the baseline X3D network 1-clip accuracy, which
will constitute the expected upper bound. Then we eval-
uate the CoX3D frame accuracy with X3D weights, vary-
ing the number of prior frames used for initialisation. Note
that temporal center-crops of size Tinit +1, where Tinit is the
number of initialisation frames, are used in each evaluation
to ensure that the frames seen by the network come from
the centre. This precaution is used to counter a data-bias,
we noticed in Kinetics-400, namely that the start and end of
a video are less informative and contribute to worse predic-
tions than the central part. For an X3D-S network evaluated
at different video positions, the results can vary up to 8%.
The experiment is repeated for two initialisation schemes,
“zeros” and “replicate”, and two model sizes, S and M. The
measured transient responses are shown in Fig. 5.

For all responses, the first ≈25 frames produce near-
random predictions, before rapidly increasing at 25−30
frames until a steady-state is reached at 49.2% and 56.2%
accuracy for S and M. Relative to the regular X3D, this con-
stitutes a steady-state error of −1.7% and −5.8%. Com-
paring initialisation schemes, we see that the “replicate”
scheme results in a slightly earlier rise. The rise sets in later
for the “zeros” scheme, but exhibits a sharper slope, over-
shooting the steady-state accuracy (with peaks at 51.6% and
57.6%) before settling at the exact same values as for the
“replication” scheme. This overshoot response was unex-
pected, and our best conjecture is that the network benefits
from some zero states because the regular network, from
which is inherited its parameters, was trained using zero
padding. While this overshoot could be exploited to inflate
the measured accuracy, we abstain from this practice and
report only accuracy for steady-state or the latest-possible
frame while using “replicate” padding in case of insufficient
frames in the video.
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Figure 5: Transient response for Continual X3D-{S,M}
on the Kinetics-400 validation set at 15 FPS. The dotted
horizontal lines constitute the X3D validation accuracy for
1-clip predictions. The black circles highlight when the
frames seen equal the receptive field of the networks.

4.3. Extended receptive field

Continual CNNs experience a negligible increase in
computational cost when larger temporal receptive field are
used (see Section 3.8). For CoX3D networks, this extension
can be trivially implemented by increasing the temporal ker-
nel size of the last pooling layer. In this set of experiments,
we extend CoX3D-{S,M,L} to have temporal pooling sizes
32, 64, and 96, and evaluate them on the Kinetics-400 val-
idation set sampled at 15 FPS. Note, once again, that the
network weights were trained on a different sampling rate.
The Continual CNNs are evaluated at frames corresponding
to the steady state.

Table 2 shows the measured accuracy and floating point
operations per frame (CoX3D) / clip (X3D) as well as the
pool size for the penultimate network layer (global average
pooling) and the total receptive field of the network in the
temporal dimension. A corresponding visual depiction is
found in Fig. 6. As found in Section 4.1, each transfer re-
sults in significant computational savings alongside a drop
in accuracy. Extending the kernel size of the global aver-
age pooling layer increases the accuracy of the Continual
CNNs by 11.0−13.3% for 96 frames relative the original
13-16 frames, surpassing that of the regular CNNs. Lying at
0.017−0.009%, the corresponding computational increases
can be considered negligible.

4.4. Inference benchmarks

Despite their high status in activity recognition leader-
boards [39], it is unclear how the state-of-the-art methods
of late perform in the online setting, where speed and ac-



109 1010
FLOPs per frame 

109 1010

FLOPs per clip 

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y 
(%

)

13

16

16

13
16

32

64

96

16

32

64

96

16

32

64

96

CoX3D-L
CoX3D-M
CoX3D-S
X3D-L
X3D-M
X3D-S

Figure 6: Accuracy versus FLOPs for extended recep-
tive fields on the Kinetics-400 validation set at 15 FPS. The
global average pool size along the temporal dimension is
indicated in each point, and the arrows denote a one-to-one
transfer from regular to Continual X3D without fine-tuning.

curacy constitute a necessary trade-off. Specifically, many
methods sample multiple clips from different spatial and
temporal positions in a video and average the predictions
to produce their best results. To avoid the high computa-
tional cost of this practice, a reasonable tactic in the online
setting is to make predictions from only a single clip. The
number of FLOPs as a proxy for inference speed is occa-
sionally noted, but to the best of our knowledge, there has
not yet been a systematic evaluation of inference speed for
these video-recognition models on real-life hardware. In
this set of experiments, we benchmark the 1-clip accuracy
of I3D-R50 [3], R(2+1)D-18 [36], SlowFast-8×8-R50 and
SlowFast-4×16-R50 [33], as well as the X3D model fam-
ily [7] alongside the 1-frame accuracy of CoX3D. To gauge
the achievable speeds at different computational budgets,
the networks were tested on four hardware platforms as de-
scribed in Appendix B.

The results of the benchmark are found in Table 1. Due
to the limitation to a single clip, we see that achieved ac-
curacy for the baselines is generally lower than published
in the respective works [3, 36, 8, 7]. The speed evalua-
tion results are approximately (inversely log-log) propor-
tional to the measured FLOPs. They are, however skewed
to the low side for X3D models, confirming the observa-
tion in [26] that FLOPs are not always an accurate proxy
for the inference speed on real-life hardware due to differ-
ences in memory access cost. Across hardware platforms,
the CoX3D models with extended receptive fields attain the
best accuracy/speed trade-off by a large margin. For ex-
ample, CoX3D-S64 achieves an accuracy of 67.3% at 40.1
frames per second on the Nvidia Jetson Xavier, compared
to 59.4% accuracy at 26.4 clips per second for X3D-XS.

Model Size Pool Acc. FLOPs (K) Rec. Field

X3D
S 13 51.0 2,061,366 13
M 16 62.1 4,970,008 16
L 16 64.1 19,166,052 16

S

13 49.2 205,933 69
16 50.1 205,934 72
32 54.7 205,941 88
64 59.8 205,955 120
96 61.8 205,968 152

CoX3D M

16 56.3 401,829 72
32 60.7 401,836 88
64 64.9 401,850 120
96 67.3 401,864 152

L

16 53.0 1,540,474 130
32 58.5 1,540,481 146
64 64.3 1,540,495 178
96 66.3 1,540,509 210

Table 2: Effect of extending pool size. Note that the model
weights were trained at different sampling rates than eval-
uated at (15 FPS), resulting in a lower top-1 validation ac-
curacy on Kinetics-400 than was originally reported in [7].
Italic numbers denote measurement taken within the tran-
sient response due to a lack of frames in the video-clip.

5. Conclusion
We have introduced Continual 3D Convolutional Neu-

ral Networks (Co3D CNNs), a new computational model
for spatio-temporal 3D CNNs, which performs computa-
tions frame-wise rather than clip-wise while being weight-
compatible with regular 3D CNNs. In doing so, we
are able dispose of the computational redundancies faced
by 3D CNNs in continual online processing, leading to
a 10.0−12.4× reduction of floating point operations, a
5.9−9.2× real-life inference speed-up, and an accuracy im-
provement of 2.8−3.8% on Kinetics-400 through an exten-
sion in the global average pooling kernel size.

While this constitutes a substantial leap in the processing
efficiency of energy-constrained and real-time video recog-
nition systems, there are still unanswered questions pertain-
ing to the dynamics of Co3D CNNs. Specifically, the im-
pact of extended receptive fields on the networks ability to
change predictions in response to changing contents in the
input video is untested. We leave this as an important direc-
tion for future work.
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Appendix

A. Worst-case memory for CoX3D-M
In this section, we provide a detailed overview of the

memory consumption incurred by the internal state in a
Continual X3D-M (CoX3D-M) model. For Continual 3D
CNNs, there is no need to store input frames between time
steps, though this is the case for regular 3D CNNs applied in
an online processing scenario. Intermediary computations
from prior frames are kept in the continual layers as state if
a layer has a temporal receptive field larger than 1. A con-
tinual kT ×kH ×kW = 1× 3× 3 convolution is equivalent
to a regular convolution, while a 3× 1× 1 is not. The same
principle holds for pooling layers. As a design decision,
the temporal component of the average pooling of Squeeze-
and-Excitation (SE) blocks is discarded. Hence, SE blocks
do not incur a memory overhead or delay. Keeping the tem-
poral pooling of the SE block would have increased mem-
ory consumption by a modest 85.050 (+1.4%). We can
compute the total state overhead using Eq. (2), Eq. (8), and
Eq. (9) by adding up the state size of each applicable layer
shown in Table 4. An overview of the resulting computa-
tions can be found in Table 3. The total memory overhead
for the network state is 6,192,618 floating point operations.
In addition to the state memory, the worst-case transient
memory must be taken into account. The largest interme-
diary feature-map is produced after the first convolution in
conv1 and has a size of 24 × 112 × 112 = 301,056 floats.
The total worst-case memory consumption for CoX3D-M
(excluding models weights) is thus 6,408,624 floats.

If we were to reduce the model clip size from 16 to 4,
this would result in a memory reduction of 5,184 floats
(only pool5 is affected) for a total worst-case memory of
6,102,384 floats (−0.08%). Increasing the clip size to 64
would yield an increased state memory of 20,736 floats giv-
ing a total worst-case memory of 6,128,304 floats (+0.3%).

Stage Layer Mem. (floats)

conv1 convT (5− 1)× 24× 112× 112 = 1,204,224

res2 residual1 (3− 1)× 24× 112× 112 = 602,112
residual2−3 [(3− 1)× 24× 56× 56]× 2 = 301,056
conv1−3 [(3− 1)× 54× 56× 56]× 3 = 1,016,064

res3 residual1 (3− 1)× 24× 56× 56 = 150,528
residual2−5 [(3− 1)× 48× 28× 28]× 4 = 301,056
conv1−5 [(3− 1)× 108× 28× 28]× 5 = 846,720

res4 residual1 (3− 1)× 48× 28× 28 = 75,264
residual2−11 [(3− 1)× 96× 14× 14]× 10 = 376,320
conv1−11 [(3− 1)× 216× 14× 14]× 11 = 931,392

res5 residual1 (3− 1)× 96× 14× 14 = 37,632
residual2−3 [(3− 1)× 192× 7× 7]× 6 = 112,896
conv1−3 [(3− 1)× 432× 7× 7]× 7 = 296,352

pool5 - (16− 1)× 432 = 6,480

Total 6,107,568

Table 3: CoX3D-M state memory consumption by layer.

Stage Filters Output size
(T ×H ×W )

input - 16× 224× 224

conv1

1× 32, 24

5∗ × 12, 24
16× 112× 112

res2 res


1× 12, 54

3× 32, 54

SE
1× 12, 24

× 3 16× 56× 56

res3 res


1× 12, 108

3× 32, 108

SE
1× 12, 48

× 5 16× 28× 28

res4 res


1× 12, 216

3× 32, 216

SE
1× 12, 96

× 11 16× 14× 14

res5 res


1× 12, 432

3× 32, 432

SE
1× 12, 192

× 7 16× 7× 7

conv5 1× 12, 432 16× 7× 7

pool5 16× 72 1× 1× 1
fc1 1× 12, 2048 1× 1× 1
fc2 1× 12, #classes 1× 1× 1

Table 4: X3D-M model architecture. When con-
verted to a continual CNN, the highlighted components
carry an internal state which results in a memory over-
head. *Temporal kernel size in conv1 is set to 5 as
found in the official X3D source code www.github.com/
facebookresearch/SlowFast.

www.github.com/facebookresearch/SlowFast
www.github.com/facebookresearch/SlowFast


B. Benchmarking details
This section should be read in conjunction with Sec-

tion 4.4 of the main paper. To gauge the achievable on-
hardware speeds of clip and frame predictions, a bench-
mark was performed on the following four system: A CPU
core of a MacBook Pro (16-inch 2019 2.6 GHz Intel Core
i7); Nvidia Jetson TX2; Nvidia Jetson Xavier; and a Nvidia
RTX 2080 Ti GPU (on server with Intel XEON Gold pro-
cessors). A batch size of 1 was used for testing on CPU,
while the largest fitting multiple of 2N up to 64 was used for
the other hardware platforms which have GPUs and lend
themselves better to parallelisation. Thus, the speeds noted
for GPU platforms in Table 1 of the main paper should not
be interpreted as the number of processed clips/frames from
a single (high-speed) video stream, but rather as the aggre-
gated number of clips/frames from multiple streams using
the available hardware. The exact batch size and input res-
olutions can be found in Table 5. In conducting the mea-
surements, we assume the input data is readily available on
the CPU and measure the time it takes for it to transfer from
the CPU to GPU (if applicable), process, and transfer back
to the CPU. A precision of 16 bits was used for the embed-
ded platforms TX2 and Xavier, while a 32 bit precision was
employed for CPU and RTX 2080 Ti. All networks were
implemented and tested using PyTorch, and neither Nvidia
TensorRT nor ONNX Runtime were used to speed up infer-
ence.

Model Input shape Batch size
(T × S2) CPU TX2 Xavier RTX

I3D-R50 8× 2242 1 16 16 32
R(2+1)D-188 8× 1122 1 16 16 32
R(2+1)D-1816 16× 1122 1 8 16 32
SlowFast-8×8-R50 8× 2562 1 8 32 32
SlowFast-4×16-R50 16× 2562 1 16 32 32
X3D-L 16× 3122 1 16 32 32
X3D-M 16× 2242 1 32 64 64
X3D-S 13× 1602 1 64 64 64
X3D-XS 4× 1602 1 64 64 64
CoX3D-L 1× 3122 1 8 16 32
CoX3D-M 1× 2242 1 32 64 64
CoX3D-S 1× 1602 1 32 64 64

Table 5: Benchmark model configurations. For each
model, the input shape is noted as T × S2, where T and
S are the temporal and spatial input shape.
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8.5 Progressive Spatio-Temporal Bilinear Network with Monte Carlo Dropout
for Landmark-based Facial Expression Recognition with Uncertainty
Estimation

The appended paper follows.
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Abstract—Deep neural networks have been widely used for
feature learning in facial expression recognition systems. How-
ever, small datasets and large intra-class variability can lead to
overfitting. In this paper, we propose a method which learns an
optimized compact network topology for real-time facial expres-
sion recognition utilizing localized facial landmark features. Our
method employs a spatio-temporal bilinear layer as backbone
to capture the motion of facial landmarks during the execution
of a facial expression effectively. Besides, it takes advantage of
Monte Carlo Dropout to capture the model’s uncertainty which
is of great importance to analyze and treat uncertain cases. The
performance of our method is evaluated on three widely used
datasets and it is comparable to that of video-based state-of-the-
art methods while it has much less complexity.

I. INTRODUCTION

Facial expression recognition (FER) has been widely studied
in the past several years and it is of great importance in
different areas of computer vision such as social robotics and
human-computer interaction (HCI). Although deep learning
models have a high ability in feature learning, there are
different challenges for employing them in facial expression
recognition. The intra-class variability, including variations in
age, gender, pose, illumination, face scale and appearance,
necessitates the use of complex deep learning models to
extract the most useful features for expression recognition
[1]. However, existing publicly available datasets are not large
and diverse enough to train high-performing deep learning
models. Thus, designing compact neural network architectures
for real-time facial expression recognition that can achieve
high performance is of great importance.

It has been shown that the FER performance can be im-
proved by using localized facial landmarks [2]. The motion of
facial landmarks during the execution of a facial expression
effectively represents the dynamic motion of the most infor-
mative facial parts, such as eyes, nose and mouth, for facial
expressions and it is also invariant to illumination conditions
and face appearance. However, while it has been shown that
multi-modal data fusion based on facial landmarks and images
or videos can improve performance of image or video-based
FER [3]–[5], deep learning models employing only facial
landmark features have been rarely studied.

FER methods can be categorized in static methods, which
use an image as input to classify the facial expression depicted
in it, and dynamic methods which use videos or a sequence of

images as input to classify the facial expression by considering
both spatial and temporal features for classification. In this
work, we focus on dynamic facial expression recognition.
Existing deep learning approaches for dynamic FER which
utilize facial landmarks, typically concatenate their coordinates
over multiple frames to form a sequence of vectors to be used
by Recurrent Neural Networks (RNNs) [3], or reorganize them
to form a grid map so that they can be in a form suitable to
become the input of Convolutional Neural Networks (CNNs)
[6]. Therefore, these methods are not capable to capture the
dynamic spatial and temporal features encoded in the facial
landmarks in a sequence of frames. Similar to human body
skeletons which are used for human action recognition (HAR)
[7], [8], facial landmarks are also non-Euclidean structured
data that can be modeled by a graph in which the landmark
points are the graph nodes and the relationships between them
are the edges connecting graph nodes. Therefore, the Spatio-
Temporal Graph Convolutional Networks (ST-GCNs) [7], [8],
the Progressive ST-GCN (PST-GCN) [9] which tries to find
an optimized ST-GCN architecture, or the recently introduced
Spatio-Temporal Bilinear Network (ST-BLN) [10] can be
employed to extract informative features from a sequence of
graphs, encoding facial landmarks through different time steps,
for facial expression recognition.

One aspect of a real FER system that is often neglected
by FER methods is that of classification uncertainty. In a
real-world scenario, the FER system will analyze the facial
expressions of a person and take actions which can take
the form of, for example, recommendations to perform an
activity. Spurious misrecognized expressions caused either by
misclassification due to a low-performing model, or by false
identification of an expression (e.g. sadness instead of neutral)
due to high uncertainty, would lead to frustration to the user.
Thus, for a FER system to be practical, it needs to be based
on a high-performing model which can run in real-time and
estimate the uncertainty of its predictions.

In this paper, we propose the Progressive Spatio-Temporal
Bilinear Network (PST-BLN) method for facial expression
recognition. PST-BLN inherits the advantage of ST-BLN [10]
to learn graph structures at each layer of the network topology
without the requirement of a pre-defined graph structure,
allowing for more flexible model design. Moreover, the PST-
BLN method automatically defines an optimized, compact and
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data-dependant network topology without the need of thorough
experimentation using user-designed topologies. Moreover, we
propose to capture the model’s uncertainty by training our
PST-BLN model using Monte Carlo Dropout [11] for helping
the users of FER system to treat uncertain cases explicitly.

II. RELATED WORK

Facial landmarks have been widely used in FER methods
in conjunction with other data modalities to enhance perfor-
mance. Recently, many real-time facial landmark detection
methods have been developed which achieve good perfor-
mance in addition to their high efficiency [12].

Recently, a GCN-based method has been proposed in [13]
which uses only facial landmarks for facial expression recog-
nition. In [13], the landmark extractor [12] was adopted to ex-
tract accurate 2D coordinates of 68 landmark points from each
facial image in an image sequence. The extracted landmarks
were modeled by a directed spatio-temporal graph which
is constructed using landmark points as nodes and triangle
meshes among all landmarks, built by Delaunay method, as
edges. Inspired by methods recently proposed for skeleton-
based human action recognition, like the DGNN [14], the
FER method [13] also employs a multi-layer spatio-temporal
GCN model to extract features from the spatio-temporal facial
landmark graph and introduces the extracted features to a fully
connected classification layer to predict the facial expression.

III. PROPOSED METHOD

This section describes the proposed PST-BLN method for
dynamic landmark-based facial expression recognition. The
description starts with the graph construction procedure, fol-
lowed by the description of the Spatio-Temporal Bilinear
Layer (ST-BLL) and the proposed PST-BLN method. The
combination of PST-BLN with Monte Carlo Dropout for
estimating the model’s uncertainty is finally described.

A. Spatio-temporal graph construction

By extracting the facial landmarks of all the images in
a sequence, a spatio-temporal graph G = (V, E) can be
constructed where V is the node set of 2D coordinates of
the facial landmarks and E is the set of graph edges encod-
ing spatial and temporal connections between the landmarks
through different time steps. In this work, we adopted the
Dlib’s facial landmark extractor [15] to extract accurate 2D
coordinates of 68 landmark points from each facial image. It
has been shown in [13] that the landmarks of the outer region
of the face do not contain informative features for different
facial expressions. Therefore, we remove the first 17 facial
landmarks of each image and keep only the 51 landmarks
carrying features of the key facial parts for facial expression
recognition. Facial landmarks in each graph are normalized by
subtracting the central landmark (nose). The triangle meshes
among all landmarks obtained by Delaunay method make the
spatial graph edges. The central node (nose) is set as the
master node which is connected to all other graph nodes.

The temporal graph edges connect each landmark into its
corresponding landmark in its previous and subsequent frames.

We utilize the edge features of the graph which encode
the motion of the facial muscles instead of the landmark
coordinates. Each graph edge is bounded by two graph nodes
and it can be defined as a feature vector representing both the
length and direction information. As an example, we define the
feature vector of a graph edge with source node vi = (xi, yi)
and target node vj = (xj , yj) as eij = (xi − xj , yi − yj).
Therefore, each image in the sequence is modeled by a graph
with E spatial edges and the PST-BLN receives as input a
tensor X ∈ RF×T×E encoding a sequence of T spatial graphs
expressing the connections of the graph edges. F denotes the
feature dimension of each edge feature eij .

B. Spatio-Temporal Bilinear Layer

The ST-BLL is composed of a bilinear transformation and a
temporal convolution. The bilinear transformation receives as
input the representations for the E(l−1) facial graph edges at
layer l− 1, denoted by H(l−1), and transforms them by using
a learnable weight matrix W(l) as follows:

H(l)
s = ReLU

(
U(l)H(l−1)W(l)

)
, (1)

where U(l) ∈ RE(l)×E(l−1)

is a learnable matrix indicating the
spatial weighted connections between the facial graph edges.
This matrix is initialized randomly and it is optimized in an
end-to-end manner jointly with the parameters of the entire
network. Unlike GCN layers which use the graph Adjacency
matrix in the spatial graph convolution, ST-BLL allows for
freely deciding the dimensions of matrix U. This means that
ST-BLL allows for aggregating (or expanding) information of
the graph edges leading to E(l) < E(l−1) (or E(l) > E(l−1),
respectively). In this paper, we chose to keep the number
of graph edges constant for all ST-BLLs, and for notation
simplicity we use E hereafter.

The spatially transformed feature tensor H
(l)
s ∈

RF (l)×T (l)×E with F (l) feature dimensions is introduced
to the temporal convolution, which captures the motion of
the facial muscles taking place in each facial expression by
propagating the edge features of each spatial graph through
the time domain using a standard 2D convolution with a
predefined kernel size K × 1 aggregating edge features in K
consecutive frames. The structure of the ST-BLL is shown
in Fig. 1. Each layer of the network is euqipped by two
residual connections to stabilize the model by adding the
input to the output of the bilinear mapping and the temporal
convolution. The temporal convolution block is followed by
batch normalization and ReLU activation function.

C. Progressive spatio-temporal bilinear network (PST-BLN)

A ST-BLN model is composed of several ST-BLLs for
feature extraction and one fully connected layer for classifica-
tion. A network with l ST-BLLs, employs the global average
pooling after the lth layer to produce a feature vector of size
F (l)×1. The feature vector is introduced to a fully connected



Fig. 1. Illustration of spatio-temporal bilinear layer l. It receives H(l−1)

of size F (l−1) × T (l−1) × E as input and applies bilinear projection and
temporal convolution to produce the output representation H(l) of size F (l)×
T (l)×E. The bilinear mapping block and the temporal convolution block are
both followed by batch-normalization (BN) and ReLU activation function.

layer which maps features from F (l) to C dimensional sub-
space to classify features into C different classes.

Let us assume that a ST-BLN with l − 1 layers has
been already built, and the method proceeds in building the
lth layer. In practice, the bilinear projection and temporal
convolution in 1 are standard 2D convolutions with filters of
sizes F (l) × 1 × 1, and F (l) × F (l) × K × 1, respectively.
F (l) denotes the number of output channels in the lth layer
and K denotes the kernel size in the temporal convolution.
The residual connections are also standard 2D convolutions
which transform the input data of the layer with filters of
size F (l) × 1 × 1 to have the same dimension as the layer’s
output. When the method starts building the lth layer, the
number of output channels in all the 2D convolutions is set to
a predefined fixed number F (l) = b and at each iteration, it is
increased by F (l) = F (l)+b. While all the model’s parameters
in the previously built layers are initialized by the finetuned
weights, the newly added neurons to the network are initialized
randomly and all the model parameters are fine-tuned in an
end-to-end manner using back-propagation. The layer’s width
progression at iteration t is evaluated according to the model’s
performance in terms of categorical loss value on training data,
i.e. αw = (L(l)

t−1 − L
(l)
t )/L(l)

t−1. L(l)
t−1 and L(l)

t denote the
model’s loss value at iterations t − 1 and t, respectively. If
αw < εw with εw > 0, it shows that increasing the layer’s
width doesn’t improve the model’s performance anymore and
the method stops progression in that layer. Otherwise, the
newly added parameters are saved and the next iteration starts
increasing the layer’s width by adding b more output channels
to the filters of all the 2D convolutions in that layer.

This process repeats iteratively until the performance con-
verges in that layer. After building each layer of the net-
work, the method evaluates the model’s depth progression
using the rate of improvement in model’s performance, i.e.
αd = (L(l−1) − L(l))/L(l−1), in terms of categorical loss
value on training data. L(l−1) and L(l) denote the model’s loss
value before and after adding the new layer to the network,
respectively. When αd < εd with εd > 0, the method stops
depth progression and the newly added layer is removed.
Finally, all the model’s parameters are fine-tuned together and
the method returns the optimized topology for the ST-BLN
model and its performance on training and validation data.

D. PST-BLN with Monte Carlo Dropout to model uncertainty

People of different ages, genders and cultural backgrounds
have different levels of expressiveness, and they perform or
interpret the facial expressions in different ways. Although
the output of a classification model (softmax scores) encodes
the predictive (pseudo-)probabilities of the model, it has been
shown that even models with high softmax outputs can be
uncertain about their predictions [16]. Since facial expression
datasets are small in size, regularization of the network pa-
rameters is needed to prevent overfitting. To address this, we
add a dropout layer after each ST-BLL built by the proposed
method using a dropout rate p of 0.2. This choice also allows
us to use Monte Carlo Dropout [16] to capture the uncertainty
of the model during inference. This is very helpful for the
users of the FER system to interpret the facial expression of
a sample when the model is uncertain about its prediction.
The main idea of Monte Carlo Dropout is to use dropout not
only in the training phase, but also during the inference. Since
dropout randomly switches off a subset of neurons in each
layer, it can be interpreted as a Bayesian approximation of the
Gaussian process. Every time the model provides classification
result with activated dropout layers, its outputs are obtained
from slightly different models with different sets of activated
neurons and each of these models can be treated as a Monte
Carlo sample. By repeating the inference for an input facial
spatio-temporal graph with an activated dropout, the outputs
of the PST-BLN are combined as an ensemble of different
PST-BLN models and the variance in the outputs are used to
capture the classification uncertainty.

IV. EXPERIMENTAL RESULTS

A. Datasets

The preformance of our method has been evaluated on the
following three widely used datasets:
CK+ [17], [18]: The Extended Cohn–Kanade (CK+) contains
327 videos of 7 different emotional classes, starting from a
neutral expression to peak expression. Similar to most methods
using this dataset for evaluation, we select the first frame and
the last three frames (including the peak expression) of each
sequence for landmark extraction. Besides, the subjects are
divided into 10 groups for 10-fold cross-validation.
Oulu-CASIA [19]: The Oulu-CASIA dataset consists of
2, 880 image sequences of 80 subjects, captured under three
different illumination conditions and using two different imag-
ing systems; near-infrared (NIR) and visible light (VIS). We
used the 480 image sequences captured by the VIS system
under normal indoor illumination and we divided the subjects
into 10 groups for 10-fold cross validation. In each image
sequence, we used the last three frames, including the peak
expression, and the first frame showing the neutral expression.
AFEW [20], [21]: The Acted Facial Expressions in the Wild
(AFEW) dataset is a more challenging dataset for landmark
extraction methods compared to the CK+ and Oulu-CASIA.
It consists a set of video clips collected from movies with
actively moving faces in different illumination and environ-



mental conditions. In some frames of each video where head
pose is not frontal, the landmark extraction methods confront
challenges to detect the face and extract its landmarks. There-
fore, only a subset of video frames which provide meaningful
facial landmark features are used. The dataset is divided into
three sets, train, validation and test, with labels for the test set
not being publicly available. Therefore, models are trained on
the training set and evaluated on the validation set.

B. Experimental setup

The experiments are conducted with GeForce RTX 2080
GPUs, SGD optimizer with weight decay of 0.0005 and
momentum of 0.9 and cross entropy loss function. The models
are trained on AFEW dataset for 300 epochs on 4 GPUs
with learning rate of 0.01 and batch size of 64. For CK+ and
Oulu-CASIA datasets, the models are trained for 400 epochs
with learning rate of 0.1 and batch size of 128. The PST-
BLN method is trained with block sizes of 5 and layer/block
thresholds of 0.0001 for all three datasets.

Since AFEW dataset is challenging and it does not have
sufficient amount of data for training the model, we adopted
data augmentation to expand the dataset size by 14 times. First,
for each video we extracted the landmarks from 150 frames
which are sampled at same time intervals and when the number
of frames with meaningful landmarks are less than 150, we
repeat the frames by tiling method. After landmark extraction,
similar to [3], [13], we added three different Gaussian noises
to facial landmarks, then we applied random rotation to the
noised data followed by random flipping to each sequence.

C. Performance evaluation

The performance of the proposed method is compared with
both video-based and landmark-based state-of-the-art methods
on AFEW, Oulu-CASIA and CK+ datasets in Tables I, II,
III, respectively. In each table, the state-of-the-art methods are
divided into two groups. The first group contains the CNN-
based or RNN-based methods which use videos or image
sequences as the main data stream for training the model
while some of these methods such as [22], [23] also utilize
the landmark data in conjunction with video/image sequence
to highlight the most important parts of the facial images
and improve the performance. The second group contains the
GCN-based methods which only use facial landmarks. To the
best of our knowledge, the only GCN-based method that has
been proposed for facial expression recognition is DGNN [13]
which is an extension of [14] method for facial expression
recognition. To show the effectiveness of our proposed model
compared to other GCN-based networks, we also include in
the comparisons the well-known GCN-based methods such as
ST-GCN [7] and AGCN [8] to evaluate their performance on
the landmark-based facial expression recognition task. Video-
based methods train CNN and RNN-based architectures such
as VGG16, LSTM, C3D, and they have the best performance
on these datasets. However, the number of parameters of some
of these methods is not reported in the corresponding papers.

TABLE I
COMPARISON OF VIDEO/IMAGE-BASED AND LANDMARK-BASED

METHODS ON THE VALIDATION SET OF AFEW DATASET

Method Acc(%) #Params Data type
SSE-HoloNet [24] 46.48 - Video
VGG-LSTM [25] 48.60 - Video
C3D-LSTM [25] 43.20 - Video
C3D-GRU [26] 49.87 - Video
ST-GCN [7] 28.17 131.3k Landmark
AGCN [8] 24.21 143.7k Landmark
DGNN [14] 32.64 538k Landmark
ST-BLN w/MCD 36.11 132.3k Landmark
ST-BLN wo/MCD 34.13 132.3k Landmark
PST-BLN w/MCD 33.33 10.8k Landmark
PST-BLN wo/MCD 30.15 10.8k Landmark

Fig. 2. The distribution of 100 classification accuraceis obtained by the ST-
BLN w/MCD method on AFEW dataset. The vertical line in the left side
indicates the classification accuracy obtained by the ensembled predictions.

The ST-BLN model is composed of 7 ST-BLLs with output
dimensions of {8, 16, 16, 32, 32, 64, 64}, respectively and a
fully connected layer for classification. This model topology
is the same as DGNN’s topology, and in order to have a
fair comparison, we modified the topology of ST-GCN and
AGCN models to have the same number of layers and layer
dimensions as DGNN and ST-BLN models. While ST-GCN
and AGCN methods utilize the landmark coordinates, or graph
node features, and the squared Adjacency matrix of the graph
in the spatial convolution, ST-BLN and PST-BLN utilize only
the edge features of the graph. DGNN utilizes both node
features and edge features encoded by a directed graph.

Experimental results on AFEW dataset indicate that ST-
BLN outperforms all the baseline GCN-based methods, ST-
GCN and AGCN, with a large margin while they have quite
similar model complexity in terms of number of parameters.
Compared to DGNN, ST-BLN has improved the classification
performance by 4% while it has 4 times less number of pa-
rameters. PST-BLN which is trained with block sizes of 5 and
layer/block thresholds of 0.0001, found an optimized topology
for this dataset which is composed of 6 ST-BLLs with output
sizes {15, 10, 15, 5, 5, 10}, respectively. This optimized model
outperforms DGNN, ST-GCN and AGCN models with only
10.8k parameters which are 49 times less than those of DGNN.

To capture the model’s uncertainty, we evaluated both ST-
BLN and PST-BLN models with activated dropout layers
during the inference and we repeated the inference for 100



Fig. 3. Illustration of 3 frames of a sample video in AFEW dataset expressing
‘Surprise‘, top row, and the distribution of 100 predictions for each class,
obtained by our proposed ST-BLN model.

times on each sample to get 100 different prediction vectors.
ST-BLN w/MCD and PST-BLN w/MCD denote the model’s
classification accuracy obtained as the mean of 100 different
predictions and ST-BLN wo/MCD and PST-BLN wo/MCD
report the classification accuracy obtained by performing the
inference only once. The results show that the model achieves
better performance when it ensembles the predictions of 100
models rather than performing the inference only once. To
calculate the model’s uncertainty on a dataset, we calculate
the classification accuracy over 100 runs. Fig. 2, shows the
distribution of 100 classification accuracy values of the ST-
BLN w/MCD on AFEW dataset. The mean and standard
deviation of this distribution are 32.09, 1.18, respectively. The
classification accuracy obtained by the ensembled predictions
is shown by a vertical line in the left side of the figure which
is 36.11% and it is around 4% better than the mean accuracy.

Additionally, our proposed method gives the user the possi-
bility of visualizing the model’s uncertainty on an individual
sample base. As an example, we evaluated the ST-BLN
model on a video sample of class Surprise from the AFEW
dataset. Fig. 3 illustrates 3 frames of this video with their
extracted facial landmarks and also the prediction distribution
for each expression class. This figure shows that the model
classifies this sample correctly in the Surprise class with mean
probability of 0.69 while it is uncertain about it. Considering
the sample frames in the top row of the figure, it can be
seen that it is a hard example to classify and based on the
prediction distributions, this example can also be classified in
Neutral and Happy classes with mean probabilities of 0.24,
0.04, respectively. The variance of the model predictions of

TABLE II
COMPARISON OF VIDEO-BASED AND LANDMARK-BASED METHODS ON

OULU-CASIA DATASET USING 10-FOLD CROSS VALIDATION
Method Acc(%) #Params Data type
DTAN [22] 74.38 - Video
DTGN [22] 74.17 177.6k Landmark
DTAGN [22] 81.46 - Video + Landmark
PPDN [27] 84.59 6.8m Video
PHRNN-MSCNN [23] 86.25 1.6m Video + Landmark
DCPN [28] 86.23 - Video
CDLM [29] 91.67 2.7m Video
ST-GCN [7] 77.08 131.3k Landmark
AGCN [8] 75.62 143.7k Landmark
DGNN [14] 81.46 535,7k Landmark
ST-BLN w/MCD 83.54 132.3k Landmark
ST-BLN wo/MCD 82.08 132.3k Landmark
PST-BLN w/MCD 79.79 7.59k Landmark
PST-BLN wo/MCD 78.74 7.59k Landmark

TABLE III
COMPARISON OF THE VIDEO-BASED AND LANDMARK-BASED METHODS

ON CK+ DATASET USING 10-FOLD CROSS VALIDATION
Method Acc(%) #Params Data type
DTAN [22] 91.44 - Video
DTGN [22] 92.35 177.6k Landmark
DTAGN [22] 97.25 - Video + Landmark
PPDN [27] 99.3 6.8m Video
PHRNN-MSCNN [23] 98.5 1.6m Video + Landmark
DCPN [28] 99.6 - Video
CDLM [29] 98.47 2.7m Video
ST-GCN [7] 93.64 131.3k Landmark
AGCN [8] 94.18 143.7k Landmark
DGNN [14] 96.02 535,7k Landmark
ST-BLN w/MCD 95.47 132.3k Landmark
ST-BLN wo/MCD 93.19 132.3k Landmark
PST-BLN w/MCD 93.34 9.79k Landmark
PST-BLN wo/MCD 93.1 9.79k Landmark

each class can be interpreted as the model’s uncertainty on that
class. Therefore, the model’s uncertainty on classes Surprise,
Neutral and Happy is 0.1, 0.9, 0.02, respectively.

The mean classification performance of the models over all
folds is reported for Oulu-CASIA and CK+ datasets. Since the
PST-BLN method finds a different model topology for each
fold of the data, we report the average number of parameters
of 10 optimized models. Experimental results on Oulu-CASIA
dataset show that the proposed ST-BLN model outperforms all
the landmark-based methods while it has 4 times less number
of parameters compared to the DGNN method. PST-BLN is
trained separately for each of the 10 folds of the data and
the average number of parameters is reported which is around
70 times less than DGNN and 17 times less than ST-BLN.
Although the PST-BLN does not outperform the state-of-the-
art methods, it is competitive while being much more compact.

ST-BLN outperforms the ST-GCN and AGCN on CK+
dataset while it has competitive performance compared to
DGNN with around 4 times less number of parameters. The
optimized topology PST-BLN achieves similar performance
to the ST-GCN and AGCN with around 13 and 14 times less
number of parameters. It should be noted that the reported
number of parameters in all the tables corresponds only to
the neural network models. As we use [15] for landmark
detection, other methods such as [22], [23], [29] also utilize
IntraFace [30] landmark extractor and [28] employs MTCNN
[31] for face detection and alignment as a pre-processing step.



The results of ST-BLN w/MCD and PST-BLN w/MCD on
Oulu-CASIA and CK+ datasets also confirm that repeating the
inference with activated dropouts and ensembling the results,
improves the classification performance.

V. CONCLUSION

In this paper, we proposed a method which builds an opti-
mized and compact spatio-temporal bilinear network topology
for facial expression recognition by employing the localized
facial landmarks instead of videos or image sequences. While
our method has achieved comparable performance to more
complex state-of-the-art methods, it captures the model’s un-
certainty using Monte Carlo Dropout technique which allows
the user to analyze the model’s prediction for different cases
and take desired action.
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Learning to ignore: rethinking attention in CNNs
Firas Laakom*, Kateryna Chumachenko*, Jenni Raitoharju, Alexandros Iosifidis, and Moncef Gabbouj

Abstract—Recently, there has been an increasing interest in applying attention mechanisms in Convolutional Neural Networks (CNNs)
to solve computer vision tasks. Most of these methods learn to explicitly identify and highlight relevant parts of the scene and pass the
attended image to further layers of the network. In this paper, we argue that such an approach might not be optimal. Arguably, explicitly
learning which parts of the image are relevant is typically harder than learning which parts of the image are less relevant and, thus,
should be ignored. In fact, in vision domain, there are many easy-to-identify patterns of irrelevant features. For example, image regions
close to the borders are less likely to contain useful information for a classification task. Based on this idea, we propose to reformulate
the attention mechanism in CNNs to learn to ignore instead of learning to attend. Specifically, we propose to explicitly learn irrelevant
information in the scene and suppress it in the produced representation, keeping only important attributes. This implicit attention
scheme can be incorporated into any existing attention mechanism. In this work, we validate this idea using two recent attention
methods Squeeze and Excitation (SE) block and Convolutional Block Attention Module (CBAM). Experimental results on different
datasets and model architectures show that learning to ignore, i.e., implicit attention, yields superior performance compared to the
standard approaches.

Index Terms—Computer vision, CNNs, attention mechanisms, CBAM, SE

✦

1 INTRODUCTION

INSPIRED by the properties of the human visual system,
attention mechanisms have been recently applied in the

field of deep learning, resulting in improved performance
of the existing models across multiple applications. In the
context of computer vision, learning to attend, i.e., learning
to highlight and emphasize relevant attributes of images,
have led to development of novel approaches [1], [2] in
Convolutional Neural Networks (CNNs), improving their
capabilities in many tasks [3], [4], [5].

Related to the concept of attention, recent studies in neu-
roscience suggest that the ability of humans to successfully
perform visual tasks is related to the ability to ignore and
suppress distractive information [6], [7], [8]. For example,
the authors of [7] show that differences in visual working
memory capacity, i.e., ability to remember visual features
of multiple objects, are specifically related to distractor-
suppression activity in visual cortex. This idea is reinforced
in [8], where the authors provide evidence on an inhibitory
mechanism of suppression of salient distractors aimed at
preventing them from capturing attention and being further
processed by humans. Additional studies [9] report that
ignoring the irrelevant information is a powerful learning
tool for human cognition with ubiquitous effectiveness.
Inspired by these findings, we investigate the intuition of
learning to explicitly ignore irrelevant information in the
field of computer vision and reformulate attention mecha-
nisms commonly utilized in CNNs under the framework of
learning to ignore rather than learning to attend.

Existing attention mechanisms used in CNNs learn the
attention masks by directly optimizing for the high re-
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A. Iosifidis is with the Department of Electrical and Computer Engineering,
Aarhus University, Aarhus, Denmark.

sponse of attributes of the image that are important for
the prediction and, thus, should be focused on more. The
learned attention masks are applied to feature representa-
tions, leading to higher emphasis put on the attributes of
interest, and, therefore, resulting in implicit ignoration of
the irrelevant features. In our work, we propose to rethink
this logic and instead explicitly focus on ignoring irrelevant
regions, hence achieving the attention to important regions
implicitly. We argue that learning of features that should
be ignored is an easier task than learning to attend and,
therefore, optimization with such an objective leads to better
training. Arguably, discriminative features of samples of
different classes are harder to capture and often require
more advanced feature learning. On the other hand, irrel-
evant attributes or attributes common between classes are
often related to easy-to-identify patterns, such as borderline
locations on the image or background features that can
already be learned at early stages of training. Following
this intuition, we design our method to explicitly optimize
which attributes of the image should be ignored, and based
on this, the important attributes that should be attended
are derived implicitly. We validate this idea using two
recent attention methods Squeeze and Excitation (SE) block
and Convolutional Block Attention Module (CBAM) and
show that indeed our intuition holds and explicitly learning
features to ignore leads to better model performance.

Our contributions can be summarized as follows:

• We propose a new perspective on attention in com-
puter vision where the main aim is to learn to ignore
instead of learning to attend.

• We propose an implicit attention scheme which ex-
plicitly learns to identify the irrelevant parts of the
scene and suppress them. The proposed approach
can be incorporated into any existing attention mech-
anism.

• We validate this idea using two attention mech-
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anisms. Specifically, we reformulate Squeeze-and-
Excitation (SE) block and Convolutional Block At-
tention Module (CBAM) using our paradigm, i.e.,
learn to ignore, and show the superiority of such an
approach.

2 RELATED WORK

Attention mechanisms in vision. The idea of attention in
vision tasks stems from the properties of selective focus in
the human visual system, i.e., that humans do not perceive
images as a whole, but rely on certain salient parts of
them. This property gave rise to a variety of attention-based
learning mechanisms aimed to enhance the performance in
computer vision domain [3], [4], [10], finding its applications
in a variety of tasks, including sequence learning [11], image
captioning [5], and others [12], [13]. A subset of attention-
driven methods is directed at CNNs and aims at selecting
and highlighting relevant attributes in the feature space
during training [1], [2]. Conventionally, this is achieved by
learning attention masks over feature representations that
encode the importance of different attributes in form of
weights and applying these masks on intermediate feature
representations. This results in higher influence of features
relevant for decision making in subsequent layers.

Other tasks adjacent to this line of research include
saliency estimation, image segmentation, and weakly-
supervised object localization. In saliency estimation, the
goal is to estimate salient, i.e., significant regions of the scene
without any prior knowledge on the scene in unsupervised
[14], [15] or supervised manner [16], [17], [18]. In image
segmentation, the task is to partition a given image into
a set of segments, based on either semantics (semantic
segmentation) or individual objects (instance segmentation)
[19]. In weakly-supervised object localization, the goal is
to predict the location of the object given only image-level
labels [20].

Within the attention mechanisms utilized in CNNs, two
of the notable ones include Squeeze-and-Excitation block
(SE) [1] and Convolutional Block Attention Module (CBAM)
[2]. In SE, an attention mask is learned channel-wise based
on global average-pooled features of intermediate represen-
tations and applied at multiple layers of the ResNet archi-
tecture [21]. A further extension is the CBAM method that
enriches the SE mechanism by additional max-pooled input
and learns spatial attention in addition to channel-wise
one. The learned attention weight masks are then applied
channel-wise or pixel-wise to corresponding feature maps.
These methods were shown to lead to superior performance
across various domains and can be incorporated in any
CNN architecture.

Learning by ignoring. Learning by ignoring is a pow-
erful learning paradigm, which has been used in various
machine learning applications [22], [23], [24]. It has been
leveraged in the context of saliency estimation [14], [23],
[25], [26]. For example, the authors of [14] propose an unsu-
pervised graph-based saliency estimation approach, where
auxiliary variables are used to encode prior knowledge on
regions to be ignored, such as dark regions, as it is assumed
that they are less-likely to contain salient object. A similar
approach was proposed for the color constancy problem

[27]. In the context of machine translation, it has been shown
that learning to ignore spurious correlations in the data
can improve the performance of neural networks in zero-
shot translation [22]. In the context of domain adaptation,
a learning framework assigning and learning an ’ignoring’
score for each training sample and re-weighting the total
loss based on these scores was proposed in [24].

3 LEARNING TO IGNORE IN CNNS

Attention in CNNs is generally formulated in a form of a
learned attention mask that emphasizes relevant informa-
tion in a feature map. Formally, given a feature map F,
attention can be defined as follows:

F′ = F⊗ fθ(F), (1)

where F′ is the attended feature map output, ⊗ is the
element-wise multiplication and fθ(·) is an attention func-
tion with learnable parameters θ, which takes as input a
feature map F and returns an attention mask fθ(F) ∈ [0, 1].
This mask is then element-wise multiplied with the original
map F in order to produce the output map F′. The mask
fθ(F) is expected to identify relevant spatial or channel
information and output the ’importance score’ for each
attribute, producing high response for most relevant regions
and smaller values for regions of lesser interest. This can be
seen as an explicit attention mechanism, where the model
fθ(·) learns to directly identify and highlight relevant infor-
mation.

In this work, we develop a new formulation of the
concept of attention in CNNs, where the main target is
learning to ignore instead of learning to attend. By training
the model to predict irrelevance of features, rather than their
importance, we expect to simplify the training objective and,
hence, to improve the learning of the model. Our approach
consists of a function which learns to identify irrelevant
or confusing parts of the feature map in order to suppress
them, followed by inversion of predicted irrelevance scores.
Formally, this can be formulated as follows:

F′ = F⊗ T (gθ(F)), (2)

where gθ(·) is a function with learned parameters θ that
is expected to learn to highlight information in the feature
map that is irrelevant or confusing for the prediction. This
can be seen as an ignoring mask that outputs high values
for attributes and regions that should be suppressed in the
feature map. The function T (·) is a function with an output
T (x) inversely proportional to x, hence flipping the learned
ignoring mask and transforming it into an attention mask.
Similarly to Eq. (1), the final feature map F′ is obtained
by element-wise multiplication of the input map F and the
flipped ignoring mask T (gθ(F)).

Given an ignoring mask gθ(F), the function T (·) can
be any function satisfying the condition of being inversely
proportional to its input and bounded between [0, 1]. In this
work, we propose three variants:

T1(x) = 1− αx, (3)

T2(x) = sigmoid(
1

x
), (4)
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T3(x) = sigmoid(−x). (5)

The first variant T1(·) linearly converts the ignoring mask
to an attention one, and α is a hyper-parameter controlling
this linear scaling. The extreme case α = 0 corresponds
to the extreme case F′ = F, i.e., none of the features
are emphasized or suppressed. For the second and third
variants T2 and T3, a sigmoid function is applied to ensure
that the output is bounded between [0, 1].

We argue that formulating the objective as learning of
irrelevant features that should be ignored, as opposed to
focusing on important features, is beneficial, as optimization
of a model with such an objective is easier. This is due
to potential presence of many easy-to-identify patterns of
irrelevant attributes, such as borderline pixel locations, color
and lighting perturbations, or background properties that
are not correlated with the groundtruth labels. At the same
time, information responsible for predictions is generally
label-specific and harder to capture. Moreover, learning of
discriminative attributes that can be regarded as important
often requires learning of complex feature representations
that can be achieved only at latter stages of training, while
patterns irrelevant for decision making can often be identi-
fied already at the early stages.

It can be argued that standard attention, i.e., Eq. (1),
is also learning to ignore as it is expected to indirectly
assign smaller values for less important regions. However,
function fθ(·) is optimized directly for highlighting relevant
information and, hence, this can be seen as an implicit and
indirect strategy of learning to ignore. In our approach,
Eq. (2), the model gθ(·) is explicitly optimized for identifying
the irrelevant or confusing parts and the function T (·)
suppresses them. This can be seen as an implicit learning
to attend approach and explicit learning to ignore approach,
as opposed to the standard attention which has an explicit
learning to attend formulation.

As can be seen, the main difference between implicit
and explicit attention formulations is the presence of a
flipping function T (·). It can be seen from Eq. (1) and
Eq. (2) that fθ(·) can be directly replaced by T (gθ(·)). This
makes it straightforward to reformulate any existing explicit
attention method to learn to ignore instead of learning to
attend by applying an inversion function T (·) on top of the
learned mask. This way, the model gθ(·) can be learned as
the model fθ(·) in conventional attention methods, while
its parameters will be optimized to detect irrelevant or
confusing regions instead of relevant ones. In this paper, for
the choice of the function fθ(·), we consider two state-of-
the-art attention mechanisms, namely SE [1] and CBAM [2]
, and we show how to reformulate them using our paradigm
in the following subsections.

3.1 Ignoring with Squeeze-and-Excitation blocks

Squeeze-and-Excitation (SE) block [1] presents a mechanism
to learn channel-wise attention, focusing on which features
of the representation are important for prediction. This
is achieved by squeezing the spatial information into a
channel representation, followed by an excitation operation
that highlights important channels via a bottleneck block.
Formally, given a feature map F, this is defined as follows:

fθ(F) = σ(W2δ(W1GAP (F))), (6)

where GAP (·) denotes Global Average Pooling, δ is a ReLU
activation, σ is the sigmoid function, W1 ∈ Rc× c

r and
W2 ∈ R c

r×c are linear layers, c is the number of channels
in F, and r is the reduction rate in the bottleneck block.
Given the output fθ(F), the attended feature map is ob-
tained by applying the learned mask element-wise between
corresponding channels.

To incorporate our ignoring paradigm into SE, we
apply T (·) to the output fθ(F), hence transforming its
objective into learning features that should be ignored.
Specifically, we define the three variants as: f1

θ (F) = 1 −
ασ(W2δ(W1GAP (F))); f2

θ (F) = σ( 1
σ(W2δ(W1GAP (F))) );

f3
θ (F) = σ(−W2δ(W1GAP (F))) using the definitions of
T1, T2, and T3, respectively. As can be noticed, in the first
two variants T (·) is applied directly on fθ(F), while in the
third case it is applied on pre-sigmoid output to ensure
sufficiently wide range for attention scores.

3.2 Ignoring with Convolutional Block Attention Mod-
ules

Following the approach of SE, Convolutional Block Atten-
tion Module (CBAM) [2] extends it to incorporate spatial
attention as well as to enrich channel attention with an
additional input representation. Under the definition of
attention in Eq. (1), this is formulated as follows:

f ch(F) = σ(W2δ(W1(GAP (F))) +W2δ(W1(GMP (F)))),

Fch = F⊗ f ch(F),

fsp(Fch) = σ(Conv7×7(GAP (Fch) ⌢ GMP (Fch))),
(7)

where f ch and fsp denote channel and spatial attention,
respectively, GAP (·) and GMP (·) correspond to Global
Average Pooling and Global Max Pooling, respectively, δ is
a ReLU activation, σ is the sigmoid activation, W1 ∈ Rc× c

r

and W2 ∈ R c
r×c are linear layers, c is the number of

channels in F, and r is the reduction rate in the bottleneck
block, similarly to SE. Fch is the channel-wise attended
feature map, Conv7×7 denotes a convolutional layer with
7× 7 kernel, and ⌢ denotes concatenation.

As can be seen, channel and spatial attention masks are
applied sequentially and channel-attended feature represen-
tations are used as input to compute spatial attention. Fol-
lowing this, we transform CBAM for ignoring by addition
of inversion function T (·) on top of both channel function
f ch(·) and spatial function fsp(·) to reformulate their objec-
tives as learning of features and regions to ignore. In both
cases, variants of T1(·) and T2(·) are applied directly on the
output of corresponding functions, and T3(·) is applied on
pre-sigmoid output.

4 EXPERIMENTAL RESULTS

4.1 CIFAR10 & CIFAR100

We start by validating our approach on image classification
task using CIFAR10 and CIFAR100 [28] datasets. To show
invariance of the proposed approach to specific model ar-
chitectures, we evaluate two state-of-the-art CNNs, namely,
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ResNet50 [21] and DenseNet [29] architectures. We report
the results of standard models with no attention, models
with applied CBAM and SE attention blocks, and models
with our proposed ignoring approach with both CBAM
and SE variants with the three inversion function variants
presented in Section 3.

All the models are optimized using Stochastic Gradient
Descent (SGD) [30] with a momentum of 0.9 [31], weight
decay of 0.0001 [32], and a batch size of 128. The initial
learning rate is set to 0.1 and is then decreased by a factor
of 5 after 60, 120, and 160 epochs, respectively. The models
are trained for 200 epochs with the best performance on the
validation set used for testing. Each experiment is repeated
three times and the average performance is reported. 40k
images are used for training and 10k for validation. Stan-
dard data augmentation is used [33], [34].

In Table 1, we report the experimental results of the
standard model, i.e., no attention, SE, and our different
SE-based variants, namely, SE-Igni where i indicates the
flipping function used (T1 or T2 or T3). For the first variant,
i.e., SE-Ign1, we experiment with three different values
of hyper-parameter α: 1, 0.8, and 0.5. We note that for
both architectures applying an explicit or implicit attention
mechanism consistently outperforms the standard model.
On CIFAR10, the best performance is achieved using our
third variant, i.e., SE-Ign3, which improves the results by
1% compared to standard and +0.3% compared SE using
ResNet50 architecture. On CIFAR100, the lowest top1-%
error rates are achieved by SE-Ign3 and SE-Ign1(α=0.5) for
ResNet50 and DenseNet architectures, respectively. In fact,
on this dataset our third variant boosts the accuracy by 4%
compared to the standard and 1.85% compared to SE. This
can be explained by the fact that for this dataset only 500
training samples per class are available, thus making it hard
to directly learn the relevant visual features for each class.
At the same time, the irrelevant features are more universal
and typically independent of the class, thus making them
easier to learn in a scarce data context.

In Table 2, we report the empirical results for the dif-
ferent CBAM-based variants. As can be seen, the results
with this attention variant are consistent with our findings
using SE. For both datasets and for both architectures,
learning to ignore yields better performance compared to
both the standard model and the SE attention. The top
performance is achieved by either by CBAM-Ign1(α=0.5)

or CBAM-Ign1(α=0.8) variant. More results can be found
Supplementary material Table 1.

4.2 ImageNet

To further validate the effectiveness of our learning to
ignore framework, we perform additional experiments on
ImageNet dataset [35] using ResNet50. For training on
ImageNet, optimization is done with SGD with the same
weight decay and momentum as used for CIFAR datasets.
The initial learning rate is set to 0.1 and reduced by a factor
of 10 after 30, 60, and 80 epochs, respectively. The models
are trained for 90 epochs with batch size of 256 with the
results reported on the validation set.

Table 3 shows the results on ImageNet dataset, where
Top-1 and Top-5 errors are reported. As can be seen, our

results are consistent with findings on CIFAR10 and CI-
FAR100 datasets. Specifically, we find that applying at-
tention, whether explicit or implicit, outperforms standard
model. At the same time, the proposed framework based on
ignoring outperforms the conventional attention in a vast
majority of cases. In SE variant, SE-Ign1(α=1) and SE-Ign3

outperform the conventional approach, while other variants
report competitive results with minimal gap. Best result
of SE-Ign3 outperforms the standard model by 1.1%. In
CBAM, all variants of CBAM-Ign1 outperform conventional
approach on both Top-1 and Top-5 metric, and CBAM-Ign2

and CBAM-Ign3 outperform conventional CBAM on Top-
5 metric, while being competitive on Top-1 metric. More
results can be found Supplementary material Table 2.

4.3 NTU-RGBD
To further demonstrate the effectiveness of our approach,
we additionally evaluate the proposed method in the mul-
timodal fusion setting. Here, we rely on the Multimodal
Transfer Module (MMTM) [36] architecture for our eval-
uation. MMTM is a method for fusing information from
multiple modalities in multiple-stream architectures, which
has recently shown good performance in a variety of tasks,
including activity recognition, gesture recognition, and au-
diovisual speech enhancement.

The method relies on an architecture inspired from
Squeeze-and-Excitation blocks placed between network
branches. Specifically, considering a two-stream scenario,
intermediate feature representations from two network
branches corresponding to two modalities are first spatially
squeezed into channel descriptors by applying global av-
erage pooling in each branch. The squeezed representa-
tions are subsequently concatenated and projected into a
joint lower-dimensional space. The resulting features are
transformed with two projection matrices corresponding
to each of the two modalities to the spaces of original
dimensionalities, and sigmoid activation is then applied to
obtain attention masks. The masks are further multiplied
element-wise with original feature representations in each
branch.

As can be seen, the fusion module is essentially a multi-
modal SE-block with joint squeeze and modality-specific ex-
citation operations, to which we apply our ignoring frame-
work as described in Section 3.1. We perform experiments
on NTU-RGBD dataset [37] for human action recognition,
where we fuse the skeleton and RGB modalities, similarly to
MMTM [36]. We follow our ignoring paradigm and replace
the SE attention mask in each branch with our proposed
approach. The rest of the architecture and training protocol
follows that of MMTM. We initialize the model from Ima-
geNet+Kinectics pretrained weights, finetune for 10 epochs
with batch size 8, and report the test set performance of the
model that performed best on validation set. The results are
reported in Table 4. As can be seen, the proposed ignoring
approaches outperform the baseline in the vast majority of
cases.

4.4 Discussion
As can be seen from the experimental results in previous
sections, learning to ignore consistently yields superior per-
formance compared to the baselines. We argue that this
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CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50

Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
SE 07.63 ± 0.37 32.80 ± 0.11 09.97 ± 0.50
SE-Ign1(α=1) 07.42 ± 0.29 32.50 ± 0.26 09.92 ± 0.37
SE-Ign1(α=0.5) 07.61 ± 0.46 31.40 ± 0.68 09.39 ± 0.19
SE-Ign1(α=0.8) 07.76 ± 0.73 32.71 ± 1.15 10.07 ± 0.64
SE-Ign2 07.66 ± 0.13 32.78 ± 0.77 10.11 ± 0.56
SE-Ign3 07.28 ± 0.17 30.95 ± 0.08 09.49 ± 0.36

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
SE 06.96 ± 0.05 29.43 ± 0.44 08.36 ± 0.33
SE-Ign1(α=1) 06.94 ± 0.07 29.17 ± 0.07 08.22 ± 0.13
SE-Ign1(α=0.5) 06.69 ± 0.04 27.64 ± 0.30 07.30 ± 0.10
SE-Ign1(α=0.8) 06.95 ± 0.14 27.73 ± 0.41 07.39 ± 0.07
SE-Ign2 06.80 ± 0.09 28.08 ± 0.35 07.39 ± 0.23
SE-Ign3 06.41 ± 0.08 27.77 ± 0.54 07.65 ± 0.20

TABLE 1
Results of SE variants on CIFAR10 and CIFAR100 datasets.

CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50

Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
CBAM 08.04 ± 0.03 31.46 ± 0.20 09.32 ± 0.15
CBAM-Ign1(α=1) 07.78 ± 0.28 31.03 ± 0.25 09.28 ± 0.27
CBAM-Ign1(α=0.5) 07.17 ± 0.05 30.58 ± 0.20 09.25 ± 0.23
CBAM-Ign1(α=0.8) 07.40 ± 0.23 30.28 ± 0.39 09.08 ± 0.33
CBAM-Ign2 07.53 ± 0.29 31.42 ± 0.58 09.27 ± 0.21
CBAM-Ign3 07.60 ± 0.10 30.88 ± 0.22 09.38 ± 0.32

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
CBAM 07.21 ± 0.23 30.63 ± 0.23 08.90 ± 0.14
CBAM-Ign1(α=1) 07.19 ± 0.26 29.63 ± 0.46 08.37 ± 0.39
CBAM-Ign1(α=0.5) 06.53 ± 0.14 27.92 ± 0.19 07.58 ± 0.27
CBAM-Ign1(α=0.8) 06.40 ± 0.14 27.11 ± 0.08 07.33 ± 0.19
CBAM-Ign2 06.80 ± 0.02 27.88 ± 0.59 07.62 ± 0.05
CBAM-Ign3 06.68 ± 0.05 27.94 ± 0.10 07.78 ± 0.21

TABLE 2
Results of CBAM variants on CIFAR10 and CIFAR100 datasets.

Top-1 Error% Top-5 Error%
Standard 23.73 06.85
SE 22.70 06.35
SE-Ign1(α=1) 22.60 06.29
SE-Ign1(α=0.5) 23.03 06.58
SE-Ign1(α=0.8) 22.88 06.30
SE-Ign2 23.16 06.55
SE-Ign3 22.59 06.32
CBAM 22.91 06.58
CBAM-Ign1(α=1) 22.84 06.50
CBAM-Ign1(α=0.5) 22.84 06.52
CBAM-Ign1(α=0.8) 22.84 06.40
CBAM-Ign2 23.02 06.39
CBAM-Ign3 23.10 06.44

TABLE 3
Results of CBAM and SE with variants of ignoring on ImageNet dataset

stems from the fact that learning irrelevant information
is easier than identifying what should be attended. For
example, in order to learn features that should be attended
to, the model needs to first learn to extract patterns such as
lines and edges and make associations with the class labels
in order to produce a meaningful attention mask. On the
other hand, irrelevant patterns, such as background textures
and borderline pixels, are often shared across the dataset, are
persistent and independent of the class labels, which makes
them easier to learn. Therefore, it should be possible to learn
them already in the early stages of training. Figure 1 shows

the validation loss curves of the baseline attention methods
and the best-performing ignoring methods with ResNet50
on CIFAR100 dataset (more training curves can be found
in supplementary material). As can be seen, especially at
the earlier stages of training, our approach results in lower
loss with less fluctuations and more stable training, hence
supporting our claim. From an optimization point of view,
in the case of α=1, only the gradient of the attention blocks
are flipped, and thus in the back-propagation, when they
are summed with the gradient of the main block (which are
not flipped), the total feedback carried to the earlier layers
is different and does not correspond to a flipped version of
the total sum of the standard attention. Thus, this yields dif-
ferent feedback and leads to a different optimal solution in
the end of the training (Figure 7 in supplementary material).

Moreover, in Figure 2, we provide visual results of the
class activation maps [38] produced by the different models
on three different samples from validation set of ImageNet.
As can be seen, the learning to ignore formulation leads to
different attention maps compared to the explicit attention,
i.e., learning to attend. Noticeably, standard CBAM attention
tries to capture the relevant parts of the image directly,
leading to the prediction being made based on the small
part of the input that is considered by the model as the most
important. This leads to the possibility that the model can
miss some important parts of the class of interest on the
image. As an example, only one of the plants on the lower
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MMTM Ign1(α=1) Ign1(α=0.5) Ign1(α=0.8) Ign2 Ign3

NTU-RGBD 89.98 89.99 90.52 88.70 90.21 90.36
TABLE 4

Accuracy on NTU-RGBD dataset

Fig. 1. Validation loss curves of ResNet50 on CIFAR100 using the different attention approaches.

figure is considered in CBAM model, as well as only a side
of the bus in the middle image. On the other hand, our ap-
proach by learning to identify the non-relevant background
regions first and subsequently suppressing them, simplifies
the problem and typically results in an attention mask that
is broader and captures the object of interest better, hence
reducing the risk of suppressing relevant attributes of it.

5 CONCLUSION

In this paper, we provide a new perspective on attention in
CNNs where the main target is learning to ignore instead
of learning to attend. To this end, we propose an implicit
attention scheme with three variants which can be incorpo-
rated into any existing attention mechanism. The proposed
approach explicitly learns to identify the irrelevant and con-
fusing parts of the scene and suppresses them. In addition,
we reformulate two state-of-the-art attention approaches,
namely SE and CBAM, using our learning paradigm. Exper-
imental results on three image classification datasets show
that learning to ignore, i.e., implicit attention consistently
outperforms standard attention across multiple models.
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