OD

open

OpenDR —
Open Deep Learning Toolkit for Robotics

Project Start Date: 01.01.2020
Duration: 48 months
Lead contractor: Aristotle University of Thessaloniki

Deliverable D5.2: Second report on deep robot
action and decision making

Date of delivery: 31 December 2021

Contributing Partners: TUD, ALU-FR, AU, TAU
Version: v1.0

* o This project has received funding from the European Union’s Horizon
] 2020 research and innovation programme under grant agreement No
* x> 871449.

* % %
*

D5.2: Second report on deep robot action and decision making 2

Title DS5.2: Second report on deep robot action and decision mak-
ing

Project OpenDR (ICT-10-2019-2020 RIA)

Nature Report

Dissemination Level: | PU

Authors Bas van der Heijden (TUD), Jelle Luijkx (TUD), Laura Fer-

ranti (TUD), Jens Kober (TUD), Robert Babuska (TUD), Halil
Ibrahim Ugurlu (AU), Erdal Kayacan (AU), Lukas Hedegaard
Morsing (AU), Amir Mehman Sefat (TAU), Roel Pieters (TAU),
Daniel Honerkamp (ALU-FR), Tim Welschehold (ALU-FR), Ab-
hinav Valada (ALU-FR), Wolfram Burgard (ALU-FR), Anasta-
sios Tefas (AUTH), Nikos Nikolaidis (AUTH)

Lead Beneficiary TUD (Technische Universiteit Delft)
WP 5
Doc ID: OPENDR _D5.2.pdf

Document History

Version | Date Reason of change

v0.1 13/10/2021 | Deliverable structure template ready
v0.2 13/10/2021 | Deliverable ready for internal review
v1.0 15/12/2021 | Deliverable ready for submission

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 3

Contents
(L Introduction| 6
(1.1 Deep Planning (TS5.1)| 6
[I.I.L1 Objectives|. e 6
(LL1.2__Innovations and achieved results| 6
[(1.1.3 Ongoing and future work| 6
(1.2 Deep Navigation (TS5.2)(. 7
(1.2.1 Objectives|. o e 7
(I.2.2 Innovations and achieved results| 7
(1.2.3 Ongoing and future work| 7
(1.3 Deep Action and Control (TS.3)[. 7
(1.3.1 Objectives|. e e 7
1.3.2 Innovations and achi results| oo 8
(1.3.3 Ongoing and future work| 9
(1.4 Human Robot Interaction (I'5.4) 9
(1.4.1 Objectives|. 9
(L.4.2 Innovations and achieved results| 10
[1.4.3 Ongoing and future work| 10
(1.5 Connection to Project Objectives| 10
2 Deep Planning| 12
2.1 End-to-end Path Planning of Air-Ground Multi-Robot Team| 12
[2.1.1 Introduction and objectives|. 12
[2.1.2 Description of work performedsofary 13
RI3 Futureworkl. 13
3 Deep Navigation| 14
(3.1 Learning Kinematic Feasibility for Mobile Manipulation Through Deep Rein- |
| forcement Learning| L 14
[(3.1.1 Introduction and objectives|. 14
[3.1.2 Description of work performedsofary 14
BI3 Futureworkl. 15
(3.2 Audio-Visual Navigation in Complex Unmapped Environments with Moving |
[Soundsl. e 15
[3.2.1 Introduction and objectives|., 15
[3.2.2 Description of work performedsofary 15
4 Deep action and control| 16
4.1 DeepKoCo: Efficient latent planning with a task-relevant Koopman representation| 16
4.1.1 Introduction and objectives|., 16
4.1.2 Description of work performedsofary 17
413 Futureworkl. 17
4.2 Inclined Quadrotor Landing using Deep Reinforcement Learning| 17
4.2.1 Introduction and objectives|. 17
4.2.2 Description of work performedsofary 18

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 4

23 Futureworkl. 18

43 EAGERX 18
4.3.1 Introduction and objectives|. 18
4.3.2 Description of work performedsofary 21
433 Futureworkl. 21
4.3.4 Hyperparameter Tuning] 22
4.3.5 Introduction and objectives|. L., 22
#4.3.6 Description of work performedsofary 22
“37 Futureworkl. 23

4.4 Single demonstration grasping| L. e 23
4.4.1 Introduction and objectives|. 23
4.4.2 Description of work performedsofary 24

4 Futur k. 25
Human r interaction 25
[5.1 Human-Robot Collaboration by Commands| 25
[5.1.1 Introduction and objectives|. 25
[5.1.2 Description of work performedsofary 26
BI3 Futureworkl. 26

6 Conclusions| 27

[A" DeepKoCo: Efficient latent planning with a task-relevant Koopman representation| 32

B Inclined Quadrotor Landing using Deep Reinforcement Learning] 40

[C Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforce- |

[ment Learning| 49
D AgroRL: End-to-end Path Planning of Air-Ground Multi-Robot Team for Green |
[Digital Farming| 58
[E Coordinating shared tasks in human-robot collaboration by commands| 67
[SingleDemoGrasp: Grasping from a single image demonstration| 81

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 5

Executive Summary

This document presents the status of the work performed for WP5-Deep robot action and
decision making. WP5 consists of four main tasks, that are Task 5.1-Deep Planning, Task 5.2—
Deep Navigation, Task 5.3—Deep Action and Control, and Task 5.4—Human Robot Interaction.

After a general introduction that provides an overview of the individual chapters with a link
to the main objectives of the project, the document dedicates a chapter to each tasks. Each
chapter (i) provides an overview on the state of the art for the individual topics and existing
toolboxes, (ii) details the partners’ current work in each task with initial performance results,
and (iii) describes the next steps for the individual tasks. Finally, a conclusion chapter provides
a final overview of the work and the planned future work for each individual task.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 6

1 Introduction

This document describes the work done during the second year of the project in the four major
research areas of WP5 namely deep planning, deep navigation, deep action and control, and
human-robot interactions.

The next sections (Sections provide a summary of the work done so far on these
three main topics and the link with the project objectives. The rest of the document is structured
as follows. Chapter [2] details our work on deep planning. Chapter [3|describes our work on deep
navigation. Chapter [4] presents our work on deep action and control. Chapter [5] presents our
work on human robot interaction. Finally, Chapter [6|concludes this deliverable.

More details related to the implementations of the proposed methods in the OpenDR Toolkit
can be found in D7.2 (WP7).

1.1 Deep Planning (T5.1)
1.1.1 Objectives

Conventional robot motion planning is based on solving individual sub-problems such as per-
ception, planning, and control. On the other hand, end-to-end motion planning methods in-
tend to solve the problem in one shot with less computation cost. Deep learning enables us to
learn such end-to-end policies, particularly integrated with Reinforcement learning. AU intro-
duces end-to-end motion planning methods for UAV navigation trained with Deep reinforce-
ment learning.

1.1.2 Innovations and achieved results

AU proposed a novel end-to-end path planning algorithm (AgroRL) for multiple aerial-ground
robots team for green transition in agriculture. In the proposed solution, while main operations
in the field are handled by the ground vehicle, the aerial robot is responsible for re-planning a
collision-free trajectory for the ground robot when the robot faces an obstacle. Deep reinforce-
ment learning is used for training the end-to-end policy for local re-planning of the aerial robot.
The agent, informed by the global trajectory, generates local plans based on depth images.
Variational autoencoders are also investigated for dimension reduction of the depth images in
obstacle avoidance context to speed up deep reinforcement learning and alleviate the compu-
tational complexity of the policy network. The agriculture environment is developed in the
Webots open-source robot simulator. Finally, the efficiency and efficacy of the ground-aerial
robot team are evaluated over a number of cluttered field scenarios. The extensive simulation
and real-world experiments demonstrate that the use of an aerial robot enhances the ground
robot’s capabilities significantly compared to having further sensors on the ground robot.

1.1.3 Ongoing and future work

There are two possible future directions to improve the presented end-to-end planner. Firstly,
AU aims to make the planner more lightweight to execute in real-time by providing a lighter
representation learning methodology to the framework. Secondly, AU plans to improve multi-
robot planning infrastructure by introducing UGV’s actions to the learning framework.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 7

1.2 Deep Navigation (TS5.2)
1.2.1 Objectives

Learning based approaches have shown to be well suited to solve navigation tasks across diverse
environments and platforms, including autonomous vehicles, video games and robotics. Partic-
ularly deep learning and reinforcement learning approaches have shown to work well with the
complex, high-dimensional inputs of real-world environments. Navigation tasks involve both
long-horizon goals that require long-term planning as well as local, short-term decision making
such as traversing unknown terrain or avoiding static and dynamic obstacles. As a result both
the decomposition of the problem into different components and levels of abstraction as well as
the combination of traditional optimization and planning approaches with learned modules are
very promising approaches.

1.2.2 Innovations and achieved results

ALU-FR has developed a novel mobile navigation and manipulation approach for wheeled
robots. While existing approaches most commonly separate such tasks into point-goal navi-
gation and static manipulation, this is both inefficient and restrictive for certain tasks such as
door opening. We decompose mobile manipulation into an arbitrary end-effector motion and
a reinforcement learning agent controlling the base. This enables to very easily specify tasks
such as pick & place or door opening tasks as simple Cartesian motions. At the same time this
formulation leaves the trained agent agnostic to the exact task, allowing to generalise to unseen
tasks in a zero-shot manner. The approach is demonstrated to achieve high success rates on a
real PR2 robot and the tool is integrated into the OpenDR repository. ALU-FR has proposed
a novel dynamic audio-visual navigation benchmark as well as an approach which strongly
improves the generalization to unheard sounds on static audio-visual navigation.

1.2.3 Ongoing and future work

We are currently extending our mobile manipulation approach to incorporate obstacle avoid-
ance, enabling it to easily complete tasks within cluttered, human-centered environments. Fur-
thermore, we are aiming to demonstrate it’s effectiveness in navigating dynamic obstacles, with
promising initial results.

1.3 Deep Action and Control (T5.3)
1.3.1 Objectives

Model-based reinforcement learning (RL) is well-suited for robotics due to its sample complex-
ity. In the high-dimensional case, the policy must be learned in a lower-dimensional latent space
to fully exploit this data efficiency. For the learned policy to run on a robotic platform with lim-
ited computational resources, the latent dynamics model must be compatible with fast control
algorithms. Therefore, TUD aims to find a lightweight and sample efficient control method that
can deal with high-dimensional observations.

Modern quadrotors are agile and can perform complex tasks in difficult-to-reach places.
Quadrotor flight and maneuvers are commonly controlled by proportional integral derivative
(PID) control or model predictive control (MPC). Although these methods are adequate for set-
point or trajectory tracking, they fall short when it comes to more complicated maneuvers that

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 8

exceed the linearization range or require long prediction horizons. One such maneuver is the
landing on an inclined surface, which is relevant for applications like delivery, maintenance, or
surveillance. To aid in safe operation with quadcopters, TUD aims to find a method for safely
learning an inclined landing policy.

OpenAl Gym [8] is the standard for training and evaluation of reinforcement learning algo-
rithms. However, developing Gym environments for robot control tasks is an inefficient process
that requires expertise, since it is all but trivial to synchronise actions and observations while
having asynchronous input and output streams for sensors and actuators that run at different
frequencies. In order to facilitate this process TUD aims to develop EAGERX, a toolkit that
bridges the gap between OpenAl gym and robot, both real and simulated. The EAGERX toolkit
aims to separate everything that is engine-specific from everything that is engine-agnostic, such
that that environments can be reused for different simulators and even when switching from
simulated to real robots.

Despite the recent successes of deep neural networks in robotics, it has not yet become a
standard component in control design toolbox. This is due to several limitations imposed by the
practice/requirement of manually tuning a large number of hyperparameters. Optimal tuning of
these parameters require significant expertise. To simplify the tuning process and to save the
rare resource of experts, TUD aims to develop a holistic hyperparameter tuning tool, which is
compatible with all learner classes from the OpenDR toolkit. This tool provides integration of
the OpenDR toolkit with the existing hyperparameter tuning framework Optuna [3].

Learning-based grasping models typically require a vast amount of training data and training
time to train an effective grasp pose detector. Alternatively, small non-generic grasp models
have been proposed that are tailored to specific objects by, for example, directly predicting
the object’s location in 2/3D space, and determining suitable grasp poses by post processing.
In both cases, data generation is a bottleneck, as it has to be separately collected for each
individual object. Moreover, most works consider objects in household scenarios which makes
them unsuitable for industrial settings as the physical properties of the objects are different. In
this work, TAU aims to tackle these issues and propose a light-weight grasping pipeline that
is divided in four main steps: 1. single object demonstration, 2. object data augmentation, 3.
grasp model training and 4. object grasping action.

1.3.2 Innovations and achieved results

TUD focused on the use of Koopman theory combined with deep learning for efficient control
of robotic systems. A novel model based agent, DeepKoCo, was presented, that learns a latent
Koopman representation from images. This representation allows DeepKoCo to plan efficiently
using linear control methods, such as linear model predictive.

TUD presented a method for learning a quadcopter inclined landing policy in simulation
that directly transferred to the real world. As the policy was learned entirely in simulation, it
was not only efficiently learned but also completely safe as exploration was only performed in
simulation.

TUD develops the EAGERX toolkit that bridges the gap between OpenAl gym and robotics.
It facilitates the process of creating Gym environments for robot control tasks and will provide
synchronisation of actions and observations even when sensors and actuators are running at dif-
ferent rates and are providing asynchronous data streams. Also, by isolating engine-specific
definitions, EAGERX allows to reuse environments for different simulators and even when
switching from a simulated to a real robot.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 9

TUD develops a hyperparameter tuning tool that provides integration of the Optuna hyper-
parameter tuning framework within the OpenDR toolkit. The tool was designed with the aim to
be compatible with all learner classes of the OpenDR toolkit.

TAU proposed an approach that utilizes state of the art keypoint detector "Keypoint-RCNN”
to develop a grasping pipeline that is able to learn the grasp pose demonstration by the user. In
this work, our grasping pipeline generates an augmented training dataset from a single user
demonstration which consist of a few images of the object from different camera views. These
images then are heavily augmented and utilized to train a keypoint detector and the predicted
keypoints are then post-processed and translated to 3D grasp poses. Four different vision-
based methods are evaluated for deriving the relative rotation of the object with respect to the
reference/target frame alongside an object detection module. Evaluation considers the grasping
of different industrial and 3D printed objects with an industrial collaborative manipulator, and
shows >90% success rate.

1.3.3 Ongoing and future work

Concerning the use of Koopman theory combined with deep learning for control of robotic
systems, as part of future work, TUD plans to investigate if DeepKoCo can be extended to
manipulators. If convincing results are achieved, TUD intents to include the extended method
into the toolkit. Else, TUD will focus on more promising research directions.

The presented method for learning a quadcopter inclined landing policy by the TUD, pro-
vides valuable insights on sim2real transfer of quadcopter policies that could prove valuable
for the quadcopters used in the agricultural use-case. This will be further investigated in future
work.

The development of the EAGERX toolkit will be continued and additional features will be
added in order to improve the usability, such as a graphical user interface, validity checks and
extensive documentation. Also, the toolkit will be further evaluated and more experiments will
follow. Furthermore, support for more hardware will be provide.

The hyperparameter tuning tool will be evaluated on a practical problem in order to validate
its usefulness. Also, hyperparameter and search space definitions will be provided for existing
tools in order to facilitate the hyperparameter tuning process for users of the OpenDR toolkit.

The proposed single demonstration grasping method by TAU demonstrates ability to per-
form in agile production use cases. Using 3D mesh and depth information and infusing more
sensory data would increase the robustness and mitigates the limitations of 2D RGB solutions.
On the other hand, the quality of grasp is also of high importance in agile production use-case.
TAU will study this possibilities in the future.

1.4 Human Robot Interaction (T5.4)
1.4.1 Objectives

The interaction between human and robot can serve several functions. When considering a
collaborative scenario, the robot can assist a person by taking heavy, dirty or repetitive tasks,
relieving the person to a more supervisory or coordinating role. In addition, robots can learn
to interact with humans but also from interactions with humans. In both cases understanding
human intentions and behavior is crucial, which can by enabled by motion capturing and other
ways of instrumenting the human partner. Typically, the human state and intentions are very

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 10

ambiguous and uncertain (e.g., forces that are crucial for successful completion cannot be es-
timated from video) and simulations of the human partner and its behavior are unlikely to be
very realistic, compounding the uncertainties. Fusing information from multiple modalities will
allow the robot to disambiguate. For DRL of human-robot interaction tasks require approaches
that can deal with large uncertainties by making optimal use of fused, multimodal perception.
Learning from demonstrations, for example, often relies on kinesthetic teach-in, videos, VR,
or textual instructions. The objectives of this task are therefore to utilize the OpenDR toolkit
towards human-robot interaction and enable efficient and effective collaboration.

1.4.2 Innovations and achieved results

TAU has studied human-robot interaction in the context of collaborative manufacturing, where
a small collaborative robot assists an operator in assembly tasks. In these scenarios, robot
programming has mostly focused on automated robot motions and interactive tasks or coor-
dination between human and robot still requires additional developments. For example, the
selection of which tasks or actions a robot should do next might not be known beforehand or
might change at the last moment. Within a human-robot collaborative setting, the coordina-
tion of complex shared tasks, is therefore more suited to a human, where a robot would act
upon requested commands. In this work we explored the utilization of commands to coordinate
a shared task between a human and a robot, in a shared work space. Based on a known set
of higher-level actions (e.g., pick-and-placement, hand-over, kitting) and the commands that
trigger them, both a speech-based and graphical command-based interface are developed to in-
vestigate its use. While speech-based interaction might be more intuitive for coordination, in
industrial settings background sounds and noise might hinder its capabilities. The graphical
command-based interface circumvents this, while still demonstrating the capabilities of coor-
dination. The developed architecture follows a knowledge-based approach, where the actions
available to the robot are checked at runtime whether they suit the task and the current state of
the world. Experimental results on industrially relevant assembly, kitting and hand-over tasks in
a laboratory setting demonstrate that graphical command-based and speech-based coordination
with high-level commands is effective for collaboration between a human and a robot. These
results are evaluated with metrics as typical in manufacturing, such as human and robot idle
time (H-IDL and R-IDL), concurrent activity (C-ACT) and functional delay (F-DEL), which
demonstrate benefits towards the coordinated actions, as compared to traditional approaches.

1.4.3 Ongoing and future work

As ongoing work, the human-robot collaboration scenario has utilized the tools developed in
WP3 (speech recognition). Initial results look promising and will be extended and evaluated as
future work. This includes the recognition of words relevant to the collaborative scenario (i.e.,
agile production) and the recognition of word pairs (i.e., action-target). In addition, multi-modal
perception tools will be included to enable more precise commanding by, for example, combing
speech and gesture/object recognition.

1.5 Connection to Project Objectives

The work performed within WP5, as summarized in the previous subsections, perfectly aligns
with the project objectives. More specifically, the conducted work progressed the state-of-the-
art towards meeting following objectives of the project:

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 11

O2.c To provide lightweight deep learning methods for deep robot action and decision making,

namely:

02.c.i Deep reinforcement learning (RL) and related control methods.

s TUD contributed to this objective as detailed in parts of Chapter[d] A lightweight

and sample efficient method based on Koopman theory was presented. This ap-
proach allows one to efficiently control robotic systems using high-dimensional
observations that are possibly contaminated with task-irrelevant dynamics. Sec-
ondly, TUD presented an approach to learn a quadcopter inclined landing policy
in simulation that directly transferred to the real-world.

Finding suitable hyperparameters can be a tiresome — but also essential —
part of developing deep reinforcement learning methods. TUD has developed
hyperparameter tuning functionality for all deep learning tools in the OpenDR
toolkit that allows users to easily find the right hyperparemeters.

0O2.c.ii Deep planning and navigation methods that can be trained in end-to-end fashion.

* ALU-FR developed a mobile navigation tool for wheeled robots. Given an

arbitrary motion for the end-effector, the tool uses reinforcement learning to
produce corresponding base motions that make these motions feasible. The tool
is lightweight and can run on standard CPUs. The module has been tested on a
real PR2 and is implemented for both differential drive robots (PAL TiaGo) and
omnidirectional robots (PR2, Toyota HSR). ALU-FR furthermore developed an
approach for audio-visual navigation that achieves state-of-the-art results in the
generalisation to unheard sounds.

AU contributed to this objective as described in Chapter[2] An end-to-end plan-
ner for a quadrotor UAV is provided for collision avoidance in collaboration
with multiple ground vehicles. The DRL agent, informed by the global trajec-
tory, generates actions as local position plans based on depth images from the
UAV. The efficiency and efficacy of the ground-aerial robot team are evaluated
over several cluttered field scenarios.

02.c.ii1 Enable robots to decide on actions based on observations in WP3, as well as to learn
from observations

x TUD has contributed to this objective with the pre-processing functionality in

the EAGERX toolkit. This functionality allows the user to use the perception
algorithms in WP3 as a pre-processing step.

TAU has contributed to this objective as described in Chapter[d A novel single
demonstration grasping (SDG) model has been developed, refined and evalu-
ated that takes as input a single image of an object and generates the required
training data to train a grasping model. Several grasp detection methods are
evaluated for grasping object relevant in the agile production use case. In ad-
dition, TAU has contributed to this objective as described in Chapter 5| where
speech recognition tools from WP3 are utilized to command robot actions in a
human-robot collaborative scenario.

02.c.iv Enable efficient and effective human robot interaction

s« TAU has contributed to this objective as described in Chapter[5] A collaborative

scenario between human and robot was developed, inspired from the Agile Pro-

OpenDR

No. 871449

D5.2: Second report on deep robot action and decision making 12

duction use case, in which the robot provides assistance to the human by kitting
tasks and object hand-over tasks. Commands from human to robot are utilized
to coordinate the collaboration, by both a graphical interface and speech recog-
nition from WP3. Results are evaluated by metrics that are typical for industrial
manufacturing (human and robot idle time (H-IDL and R-IDL), concurrent ac-
tivity (C-ACT) and functional delay (F-DEL)), which demonstrate efficient and
effective human-robot interaction.

2 Deep Planning

2.1 End-to-end Path Planning of Air-Ground Multi-Robot Team

2.1.1 Introduction and objectives

Robot teams are commonly used for their ability to work on a single task collaboratively. They
are especially advantageous when the robots have different capabilities and/or operate in dif-
ferent domains. For instance, a collaboration between an aerial and a ground robot might be
helpful: long-term and close contact tasks are assigned to the ground robot due to its relatively
higher power source, and observation tasks are assigned to the aerial vehicle due to its better
field of view.

In this study, a collaborative solution is proposed in an agricultural field to leverage the ef-
ficiency of the agricultural operation with artificial intelligence (Al)-based navigation methods.
Particularly, unmanned ground vehicles (UGVs) are responsible for field operations, e.g., seed-
ing, and an unmanned aerial vehicle (UAV) deals with the navigation performance enhancement
of the team. Since machinery and equipment are the major costs in agricultural operations and
ground vehicles (e.g., a tractor costs around 200K USD) are significantly more expensive than
the aerial robots (e.g., a typical mid-size UAV costs 10K USD), the motivation behind this study
is to reduce the overall cost of the operation by also increasing the accuracy and productivity.
In order to minimize the cost of the ground vehicle, the UGV is considered blind in its contri-
bution to the planning task and accomplishes its field tasks with the given motion commands.
This work focuses on the motion planning of the robot team using the information of a global
path to follow and the depth camera on the UAV. In case of an obstacle occurrence on the global
path, the UAV follows a collision-free path and informs the UGV about the required maneuver.
In this way, the required sensor costs on the UGV is minimized.

State estimation, perception, planning, and control are conventionally considered as separate
problems to be solved in autonomous robot navigation. On the other hand, recent developments
in machine learning, particularly in deep reinforcement learning (DRL), enable an agent to learn
various navigation tasks with only a single neural network policy. These methods are promising
to solve navigation problems faster since they do not deal with the unnecessary optimization of
particular problems; however, they are also hard to debug, making them hard to apply in real
scenarios. In this work, as an end-to-end planning method, a policy network for collaborative
agricultural planning is trained using DRL, which provides position steps using a multi-modal
input, a depth camera, and global trajectory information.

While DRL methods allow solving sequential decision-making tasks by only defining a re-
ward function, they are considered sample inefficient. They need enormous amount of training
samples in order to reach a satisfactory performance. The sample inefficiency rises with the

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 13

dimension of state or action spaces in the problem definition. An option to reduce the dimen-
sionality is to encode -i.e., using a variational autoencoder (VAE)- high-dimensional data, such
as the depth image. Therefore, the effect of encoding the depth image is investigated to reduce
the load on the DRL algorithm and to obtain a faster policy in this study.

The contributions of this study are fourfold:

* An open-source RL framework (AgroRL) is proposed for training an end-to-end planner
for a quadrotor UAV.

* VAE-based state representation is investigated for end-to-end reactive planning of UAVs.

e Multiple UGVs working in an agricultural field is integrated with the UAV agent to gen-
erate collision-free local motion plans.

* The method is evaluated with extensive experiments in a Webots-based simulation envi-
ronment and demonstrated in a real-world indoor scenario.

2.1.2 Description of work performed so far

The details of this work are found in the corresponding publication that is listed below, and can
be found in Appendix D}

* H. I. Ugurlu, D. Bardakci, H. X. Pham and E. Kayacan “AgroRL: End-to-end Path Plan-
ning of Air-Ground Multi-Robot Team for Green Digital Farming” (Submitted to ICRA
2022)

Increasing the operational efficiency of agricultural machines is essential by the use of artifi-
cial intelligence (AlI)-based navigation, planning, and control algorithms to handle the increas-
ing demand for food production without compromising sustainability. In this study, a novel
end-to-end path planning algorithm (AgroRL) is proposed for multiple aerial-ground robots
team for green transition in agriculture. In the proposed solution, while main operations in
the field are handled by the ground vehicle, the aerial robot is responsible for re-planning a
collision-free trajectory for the ground robot when the robot faces an obstacle. Deep reinforce-
ment learning is used for training the end-to-end policy for local re-planning of the aerial robot.
The agent, informed by the global trajectory, generates local plans based on depth images.
Variational autoencoders are also investigated for dimension reduction of the depth images in
obstacle avoidance context to speed up deep reinforcement learning and alleviate the compu-
tational complexity of the policy network. The agriculture environment is developed in the
Webots open-source robot simulator. Finally, the efficiency and efficacy of the ground-aerial
robot team are evaluated over a number of cluttered field scenarios. The extensive simulation
and real-world experiments demonstrate that the use of an aerial robot enhances the ground
robot’s capabilities significantly compared to having further sensors on the ground robot.

2.1.3 Future work

One possible future research direction in this study is to implement a better representation learn-
ing methodology instead of decoupling representation learning and DRL. When the algorithm
can run continuously in real-time, there is a possibility to provide lower-level control commands
to the UAV, which yields a faster flight. Another future direction is to integrate multiple robots

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 14

(UAV and UGVs) in the same learning problem. Since the end-to-end planner is separated
from the UGV planner, only common obstacles can be considered in the problem. However,
one advantage of having a UAV is its better FOV. Combining multi-robot planning in the same
problem will provide the ability to avoid obstacles in the ground without bothering the UAV.

3 Deep Navigation

3.1 Learning Kinematic Feasibility for Mobile Manipulation Through Deep
Reinforcement Learning

3.1.1 Introduction and objectives

In recent years, approaches to improving the capabilities of robotic platforms to perform flexi-
ble and complex tasks in both industrial and dynamic domestic environment achieved impres-
sive results [3, [7, 136, 34]. So far, however, most of these approaches separate navigation and
manipulation due to the difficulties in planning the joint movement of the robot base and its
end-effector (EE). Typically the tasks that a robot is expected to perform are linked to condi-
tions in the task space, such as poses at which handled objects can be grasped, orientation that
objects should maintain or entire trajectories that must be followed. While there are approaches
to position a manipulator to fulfill various task constraints with respect to the robot’s kinematics
based on inverse reachability maps (IRM) [29]], performing such tasks while moving the base
remains an unsolved problem.

Classical planning approaches circumvent kinematic issues implicitly by exploring paths in
the robot’s configuration space [9]. However, this creates a number of new difficulties. First,
the constraints must be transferred from the task space to the robot specific configuration space,
requiring expert knowledge on the task, the robot and the environment. Furthermore, the exe-
cution of pre-planned configuration space movements in dynamic environments is not easy as
minor errors in the execution of poses in the configuration space can lead to large deviations in
the task space and, due to changes in the dynamic scene, adjustments to the movement might
be necessary, requiring a complete re-planning in the configuration space.

3.1.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix [E}

* [20] D. Honerkamp, T. Welschehold and A. Valada, “Learning Kinematic Feasibility for
Mobile Manipulation Through Deep Reinforcement Learning”, in IEEE Robotics and Au-
tomation Letters, vol. 6, no. 4, pp. 6289-6296, Oct. 2021, DOI: 10.1109/LRA.2021.3092685.

We propose a novel approach to mobile manipulation. Given an arbitrary end-effector motion,
we train a reinforcement learning agent to control the base of the robot to ensure that these
motions remain kinematically feasible. This has several benefits: (i) it provides a simple way
to define mobile manipulation tasks and to incorporate task constraints (ii) it provides a simple
dense reward signal to learn these long-horizon tasks (iii) as the reinforcement agent is condi-
tioned on motions of the end-effector and agnostic to the exact task, it can easily generalize to
novel tasks in a zero-shot manner. The effectiveness of this approach is extensively evaluated in

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 15

simulation as well as on a real PR2. It directly transfers into the real world where it effectively
solves unseen tasks based on novel end-effector motions. The model is lightweight and can run
on standard CPUs.

3.1.3 Future work

We are currently extending this approach to incorporate obstacle avoidance. This will enable
it to easily complete tasks within cluttered, human-centered environments. For this we are
incorporating a local occupancy map into the observation space. This choice ensures good
generalization to unseen obstacles and environments as well as high flexibility with regard to
the sensors from which the occupancy maps are constructed. We also enable the agent to control
the velocity of the end-effector motions, increasing the agent’s degrees of freedom and enabling
it to navigate around large obstacles. Lastly, we are aiming to demonstrate it’s effectiveness
in navigating dynamic obstacles. In contrast to existing planning based methods, our control
approach is completely dynamic and does not require a complete re-planning if the environment
changes.

3.2 Audio-Visual Navigation in Complex Unmapped Environments with
Moving Sounds

3.2.1 Introduction and objectives

Humans are able to very efficiently combine their senses of hearing and sight in order to navigate
unknown environments. While navigation in such environments has been an important focus of
embodied Al [17, 11} 40], existing work on navigation overwhelmingly relies on sensors such
as vision and LiDAR, leaving out other core senses used by humans. Sound is a particularly
unique modality as it reveals information beyond the visible walls and obstacles. In particular,
it has been shown to provide blind people spatial navigation capability comparable to sighted
people [16]. Navigation-centered approaches have shown that agents can successfully extract
information from the audio signals. However, they have mostly focused on clean and distractor-
free audio settings in which the only change to the audio signal comes from changes in the
agent’s position. Furthermore, they have struggled to generalize to unheard sounds [[12} [13]].

3.2.2 Description of work performed so far

We take the next steps towards more challenging scenarios. First, we introduce a novel dynamic
audio-visual navigation benchmark with a moving sound source. This captures common scenar-
ios such as a robot navigating to a person issuing commands or following pets or people in the
house. We argue that this strongly increases the complexity of the task through two channels: on
one hand, previous observations no longer capture the current state of the environment and the
agent has to learn to update its memory accordingly. On the other hand, optimal behavior now
requires not just to follow the sound intensity but proactively reason about the movement of the
target to catch it efficiently. Secondly, we increase the difficulty of both static and moving sound
tasks by designing complex audio scenarios with augmented, noisy and distracting sounds and
show the benefits of training on these scenarios for generalization to unheard sounds. Lastly,
we introduce an architecture that explicitly enables the agent to spatially fuse the geometric
information inherent in obstacle maps and audio signals. We show that this leads to signifi-
cant gains in the generalization to unheard sounds in both clean and complex audio scenarios.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 16

We demonstrate these results in the SoundSpaces [12] extension to the Habitat simulator [33]],
which allows us to generate realistic binaural sound signals for the realistic 3D environments of
the Replica [35]] and Matterport3D [10] datasets. In combination, these contributions achieve
improvements over the previous state-of-the-art by 53% and 29% in the success rate as well as
an improvement in SPL by 58% and 39% on Replica and Matterport3D respectively, on the un-
heard and static AudioGoal benchmark tasks [[12]]. Part of this work has achieved the first place
of the SoundSpaces Challenge at the CVPR 2021 Embodied Al Worksho Furthermore, it is
currently under review as a conference submission.

4 Deep action and control

4.1 DeepKoCo: Efficient latent planning with a task-relevant Koopman
representation

4.1.1 Introduction and objectives

Model-based reinforcement learning is well-suited for robotics due to its sample complexity. In
the case of high-dimensional observations, the policy must be learned in a lower-dimensional
latent space to fully exploit this data efficiency. For the learned policy to run on a robotic
platform with limited computational resources, the latent dynamics model must be compatible
with fast control algorithms. For this, Koopman operator theory combined with deep learning
provides a promising research direction. Although a latent Koopman representation facilitates
more efficient control, it still focuses the majority of the model capacity on potentially task-
irrelevant dynamics that are contained in the observations. Therefore, it is of great importance
to mitigate the effect of task-irrelevant dynamics in the latent representation learning. Therefore,
our objective is to find a lightweight and sample efficient method based on Koopman theory to
control robotic systems that lack a simple state description using high-dimensional observations
that are possibly contaminated with task-irrelevant dynamics. Specifically, we aim for a control
algorithm that is:

1. Sample efficient The learning algorithm must be sample-efficient, because real environ-
ment interactions are both time-consuming and costly in robotic systems due to wear of
the equipment.

2. Lightweight Combine deep learning methods with Koopman theory to enable the use of
lightweight linear optimal and robust control techniques in the latent space.

3. High-dimensional observations Enable robots to efficiently decide on actions based on
high-dimensional observations (e.g. images by first mapping them to a low-dimensional
space).

4. Invariance to task-irrelevant dynamics Learn a low-dimensional mapping that is in-
variant to task-irrelevant dynamics.

'https://soundspaces.org/challenge.

OpenDR No. 871449

https://soundspaces.org/challenge

D5.2: Second report on deep robot action and decision making 17

4.1.2 Description of work performed so far

The details of this work are found in the corresponding publication that is listed below, and can
be found in Appendix [A}

e [37] B. van der Heijden, L. Ferranti, J. Kober and R. Babuska “DeepKoCo: Efficient
latent planning with a task-relevant Koopman representation”, IEEE/RS]J International
Conference on Intelligent Robots and Systems (IROS), 2021.

This paper presents DeepKoCo, a novel model based agent that learns a latent Koopman
representation from images. This representation allows DeepKoCo to plan efficiently using lin-
ear control methods, such as linear model predictive control. Compared to traditional agents,
DeepKoCo learns task relevant dynamics, thanks to the use of a tailored lossy autoencoder net-
work that allows DeepKoCo to learn latent dynamics that reconstruct and predict only observed
costs, rather than all observed dynamics. As our results show, DeepKoCo achieves a similar
final performance as traditional model-free methods on complex control tasks, while being con-
siderably more robust to distractor dynamics, making the proposed agent more amenable for
real-life applications.

4.1.3 Future work

We believe the presented method has merit for OpenDR, if and only if the performance we
obtained with images in the pendulum task transfers to a manipulator. As of now, we have
not been able to achieve a similar performance in the Reacher task [37/] with images. Hence,
modifications to the presented method are required, in order to be suitable for inclusion in
the OpenDR toolkit. We intent to explore how to extend the current method, and include the
extended method into the toolkit if we are able to show convincing results with images. Else,
we will pursue more promising research direction.

4.2 Inclined Quadrotor Landing using Deep Reinforcement Learning

4.2.1 Introduction and objectives

Modern quadrotors are agile and can perform complex tasks in difficult-to-reach places. Quadro-
tor flight and maneuvers are commonly controlled by proportional integral derivative (PID) con-
trol or model predictive control (MPC). Although these methods are adequate for set-point or
trajectory tracking, they fall short when it comes to more complicated maneuvers that exceed
the linearization range or require long prediction horizons. One such maneuver is the landing
on an inclined surface, which is relevant for applications like delivery, maintenance, or surveil-
lance. To facilitate a safe inclined landing, the final attitude of the quadrotor must match the
slope of the landing platform. The final state of the landing trajectory is not an equilibrium,
which presents a challenge for the control design. Owing to the under-actuated nature of the
system, the landing trajectory can be long and complex, with an initial motion away from the
landing location. This complicates the use of standard control methods like MPC with a fixed
prediction horizon and quadratic cost function. In this work, we developed a DRL approach to
solve the inclined landing problem.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 18

4.2.2 Description of work performed so far

The details of this work are found in the corresponding publication that is listed below, and can
be found in Appendix

e [24] J.E. Kooi and R. Babuska “Inclined Quadrotor Landing using Deep Reinforce-
ment Learning”, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021.

Landing a quadrotor on an inclined surface is a challenging maneuver. The final state of
any inclined landing trajectory is not an equilibrium, which precludes the use of most con-
ventional control methods. We propose a deep reinforcement learning approach to design an
autonomous landing controller for inclined surfaces. Using the proximal policy optimization
(PPO) algorithm with sparse rewards and a tailored curriculum learning approach, an inclined
landing policy can be trained in simulation in less than 90 minutes on a standard laptop. The
policy then directly runs on a real Crazyflie 2.1 quadrotor and successfully performs real in-
clined landings in a flying arena. A single policy evaluation takes approximately 2.5 ms, which
makes it suitable for a future embedded implementation on the quadrotor.

4.2.3 Future work

The presented method is a valuable step into bringing RL controllers into the real-world. How-
ever, we believe the method is experimental and far from suitable for general use. Hence,
inclusion into the OpenDR toolkit is not desirable. Though, insights produced by this research
on the transfer of simulated policies for quadcopters could potentially be incorporated in the
agricultural use-case.

4.3 EAGERx

4.3.1 Introduction and objectives

Engine Agnostic Gym Environment with Reactive extension (EAGERX) is a toolkit that allows
users to apply (deep) reinforcement learning for both simulated and real robots as well as combi-
nations thereof. The toolkit serves as bridge between the popular reinforcement learning toolkit
OpenAl Gym [8] and robots that can either be real or simulated. Thanks to communication
based on reactive programming, EAGERx will allow users to speed up training in simulation
while guaranteeing that actions and observations are synchronised.

OpenAl Gym is a toolkit for evaluating reinforcement learning algorithms in so-called Gym
environments and is used for benchmarking (deep) reinforcement learning algorithms by the
scientific community [39]]. One of the benefits of OpenAl Gym is that users can easily evaluate
state-of-the-art (deep) reinforcement learning algorithms for their Gym environments, thanks
to the availability of algorithm implementations, such as Stable Baselines [18]. OpenAl Gym
comes with a number of environments, including simulated robots, classic control tasks and
Atari games.

Communication within EAGERX heavily depends on ReactiveX [2], which is a set of tools
from the reactive programming paradigm. These tools allow one to perform operations on
asynchronous data streams. Within EAGERXx, these tools allow one to solve problems related
to synchronization of actions and observations, such as ensuring that sensor measurements are
updated after performing an action. This is vital in a reinforcement learning setting, since

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 19

it is required that the transition of the environment’s state is known in order to calculate the
appropriate reward. Also, reactive programming allows EAGERx to run simulated training
“as fast as possible”, that is, all processing steps are performed as soon as the required data
are available, since processes are event-based, rather than time-based. In a time-based setting
problems can arise when control frequencies are increased, because some processes might be
too computationally demanding to run at the specified frequency, while in a reactive setting, the
nodes that are further downwards the data stream will wait until the data is available.

For reinforcement learning in robotics it is often highly desirable to train both in simulation
and reality, because simulations allow to train faster than real-time and are safer than training
with real robots. At the same time, real-world experience is required in many cases, because
model inaccuracies of the simulator are exploited by reinforcement learning algorithms [22].
However, creating Gym environments for both real and simulated robots is currently a difficult
and time-consuming task, because it is challenging to synchronize actions and observations, to
communicate with both real and simulated robots and to add or interchange objects in environ-
ments. Therefore, we introduce EAGERx, which allows users to create engine agnostic Gym
environments that can be used with different simulators, physics engines and with real robots.
Also, by choosing an approach that is based on composition — instead of inheritance — adding
robots, sensors and other objects to an environment will be reduced to a one-liner of code or a
single click in the graphical user interface. The key functionalities that EAGERx will provide
are:

—

. User-friendly creation and modification of Gym environments for robot control tasks.
2. Integration with popular robot simulators Webots [27], PyBullet [14] and Gazebo [23].
3. Synchronization of actions and observations.

4. Switching between and/or combine simulated and real robots.

5. Engine agnostic processing of data streams, such as actions and observations.

6. The possibility to add procedures for resetting the environment after an episode.

In this section we will describe how the aforementioned functionalities will be provided.

(1) EAGERKX allows users to easily create and modify Gym environments for robot control
tasks. The toolkit is designed such that new environments can be created without the need to
redefine objects, such as robots, sensors and actuators. Naturally, the objects need to be defined
at least once. We aim to reduce the burden of defining objects and nodes as much as possible, by
providing base classes and keeping the structure as homogeneous as possible. Eventually, we
will stimulate the robotics community to add and share robot definitions to have an extensive
number of robots and sensors supported by the EAGERX toolkit. Moreover, since ROS-based
code is present in the backend of the toolkit, the toolkit can also be used by users without ROS
experience. Nevertheless, the toolkit provides enough flexibility for experienced ROS users
to exploit the possibilities of ROS. Furthermore, we are developing a graphical user interface
to improve the intuitiveness of creating environments. In Figure [1{ a screenshot is shown of
the graphical user interface. This screenshot shows an example of an environment that can be
created in EAGERX.

(2) EAGERXx will provide integration with three simulators that are frequently used by the
robotics and reinforcement learning communities, i.e. PyBullet, Gazebo and Webots. Also,

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 20

EAGERX Graph - = ®

realreset process

out 1 out_1

state 1 spate_1

env/actions env/observations

action J

observation

Figure 1: The graphical user interface will ease creating new EAGERX environments. New
objects or processing nodes can be added to the environment with a single click and connections
between nodes can be drawn. The graphical user interface is based on the PyQtGraph library

[L].

users can train with different simulators in parallel and a base class is provided for creating a
“bridge” for other simulators or physics engines.

(3) Synchronization of actions and observations is vital for effective reinforcement learning,
because policy updates are based on state-action pairs and corresponding rewards in reinforce-
ment learning. In order to pair actions and observations correctly, tools from the paradigm of
reactive programming will be used.

(4) Thanks to the engine agnostic property of EAGERxX environments, users can easily
switch between real and simulated robots. Also, real and simulated robots could be trained
in parallel, e.g., for simulator tuning.

(5) A base class will be provided for adding processing steps to actions, observations and
other data streams. A similar base class will be provided for observations in the future. Process-
ing of actions and observations can be useful, e.g., for checking whether actions are collision
free, for obtaining the end-effector’s position from joint states or for obtaining locations of ob-
jects that are detected in RGB images. Thanks to the implementation of the base class, users
only have to implement the processing step and do not have to worry about communication and
synchronization issues.

(6) A base class will be provided for reset procedures that will be executed at the end of
episodes. This will allow users to automate their training procedures. This will also be provided
for real-world training, but in that case there are limitations to the controllability of states.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 21

4.3.2 Description of work performed so far

Initially, we have developed a version of EAGERX that is not reactive. In this version nodes
would operate in a sequential fashion. While developing this toolkit, we realized that a reactive
approach better suits the requirements of the toolkit. Therefore, we redeveloped the toolkit,
where in the new version the communication is reactive. Simultaneously, while developing the
new reactive version, we performed experiments with the initial version in order to validate the
core functionalities of the toolkit. In these experiments, the goal was to move the end-effector
of a six degrees of freedom manipulator to a cartesian position rgo, that was drawn from a
uniform distribution at the beginning of the episode. The reward function R was a function of
its current end-effector position re. and the time step i:

Nmax — I ieree_rgoaIH <e
R(Yee,i) = —nmax+1i if self-collision (1)

0 else

where e is the goal tolerance (which was set to 0.05 m) and ny,x the maximum number of steps
per episode (which was set to 200). The episode was terminated (done) under the following
conditions:

True if ||ree — Fgoul|| < e

done — True %f éelf—collision ' @)
True ifi > npax

False else

The results of these experiments are shown in[2] Based on the plots that are shown in this figure
we can conclude that training with the Soft Actor Critic (SAC) algorithm results in success-
ful policies in both runs and therefore that the communication within EAGERX is functioning
properly.

Furthermore, we have developed the aforementioned graphical user interface, which is
shown in Figure [I| This will be in particular useful for complex environments, since in such
cases defining the connections between different nodes and objects can become quite cumber-
some. Also, it allows to easily load and save previously constructed environments in order to
reuse or modify them.

4.3.3 Future work

We will continue the development of the graphical user interface in order to allow adding data
stream converters, defining action/observation spaces and to incorporate a number of validity
checks.

Also, we will continue to create definitions for new hardware and we will continue to docu-
ment this process in order to make this as less of a burden as possible. Namely, we believe that
the usefulness of the toolkit strongly depends on its usability.

Furthermore, we will continue to perform experiments with the toolkit. For example, we
consider to perform experiments in which we fuse experience from different simulators and
compare this to experience from a single simulator.

OpenDR No. 871449

D5.2:

Episode length

run
— SAC.1
SAC_2

Second report on deep robot action and decision making

22/94)

Mean sum of rewards

run
— SAC_1
SAC_2

\ ok
100 /h | . Wwwwm i

ol | V;k | rw
W 1

W’,"ﬂh i, :

by

-100

-150 ’

0.0 02 0.4 06 08 1.0 0.0 02 0.4 06 08 1.0
step 1e6 step 1e6

-200

Figure 2: In order to test the core components of the toolkit, experiments were performed with
a six degrees of freedom manipulator simulated in PyBullet. In these experiments, the goal was
to move the end-effector to a Cartesian position that was drawn from a uniform distribution at
the beginning of the episode. There were three termination conditions for the episode, i.e. self-
collision, reaching the goal position or reaching the maximum number of steps (200). These
figures show that the Soft Actor Critic (SAC) implementation from Stable Baselines [30] is
able to solve this problem in an environment created using EAGERX (not yet using reactive
programming). Interestingly, we found that the policy resulting from training in PyBullet seems
to transfer to the real robot, but we do not yet have quantitative results for this.

4.3.4 Hyperparameter Tuning
4.3.5 Introduction and objectives

Tuning hyperparameters can be a tiresome — but also essential — part of developing deep
learning tools. Since nearly all tools from the OpenDR toolkit involve hyperparameters that can
influence the performance of the concerning tool significantly, we decided to choose for a holis-
tic approach such that the tool is compatible with all learner classes from the OpenDR toolkit.
Nowadays, popular hyperparameter tuning libraries exist, such as Optuna [3l], Hyperopt [6] and
Tune [26]. Rather than designing our own hyperparameter tuning library, we decided to design
a tool that provides integration of the OpenDR toolkit with an existing hyperparameter tuning
framework. We believe that this will improve the usability of the OpenDR toolkit. In the end,
we chose to provide integration with the Optuna hyperparameter tuning framework, because of
its versatility, visualisation tools, pruning capabilities and efficiency.
The objectives of the hyperparameter tuning tool are the following:

* Compatibility with all learner classes
* Easy setup of hyperparameter tuning

* Providing insights into influence of hyperparameters

4.3.6 Description of work performed so far

We developed a hyperparameter tuning utility tool within the OpenDR toolkit that provides
integration with the Optuna hyperparameter tuning framework. This tool was designed with the

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 23

aim to make it as holistic and user-friendly as possible. In order to use this tool, the user only
needs to specify the learner class for which he or she would like to perform hyperparameter
tuning and the arguments with which the learner should be initialized, trained and evaluated.
After hyperparameter tuning, the visualisation tools from Optuna can be used to get insights
into the hyperparameters and its importances. Figures [3] and 4] show examples of visualisations
that can be obtained. A tutorial on how to perform hyperparameter tuning with this tool is
available here. Documentation and tests have been created and a pull request is pending.

Contour Plot
resnet50
\ “ m a m
resnetl01 . E\ L] ﬁ ;HFF-_-:.\\ 11.2
- i 10.8
e — ?
10.4
L - |
10
0. DDl
.
IODp 9.6
-
e “ > m -
adam . —

resnet101 resnet50 5100p2 50.0012 adam adamw sqd

backbone

iters

optimizer

backbone iters Ir optimizer

Figure 3: Optuna provides visualisation tools which can provide insights into the hyperparam-
eter tuning process, e.g. hyperparameter contour plots.

4.3.7 Future work

The hyperparameter tuning tool will be evaluated on a practical hyperparameter tuning problem
in order to validate its usefulness. Also, we will stimulate the developers of the OpenDR toolkit
to provide definitions of the hyperparameters and their search spaces for each tool in order to
alleviate this burden for users and improve the usability of the hyperparameter tuning tool.

4.4 Single demonstration grasping

4.4.1 Introduction and objectives

Collaborative robots (cobots) are getting more attention in the recent years as they bring safe
human-robot interaction, easy and fast programming interface and wider ranges of applications.
Despite the mentioned benefits, there are still works needed to be done in order to develop
more effective robotic systems that are capable of efficiently collaborating with a human in
a shared workspace. In this context, cobots are considered easy to program robots as they
provide the so-called programming from demonstration which restricts the grasping to pre-
defined locations. In order to mitigate this limitation, learning-based approached such as 2D/3D

OpenDR No. 871449

https://github.com/tasostefas/opendr_internal/blob/add-hyperparameter-tuning/projects/utils/hyperparameter_tuner/hyperparameter_tuning_tutorial.ipynb

D5.2: Second report on deep robot action and decision making 24

Hyperparameter Importances

backbong

Hyperparameter

Optimizer_ .

iters| 0.03

[=]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Importance for Objective Value

Figure 4: Optuna provides visualisation tools which can provide insights into the hyperparam-
eter tuning process, e.g. hyperparameter importances plots.

object detection, end-to-end grasp detection etc. are being studied to a great extend where
the objective is to obtain a model that learns to find suitable grasp poses for unseen objects
and arbitrary locations. While the learning-based models usually requires a vast amount of
training data and time to learn the grasp poses effectively, another approach is to train smaller
non-generic networks that are unique to objects to directly output grasp poses or to predict
other forms of outputs for example, object’s location in 2/ 3-dimensional space, and find the
grasp poses by post processing those outputs in combination with other vision methods. In
this research work, a grasping pipeline is developed where the grasping in divided to four main
steps of demonstration, augmentation, training and finally utilizing the outputs for a successful
grasping action. We have evaluated the combination of 4 different vision-based methods for
deriving the relative rotation of the object with respect to the reference/target frame alongside
an object detection module. The most robust grasping pipeline was obtained using keypoint-
renn network where the trained model is able to predict both object’s location efficiently and
several keypoints on the image that are used to calculate the relative rotation.

4.4.2 Description of work performed so far

The details of this work are presented in a draft article that is currently being prepared which is
listed below, and can be found in Appendix [F;

* A. Mehman Sefat, A. Angleraud, E. Rahtu and R. Pieters “SingleDemoGrasp: Grasping
from a single image demonstration”, in preparation, 2021.

In this work, a grasping pipeline is developed that utilizes keypoint-rcnn which is a variant
of faster-rcnn to train a keypoint detector on a small augmented dataset which is generated by
applying common augmentation techniques on the user’s input images. During demonstration,
the user is asked to draw center of grasp and a straight line on the object which is acting as the

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 25

object’s grasping orientation for parallel grippers. By performing inference on the objects, the
planar 2D grasp poses will be translated to 3D space to to generate the final grasping motion.

4.4.3 Future work

The presented work demonstrates that the grasping pipeline can generate suitable data in order
to train a light-weight model and successfully grasp objects with a robot. Even though the
objects used are relevant for the agile production use case, a relatively small set of objects was
evaluated. Future work will include more objects and object with higher complexity shape. In
addition, current work considered objects to be on a planar surface, thereby reducing the object
model complexity to 3D (2D position and 1D orientation). In future an object model with higher
complexity will be considered enabling the grasping and manipulation of more complex shaped
objects.

5 Human robot interaction

5.1 Human-Robot Collaboration by Commands

5.1.1 Introduction and objectives

Collaborative robots (cobots) are at increasing rate being deployed in industrial environments,
sharing tasks and the work space with humans [38]]. Tasks can be individually configured in
a human-robot team setting, where the operator demonstrates task sequences and skills for the
robot, and the robot repeats them [28]]. This avoids having to go through a development phase,
considerably speeding up integration time. Cobots are crucial for this, as they are small, light-
weight and can be safely moved around by a human operator [23]].

However, this programming of tasks is typically targeted only for independent robot mo-
tions, and task execution usually does not include human-robot interaction or physical collab-
oration. This implies that programming is still done offline, while the robot and the tasks are
being prepared, and the actual execution phase is mostly autonomous execution of the robot.
While applications can be found [32} 21} 15]] that integrate coordinated actions (e.g., waiting for
human input or trigger), still this is pre-programmed and planned to happen at certain specified
occurrences. Coordination is thus planned in advance and both agents (i.e., human and robot)
act as decided by a fixed protocol. If and when problems occur, or when changes need to be
made in the collaboration, the work flow is disrupted and has to be restarted when problems get
fixed or when changes are implemented. This limitation affects the natural collaboration and
fluency between human and robot [19], as no spontaneous actions are allowed besides simply
halting the robot and the action plan. While exceptions exist (see e.g., [15], which takes into
account last-minute changes of task allocation), task plans are typically short, to avoid a large
task plan network that is complex to model and track.

To allow more natural and fluent human-robot interaction, we believe collaboration between
human and robot should be coordinated by the human, assisted by the robot and its knowledge
and reasoning capabilities. At any given time during the collaboration, the human worker should
be able to select suitable actions from the robot to assist the shared task. The robot verifies that
the action is suitable and possible, based on its current state of the world and capabilities. Such
knowledge is incorporated in a knowledge base that is updated at regular intervals by obser-
vations and human instructions. The selection of actions for the robot thus requires human

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 26

commands to allow for intuitive instructions. Speech and text-based commands are most suit-
able as, similar to human-human communication [31]], semantics can be included.

In this work, we present the developments to allow human coordination in shared human-
robot collaborative tasks. The main contributions are:

* A knowledge-based system architecture that supports reasoning, planning and knowledge
integration

» Shared task coordination by human commands, either by a graphical interface or by
speech

* Industrially relevant use case scenarios that evaluate the approach

5.1.2 Description of work performed so far

The details of this work are found in the corresponding publication that is listed below, and can
be found in Appendix

* [4] A. Angleraud, A. Mehman Sefat, M. Netzev and R. Pieters “Coordinating Shared
Tasks in Human-Robot Collaboration by Commands”, Frontiers in Robotics and Al, 8,
2021, DOI:10.3389/frobt.2021.734548.

In this work we explored the utilization of commands to coordinate a shared task between a
human and a robot, in a shared work space. Based on a known set of higher-level actions (e.g.,
pick-and-placement, hand-over, kitting) and the commands that trigger them, both a speech-
based and graphical command-based interface are developed to investigate its use. While
speech-based interaction might be more intuitive for coordination, in industrial settings back-
ground sounds and noise might hinder its capabilities. The graphical command-based interface
circumvents this, while still demonstrating the capabilities of coordination. The developed ar-
chitecture follows a knowledge-based approach, where the actions available to the robot are
checked at runtime whether they suit the task and the current state of the world. Experimen-
tal results on industrially relevant assembly, kitting and hand-over tasks in a laboratory set-
ting demonstrate that graphical command-based and speech-based coordination with high-level
commands is effective for collaboration between a human and a robot. Evaluation took into
account metrics that assess the collaboration fluency between human and robot, such as hu-
man and robot idle time (H-IDL and R-IDL), functional delay (F-DEL) and concurrent activity
(C-ACT).

5.1.3 Future work

Future work will combine computer vision and speech recognition for collaborative tasks, en-
abling human-robot collaboration that is more descriptive. For example, a human operator
could command the robot to hand over a tool with a red handle from a table with multiple col-
ored tools. The tools required for this (speech recognition and object detection) are taken from
the OpenDR toolkit and will be tailored to the agile production use case.

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 27

6 Conclusions

This document presented the work performed on WPS5. After a short introduction on the work
done on the individual tasks, the document provided a detailed overview of the individual tasks,
as detailed below.

Chapter 2] presented the status of the work performed for Task 5.1-Deep Planning. AU pre-
sented an end-to-end planner trained with DRL for local replanning in agricultural use-case. An
agricultural simulation environment has been developed in Webots. The end-to-end planning
algorithm is trained and tested in comprehensive simulations. The guidance of multiple UGV's
is also demonstrated with a single UAV deployed with the end-to-end planner. The method
is also deployed in real-world indoor environment successfully. The end-to-end planner out-
performs a baseline implementation based on the artificial potential field method, which has a
lower success rate, especially in cluttered obstacle settings. This shows that AgroRL has learned
to make better long-term decisions. The importance of a high-level reward in DRL training is
also verified by providing a reward for successfully finishing an episode to the agent where the
agent shows an 18% higher success rate. One downside of the method is that it is not sufficient
to deploy continuously on an onboard computer, such as NVIDIA Jetson TX2. So, the method
is implemented discretely where a new position reference is provided once in a while. To de-
crease computational complexity, a VAE-based representation of the depth image is utilized in
training. However, the performance cannot match the proposed method.

Chapter [3|detailed the status of the work performed for Task 5.2-Deep Navigation. ALU-FR
introduced a novel approach for mobile manipulation, which allows to very easily define and
execute novel mobile manipulation tasks. The approach combines reinforcement learning with
inverse kinematics to decompose the long horizon problem and introduces a novel, dense reward
for training. The tool has been successfully integrated into the OpenDR toolkit. This work is
currently being extended to cluttered and human-centered environments as well as to dynamic
obstacles. We furthermore developed an approach to audio-visual navigation that increases the
complexity of the task and improves generalization to unheard sounds by a large margin.

Chapter [] highlighted the work performed for Task 5.3-Deep Action and Control. First,
TUD introduced the work performed on model-based latent planning. If an extension of the
proposed method can achieve sufficient performance with manipulators, it is intended to be
added to the toolkit. Else, TUD will focus on more promising research directions. Second,
TUD presented a method for learning a quadcopter inclined landing policy in simulation that
directly transferred to the real world. Valuable insights on sim2real transfer of quadcopter poli-
cies can be drawn from this research that could prove valuable for the quadcopters used in the
agricultural use-case. TUD presents the development of the EAGERX toolkit that will bridge
the gap between OpenAl Gym (the standard evaluation tool for reinforcement learning) and
robotics. The toolkit facilitates the creation of complex Gym environments for robot control
tasks by exploiting reactive programming tools and a relying on composition, rather than in-
heritance. Development of this toolkit will continue as well as evaluation of the toolkit. Also,
TUD developed a hyperparameter tuning tool for which a holistic approach was chosen in or-
der to be compatible with all learner classes from the OpenDR toolkit. This tool integrates the
functionalities of the Optuna [3] hyperparameter tuning framework in the OpenDR toolkit. The
tool will be evaluated on a practical problem in order to validate its usefulness. TAU intro-
duced a grasping pipeline that generates the required training data from a single object image
demonstration and utilizes this data to learn and detect suitable grasp poses from a single image
observation. The success of the method is demonstrated by real grasping experiments with high

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 28

grasp success rate (>90%).

Finally, Chapter [5 highlighted the work performed for Task 5.4—Human Robot Interaction.
The chapter covered the following topics. TAU developed a collaborative scenario between
human and robot, which is inspired by the Agile Production use case. Commands are utilized
as interaction modality to coordinate the collaboration. Both graphical commands (GUI) and
speech are utilized with contributions of WP3 (speech recognition). The results demonstrate its
use with respect to metrics that are typical in agile production, i.e., human and robot idle time
(H-IDL and R-IDL), concurrent activity (C-ACT) and functional delay (F-DEL).

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 29

References

[1] PyQtGraph: Scientific Graphics and GUI Library for Python. https://www.pyqtgraph.
org/. Accessed: 2021-11-29.

[2] ReactiveX: An API for asynchronous programming with observable streams. http://
reactivex.io/. Accessed: 2021-11-29.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hy-
perparameter optimization framework. In Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, pages 2623-2631, 2019.

[4] A. Angleraud, A. Mehman Sefat, M. Netzev, and R. Pieters. Coordinating shared tasks in
human-robot collaboration by commands. Frontiers in Robotics and Al, 8:332, 2021.

[5] J. A. Bagnell, E. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert, M. Kazemi, M. Klingensmith,
J. Libby, T. Y. Liu, N. Pollard, et al. An integrated system for autonomous robotics manip-
ulation. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2955-2962. IEEE, 2012.

[6] J. Bergstra, D. Yamins, D. D. Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in
science conference, volume 13, page 20. Citeseer, 2013.

[7] K. Blomqvist, M. Breyer, A. Cramariuc, J. Forster, M. Grinvald, F. Tschopp, J. J. Chung,
L. Ott, J. Nieto, and R. Siegwart. Go fetch: Mobile manipulation in unstructured environ-
ments. arXiv preprint arXiv:2004.00899, 2020.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[9] F. Burget, A. Hornung, and M. Bennewitz. Whole-body motion planning for manipula-
tion of articulated objects. IEEE International Conference on Robotics and Automation
(ICRA), pages 16561662, 2013.

[10] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva, S. Song, A. Zeng,
and Y. Zhang. Matterport3d: Learning from rgb-d data in indoor environments. In
2017 International Conference on 3D Vision (3DV), pages 667-676. IEEE, 2017. Mat-
terport3D dataset licence available at: http://kaldir.vc.in.tum.de/matterport/
MP_TOS . pdfl

[11] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation
using goal-oriented semantic exploration. Advances in Neural Information Processing
Systems (NeurlPS), 33, 2020.

[12] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and
K. Grauman. Soundspaces: Audio-visual navigation in 3d environments. In European
Conference on Computer Vision, pages 17-36. Springer, 2020. Sound dataset licence
available at: https://github.com/facebookresearch/sound-spaces/blob/main/
LICENSE.

OpenDR No. 871449

https://www.pyqtgraph.org/
https://www.pyqtgraph.org/
http://reactivex.io/
http://reactivex.io/
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
https://github.com/facebookresearch/sound-spaces/blob/main/LICENSE
https://github.com/facebookresearch/sound-spaces/blob/main/LICENSE

D5.2: Second report on deep robot action and decision making 30

[13] C. Chen, S. Majumder, Z. Al-Halah, R. Gao, S. K. Ramakrishnan, and K. Grauman. Learn-
ing to set waypoints for audio-visual navigation. In International Conference on Learning
Representations, 2020.

[14] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016-2021.

[15] K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino. A hierarchical architecture
for human-robot cooperation processes. IEEE Transactions on Robotics, 37(2):567-586,
2021.

[16] M. Fortin, P. Voss, C. Lord, M. Lassonde, J. Pruessner, D. Saint-Amour, C. Rainville, and
F. Lepore. Wayfinding in the blind: larger hippocampal volume and supranormal spatial
navigation. Brain, 131(11):2995-3005, 2008.

[17] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and
planning for visual navigation. In IEEE Conference Computer Vision and Pattern Recog-
nition, pages 2616-2625, 2017.

[18] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and
Y. Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

[19] G. Hoffman. Evaluating fluency in human—-robot collaboration. IEEE Transactions on
Human-Machine Systems, 49(3):209-218, 2019.

[20] D. Honerkamp, T. Welschehold, and A. Valada. Learning kinematic feasibility for mo-
bile manipulation through deep reinforcement learning. IEEE Robotics and Automation
Letters, 6(4):6289-6296, 2021.

[21] L. Johannsmeier and S. Haddadin. A hierarchical human-robot interaction-planning
framework for task allocation in collaborative industrial assembly processes. [EEE
Robotics and Automation Letters, 2(1):41-48, 2017.

[22] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

[23] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149-2154. IEEE, 2004.

[24] J. E. Kooi and R. Babuska. Inclined quadrotor landing using deep reinforcement learning.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

[25] S. Kumar, C. Savur, and F. Sahin. Survey of human-robot collaboration in industrial
settings: Awareness, intelligence, and compliance. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 51(1):280-297, 2021.

[26] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research
platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

OpenDR No. 871449

http://pybullet.org
https://github.com/hill-a/stable-baselines

D5.2: Second report on deep robot action and decision making 31

[27] O.Michel. Cyberbotics Itd. webots™: professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1):5, 2004.

[28] U. E. Ogenyi, J. Liu, C. Yang, Z. Ju, and H. Liu. Physical human-robot collaboration:
Robotic systems, learning methods, collaborative strategies, sensors, and actuators. /[EEE
transactions on cybernetics, 51(4):1888—-1901, 2021.

[29] F. Paus, P. Kaiser, N. Vahrenkamp, and T. Asfour. A combined approach for robot place-
ment and coverage path planning for mobile manipulation. International Conference on
Intelligent Robots and Systems, 2017.

[30] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable base-
lines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[31] A.Rocciand L. d. Saussure. Verbal communication. De Gruyter, 2016.

[32] B. Sadrfaridpour and Y. Wang. Collaborative assembly in hybrid manufacturing cells:
an integrated framework for human-robot interaction. /IEEE Transactions on Automation
Science and Engineering, 15(3):1178-1192, 2017.

[33] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu,
V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied
Al Research. In International Conference on Computer Vision, 2019. HabitatLab li-
cence available at: https://github.com/facebookresearch/habitat-lab/blob/
v0.1.6/LICENSE.

[34] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet, R. Diankov, G. Gal-
lagher, G. Hollinger, J. Kuffner, and M. V. Weghe. Herb: a home exploring robotic butler.
Autonomous Robots, 28(1):5, 2010.

[35] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal,
C. Ren, S. Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv
preprint arXiv:1906.05797, 2019. Replica dataset licence available at: https://github.
com/facebookresearch/Replica-Dataset/blob/main/LICENSE.

[36] J. Stiickler, M. Schwarz, and S. Behnke. Mobile manipulation, tool use, and intuitive
interaction for cognitive service robot cosero. Frontiers in Robotics and Al, 3:58, 2016.

[37] B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska. Deepkoco: Efficient latent plan-
ning with a task-relevant koopman representation. I[EEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021.

[38] V. Villani, F. Pini, F. Leali, and C. Secchi. Survey on human-robot collaboration in in-
dustrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55:248-266,
2018.

[39] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang,
P. Abbeel, and J. Ba. Benchmarking model-based reinforcement learning. arXiv preprint
arXiv:1907.02057, 2019.

[40] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. Dd-
ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In International
Conference on Learning Representations, 2019.

OpenDR No. 871449

https://github.com/DLR-RM/stable-baselines3
https://github.com/facebookresearch/habitat-lab/blob/v0.1.6/LICENSE
https://github.com/facebookresearch/habitat-lab/blob/v0.1.6/LICENSE
https://github.com/facebookresearch/Replica-Dataset/blob/main/LICENSE
https://github.com/facebookresearch/Replica-Dataset/blob/main/LICENSE

D5.2: Second report on deep robot action and decision making

gy —m— e g

32/94

DeepKoCo: Efficient latent planning with a task-relevant Koopman
representation

Bas van der Heijdenl, Laura Ferranti!, Jens Kober!, Robert Babuskal

Abstract— This paper presents DeepKoCo, a novel model-
based agent that learns a latent Koopman representation from
images. This representation allows DeepKoCo to plan efficiently
using linear control methods, such as linear model predictive
control. Compared to traditional agents, DeepKoCo learns task-
relevant dynamics, thanks to the use of a tailored lossy autoen-
coder network that allows DeepKoCo to learn latent dynamics
that reconstruct and predict only observed costs, rather than all
observed dynamics. As our results show, DeepKoCo achieves a
similar final performance as traditional model-free methods on
complex control tasks, while being considerably more robust to
distractor dynamics, making the proposed agent more amenable
for real-life applications.

Index Terms— Model-based reinforcement learning, Koop-
man theory, model-predictive control

I. INTRODUCTION

From self-driving cars to vision-based robotic manipu-
lation, emerging technologies are characterized by visual
measurements of strongly nonlinear physical systems. Unlike
in highly controlled lab environments where any measured
change is likely relevant, cameras in real-world settings are
notorious for mainly capturing task-irrelevant information,
such as, the movement of other robots outside of a manipula-
tor’s workspace or cloud movements captured by the cameras
of self-driving cars.

While Deep Reinforcement Learning (DRL) algorithms
can learn to perform various tasks using raw images, they
will require an enormous number of trials. Prior methods
mitigate this by encoding the raw images into a lower-
dimensional representation that allows for faster learning.
However, these methods can be easily distracted by irrelevant
dynamics [1]. This motivates data-driven methodologies that
learn low-dimensional latent dynamics that are task-relevant
and useful for control.

In the learning of latent dynamics for control, there is
a trade-off between having an accurate dynamic model
and one that is suitable for control. On one hand, latent
dynamic models based on neural networks (NN) can provide
accurate predictions over long horizons. On the other hand,
their inherent nonlinearity renders them incompatible with
efficient planning algorithms. Alternatively, one can choose
to approximate the latent dynamics with a more restricted
function approximation class to favor the use of efficient
planning algorithms. In this respect, a promising strategy

*This work was supported by the European Union’s H2020 project Open
Deep Learning Toolkit for Robotics (OpenDR) under grant agreement No
871449.

LCognitive Robotics at the Faculty of 3mE, Delft University of Technol-
ogy, The Netherlands. d. s.vanderheijden@tudelft.nl

978-1-6654-1714-3/21/$31.00 ©2021 IEEE

is represented by the Koopman framework [2]. Loosely
speaking, this framework allows one to map observations
with nonlinear dynamics to a latent space where the global
dynamics of the autonomous system are approximately linear
(Koopman representation). This enables the use of powerful
linear optimal control techniques in the latent space [2].

While the Koopman framework is promising, existing
methods have fundamental limitations that must be addressed
to fully exploit the benefits of this method for control appli-
cations. First, methods that identify Koopman representations
from data were designed for prediction and estimation. These
methods were later adapted for control. These adaptations,
however, lead to limiting assumptions on the underlying
dynamics, such as assuming the Koopman representation
to be linear in the states and actions [3], [4], [5], [6],
[7]. Second, these methods are task agnostic, that is, the
models represent all dynamics they observe, whether they
are relevant to the task or not. This focuses the majority of
their model capacity on potentially task-irrelevant dynamics.

Therefore, we introduce Deep Koopman Control (Deep-
KoCo), that is, a model-based agent that learns a latent Koop-
man representation from raw pixel images and achieves its
goal through planning in this latent space. The representation
is (i) robust to task-irrelevant dynamics and (ii) compatible
with efficient planning algorithms. We propose a lossy au-
toencoder network that reconstructs and predicts observed
costs, rather than all observed dynamics, which leads to
a representation that is task-relevant. The latent-dynamics
model can represent continuously differentiable nonlinear
systems and does not require knowledge of the underlying
environment dynamics or cost function. We demonstrate the
success of our approach on two continuous control tasks and
show that our method is more robust to irrelevant dynamics
than state-of-the-art approaches, that is, DeepMDP [8] and
Deep Bisimulation for Control (DBC) [1].

II. RELATED WORK

1) Koopman control: Koopman theory has been used
to control various nonlinear systems with linear control
techniques, both in simulation [2], [9], [6] and in real-world
robotic applications [4], [5]. Herein, [10], [2], [4] used a
linear quadratic regulator (LQR), while [9], [3], [5], [6], [7]
applied linear model predictive control (MPC). [9], [3], [5],
[7] used data-driven methods that were derived from the
Extended Dynamic Mode Decomposition (EDMD) [11] to
find the Koopman representation. In contrast, [4], [2], [10]
require prior knowledge of the system dynamics to hand-craft
parts of the lifting function. Similar to [6], we rely on deep

OpenDR

No. 871449

learning to derive the Koopman representation for control.
However, we do not assume the Koopman representation to
be (bi-)linear in the states and actions and we show how our
representation can be used to control systems that violate this
assumption. Compared to existing methods, we propose an
agent that learns the representation online in a reinforcement
learning setting using high-dimensional observations that
contain irrelevant dynamics.

2) Latent planning: Extensive work has been conducted
to learn latent dynamics from images and use them to plan
suitable actions [12], [13], [14]. [14] proposes a model-based
agent that uses NNs for the latent dynamics and cost model.
To find suitable action sequences, however, their method
requires a significant computational budget to evaluate many
candidate sequences. Alternatively, [12], [13] propose locally
linear dynamic models, which allowed them to efficiently
plan for actions using LQR. However, their cost function
was defined in the latent space and required observations
of the goal to be available. In contrast to our approach, all
aforementioned methods are trained towards full observation
reconstruction, which focuses the majority of their model
capacity on potentially task-irrelevant dynamics.

3) Relevant representation learning: [8], [1] filter task-
irrelevant dynamics by minimizing an auxiliary bisimulation
loss. Similar to our approach, they propose learning latent
dynamics and predicting costs. Their method, however, is
limited to minimizing a single-step prediction loss, while
we incorporate multi-step predictions. This optimizes our
model towards accurate long-term predictions. [15], [16] also
proposed training a dynamics model towards predicting the
future sum of costs given an action sequence. However, their
method focused on discrete control variables, while we focus
on continuous ones.

III. PRELIMINARIES

This section briefly introduces the Koopman framework
for autonomous and controlled nonlinear systems. A detailed
description can be found in [2]. This framework is funda-
mental to the design of our latent model and control strategy.

A. Koopman eigenfunctions for autonomous systems

Consider the following autonomous nonlinear system o =
F(o), where the observations o € R evolve according
to the smooth continuous-time dynamics F'(0). For such a
system, there exists a lifting function g(-) : RY — R™ that
maps the observations to a latent space where the dynamics
are linear, that is,

d
S9(0) =Ko glo), M)

where K is the infinitesimal operator generator of Koopman
operators K. In theory, K is infinite dimensional (i.e.,
n — 00), but a finite-dimensional matrix representation
can be obtained by restricting it to an invariant subspace.
Any set of eigenfunctions of the Koopman operator spans
such a subspace. Identifying these eigenfunctions [9], [17]
provides a set of intrinsic coordinates that enable global

169

33

linear representations of the underlying nonlinear system. A
Koopman eigenfunction satisfies

d
0(0) = Ko(0) = Aé(o). @

where A€ C is the continuous-time eigenvalue corresponding
to eigenfunction ¢(o).

B. Koopman eigenfunctions for controlled systems

For controlled nonlinear system with action a€ R™ and
smooth continuous-time dynamics 6 = F(o, a), we follow
the procedure in [2]. Given the eigenfunction ¢(0,a) aug-
mented with a for the controlled system, we can take its
time derivative and apply the chain rule with respect to o

and a, leading to

d .
£¢(07 a) = V0¢(07 a)F(O7 O,) + Va ¢(07 (1)(:17 (3)
—_——————
A¢(o,a)

where A is now the eigenvalue that corresponds to eigenfunc-
tion ¢(o, a). Since a can be chosen arbitrarily, we could set
it to zero and instead interpret each action as a parameter
of the Koopman eigenfunctions. Thus, for any given choice
of parameter a the standard relationship in (2) is recovered
in the presence of actions. A local approximation of the
Koopman representation is obtained when a is nonzero.

C. Identifying Koopman eigenfunctions from data

To facilitate eigenfunction identification with discrete data,
(3) can be discretized with a procedure similar to [17]. The
eigenvalues A\ = p + iw are used to parametrize block-
diagonal A= diag(J1, J@I . JIPl) ¢ R2P*2P For all P
pairs of complex eigenvalues, the discrete-time operator A
has a Jordan real block of the form

— sin(wAt)
cos(wAt) |’

__une |cos(wAtL)

N sin(wAt) @)

I, w)
with sampling time At¢. The “forward Euler method” pro-
vides a discrete approximation of the control matrix, so that
(3) can be discretized as

(011, A1) = Ap(or, k) + Va, POk, ar) arAL. (5)

By, Aay
Herein, the stacked vector ¢ = (sl!), @2 ..., ¢[F]) comprises
a set of P eigenfunctions with U/} € R? associated with
complex eigenvalue pair /\[f and Jordan block JU!. Subscript
k corresponds to discretized snapshots in time. If we view the
action increment Aay = ax4+1 — a in (5) as the controlled
input instead, we obtain a discrete control-affine Koopman
eigenfunction formulation with linear autonomous dynamics
for the original non-control-affine nonlinear system. In the
next section, we show that (5) plays a central role in our
latent model.

IV. LEARNING TASK-RELEVANT KOOPMAN
EIGENFUNCTIONS

For efficient planning in the latent space, we propose to
learn a latent dynamics model that uses Koopman eigenfunc-
tions as its latent state. This section describes this model and
how the Koopman eigenfunctions can be identified robustly,
that is, in a way that the identified eigenfunctions remain
unaffected by task-irrelevant dynamics that are expected to
contaminate the observations.

A. Koopman latent model

We propose a lossy autoencoder that builds on the deep
autoencoder in [17]. Compared to [17], our autoencoder
enables control. To train the latent model, we provide the
training objective that is to be minimized given a buffer
D that contains observed sequences {t;}7_, of a Markov
decision process with tuples ¢, = (o, ax, Aay, cx), where
c, are observed scalar costs. The proposed latent model is
illustrated in Fig. 1 with more details below on the individual
components of the architecture.

1) Encoder: The encoder ¢ is the approximate eigenfunc-
tion that maps an observation-action pair (ox,ay) to the
latent state si. The encoder ¢ is parametrized by a neural
network, defined as

(6)

2) Latent dynamics: The latent state s; approximates a
Koopman eigenfunction, so the autonomous time evolution
in the latent space is linear and dictated by A. Note here
that aj, is part of the augmented latent state and we view
the action increment Aay, as the controlled variable that is
determined by the policy. This leads to the dynamics model
in (7), which we derived from (5). The Koopman operator
A is parametrized by P complex conjugate eigenvalue pairs
)\[ﬁ. We do not assume the latent dynamics to be linear in
the control. Instead, the influence of Aay on the latent state
varies and depends on the partial derivative of the encoder
with respect to the action, i.e., the state-dependent matrix

B‘Pk = Vakﬁp(okyak)e R2Pxm_
-]

o 1]

0 I

3) Cost model: The environment contains a cost function
that produces a scalar cost observation ¢ at every time-step.
For planning in the latent space, we require a cost model
¢, as a function of the latent state. This cost approximates
the observed cost (i.e., ¢ ~ cr). We adopt a latent state-
dependent quadratic cost model to facilitate the use of fast
planning algorithms (Section V). The entries of C, € R1*27
are determined by a function 1) (sy) that is parametrized by a
neural network. The weights of ¢ are initially unknown and
must be learned together with the rest of the latent model.
We assume that the cost of applying action ay, is known a
priori and defined by matrix R. This leads to the cost model

®)

S = (p(Ok, ak).

Sk
ay

B‘Pl\

Si
k1 I A’] Aay,.

QK41

(7

Cr = ||Csk8}€||§ -+ aZRak.

170

34

4) Policy: The action increment Aay is the controlled
variable that is sampled from a probability distribution 7,
conditioned on the augmented latent state (i.e., Aaj ~
m(Aag|sk,ar)). Even though the model is deterministic,
we define the policy to be stochastic to allow for stochastic
exploration. The policy will be specified further in Section V.

)

5) Decoder: After learning the latent model we intend to
plan over it, which involves a multi-step prediction. Given
only the encoder (6), dynamics model (7), policy (9) and
the current (oy,ay)-pair, we would be limited to single-
step predictions of spy; at run-time, because multi-step
predictions si4; with ¢ > 1 would require knowledge of
future observations o4 to evaluate B, .. Therefore, to
make multi-step predictions, we introduce a decoder ¢
(parametrized by a NN) in (10) that uses predicted latent
states Si; to construct pseudo-observations Oy, that pro-
duce the same partial derivative as the true observation (i.e.,
Va0 (sk),ar) = Va,¢(0k,ar)). Future values ay.;
do not pose a problem, because they can be inferred from
the policy (9) and dynamics model (7).

Aak ~ W(Aak\sk, ak)

or = ¢ (sp). (10)

6) Image processor: When the observations are raw pixel
images py, not all relevant information can be inferred from
a single observation. To restore the Markov property, we pass
the last d consecutive pixel images through a convolutional
neural network in (11), stack the output into a single
vector, and consider that to be the observation oj instead.
In that case, the observed sequences consist of tuples t;, =

(Pks -y Ph—dt1, Ak, Ay,).

o = Qpr, -, Ph—d+1), (11)

B. Learning the latent model

Our latent model should have linear dynamics and be pre-
dictive of observed costs. These two high-level requirements
lead to the following three losses which are minimized during
training.

1) Linear dynamics: To ensure that the latent state is a
valid Koopman eigenfunction, we regularize the time evolu-
tion in the latent space to be linear by using the following
loss,

T-1
Linear loss: Elin = T Z ||g0(ok+1,ak+1) — sk+1||MSE’
k=0
(12)
where s;41 is obtained by rolling out a latent trajectory as
illustrated in Fig. 1.

2) Cost prediction: We want the latent representation to
contain all necessary information to solve the task. If we
would naively apply an autoencoder that predicts future
observations, we focus the majority of the model capacity
on potentially task-irrelevant dynamics contained in the ob-
servations. To learn a latent representation that only encodes
relevant information, we propose to use a lossy autoencoder

Op
Po > Q| —— So
Pa>| Q| aOﬁE [
Po>| Q| 'R l
Rollout &
A I = i Train Model |
. te—ar+2 || th—T+2 - ; g (1,0 (P] OU €k
(o] S %. A o
Sk — ! 124 Va,p —FE—>H kil 3(1:1) iiiiiiiiiiiii *Ai Noise
t—r+1 trt1
l : g A m C%
! Upr-1)
Aay 23S or B
m(Aax|sk, ax) ¥ p b, |80 1 Var? 25 MPC M,EH
Y . \% > Qprer)| P ®» Sk
[Cornsi 2 I
Latent Model = : a -
ak+1Rak+1 o i
T T g
DeepKoCo

k

Q1

Fig. 1: Latent Model The proposed network architecture of the latent model, consisting of the dynamic model, cost model,
and policy (depicted in green, purple, and red, respectively). Rollout A multi-step ahead prediction with the latent model.
Note that we only encode an observation at the first time-step (blue boxes), after which we remain in the latent space.
DeepKoCo The training procedure that corresponds to Algorithm 1.

that is predictive of current and future costs instead. Such a
representation would allow an agent to predict the cost evolu-
tion of various action sequences and choose the sequence that
minimizes the predicted cumulative cost, which is essentially
equivalent to solving the task. Because we only penalize
inaccurate cost predictions, the encoder is not incentivized to
encode task-irrelevant dynamics into the latent representation
as they are not predictive of the cost. This leads to the
task-relevant identification of the lifting function (. Cost
prediction accuracy is achieved by using the following two
losses,

Reconstruction loss: (13)

Lrecon = |lco — é0||MSE

T
- 1 .
Prediction loss: Lored = T Z llekw — érllyse (14
k=1
3) Training objective: We minimize the losses in (12),
(13), and (14), corresponding to linear dynamics regulariza-
tion and cost prediction, together with an L2-regularization
loss Lreg on the trainable variables (excluding neural network
biases). This leads to the following training objective,
min

..., [P

: ['lin + (03] (»Crecon + »Cpred) + a2['reg7
0,2

(15)
where 6 is the collection of all the trainable variables that
parametrize the encoder ¢, decoder <p'1, cost model 7, and
convolutional network € (in case of image observations).
Weights «q, ag are hyperparameters. The model is trained
using the Adam optimizer [18] with learning rate &, on
batches of B sequences {t;}7_, for E epochs.

V. DEEP KOOPMAN CONTROL

This section introduces the agent that uses the Koopman
latent model to find the action sequence that minimizes the
predicted cumulative cost. We use linear model-predictive
control (LMPC) to allow the agent to adapt its plan based
on new observations, meaning the agent re-plans at each step.
Re-planning at each time-step can be computationally costly.
In the following, we explain how to exploit and adapt our
latent model and cost model to formulate a sparse and convex
MPC problem that can be solved efficiently online.

The planning algorithm should achieve competitive
performance, while only using a limited amount of
computational resources. This motivates choosing Koopman
eigenfunctions as the latent state, because the autonomous
dynamics are linear. The dynamics are affine in the controlled
variable Aay, that is multiplied in the definition of the state
space by B, , which depends on the latent state. Similarly,
Cs, requires the evaluation of the nonlinear function ¢ (sg).
There exist methods that can be applied in this setting, such
as the State-Dependent Ricatti Equation (SDRE) method
[19]. While the SDRE requires less complexity compared
to sample-based nonlinear MPC (e.g. CEM [20]), it remains
computationally demanding as it also requires the derivative
of 1) with respect to sy, at every step of the planning horizon.

Our goal is to reduce the online complexity of our planning
strategy, while also dealing with input constraints. Hence,
we trade-off some prediction accuracy (due to the mismatch
between the latent model and the MPC prediction model) to
simplify the online planning strategy by using linear MPC.

171

35

We propose to evaluate the state-dependent matrices C's, and
B, at time-step k = 0 (obtained from our latent model) and
keep them both fixed for the rest of the LMPC horizon. This
assumes that the variation of B, and C, is limited over the
prediction horizon (compared to (7) and (8)). Nevertheless,
thanks to this simplification we can rely on LMPC for
planning that can be solved efficiently. Specifically, once we
evaluate sg, Cs,, and B, , the computational cost of solving
the MPC problem in the dense form [21] scales linearly
with the latent state dimension due to the diagonal structure
of A. As Section VI details, this simplification allows our
method to achieve competitive final performance, while only
requiring a single evaluation of the NNs €, ¢, and . This
significantly decreases the computational cost at run-time
compared to sample-based nonlinear MPC (e.g., CEM [20])
that would require many evaluations of the NNs at every
time-step. In contrast to LQR, LMPC can explicitly deal
with actuator saturation by incorporating constraints on a.
The proposed planning strategy based on LMPC is defined
as follows:

min
Aal0] [H—1]

H
Z ||Csysk]3 + a};Rak + Aa};}?Aak, (16)
k=1

Ser1| _ [N O] sk By,
o -] P
a™® < g;, < @™, for k = 1,...,H,

where H is the prediction horizon. Positive-definite matrix R
penalizes the use of Aay and is required to make the prob-
lem well-conditioned. Its use does introduce a discrepancy
between the approximate cost model (8) and the cumulative
cost ultimately minimized by the agent (16). Therefore, the
elements in R are kept as low as possible.

To align the representation learning objective (15) with the
linear MPC objective (16), we also fix the state-dependent
terms Cg, and B, at time-step k£ = 0 in the evaluation of
the cost prediction loss (14) and linear loss (12). Note that
this does not mean that Cs, and B, are constant in the
latent model (7), (8). The matrices remain state-dependent,
but their variation is limited over the sequence length 7.
In general, we choose the sequence length to be equal to
the prediction horizon. Hence, we learn a representation that
provides local linear models that are particularly accurate
around sy, in the direction of the (goal-directed) trajectories
gathered during training.

To gather a rich set of episodes to learn the Koopman latent
model, we add colored noise to the actions commanded by
the agent’s linear MPC policy, that is, ar+1 = ar+Aak+e€x.
This adds a stochastic exploration component to the policy.
We use an Ornstein-Uhlenbeck (OU) process to generate
the additive colored noise with decay rate A°. The variance
0% is linearly annealed from o2 — 0 over 1,..., N
episodes, that is, after N°* episodes the policy becomes
deterministic.

An overview of the proposed method is shown in Algo-
rithm 1. First, we initialize all model parameters. Then, we
construct the Koopman operator A with (4) and gather N

Algorithm 1: Deep Koopman Control (DeepKoCo)
Input: Model parameters: P, d

Policy parameters: ¢ = {2H ,

Noise parameters: \°", o,

R, R}

Optimization parameters: £ = {a, ag, G}
Output: Eigenvalues)\[i] nalP)
Trained networks ¢, !, 1, Q
1 0, M\ nitializeModel (P, R)
2 while not converged do
A+ GetKoopmanOperator()\[il] o lFl)

3
4 for episode | =1,...,N do
5 Po, .-, P1—d < ResetEnvironment()
[3 ag <+ 0
7 for time-step k =0,...,L do
8 oy, < ProcessImages(py, ..., Pk—d+1,0)
9 Sk, By,., Cs, < LatentModel(oy, ay, 6)
10 Aay, LMPC(Sk,ak,B<pk,Csk,A,C)
1 api1 < ap + Aag+ Noise(\, 02:Y)
12 Pr+1, Cr < ApplyAction(ay)
13 | D + DU CreateSequences(T, {t}£_)
w | oA

TrainModel(D, 0, \!}" ¢ B B)

episodes of experience. Each time-step, we process the image
observations with (11), evaluate the latent model (6), (7),
and (8), and use it to find Aa; with (16). Noise is added to
the action increment before it is applied to the environment.
We fill the experience buffer D with N episodes, split into
sequences of length 7', and train on them for F epochs with
(15). This is repeated until convergence.

VI. RESULTS

We evaluate DeepKoCo on two continuous control tasks,
namely OpenAI’s pendulum swing-up task and a manipulator
task. The manipulator task is similar to OpenAI’s reacher
task where the two joints of a two-link arm are torque
controlled and the Euclidean distance between the arm’s end-
point and a target must be minimized. However, we increase
the difficulty by allowing the target to move at a constant
angular velocity and radius around the arm’s center-joint.
Given that the angular velocity and radius vary randomly
over episodes, the manipulator must learn to track arbitrary
circular trajectories at different speeds. The dynamics for
the manipulator can be formulated as xy11 = F(xg) +
B(xk)ay, where x is the original nonlinear state. Such
dynamics do not necessarily admit a Koopman representation
that is (bi-)linear in the states and actions, as is often assumed
in literature [6], [4].

To investigate the effect of distractor dynamics, we test
each task in two different scenarios. In the first scenario,
only relevant dynamics are observed, while in the second one
we purposely contaminate the observations with distractor
dynamics. The agent is either provided with a concatenated
state observation containing the state measurements of both
the relevant system and distractors (while not knowing which

172

36

/ roe
£
. 3

1500

\ \ / - / ‘g 1000
® .

/ -7 0

200

400
episode

600 800 0 100 200 300 400

episode

500 600

DBC [l DeepkoCo [l DeepMDP

Fig. 2: Left Typical setups for the two tasks in a clean scenario (first row) and distractor scenario (second row). In all setups,
the center system is controlled by the agent. In the manipulator task, the moving target is a blue ball. Right Learning curves
when using state observations. The grid-location of each figure corresponds to the grid-location of each setup on the left.
The mean cumulative cost over the last 10 episodes (line) with one standard deviation (shaded area) over 5 random seed

runs are shown.

1500

BN\ s\ A

1000

500

cum. cost

200 400 600

episode

DBC

. DeepKoCo

1500

200

400 600
episode

800

[DeepvDP

Fig. 3: Learning curves when using images as observations in the pendulum task. The mean cumulative cost over the last 10
episodes (line) with one standard deviation (shaded area) over 5 random seed runs are shown. Left Clean scenario. Right

Distractor scenario.

states are the relevant ones) or image observations with
all systems in-frame (refer to Fig. 2 for the setup). The
state observation dimension from the clean to the distractor
scenario increases from 3 to 15 for the pendulum and from
10 to 50 for the manipulator. A video of the simulations
using DeepKoCo accompanies the paper [22].

1) Baselines: We compare with two baselines that both
combine model-free reinforcement learning with an auxiliary
bisimulation loss to be robust against task-irrelevant dynam-
ics: (i) Deep Bisimulation for Control (DBC) [1], and (ii)
DeepMDP [8]. In case of state observations, we replace their
convolutional encoder, with our fully connected encoder.

2) Hyperparameters: We use the same set of hyperparam-
eters throughout all experiments, except for the number of
complex eigenvalue pairs P, that is, P = 10 and P = 30 in
the swing-up and manipulator task, respectively to cope with
the complexity of the scenarios. As policy parameters, we use
H =15,R = 0.001, R = 0.01, A%V = 0.85,02"" = 0.85.
Initially, we fill the experience buffer D with N 90
episodes, split into sequences of length 7" = 15, and train

173

37

on them for £ = 100 epochs. Then, we continuously add
the sequences of N = 20 episodes to the buffer and train
on the complete buffer for £ = 3 epochs. As optimization
parameters, we use a; = 10,a; = 107, & = 0.001. In
case of image observations, we stack the last d = 3 images,
downsample them to 3 x 64 x 64 pixels before passing them
through the convolutional NN defined in [23]. The networks
o, ¢ 1 are 2-layered fully connected NNs with 90, 90,
and 70 units per layer, respectively. The layers use ReLU
activation and are followed by a linear layer. The number of
complex eigenvalue pairs P, planning horizon H, and action
increment cost R are the most important parameters to tune.

3) Clean scenario: Concerning the pendulum task, the
baselines converge more quickly to the final performance
compared to DeepKoCo, as the top-left graph of Fig. 2
shows. Nevertheless, we do consistently achieve a similar
final performance. The slower convergence can be explained
by the added noise, required for exploration, that is only fully
annealed after 400 episodes. We believe the convergence rate
can be significantly improved by performing a parameter

search together with a faster annealing rate, but we do not
expect to be able to match the baselines in this ideal scenario.
Note that, despite the apparent simplicity of the application
scenario, finding an accurate Koopman representation for
the pendulum system is challenging, because it exhibits a
continuous eigenvalue spectrum and has multiple (unstable)
fixed points [17]. Concerning the manipulator task, both
baselines were not able to solve the manipulator task with
a moving target as the top-right graph of Fig. 2 shows,
while they were able to learn in case the target was fixed
(results omitted due to space limitations). This shows that
learning to track arbitrary circular references is significantly
harder than regulating towards a fixed goal. Despite the
increased difficulty, DeepKoCo learns to track the moving
target. Finally, note that the manipulator task shows that the
proposed method can deal with a multi-dimensional action-
space and non-quadratic cost functions, that is, the Euclidean
norm (the square root of an inner product).

4) Distractor scenario: In the more realistic scenario,
both baselines fail to learn anything. In contrast, our ap-
proach is able to reach the same final performance as in the
clean scenario, in a comparable amount of episodes, as the
bottom row of Fig. 2 shows. This result can be explained
by noticing that our multi-step cost prediction (in our loss
function (14)) provides a stronger learning signal for the
agent to distinguish relevant from irrelevant dynamics. For
the manipulator task, there is a tracking error caused by the
trade-off of using fixed B, and C along the MPC prediction
horizon for efficiency. While our latent model presented in
Section IV supports state-dependent matrices, we decided to
keep them fixed in the control design for efficiency.

5) Image observations: Fig. 3 shows the results for the
pendulum task when images are used instead of state obser-
vations. In both clean and distractor scenarios, our approach
is able to reach a similar final performance compared to
using state observations. As expected, the baselines struggle
to learn in the distractor scenario. This supports our statement
that our approach learns a task-relevant Koopman represen-
tation from high-dimensional observations. We plan to test
the manipulator task with images both in simulation and in
real-world experiments.

VII. CONCLUSIONS AND FUTURE WORK

We presented a model-based agent that uses the Koopman
framework to learn a latent Koopman representation from
images. DeepKoCo can find Koopman representations that
(i) enable efficient linear control, (ii) are robust to distractor
dynamics. Thanks to these features, DeepKoCo outperforms
the baselines (two state-of-the-art model-free agents) in the
presence of distractions. As part of our future work, we
will extend our deterministic latent model with stochastic
components to deal with partial observability and aleatoric
uncertainty. Furthermore, we will extend our cost model to
deal with sparse rewards, as they are often easier to provide.

174

38

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

REFERENCES

A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine, “Learning
invariant representations for reinforcement learning without recon-
struction,” arXiv preprint arXiv:2006.10742, 2020.

E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery
of Koopman eigenfunctions for control,” in APS Division of Fluid
Dynamics Meeting Abstracts, ser. APS Meeting Abstracts, Nov. 2017,
p. M27.006.

H. Arbabi, M. Korda, and 1. Mezi¢, “A data-driven koopman model
predictive control framework for nonlinear partial differential equa-
tions,” IEEE Conference on Decision and Control (CDC), pp. 6409—
6414, 2018.

G. Mamakoukas, M. Castano, X. Tan, and T. Murphey, “Local
koopman operators for data-driven control of robotic systems,” in
Proceedings of Robotics: Science and Systems (RSS), 2019.

D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling
and control of soft robots using the koopman operator and model
predictive control,” in Proceedings of Robotics: Science and Systems
(RSS), 2019.

Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba, “Learning compo-
sitional koopman operators for model-based control,” in International
Conference on Learning Representations (ICLR), 2020.

M. Korda and I. Mezic, “Optimal construction of koopman eigen-
functions for prediction and control,” IEEE Transactions on Automatic
Control, 2020.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare,
“DeepMDP: Learning continuous latent space models for representa-
tion learning,” 36th International Conference on Machine Learning
(ICML), pp. 3802-3826, 2019.

M. Korda and I. Mezi¢, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Auto-
matica, vol. 93, pp. 149-160, 2018.

S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PloS one, vol. 11, no. 2, 2016.

M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A Data—Driven
Approximation of the Koopman Operator: Extending Dynamic Mode
Decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307-1346, 2015.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Advances in neural information processing systems
(NIPS), 2015, pp. 2746-2754.

E. Banijamali, R. Shu, H. Bui, A. Ghodsi et al., “Robust locally-linear
controllable embedding,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2018, pp. 1751-1759.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,”
in International Conference on Machine Learning (ICML). PMLR,
2019, pp. 2555-2565.

J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 6118—
6128.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver, “Mastering Atari, Go, Chess and Shogi by Planning with
a Learned Model,” arXiv preprint arXiv:1911.08265, pp. 1-21, 2019.
B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature Communications,
vol. 9, no. 1, pp. 1-10, dec 2018.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

I. Chang and J. Bentsman, “Constrained discrete-time state-dependent
riccati equation technique: A model predictive control approach,” in
52nd IEEE Conference on Decision and Control (CDC). 1EEE, 2013,
pp. 5125-5130.

1. Szita and A. Lorincz, “Learning tetris using the noisy cross-entropy
method,” Neural computation, vol. 18, no. 12, pp. 2936-2941, 2006.
J. M. Maciejowski, Predictive control: with constraints. Pearson
education, 2002.

B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska, “Supple-
mentary video material of DeepKoCo simulations,” https://youtu.be/
7510uQyHBmQ, July 2021.

D. Ha and J. Schmidhuber,
arXiv:1803.10122, 2018.

“World Models,” arXiv preprint

D5.2: Second report on deep robot action and decision making

39494

OpenDR

No. 871449

D5.2: Second report on deep robot action and decision making

gy —m— e g

40194

Inclined Quadrotor Landing using Deep Reinforcement Learning

Jacob E. Kooi! and Robert Babuska?

Abstract— Landing a quadrotor on an inclined surface is a
challenging maneuver. The final state of any inclined landing
trajectory is not an equilibrium, which precludes the use of most
conventional control methods. We propose a deep reinforcement
learning approach to design an autonomous landing controller
for inclined surfaces. Using the proximal policy optimization
(PPO) algorithm with sparse rewards and a tailored curriculum
learning approach, an inclined landing policy can be trained in
simulation in less than 90 minutes on a standard laptop. The
policy then directly runs on a real Crazyflie 2.1 quadrotor and
successfully performs real inclined landings in a flying arena.
A single policy evaluation takes approximately 2.5 ms, which
makes it suitable for a future embedded implementation on the
quadrotor.

I. INTRODUCTION

Modern quadrotors are agile and can perform complex
tasks in difficult-to-reach places. Quadrotor flight and ma-
neuvers are commonly controlled by proportional integral
derivative (PID) control or model predictive control (MPC).
Although these methods are adequate for set-point or tra-
jectory tracking, they fall short when it comes to more
complicated maneuvers that exceed the linearization range
or require long prediction horizons. One such maneuver is
the landing on an inclined surface, which is relevant for
applications like delivery, maintenance, or surveillance. To
facilitate a safe inclined landing, the final attitude of the
quadrotor must match the slope of the landing platform. The
final state of the landing trajectory is not an equilibrium,
which presents a challenge for the control design. Owing
to the under-actuated nature of the system, the landing
trajectory can be long and complex, with an initial motion
away from the landing location. This complicates the use of
standard control methods like MPC with a fixed prediction
horizon and quadratic cost function.

Recent advances in deep reinforcement learning (DRL)
with continuous action spaces have made this approach
suitable also for quadrotor control [1], [2], [3], [4], including
landing controllers [5], [6], [7], [8], [9], [10], [11]. However,
no results have yet been reported for inclined landing. In
this paper, we develop a DRL approach to the inclined
landing problem and validate it in simulations and real
lab experiments with the Crazyflie 2.1 Nano-UAV. To the
best of our knowledge, this is the first deep-learning-based

1Jacob E. Kooi is with the Department of Cognitive Robotics and Delft
Center for Systems and Control, Delft University of Technology, 2628 CD
Delft, The Netherlands jacobkooi92@gmail.com

2Robert Babuska with the Department of Cognitive Robotics, Delft
University of Technology, 2628 CD Delft, The Netherlands and with the
Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical
University in Prague, Czech Republic r .babuska@tudelft.nl

978-1-6654-1714-3/21/$31.00 ©2021 IEEE

controller for inclined landing applied to a real quadcopter.
More specifically, our contributions are:

o We develop two fast Gym-based [12] simulation envi-
ronments for the Crazyflie 2.1 Nano-UAV.? One three-
dimensional environment can be used with any compati-
ble DRL algorithm to train set-point tracking. The other
two-dimensional environment, restricted to the vertical
xz-plane, can be used with an on-policy algorithm
to train the inclined landing. The resulting policies
adequately transfer to the real Crazyflie.

o Building upon the state-of-the-art model-free proximal
policy optimization (PPO) algorithm [13], we propose a
powerful curriculum learning [14] approach to facilitate
convergence when using sparse rewards, without the
need for applying a multi-goal setting like in hindsight
experience replay [15] or iterated supervised learning
[16].

o We test the trained policy network in simulation and
then deploy it to the real Crazyflie quadrotor to demon-
strate the actual inclined landing in an indoor flying

arena.4

The remainder of the paper is structured as follows. We
first give an overview of the related work in Section II. The
dynamic quadrotor model used for simulation and training
is described in Section III. Next, Section IV presents the
DRL simulation framework that is used to train inclined
landing and set-point tracking. Section V describes the
simulation and lab setup and presents the experimental
results. Section VI contains a discussion of the results and
in Section VII, the conclusions and limitations of this work
are given, along with proposals for future work.

II. RELATED WORK

Deep reinforcement learning methods have been applied to
a variety of quadrotor control problems, including hovering
[3], attitude control [2], set-point tracking, and disturbance
recovery [1], [4]. Specifically for landing, a deep neural
network was employed to learn higher-order interactions to
stabilize the near-ground behavior of a nonlinear quadrotor
controller [5]. A deep Q-learning network (DQN) was used
to detect a marker symbol and perform a landing by using
a downward-facing low-resolution camera [7], [8], [9]. The
work in [8] considers platform inclination, but only in the
context of more involved visual recognition, while the land-
ing is still horizontal. Least-squares policy iteration (LSPI)
was employed to autonomously land on a marker [11] and the

3https://github.com/Jacobkooi/InclinedDroneLander. git
“https://youtu.be/pJ6vVsOBsB8

2338

OpenDR

No. 871449

deep deterministic policy gradient (DDPG) algorithm [17]
was used to navigate a descending quadrotor to land on a
moving platform [10]. Finally, the work in [6] involved a
convolutional neural network to estimate the heading angle
to aid UAV landing in the case of sensor failure. However,
none of the approaches considered inclined landing and none
of the methods developed can be directly applied to this
problem.

Inclined landing has been the topic of several works
outside the deep learning control literature. A nonlinear
hybrid controller was proposed in [18]. A trajectory-tracking
controller first guides the quadrotor above the landing plat-
form and then switches to an attitude-tracking controller
to ensure that the attitude of the quadrotor adjusts to the
slope of the landing platform upon touchdown. This is an ad
hoc local strategy, incapable of generating optimal landing
trajectories from arbitrary initial conditions. Besides, no real-
time control experiments have been reported in this paper.
The method proposed in [19] features a nonlinear MPC to
land a quadrotor on a moving inclined surface. Real-time
experimental results were reported, showing a successful
landing. The limitations of MPC are its computational com-
plexity and the difficulty of parameter tuning, especially of
the prediction horizon, which needs to be long for some of
the landing trajectories, making the method unsuitable for
embedded implementation on the quadrotor. The approach
developed in [20] relies on splitting up the problem in
the generation of dynamically feasible trajectories and their
subsequent trajectory tracking. Perching on slopes of up to
90 degrees has been demonstrated in lab experiments. To
keep the problem tractable, the authors break the desired
trajectory down into segments with a maximum duration of
one second. The overall approach is more complex than the
nonlinear feedback policy approach pursued in this paper.

III. SIMULATION MODEL

The dynamic model of the Crazyflie 2.1 Nano-UAV is
formed by the equations of motion (EOM). We divide them
into the Newton-Euler equations, which govern the axial
accelerations, and an approximation of the body attitude
control loops. The command input vector u to the Crazyflie’s
onboard controller is defined as

T

u= |0, ¢)c 0 1&0 6]

Here, O, is the commanded pulse-width modulation (PWM)
signal representing the total thrust, ¢. and 6. are the com-
manded roll and pitch angles, respectively, and Y, is the
commanded yaw rate [21]. These inputs are bounded by

A. Newton-Euler Equations

The quadrotor is modeled as a rigid body, with the axial
accelerations in the inertial frame [z y z]T

mi 0 0
mij| =R O|+F,|+] O 3)
mz Fy —mg

with m the quadrotor’s mass, R the rotation matrix from the
body frame to the inertial frame, F; the total thrust force and
F, the drag force. The rotation matrix corresponding to the
coordinate frame representation in Fig. 1 is

cpcl) — spsisd —copsyy csl + cOspsy
R = [cOsy) + cipspsd copchd sipsO + cpchso 4)
—cpst s¢ coclh

where c is a cosine, s is a sine, and ¢, 6 and v are the roll,
pitch and yaw angles, respectively.

Fig. 1. The quadrotor coordinate system used throughout this paper.
Subscripts B and I represent the body and inertial frame, respectively, and
F; is the thrust due to rotor i. Adopted from [22].

The relation between the commanded PWM O, in (1)
and F; in (3) is modelled by using the discrete-time transfer
function found in [23] for an individual motor i:

Fi(z) 7.2345374- 10-8
Oci(2) 1—10.969540421

(500H 2). 5)
Since the Crazyflie’s onboard controller only takes a single
PWM signal for all four motors, we assume that F; ~ 4F;
with ©, =~ O, ;. Multiplying (5) by four and converting it
to continuous-time gives

Jo]

|

where €2 is an unmeasured state used for simulation purposes
only. The drag force F, in (3) is expressed as [24]

Q
F

—15.467
1.425-10~4

1

2.804-1077 ©)

}@c

F, = K,wsv (7

with wy; the sum of the rotor velocities, v the body-frame
velocity vector and K, a diagonal matrix of drag constants

- [10000 —30° —30° _2000/8}T7 e.stimated in [23.]. Bec.ause wy 18 npt knov.vr.l during simqla-
T (2) tion, we approximate it from F} with additional conversion
Umax = [60000 30° 30° 2000/5] . formula’s given in [23].
2339

41

B. Body Attitude Control Loops

The body attitude rates are modelled by equations that
approximate the dynamics of the attitude control loops [25]:

.1
¢=a(k¢¢c—¢),

é = i(k@gc - 0)7 (8)
T

w:¢c-

Here 74, 79 and kg, ko are the time and gain constants
for roll and pitch, respectively. The yaw rate is assumed
to instantaneously track the desired yaw rate, which is a
reasonable assumption since the yaw has no effect on the
quadrotor’s position [25]. Because the closed-loop dynamics
are unknown, the parameters kg, kg, 79 and 74 need to be
identified. Given the quadrotor’s symmetry, kg and kg as
well as 79 and 74 are assumed equal. These parameters are
estimated by fitting the data gathered by a motion-capture
system to the equations (8). We conducted 20 experiments
using square and sine waves ranging from zero to thirty
degrees, which gave an average fit of 85.3% using Matlab’s
nlgreyest function, with the resulting parameters k, =
ko =1.1094 and 74 = 79 = 0.1838s.

To simulate the quadrotor, the model equations (3) and (8)
are integrated by using the fourth-order Runge Kutta (RK4)
method. The step size is fixed and equal to the sampling
period Ts = 0.02s.

IV. TRAINING DEEP REINFORCEMENT LEARNING
POLICIES

To train the inclined landing, the quadrotor model of
Section III is used as a simulation environment for model-
free DRL. Additionally, to navigate the quadrotor, we train
set-point tracking in the same fashion. Both policy networks
map quadrotor states to the desired control input in (1), which
makes them directly applicable to the real Crazyflie.

A. Preliminaries

The learning controller (agent) interacts with the model
(environment) through trials. The environment’s state space
is denoted by S and a specific value of the state at time
step k by si. The agent applies an action a € A and
subsequently receives a reward r; € R , after which it
observes the next state sii;. The action aj is chosen by
following a stochastic policy 7(als) or a deterministic
policy px(s). This policy can be optimized in many differ-
ent ways. Most techniques maximize the discounted return
n(ng) =E; [ZtT:O (s, ax)], with 7 a trajectory following
the policy 7y and v the discount factor.

B. Set-Point Tracking

We first train a three-dimensional set-point tracking policy
network to empirically check the simulation-to-reality perfor-
mance of the DRL algorithms and to fly to a desired starting

position for inclined landing. For this task, the states and
actions are defined as follows:
T
534 = [m Yy 2 Up Uy VU (0 0])
T
azd = [@(’ ¢c 90]

Here, v is the velocity in the inertial frame. Note that the yaw
angle is kept constant at zero degrees and can thus be omitted
throughout all our experiments. For set-point tracking, we
use the following reward function:

€))

2
.6

——— (10
max(ep, 0.001) (19)

T = —ep — 0.2e, — 0.1eg 9 — 0.1
where e, e, and ey ¢ are Euclidean distance errors of the
position, velocity, and orientation, respectively, with respect
to the goal state. The term ai}e is the sum of the squared
roll and pitch actions (normalized between 0 and 1). It is
scaled by the reciprocal of e, to minimize oscillations near
the goal position.

The policy network is a fully connected neural network
with two hidden layers, with 64 neurons each, and the
tanh activation function everywhere except for the output
layer which has a linear activation function. The final output
is subsequently clipped between —1 and 1. We use the
PPO algorithm [13] to train the set-point tracking network.
Other state-of-the-art DRL algorithms like twin delayed
deep deterministic policy gradient (TD3) [26] and soft actor
critic (SAC) [27] converged successfully as well, but PPO
was superior in terms of training time and final policy
performance.

C. Inclined Landing

To keep the state dimensions small and the DRL problem
tractable, the inclined landing is trained in the xz-plane,
representing the three-dimensional model restricted to a two-
dimensional plane. The states and actions used are :

T

)

SQd:[x Z Uy U, 9}

(11
a2q4 = [66 QC]T

For the sake of brevity, in the sequel, we refer to suq
and agq by s and a, respectively. Because the quadrotor is
under-actuated, an initial swinging motion away from the
landing location is required for some initial conditions. This
characteristic is incompatible with the bias of a Euclidean
distance based reward like the one in (10) generates. The
reward function used for the inclined landing is therefore a
sparse reward defined as follows:

0 if s, € Sg
_ if
D (12)
-2 if s €8
—1 otherwise.

Here S; = {s | |s; — 8q,i| < 04, Vi} is the set of goal
states, defined as a hyperbox around the landing attitude. The
goal threshold vector ¢, defines the desired landing tolerance
around the goal state s, ; and is set by the user. The landing

2340

42

platform itself is an obstacle associated with a set of obstacle
states S, and a penalty (3, and S represents the set of states
close to the state space boundaries.

The use of a sparse reward requires extensive exploration
to receive a non-negative reward and often leads to prolonged
or unsuccessful training. We introduce the following curricu-
lum learning [14] procedure to speed up the training and
achieve convergence:

o The training starts without a landing platform and with
a horizontal goal state. Only once the quadrotor reliably
reaches the horizontal goal, we begin slightly tilting the
goal position after each episode. Finally, the landing
platform is introduced into the environment, see Fig. 2.
We initialize simulations near the goal state and with
each episode expand the set of initial positions. This
eliminates the need for exploration by letting the non-
negative rewards propagate throughout the value net-
work at the beginning of training.

We start with a large goal hyperbox S, and as the
training progresses, the hyperbox is gradually reduced
to its desired size.

This learning curriculum requires an on-policy learning
algorithm, such as PPO. Off-policy replay buffers would
inevitably contain samples representing goals that are no
longer relevant. In our experience, off-policy algorithms TD3
and SAC cannot keep up with the curriculum. The policy
network architecture is similar to the one used for set-point
tracking. The input and output layers for inclined landing are
the state and action vectors in (11).

Train horizontal landing from
nearby starting positions with
high goal threshold 4,

]

Slowly incline the goal
state, while decreasing the

goal threshold 4,

/

Place the landing platform
when the inclined goal is

reached with ease

Fig. 2. The progress of the training curriculum for inclined landing. The
red quadrotor represents the agent and the black quadrotor represents the
goal state.

D. Simulation to Reality Transfer

To deploy the policies on the Crazyflie 2.1 Nano-UAV, the
trained Pytorch network is converted to work within a Robot
Operating System (ROS) node, which maps the state to the
control input vector in (1). The positions and velocities come
from a Kalman filter node, which appends the coordinates
from the Optitrack motion capture system with the estimated
inertial frame velocities. The quadrotor’s orientation is taken
from the Crazyflie’s default onboard estimator. An overview
of this process is given in Fig. 3.

Pytorch Network Optitrack

b or;/[o dglwor Motion ROS :

Capture .

Trace :

< \ :

Torchscript ‘ T . o
Network Model Filter Node i

Import [xyz+xyZ] [¢ 9]

C++/ROS/
Libtorch

T
Create—%—>‘7[®c ¢c HC]

Fig. 3.

Schematic overview of the Pytorch model deployment.

V. EXPERIMENTS

All simulations, DRL training, and lab experiments are
done on an HP Zbook Studio G4 laptop, with the default
Nvidia Quadro M1200 GPU and an Intel Core i7-7700HQ
CPU. The additional hardware used is the Optitrack motion-
capture system, the standard Crazyflie 2.1 with a small
marker holder, and a Crazyradio PA for communication with
the Crazyflie.

A. Experimental Setup

The simulations and DRL training are implemented in
Python, using the Pytorch package. The quadrotor dynam-
ics are simulated using the EOM of Section III, inte-
grated by the RK4 method. To increase the integration
speed, we compile the EOM functions using Numba’s
Just-in-time (jit) package. By keeping the simulations
and rendering in our own Gym-architecture [12] environ-
ment, we can use well-tuned implementations of exist-
ing model-free algorithms by [28]. Our compact simula-
tor allows for computationally cheap rendering, easy cur-
riculum adjustments and fast simulation. The simulation
bounds are equal to the dimensions of the actual flying
arena with [xmm Tmaz Ymin Ymazr Zmin zmaz] =
[-34 34 —14 14 0 24]m. The actions represent
the multiplication of the clipped policy network outputs (a €
[—1,1]) by the control bounds in (2), with an exception for
the PWM network output which is multiplied by 16500 and

2341

43

added to the estimated hover PWM of 42000. All simulations
use the control sampling frequency of 50 Hz, with episode
length of 300 time steps, i.e., 6 seconds.

1) Set-Point Simulations: The goal state is taken as s, =

[0 0 1.2 0 0 0 O O]T, which represents the cen-
ter of our physical flying arena. After each episode, the initial
position is set randomly anywhere within the simulation
bounds, with a small margin around the edges. The PPO
implementation of [28] is used, with the discount factor
~ reduced to 0.97 to account for more short-term control
behaviour. We train for a total of 10° time steps representing
27 minutes of training time. For navigation with the resulting
policy, a coordinate change suffices to fly the quadrotor to
an arbitrary position.

2) Inclined Landing Simulations: For inclined landing,
we operate the quadrotor in the xz-plane. The DRL algo-
rithm used is the PPO implementation of [28], where minor
changes have been made to activate the rendering every 50
training iterations and to gradually start increasing v from
0.97 to 0.99 after 300 training iterations. An episode ends
at 300 time steps or when the state z is within the goal
hyperbox S;. The landing platform is modeled as a polygon
and appears after 8 - 10° time steps. The goal threshold
vector is defined as §, = [(5:8 0, Oy, O, 59]
[d d min(10d,1.5) min(10d,1.5) 0.25d], where d
starts at 0.25 in the beginning of training and gradually
decreases to 0.10 after 2500 episodes with 0.15/5000 per
episode. The box of possible starting positions around the
goal state expands with every episode by 1/6000m in the
x-direction and by 1/8000 m in the y-direction. Additionally,
the goal state stays horizontal for the first 4 - 10° time steps
and then gradually tilts towards its final inclination of —7/7
at the rate of (—m/7)/6000 radians per episode. The final
goal state is set at s, = [0 125 0 0 —ﬂ/?}T. The
obstacle reward constant /3 is taken as —7, which was found
empirically to be the right trade-off between the goal of
landing on top of the platform and the necessity to avoid the
landing platform base. Training is stopped anywhere between
1.2 -10% and 3 - 10° time steps (30 to 80 minutes), when
the rendering shows that the policy executes the inclined
landing reliably. Note that rather than monitoring the loss
function, the aforementioned parameters and curricula have
been empirically tuned by frequently rendering. The trend
in the loss function value is quite meaningless, given the
curricula and the discount factor adaptation.

3) Validation on a real quadrotor: The quadrotor used
is the Crazyflie 2.1 Nano-UAV with its original firmware.
A Crazyflie-specific package [21] allows us to publish the
control values in (1) directly to the ROS server, which are
then transmitted with low latency to the Crazyflie over the
Crazyradio PA. The trained policy network is evaluated at
80 Hz, even though it was trained at 50 Hz. This is possible,
as the policy is a function of the physical state only, and
can therefore be evaluated at any frequency. A single policy
evaluation takes approximately 2.5 ms. The coordinates from
the Optitrack motion-capture system come in at 120Hz

and are combined with the inertial frame velocities by the
Kalman filter node [29]. The orientation is received from
the Crazyflie’s onboard estimator through the Crazyradio
at around 80Hz. The position, velocity, and orientation
estimates form the policy input. The experiment itself starts
with the drone flying to a position of choice, using the three-
dimensional set-point tracking network. Once it is positioned,
the networks are switched and the drone commences the
inclined landing. The initial state can be at an arbitrary
location in the top half of the flying arena. The landing trial
ends when the quadrotor’s state s; reaches the set of goal
states Sy.

B. Experiment Results

Early experiments showed a vertical offset between the
simulated and real trajectories, caused by a slight inaccu-
racy of the motor thrust equation (6). We compensated for
this offset by increasing the hover PWM to 48000 during
the flying arena testing. The resulting behaviour was very
similar to the simulations, as can be seen in Fig. 4.5 These
trajectories originate from the same policy network, starting
from arbitrary initial positions and ending when s, € S,
with §, = [0.10 0.10 1.5 1.5 0.025].

To further evaluate the performance, we measured the
landing success rate when starting the flight from three
different initial positions. Each position was evaluated 10
times, resulting in the success percentages reported in Table
I. Even if an experiment did not succeed, the agent would
not crash but autonomously fly back and forth, sometimes
succeeding in its second or third attempt. However, these
further attempts were not counted as a successful landing.

TABLE 1
COMPARISON OF REAL-WORLD AND SIMULATION EXPERIMENTS

setting [success from initial (z, 2) [total
0,2) (—1.5,1.6) (15,1.8)

Real-World | 90% 70% 100% 86.7 %

Simulation | 90% 90% 100% 93.3%

No simulation-to-reality transfer techniques, such as do-
main randomization, have been employed, as they did not
seem to improve the final performance, while they did com-
plicate the agent’s training. Additionally, we found that using
the Crazyflie’s onboard orientation estimates rather than
the Optitrack orientation estimates resulted in a substantial
improvement in the consistency of performance.

The results show that inclined landing controllers can be
designed by means of DRL. These controllers can transfer
adequately to reality without the need for dynamics ran-
domization, or sensor noise. Furthermore, the same policy
can be executed from a wide variety of initial states. The
performance could further improve by additional system

SBecause of a faulty Optitrack measurement, the bottom figure shows a
single misplaced red quad with a corresponding short drop in the PWM
output.

2342

44

2.5 4 — Simulated Trajectory 350000 -
— Real Trajectory E
=)
§ 40000
2.0 =
E 30000
2 15 0 1 2 3
g N time (s)
b £ 30
&
2 154
1.0 1 2
T o
g
E 154
O
0.5 g
2 301
T T T T T T F T T T T
-1.0 —0.5 0.0 0.5 1.0 1.5 0 1 2 3
X (meters) time (s)
60000
201 —— Simulated Trajectory <
— Real Trajectory 2 50000
=)
g
1.8 O 40000
=
/ z
/ = 300007
g 167 —— 00 05 10 15
g - _ time (s)
S '\—./ £ 30
o0
14 1 S 15
\§~ E
g
1.2 - \‘*«_zf'// § 15
_ 8
2 301
T T = T T T T
- 1 .0 70 8 70 6 70.4 -0.2 0.0 0.2 0.0 0.5 1.0 1.5
x (meters) time (s)
Fig. 4. Landing trajectories starting from above right (top) and from directly above (bottom) of the inclined goal position (green) at (0, 1.25). The

trajectory ends when the quadrotor is within the set of goal states Sg.

identification of the total motor thrust. The slight mismatch
observed might have been caused by making too strong
assumptions about the scaling of the single motor model in
(5) to the full motor model in (6). However, a perfect thrust
model will never exist, due to the motor wear and tear and
the strong relation of the drone’s battery level to its thrust
output, which was also reported in [1].

VI. DISCUSSION
A. Onboard Controller Dynamics

Using a model that incorporates the inner-loop system
dynamics of the Crazyflie’s onboard controllers allowed

us to fly the quadrotor by using intermediate-level control
commands. Although this requires a quadrotor-specific pa-
rameter identification, the procedure was straightforward (as
also reported in [25]), took a negligible amount of time,
and can be applied to any onboard-controlled quadrotor.
Furthermore, quadrotor end-users usually prefer to keep the
onboard controllers in place, as they provide basic func-
tionality and safety features. This has therefore been the
main reason we conducted the research in this setting. A
drawback of this approach compared to training DRL on
individual motor thrusts [1], [4] has been the limit of 30°
of the attitude controller, restricting us to maximum landing

2343

45

angles of around 25.7°. However, the benefit of using the
closed-loop model is that the policy does not need to stabilize
the quadrotor in the first place, and can focus on using the
quadrotor’s stable dynamics to learn the behaviour needed
for the inclined landing.

B. DRL Algorithms and Curricula

For set-point tracking, PPO was far superior to TD3 or
SAC in terms of performance and training time. For inclined
landing, we have tested these off-policy algorithms with
reduced replay buffers to cope with the changing goal state
(between 1-10% and 3 - 10 samples). The resulting policies
were very poor, shaky and not capable of yielding a smooth
landing behaviour in the last curriculum phase.

In the beginning of training, having a larger goal threshold
0y was important for convergence, even when starting at
and around the goal state. Having a too large goal velocity
threshold would however cause strong oscillations during
training, hence the minimum term in the training value for
d,, and 6,_. The convergence during the subsequent inclined
landing phase was mostly dependent on the performance
during the horizontal phase. As long as the quadrotor could
adequately reach the horizontal hover position, it would
be able to transition into larger angles by means of small
increments. Interestingly, this is where the quadrotor learns
the swinging behaviour on its own, making use of its inherent
dynamics. The success of the final phase depends on the
obstacle penalty (3, where a small value will make the
agent exploit the platform for braking, and a large value
will diminish the incentive to reach the goal state. The
final curriculum works for landing angles of 25.7° with an
attitude controller limitation of 30°, but simulations using a
hypothetical attitude controller limitation of 55° have showed
that angles of 50° can also be reached within the same time-
span and using the same training procedure.

C. Landing in the vertical xz-plane

Because the landing controller is planar, it will not com-
pensate drift in the y-axis. Since our experiments were
conducted indoors, this problem was negligible. However,

progress toward a more difficult task, i.e., larger inclination
angles of the landing platform. Moreover, we have shown
that the trained policies transfer well to reality, without
employing any simulation-to-reality transfer techniques.

A limitation of this work is the fact that we restricted the
landing trajectory to the xz-plane, which may cause some
drift in the y-direction. A three-dimensional landing policy
could increase precision, albeit at the cost of longer and more
complex training. An extension to such a setting is the topic
of our future work. Preliminary simulation results show that
training a three-dimensional policy is feasible and converges
within a similar time span as the two-dimensional policy.
Additional future work could focus on larger inclination
angles of the landing platform, as long as the onboard attitude
controller would allow them. In this way, one could try to
extend the findings in this paper to a perching behavior
similar to [20]. The goal inclination can also be added
to the quadrotor’s state, which would enable landing on
unknown platforms, using, for instance, a laser measurement
system [18] or an onboard camera system [19]. Another
interesting path for future work is to train a single inclined
landing policy that is applicable on multiple quadrotors with
comparable onboard control architectures, similar to the work
in [4]. Finally, a form of the platform contact dynamics in
[30] could be implemented in our simulator for a more robust
landing and to aid the design of an end-to-end controller,
which would eliminate the need for an external stopping
signal.

ACKNOWLEDGMENT

We thank our colleague Hai Zhu for his guidance and
advice in the initial stage of this project. Robert Babuska
was supported by the European Union’s H2020 project Open
Deep Learning Toolkit for Robotics (OpenDR) under grant
agreement No. 871449.

REFERENCES
] J. Hwangbo, 1. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. PP, pp. 1-1, 06 2017.

when conducting experiments under disturbances or with [2] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement

poorly calibrated quadrotors, one could add a basic PID learning for uav attitude control,” ACM Trans. Cyber-Phys. Syst.,
. : . . vol. 3, no. 2, Feb. 2019.

controller. reglﬂatmg the ahgnment Wlt,h th,e y-axis. . [3] N. O. Lambert, D. S. Drew, J. Yaconelli, R. Calandra, S. Levine, and

We believe that the planar controller is still very applicable K. S. J. Pister, “Low level control of a quadrotor with deep model-

in real settings. For inclined landings, as we envisage them, based reinforcement learning,” IEEE Robotics and Automation Letters,

: . : vol. 4, pp. 4224-4230, 2019.
the landmg platform will almost alway§ be approacl'lable' n [4] A. Molchanov, T. Chen, W. Honig, J. A. Preiss, N. Ayanian, and G. S.
a plane (exceptions would be strong disturbances like side Sukhatme, “Sim-to-(multi)-real: Transfer of low-level robust control
wind or complicated obstacles in the approach trajectory). policies to multiple quadrotors,” arXiv preprint arXiv:1903.04628,
This means that a quadrotor can fly toward the platform, 2019. . . .

R [5] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
change its yaw axis accordingly, and perform the inclined kumar, Y. Yue, and S. Chung, “Neural lander: Stable drone landing
landing using the planar controller. control using learned dynamics,” in 2019 International Conference on

Robotics and Automation (ICRA), 2019, pp. 9784-9790. B

VII. CONCLUSION AND FUTURE WORK [6] Y. Bicer, M. Moghadam, C. Sahin, B. Eroglu, and N. K. Ure,
) “Vision-based uav guidance for autonomous landing with deep neural

We have presented a model-free DRL technique to facil- networks,” in AIAA Scitech 2019 Forum, 2019, p. 0140.
itate autonomous quadrotor landing on an inclined surface. ~ [7] R.Polvara, M. Patacchiola, S. Sharma, J. Wan, A. Manning, R. Sutton,
W ined trol t with PPO . d and A. Cangelosi, “Toward end-to-end control for uav autonomous
€ traine .a con r.O agen W.I » USIng sparse rewards landing via deep reinforcement learning,” in 2018 International Con-
and a learning curriculum. This allows the agent to gradually ference on Unmanned Aircraft Systems (ICUAS), 2018, pp. 115-123.

2344

46

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Polvara, S. Sharma, J. Wan, A. Manning, and R. Sutton, “Au-
tonomous vehicular landings on the deck of an unmanned surface
vehicle using deep reinforcement learning,” Robotica, vol. 37, no. 11,
p. 1867-1882, 2019.

R. Polvara, M. Patacchiola, M. Hanheide, and G. Neumann, “Sim-
to-real quadrotor landing via sequential deep g-networks and domain
randomization,” Robotics, vol. 9, no. 1, 2020.

A. Rodriguez Ramos, C. Sampedro Pérez, H. Bavle, P. de la Puente,
and P. Campoy, “A deep reinforcement learning strategy for uav
autonomous landing on a moving platform,” Journal of Intelligent &
Robotic Systems, vol. 93, 02 2019.

M. B. Vankadari, K. Das, C. Shinde, and S. Kumar, “A reinforcement
learning approach for autonomous control and landing of a quadrotor,”
in 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), 2018, pp. 676-683.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 41-48.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Advances in Neural Information
Processing Systems, vol. 30, 2017.

D. Ghosh, A. Gupta, A. Reddy, C. M. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals via iterated supervised learning,”
in International Conference on Learning Representations, 2021.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning.” in /CLR, 2016.

J. Dougherty, D. Lee, and T. Lee, “Laser-based guidance of a quadrotor
UAV for precise landing on an inclined surface,” 2014 American
Control Conference, pp. 1210-1215, 2014.

P. Vlantis, P. Marantos, C. P. Bechlioulis, and K. J. Kyriakopoulos,

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

2345

47

“Quadrotor landing on an inclined platform of a moving ground
vehicle,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 2202-2207.

J. Thomas, M. Pope, G. Loianno, E. Hawkes, M. Estrada, H. Jiang,
M. Cutkosky, and V. Kumar, “Aggressive flight for perching on
inclined surfaces,” Journal of Mechanisms and Robotics, vol. 8, 2015.
W. Honig and N. Ayanian, Flying Multiple UAVs Using ROS. Springer
International Publishing, 2017, pp. 83-118.

Y. Chen and N. O. Pérez-Arancibia, “Nonlinear adaptive control of
quadrotor multi-flipping maneuvers in the presence of time-varying
torque latency,” in 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2018, pp. 1-9.

J. Forster and R. D’ Andrea, “System identification of the crazyflie 2.0
nano quadrocopter,” Ziirich, Tech. Rep., 2015.

M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for
quadrocopter state estimation,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 1730-1736.

M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
collision avoidance for multiple micro aerial vehicles using nonlinear
model predictive control,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 236-243.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in ICML, 2018, pp. 1582—
1591.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
vol. 80, 10-15 Jul 2018, pp. 1861-1870.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines 3,” https://github.com/DLR-RM/stable-
baselines3, 2019.

H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoid-
ance for MAVs in Dynamic Environments,” IEEE Robotics and

Automation Letters, vol. 4, no. 2, pp. 776-783, 2019.
J. Bass and A. L. Desbiens, “Improving multirotor landing perfor-

mance on inclined surfaces using reverse thrust,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5850-5857, 2020.

D5.2: Second report on deep robot action and decision making 48

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making

C

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

49/94

6289

Learning Kinematic Feasibility for Mobile
Manipulation Through Deep Reinforcement Learning

Daniel Honerkamp

Abstract—Mobile manipulation tasks remain one of the critical
challenges for the widespread adoption of autonomous robots in
both service and industrial scenarios. While planning approaches
are good at generating feasible whole-body robot trajectories, they
struggle with dynamic environments as well as the incorporation
of constraints given by the task and the environment. On the other
hand, dynamic motion models in the action space struggle with
generating kinematically feasible trajectories for mobile manipu-
lation actions. We propose a deep reinforcement learning approach
to learn feasible dynamic motions for a mobile base while the end-
effector follows a trajectory in task space generated by an arbitrary
system to fulfill the task at hand. This modular formulation has
several benefits: it enables us to readily transform a broad range
of end-effector motions into mobile applications, it allows us to use
the kinematic feasibility of the end-effector trajectory as a dense
reward signal and its modular formulation allows it to generalise
to unseen end-effector motions at test time. We demonstrate the
capabilities of our approach on multiple mobile robot platforms
with different kinematic abilities and different types of wheeled
platforms in extensive simulated as well as real-world experiments.

Index Terms—Mobile manipulation, reinforcement learning.

I. INTRODUCTION

OBILE manipulation is a key research area on the

journey to both autonomous household assistants as
well as flexible automation processes and warehouse logistics.
Although impressive results have been achieved over the last
years [1]-[4], there remain multiple unsolved research problems.
One of the major ones being that most current approaches
separate navigation and manipulation due to the difficulties in
planning the joint movement of the robot base and its end-
effector (EE). This restricts the range of tasks that can be
solved and constrains the overall efficiency that can be achieved.
Typically, the tasks that a robot is expected to perform are
linked to conditions in the task space, such as poses at which
handled objects can be grasped, orientation that objects should
maintain or entire trajectories that must be followed. While there

Manuscript received January 14, 2021; accepted June 14, 2021. Date of
publication June 25, 2021; date of current version July 15, 2021. This letter
was recommended for publication by Associate Editor L. Natale and Editor M.
Vincze upon evaluation of the reviewers’ comments. This work was supported
by the European Union’s Horizon 2020 Research and Innovation Program
under Grant Agreement No. 871449-OpenDR and a Research Grant from Eva
Mayr-Stihl Stiftung. (Corresponding author: Daniel Honerkamp.)

The authors are with the Department of Computer Science, University of
Freiburg, Germany (e-mail: daniel.honerkamp@gmail.com; twelsche @cs.uni-
freiburg.de; valada@informatik.uni-freiburg.de).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3092685, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3092685

, Tim Welschehold

, and Abhinav Valada

are techniques to position a manipulator to fulfill various task
constraints with respect to the kinematics of the robot, based
on inverse reachability maps (IRM) [5], performing such tasks
while moving the base still remains an unsolved problem.

Classical planning approaches circumvent kinematic issues
implicitly by exploring paths in the configuration space of the
robot [6]. However, this creates a number of new problems. First,
the constraints must be transferred from the task space to the
robot specific configuration space, requiring expert knowledge
on the task, the robot and the environment. Furthermore, the
execution of pre-planned configuration space movements in
dynamic environments is challenging as minor errors in the
execution of poses in the configuration space can lead to large
deviations in the task space. Moreover, adjustments to the move-
ment might be necessary due to changes in the dynamic scene
which requires complete re-planning in the configuration space.

In this paper, we present a method to generate kinematically
feasible movement for the base of a mobile robot while its
end-effector executes motions generated by an arbitrary system
in the task space to perform a certain action. This decomposes
the task into generation of trajectories for the end-effector,
which is typically defined by the task constraints, and the robot
base, which should handle kinematic constraints and collision
avoidance. This separation is beneficial for many robotic appli-
cations. First, it results in high modularity where action models
for the end-effector can easily be shared among robots with
different kinematic properties. Therefore, there is no need to
adapt the behavior of the end-effector for different robots as the
kinematic constraints are handled entirely by the base motion
control. Second, if the learned base policy is able to generalise
to arbitrary end-effector motions, the same base policy can be
used on new unseen tasks without expensive retraining. Lastly,
mobile manipulation tasks are complex, long horizon problems
that can be difficult to learn with sparse rewards only. We show
that we can directly leverage the kinematic feasibility as a dense
reward signal across platforms, alleviating the need for extensive
reward shaping.

In prior work [7], we addressed the kinematic feasibility of a
joint base and end-effector motion by treating the inverse reach-
ability constraint as an obstacle avoidance problem. While the
approach achieves good results in mobile manipulation actions
on a PR2 robot, it requires substantial robot specific design and
the approximations made to model the inverse reachable space
restricts the movement of the robot further than necessary. In-
stead of explicitly modeling the kinematic abilities, we propose
to directly learn a feasible motion of the robot base respecting

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

OpenDR

No. 871449

6290

Observation:
Vee, g0alee,
robot
configuration

Action:
Uy

Reward:
Kinematic
feasibility

Environment

Fig. 1. Given the robot configuration, a velocity for the end-effector v, and
the desired goal for the end-effector, the robot learns a corresponding base
velocity ¥, in a reinforcement learning setting to maintain kinematic feasibility
throughout the motion execution.

a given motion of the end-effector and show that the learned
policy strongly outperforms these approximations. We illustrate
our envisioned system in Fig. 1.

In summary, we make the following main contributions:

1) We formulate the fulfillment of kinematic feasibility con-
straints in mobile manipulation tasks as a reinforcement
learning problem.

2) We design multiple environments for different robots
with considerably different kinematic abilities and varying
driving modes.

3) We present extensive simulated and real world experi-
ments which demonstrate that our approach itself gener-
alises across diverse robotic platforms while the platform
specific trained models generalise to seen and unseen
end-effector motions.

4) We make the source code, models and videos publicly
available at http://rl.uni-freiburg.de/research/kinematic-
feasibility-rl.

II. RELATED WORK

In general, there are two distinct methods to ensure kinematic
feasibility in mobile manipulation tasks. On one hand, planning
frameworks can be used to plan trajectories for the robot in joint
space and thereby only explore kinematically feasible paths [6],
[8]. On the other hand, inverse reachability maps [9] can be
used to seek good positioning for the robot base given the
task constraints [5]. While combinations of the two methods
exist [10], it remains a hard problem to integrate kinematic
feasibility constraints in task space mobile motion planning.

In this context, Welschehold et al. [7] propose a geometric
description of the inverse reachability and address the kine-
matic feasibility of an arbitrary gripper trajectory as an obstacle
avoidance problem. They first approximate feasible base poses
relative to the end-effector resulting in a bounded region for
the base. They then analytically modulate the base velocity to
stay within feasible regions and orientations. Although their
approach performs well on a real-world PR2 robot, the approx-
imations require expert knowledge and do not easily generalise
to different platforms. On a high level, we use a conceptually
similar setup of given EE-motions and base control. We do not
impose any geometric constraints on the allowed base poses by
using reinforcement learning (RL) to directly learn the base ve-
locities. We also show that our approach generalises to different

50

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

robots without the need for robot-specific expert knowledge, i.e.
can directly be used to train agents for each platform. We directly
compare with [7] in our experiments.

While RL has shown substantial promise in manipulation
tasks, it has only recently been incorporated into mobile manip-
ulation tasks. RelMoGen proposes to learn high-level subgoals
through RL to simplify the exploration problem [4]. It focuses on
tasks in which the exact gripper trajectories are not relevant and
learns to either move the gripper or the base. In contrast, we are
explicitly interested in task specific end-effector trajectories and
use RL to to ensure kinematic feasibility of conjoint end-effector
and base motions.

Kindle et al. [11] use RL to learn both base and end-effector
movements end-to-end but they restrict the arm to lie on a
plane parallel to the ground. Using a handcrafted reward with
numerous hyperparameters, they demonstrate navigation in a
hallway. Similarly, Wang et al. [12] solve a mobile picking task
by learning to jointly control both the base of the robot and its
end-effector. While these works focus on learning a policy for
one specific task, we address a more general problem of main-
taining kinematic feasibility in arbitrary mobile manipulation
actions. By introducing an arbitrary end-effector motion planner,
we decouple the RL agent’s behaviour from the exact task that
the end-effector performs. This enables us to use kinematic
feasibility as the sole reward signal and thereby generalises
to different tasks with different motion constraints. Recently
the use of RL has also been explored to calculate forward and
inverse kinematics of complex many-joint robot arms [13], [14].
While such approaches are interesting for robot system with a
large number of degrees of freedom (up to 40-dof [14]), in our
applications (7-dof in robot arms) the inverse kinematics can
still be solved numerically.

Goal conditional RL [15], [16] takes both the current state and
a goal as input to predict the actions to arrive at this goal. Hi-
erarchical methods [17]-[19] commonly reduce the complexity
of long-horizon tasks by splitting it into a subgoal proposal and
goal-conditional policy. Li et al. [20] adapt hierarchical RL to
mobile manipulation by incorporating an additional high-level
action that restricts the low-level action space to either the
base, arm or both, and demonstrate its ability to reach goals
behind closed doors. While it is more-data efficient than previ-
ous hierarchical approaches, it still has to deal with the added
complexity of the non-stationarity between different levels, and
the additional parameters and rewards to learn both levels. In
contrast, we reduce the complexity of the task by assuming a
given planner for a subset of the agent (the gripper) and learn to
control the remaining degrees of freedom (the base) to achieve
the generated end-effector motions. This shifts the burden from
the end-effector planner to the base policy and allows us to
use simple and general methods to generate the end-effector
motions.

III. LEARNING KINEMATICALLY FEASIBLE
ROBOT BASE MOTIONS

Mobile manipulation tasks require complex trajectories in
the conjoint space of arm and base over long horizons. We
decompose the problem into a given, arbitrary motion for the

HONERKAMP et al.: LEARNING KINEMATIC FEASIBILITY FOR MOBILE MANIPULATION THROUGH DEEP REINFORCEMENT LEARNING

EE-Motion

Generation IK Solver

@

Base Agent Environment

Fig. 2. We decompose mobile manipulation tasks into two components: an
end-effector (EE) motion generation and a conditional RL agent that controls
the base velocities. This enables us to produce a dense reward solely based on
the kinematic feasibility, computed by a standard inverse kinematics solver.

end-effector and a learned base policy. This allows us to readily
transform end-effector motions into mobile applications and to
strongly reduce the burden on the end-effector motion generation
which can now be reduced to a fairly simple system. We then
formulate this as a goal-conditional RL problem and show
that we can leverage kinematic feasibility as a simple, dense
reward signal instead of relying on either sparse or extensively
shaped rewards. Our proposed system consists of three main
components: a motion generator for the end-effector, a learned
RL policy for the base and a standard inverse kinematics (IK)
solver for the manipulator arm that provides us with the rewards.
An overview of the system is shown in Fig. 2.

A. End-Effector Trajectory Generation

To generate end-effector motions, we assume access to an
arbitrary motion generator that takes as input the current end-
effector pose and a goal state g in a fixed map frame, specified by
an end-effector pose in cartesian space. At every time step, this
generator then outputs the next velocity command v, for the
end-effector. During training we pass the last desired instead of
the current EE pose to the generator as to prevent the RL agent
from influencing the shape of the overall EE-trajectory. At test
time the EE- motion generator can be replaced by an arbitrary
system.

B. Learning Robot Base Trajectories

Given an end-effector motion dynamic, our goal is to ensure
that the resulting EE-poses remain kinematically feasible at
every time step. We can formulate this as a goal-conditioned
reinforcement learning problem. We define a finite-horizon
Markov decision process (MDP) M = (S, A, P, r,~y) with state
and action spaces S and \A, transition dynamics P(s¢41]|s¢t, at),
a reward function r and a discount factor . The objective is
to find the policy m(als) that maximises the expected return
E[>27_, 77 (s¢, a)]. We can extend this to a goal-conditional
formulation [15] to learn a policy 7(als, g) that maximises the
expected return 7 (s, as, g) under a goal distribution g ~ G as
Ex[31_1 7' (s, as,9)].

Atevery step, the agent observes the current state s; consisting
of the current arm joint configuration as well as the current
end-effector pose, the next generated gripper velocities and the
end-effector goal g, all in the robot’s base frame. Rotations and
changes in rotation are represented by normalised quaternions,

6291

resulting in a state space of dimension 21 + njin.s Where
Njoints 1 the number of articulated joints in the robot’s arm. It
then learns a policy 7 (s, g) for the next base velocity commands
vp. We also experimented with learning the parameters of a
geometric modulation as introduced in [7] or velocities relative
to the end-effector velocity but found directly learning the base
commands to be more robust.

C. Kinematic Feasibility

By separating EE and base motions, we can now directly
leverage the kinematical feasibility of the EE-motions to train
the base policy. We convert this into a straightforward reward
function that simply penalises whenever an EE-motion is not
feasible. This provides us with a dense reward signal without
having to rely on ground truth distances or extensive reward
shaping. Instead it naturally arises from framing mobile manip-
ulation as a modular problem. We also add a regularisation term
to keep the actions small whenever possible to avoid unnecessary
or extensive base movements. The overall reward function can
be expressed as

T(S7aag) = _ﬂ!k'in -)"HaHz? (1)

where 1z, is an indicator function evaluating to one when
the next gripper pose is not kinematically feasible and A is
a hyperparameter weighting the squared norm of the actions.
To evaluate the kinematic feasibility, we first compute the next
desired end-effector pose from the current pose and velocities.
We then use standard kinematic solvers to evaluate whether this
new pose is feasible.

We optimise this objective with recent model-free RL algo-
rithms that have shown to be robust to noise and overestimation,
namely TD3 [21] and SAC [22]. An episode ends when either
the end-effector pose is within 2.5 cm of the goal or more than
19 kinematic failures have occurred (99 during evaluation). The
result is a reward function that can be evaluated without any
adaptation across a wide variety of platforms. It furthermore
allows us to use the same learned behaviours across a wide range
of tasks as the RL objective is agnostic to the nature of the task
itself. In our experiments, we show that EE-motions for many
common robotic tasks can be easily derived from existing motion
systems or constructed with very simple methods — as we can
now abstract from the feasibility of the motion.

D. Training Task

The motivation for modularising end-effector and base con-
trol is to learn a base policy that enables a large number of
task-specific end-effector trajectories. In many cases we will
not know all tasks at training time. To be able to generalise to
diverse end-effector motions the agent should ideally observe
a wide range of different relative EE-poses, motions and goals.
To do so, we train the agent on a random goal reaching task.
We first initialize the robot in a random joint configuration and
then uniformly sample end-effector goals within a distance of
one to five meters around the robot base and from the full range
of reachable heights.

51

6292

To generate end-effector motions, we use a linear dynamic
system where the end-effector velocity for each step is generated
as the difference between the current pose and the sampled goal,
constrained by a minimum and a maximum velocity. For the
orientation part we use spherical linear interpolation (slerp). By
training with a very simple EE- motion generator that does not
take into account the current joint configuration, we shift the
burden of generating feasible kinematic movements to the base
policy. During training we add a small Gaussian noise with a
standard deviation of 1.5 cm/s to base velocities to increase
robustness to imperfect motion executions in the real world.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach on multiple mobile robot platforms
in a series of analytical, simulated and real-world experiments
to address the following questions:

® Does our approach generalise across robotic platforms with

different kinematic abilities?

® Do the learned policies generalise to task-specific gripper

motions from both seen and unseen EE-motion generators?
® Do the analytically learned policies transfer to execution
in simulation and the real world?

A. Experimental Setup

1) Robot Platforms: We train agents for three different
robotic platforms differing considerably in their kinematic struc-
ture and base motion abilities. The PR2 robot is equipped with
a 7-DOF arm mounted on an omnidirectional base, giving it
high mobility and kinematic flexibility. The TIAGo robot is also
equipped with a 7-DOF arm and we additionally use the height
adjustment of its torso. For the base motion it uses a differential
drive restricting its mobility compared to the PR2. The Toyota
HSR robot also has an omnidirectional base but the arm is limited
to 5-DOF including the height adjustable torso. Given the low
flexibility of the HSR arm, we consider distances of up to 10 cm
and angles of up to 12° to the desired EE-poses as kinemati-
cally feasible. This leeway does not apply to the final goal. To
minimize the use of this leeway, we additionally penalize the
sum of the squared distance and angular distance to the desired
EE-pose, scaled into the range of [—1, 0] (i.e. smaller or equal
to the penalty for kinematically infeasible poses). The action
space for these platforms is continuous, consisting of either one
(diff-drive) or two (omni) directional velocities vy, (x y} and an
angular velocity vy, . Table I shows the constraints we set across
the different platforms in the analytical environment.

2) Tasks: We construct five tasks: A general goal reaching
(ggr) task in which the goals are selected randomly as in the
training phase. As the kinematics become very restrictive to-
wards the edges of the height range, we also analyse the results
for initial configurations and goals that are restricted to more
common heights, which we refer to as ggr restr. Table I shows
the values that we specify for the different robots. A pick&place
task in which the robot has to grasp an object randomly located
on the edge of a table, move it to a different goal table randomly
located on another wall in the room and place it down. We
use the linear system to generate EE-motions by sequentially

52

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

TABLE I
VELOCITY CONSTRAINTS FOR THE DIFFERENT ROBOT PLATFORMS AND
COMPONENTS IN THE ANALYTICAL ENVIRONMENT. CONSTRAINTS IN THE
PHYSICS SIMULATOR ARE DEFINED BY THE RESPECTIVE DEFAULT
TRAJECTORY CONTROLLERS. HEIGHT CONSTRAINTS REFER TO THE GGR AND
GGR RESTR TASKS AND ARE DEFINED FOR THE WRIST LINK OF THE ROBOT

Parameter EE- PR2 TIAGo HSR
Motion

Max. velocity (m/s) 0.1 0.2 0.2 0.2

Max. rotation (rad/s) 0.1 1.0 0.4 1.5

Goal height (m) - [0.2, 1.4] [0.2, 1.5] [0.2, 1.4]

Restr. height (m) - [0.4, 1.0] [0.4, 1.1] [0.4, 1.1]

Fig. 3. Left: The robot starts in a random location and rotation in the center
of the room (green). The task objects consisting of tables and shelves equipped
with doors and drawers are located around the robot. The random location of the
drop-off table is marked in orange. Right: Examples of the different generated
EE-motions for each task. Markers indicate the desired EE-pose at every 10
step.

combining four goals relative to the object: slightly in front of the
object, at the object, in front of and at the goal location. To test
whether our approach generalises to different EE-motions we
then construct two more tasks from an unseen imitation learning
system developed in [23]. These motions are learned from a
human teacher and encoded in a dynamic system following a
demonstrated hand trajectory to manipulate a certain object. Asa
result, the motions can differ substantially from the linear system
used during training. We use models to grasp and open a cabinet
door as well as to grasp and open a drawer. The corresponding
motion models are autonomously adapted to the given poses
of the handled objects. Fig. 3 (right) shows examples of the
generated EE-motions for each of the tasks.

For the virtual evaluation we locate the objects in a room
around the robot as shown in Fig. 3 (left). In all tasks, the robot
starts randomly within a 1.5 x 1.5 m square in the center of
the room, rotated between [— /2, /2] rad relative to the first
end-effector goal and in a random joint configuration sampled
from the full possible configuration space, including difficult
and unusual poses.

3) Baselines: We construct separate baselines for the linear
system and the imitation system. For the linear system the base-
line replicates the same robot base motion in xy—direction as
the end-effector. For Tiago this agent also takes into account the
limitations of the differential drive. This simple strategy removes
some of the main difficulties by keeping a fixed distance between
EE and body, avoiding situations in which the gripper would
have to pass around or through the robot body. The baseline

HONERKAMP et al.: LEARNING KINEMATIC FEASIBILITY FOR MOBILE MANIPULATION THROUGH DEEP REINFORCEMENT LEARNING

TABLE II
HYPERPARAMETERS SEARCHED, VALUES CHOSEN BASED ON GRID SEARCH ON
THE TRAINING TASK. WE USE A PUBLIC IMPLEMENTATION OF THE TD3 AND
SAC ALGORITHMS [24]. PARAMETERS NOT MENTIONED ARE LEFT AT THEIR
DEFAULT VALUES, INCLUDING THE ACTOR AND CRITIC NETWORKS OF TWO
FULLY-CONNECTED LAYERS SIZE (256, 256) FOR SAC AND (400, 300) FOR
TD3. IK FAIL THRESH IS THE MAXIMUM NUMBER OF FAILURES BEFORE WE
TERMINATE THE EPISODE AND LR IS THE LEARNING RATE

Parameter Values ‘ Parameter Values
Algorithm {SAC, TD3} T {0.001, 0.005}
Batch size {64, 256} 5 {0.98, 0.99, 0.999}
Ik fail thresh {1, 19, 99} €-noise {0.25, 0.5, 0.75}
A {0.0, 0.01, 0.1} |Rnd steps {0, 50°000}

Lr {3e—4, le—4, le—5 } |Policy noise {0.1, 0.25, 0.5}
Lr decay {0.999} Entropy reg {learn, 0.1, 0.2, 0.3}
Buffer size {100°000}

for the imitation system follows base motions that were learned
together with the end-effector, adapted to the different lengths
of the robot arms. We combine these two baselines under the
terms PR2_bl, Tiago_bl and HSR_bI. We also compare against
the geometric modulation for the PR2 presented in [7], termed
PR2_gm. This approach learns an approximation to the inverse
reachability in closed form and modulates the base velocities
to stay within allowed poses. As the approximations rely on
robot specific knowledge, it cannot easily be adapted to the other
platforms.

4) Training Details and Metrics: For each robotic platform,
we conduct a hyperparameter search over the parameters listed
in Table II. We then select the best configuration and train the
agent on new seeds for roughly 2000 episodes (1000000 steps)
of the random goal reaching task described in Sec. III. For each
platform we train models on ten different seeds and average
the results. We then evaluate the agent’s ability to achieve the
described tasks without any task-specific fine-tuning over 50
episodes per task. For each task, we report the share of the
trajectories executed without a single kinematic failure. Note
that this is a fairly strict metric and in many cases even with
a few failures, the task can still be completed successfully. For
this reason, we also report the share of episodes which never
deviate more than 5 cm from the EE-motions (in brackets). We
find that both TD3 and SAC learn to solve the tasks successfully,
but SAC generally results in more robust policies and ultimately
slightly better performance. Therefore we use SAC throughout
the remainder of this work.

B. Analytical Evaluation

We train the model on analytically generated trajectories,
i.e. we integrate the system step-by-step to generate the poses
of robot end-effector and base. At each step we evaluate the
kinematic feasibility of the generated poses without a physical
simulation of robot controllers. We evaluate this system at a
step size corresponding to a frequency of 10 Hz. Fig. 4 shows
the success rates over the course of the training, averaged over
ten seeds for each of the platforms. As the kinematic feasibility
provides us with a dense reward, the agents reach reasonable
performance already within a few hundred episodes (an average
training episode lasts roughly 500 steps).

6293
1.0
L
=2
8
o 0.8
©
£
5]
]
X 0.6
5
9]
=
2
o 0.4
o}
=
o]
%2}
g
= 0.2
v e R
% —— HSR
0.0 — TIAGo
0.0 0.2 0.4 0.6 0.8 1.0
Step le6

Fig. 4. Training progress measured as share of episodes with zero kinematic
failures on the random goal reaching task. All agents were trained with SAC,
evaluated over 50 episodes and averaged over 10 seeds. Shaded regions show
the standard deviation.

TABLE III
PERFORMANCE IN THE ANALYTICAL EVALUATION AS SHARE OF SUCCESSFULLY
EXECUTED EPISODES WITH ZERO KINEMATICALLY INFEASIBLE EE-POSES
AND SHARE OF EPISODES THAT NEVER DEVIATE MORE THAN 5 CM FROM
THE EE-MOTION (IN BRACKETS). THE BOLD ROWS REPRESENT OUR
PROPOSED APPROACH. WE EVALUATE EACH TASK OVER 50 EPISODES FOR
10 RANDOM SEEDS

Agent | Linear Dynamic System | Imitation Learning

| eer ggrrestr pick&place | door drawer
PR2_bl | 60.8 (65.0) 70.8 (72.8) 72.6 (76.8) | 30.2 (33.6) 31.6 (35.4)
PR2_gm | 64.6 (69.6) 68.6 (74.4) 74.4 (78.6) | 31.6 (38.0) 28.2 (34.0)
PR2 90.2 (91.2) 88.8 (90.6) 97.0 (97.4) | 94.2 (95.4) 954 (954)
Tiago_bl| 21.6 (24.6) 23.6 (26.8) 12.0 (13.8) | 9.2 (10.0) 28.6 (31.8)
Tiago 71.6 (73.4) 80.2 (83.0) 91.4 (92.2) | 95.3 (96.9) 94.9 (95.3)
HSR_bl | 54 (74) 7.6(104) 0.0 3.2)| 0.0 (0.00 0.0 (0.0)
HSR 75.2 (69.8) 80.1 (72.6) 93.4 (90.2) | 91.2 (87.0) 90.6 (88.6)

We then evaluate the trained models across all tasks in the
same environment. The results are summarised in Table III. On
the PR2 the baseline that replicates the EE-velocities is able
to complete between 60% and 73% of the linear motion tasks
successfully. By simply “sliding” towards the goal, the manip-
ulation task is kept relatively static and most of the difficulty is
transferred to the IK solver. As a consequence, performance on
more constraint platforms drops to between 0% and 24% for both
the 5-DOF arm of the HSR as well as the diff-drive of TIAGo
that has to “circle” towards the goal. This illustrates the need for
base and arm to work together to achieve these motions. On the
door and drawer tasks, the PR2 and TIAGo are able to follow
some of the imitated motions, but fail in the majority of cases
with between 9% and 32% of the episodes fully successful. The
HSR is completely unable to follow these motions.

The geometric modulation approach PR2_gm is not able to
significantly improve further upon the baseline, indicating that
the velocities of the baseline that serve as input are already
removing most of the difficulty from the task. Failure cases for
the geometric modulation include when the starting pose lies
outside the approximated reachability range as well as situations
in which the EE comes close to the edges of the approximation.

53

6294

In contrast, our approach to directly learn the base velocities
and kinematic feasibility achieves high success rates across all
robots and tasks, solving the goal reaching task with 90.0% for
PR2, 71.6% for TIAGo, and 75.2% for HSR. This translates into
near perfect performance on the pick&place task with 97.0%
success for PR2, 91.4% for TIAGo and 90.2% for HSR. Looking
at the imitation tasks, we find that these results also generalise
to the unseen motions with all platforms achieving 90.6% or
more of all episodes without a single kinematic failure. This in-
dicates a number of things. First, our training task is comparably
difficult, making it a good training ground to train for general
tasks. This is expected as the goal distribution encompasses
the full range of possible heights in which the kinematics can
become quite restrictive. Focusing on a workspace restricted
to common heights (ggr restr), performance increases for both
TIAGo (+8.8%) and HSR (+4.9%) while remaining relatively
unchanged for the PR2 (-1.4%). Secondly, we find no drop
in performance while following the unseen imitation learning
system which demonstrates the agent’s ability to enable general
movements of the end-effector.

We observe that the performance improves further if we
consider all episodes that never deviate more than 5 cm from
the desired motions (values in brackets) for both the PR2 and
TIAGo. The performance drops slightly for the HSR as this is a
tighter measure than the leeway that we grant its IK solutions as
discussed in Sec. IV-Al. At the same time, the overwhelming
majority of episodes does not use most of this leeway, with
differences in the two metrics of only between 2.0% and 7.5%
across all tasks. On average, the distance to the exact desired
EE-motion is only 1.6 cm across all the successful steps.

Qualitatively, we find that the resulting policies take rea-
sonable and practical paths. These include behaviours such as
rotating around the closest angle, seeking out robust relative
EE-poses, e.g. the PR2 moving sidewards with the right arm in
front towards the goal such that the arm has the most freedoms,
or if the EE pose is on the opposite side of robot body the learned
strategy is to first dodge sideways to bring the end-effector
in front of itself. Examples are depicted in Fig. 5 and in the
accompanying video. To qualitatively examine the diversity of
the learned policies, in figure 6 we plot the work space area
covered by the end-effector for the PR2 agent. We find that the
agent does not decay to singular behaviours, but rather uses a
large area of the possible EE-poses.

C. Motion Execution in Simulation

We further analyse how well the generated motions can be
executed by running the system in the Gazebo simulator [25].
This includes both a simulation of the robot controllers as well as
a physical simulation of the environment. We run all the agents
at a frequency of 50 Hz . By still letting the agent observe
the EE-velocities vee planned for a next timestep of 10 Hz,
we can easily vary the frequency of the control loop without
having to adapt the agent. The results across all approaches
and tasks are summarized in Table IV and visualized in Fig. 7.
Differences to the analytical environment include previously
potentially unmodelled accelerations, inertias and constraints,
execution time of the arm movements as well as collisions with

54

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Fig. 5. Analytical evaluation on the pick&place (left), door (mid) and drawer
opening (right) tasks for the PR2 (top), TIAGo (mid) and the HSR (bottom).
Markers show the base (yellow) and EE-trajectory (green).

Fig.6. Covered work space area of the learned PR2 agent: relative end-effector
poses encountered over 50 episodes of the ggr task, evenly subsampled to 1000
poses. Red indicates kinematically infeasible poses.

Fig. 7. Example trajectories in the Gazebo physics simulator on the
pick&place (left), door (mid) and drawer opening (right) tasks for the PR2 (top),
TIAGo (mid) and the HSR (bottom) robots.

the physical objects. We do not tune any parameters of the
low-level controllers to avoid to introduce any expert knowledge.
We find particularly large inertias for the simulated PR2 to cause
the EE to outrun the base. To account for this, we slow down
the EE-motions by a factor of two for all PR2 experiments in
this section. Note that this was not needed in the real world
experiments in Sec. IV-D.

HONERKAMP et al.: LEARNING KINEMATIC FEASIBILITY FOR MOBILE MANIPULATION THROUGH DEEP REINFORCEMENT LEARNING

TABLE IV
PERFORMANCE IN THE GAZEBO PHYSICS SIMULATOR AS SHARE OF
SUCCESSFULLY EXECUTED EPISODES WITH ZERO KINEMATICALLY INFEASIBLE
EE-POSES AND SHARE OF EPISODES THAT NEVER DEVIATE MORE THAN 5 CM
FrROM THE EE-MOTION (IN BRACKETS). THE BOLD ROWS REPRESENT OUR
PROPOSED APPROACH AND TWO MODIFICATIONS THEREOF FOR
IDENTIFICATION OF ERROR SOURCES

Agent | Linear Dynamic System | Imitation Learning

| ger ggrrestr pick&place| door drawer
PR2_bl 48.2(53.0) 56.6(62.2) 35.4(41.2)| 3.6 (48) 3.2 (4.2)
PR2_gm 17.0(22.2) 19.4(22.8) 20.8(24.6) | 21.2(31.4) 0.1 (4.8)
PR2 80.2(83.6) 84.4(88.8) 85.6(88.8) | 88.0(92.8) 85.4(91.6)
PR2_hs 87.0(88.0) 89.0(90.8) 92.0(93.6) | 94.2(95.0) 90.4(90.6)
PR2_nObj - - 87.6(92.4) | 85.6(90.0) 85.4(90.8)
Tiago_bl 7.0 (7.8) 9.0(11.0) 2.2 (2.8)] 1.6 (3.0) 6.8 (7.8)
Tiago 65.4(70.4) 74.6(81.2) 88.2(91.2) | 81.6(86.8) 83.8(88.0)
Tiago_nObj| - - 87.4(91.0) | 93.4(954) 92.8(94.2)
HSR_bl 2.6 (0.0) 26 (0.1) 0.0 (0.0)| 0.0 (0.0) 0.0 (0.0)
HSR 64.4(54.0) 70.3(59.4) 85.6(69.6) | 87.2(78.0) 90.2(83.8)
HSR_nObj | - - 92.2(78.2) | 87.2(76.6) 87.4(82.4)

While all approaches experience a drop in performance com-
pared to the analytical environment, we find this drop to be
relatively small for the learned base motions, showing that they
can be readily executed on all platforms. The average difference
in performance across all tasks is 8.4% for PR2, 8.0% for TIAGo
and 3.0% for HSR. We identify two main causes for this:

Obstacles. A main limitation of the current approach is that
the base agent does not take the obstacles into account. To
measure the impact of collisions with the physical objects, we
execute the same motions with the objects removed from the
scene, labelled nObj in Table IV. We find that this explains
the largest part of the difference to the analytical environment
for TIAGo, while the PR2 and HSR were not affected strongly
by collisions. The gap to the analytical environment reduces
to an average of 7.1% for PR2, 2.6% for TIAGo and 2.8%
for HSR. On average, the performance with physical objects
is 2.3% lower across all the tasks, further indicating that the
learned base motions avoid unnecessary movements or rotations.
Nonetheless, obstacle avoidance is an important piece to enable
a wider variety of task setups. We aim to extend our formulation
to incorporate this in future work.

Inertia. For the PR2 we find that inertias in the base movement
often cause failures in the beginning of the motion when the
arm starts in an already stretched out position and then wants
to move further away from the base. We extend our model to
give the PR2 a “head start” of three seconds to position itself
before we begin the EE-motion (PR2_hs). To do so, we use
the same trained model, i.e. the agent did not see this head
start during training. This simple adaptation closes the gap to
the analytical environment to 2.6%. Alternative approaches to
account for large inertias would be to include acceleration limits
in the linear motion system or to learn a scaling term to allow
the agent to influence the EE-velocities.

The performance again further improves if we instead mea-
sure the share of episodes deviating less than 5 cm from the
desired motions for both PR2 and TIAGo and the performance
only slightly drops for the HSR.

6295

Fig. 8. Snapshots of action execution on the PR2 robot. Given the position of
the manipulated objects the robot performs the pick&place, grasp and open a
cabinet door and grasp and open a drawer tasks (top to bottom).

TABLE V
PERFORMANCE ON THE REAL WORLD PR2 ROBOT AS NUMBER OF EPISODES.
KINEMATIC SUCCESS REFERS TO EPISODES WITH ZERO KINEMATIC
FAILURES, TASK SUCCESS TO THE COMPLETION OF THE TASK OBJECTIVE
(E.G. DOOR OPENED)

PR2 | Linear Dynamic System | Imitation Learning
| ger pick&place | door drawer
Kinematic success 46 45 41 43
Task success - 48 43 40
Total episodes 50 50 50 50

D. Motion Execution in Real World Setting

To further demonstrate the applicability of our approach in
real world settings, we evaluate all the described tasks on a PR2.
We construct a small environment of roughly 4.5 m x6 m which
is shown in Fig. 8. The PR2 uses its base scanner and a standard
implementation of Adaptive Monte Carlo Localization (AMCL)
to localize itself in a static map. The poses of the target objects
in map frame are provided manually. To account for space
constraints, we make the following adaptations: (i) we start each
episode of the general goal reaching task from the last achieved
base pose and only sample a new arm joint configuration; (ii) we
reject random goals that lie outside the designated map minus a
safety distance from the edges, resulting in a maximum distance
of five meters between consecutive goals; (iii) in pick&place,
we randomise the starting pose and drop off location but leave
the pickup location fixed.

As in the analytical and simulated experiments, we only count
executions without a single failure as kinematic success. This
may include episodes where the grasp of the manipulated object
fails (this does not lead to interruption). Additionally, we report
episodes as task success if the manipulation is executed as de-
sired. This may include episodes with up to 99 kinematic failures
at which point we interrupt task execution. This corresponds to
roughly two seconds of unsuitable configurations (50 Hz con-
trol). The results are shown in Table V and exemplary snapshots
from the task execution are shown in Fig. 8. We achieve good
overall results with an average of 87.5% kinematic success in the
task execution. All episodes were completed without a collision

55

6296

or human intervention such as emergency stops. This aligns with
the results from Gazebo, further indicating that the agent learns
to avoid unnecessarily extensive base movements. Nonetheless
we identified several sources of error for further improvement:

Controller Issues. Throughout all experiments we control
the motion of robot arm and base independently. In phases of
fast base rotation the arm controller sometimes lags behind in
compensating the rotary motion of the base. This can lead to
grasp failures or cause kinematic failures in subsequent time
steps. However, this is a result of the independence of the low
level base and arm controllers and not caused by our approach. A
combined controller for robot arm and base could be integrated
without requiring any adaptations.

Unusual Starting Configurations. Most kinematic failures
occur at beginning of trajectories and are caused by difficult
starting configurations and the restrictive EE-motion generator.
There are very few kinematic failures during manipulation itself,
i.e. when the arm is in a typical working configuration.

Configuration Jumps. Occasionally the solutions found by the
IK-solver jump to very different arm joint configurations from
one step to the next. These can lead to grasp failure and kinematic
problems as it causes the gripper motion to deviate from the
desired trajectory as the configuration shift is not instantaneous
as in analytical training.

Overall the policy shows to be robust to real-world noise
and inertia as well as control reaction times. Demonstrating
further that the base policy learns to seek robust behaviours and
positioning and successfully transfers to real-world settings in a
zero-shot manner.

V. CONCLUSIONS

In this paper, we presented an approach to generate suitable
robot base motions for mobile platforms given an end-effector
motion generated by an arbitrary system. We formulated the
problem as a reinforcement learning setting in which the robot
configuration, the end-effector velocity and goal serve as ob-
servations and the robot base velocities are the corresponding
actions. The environment reward is derived from the kinematic
feasibility of the resulting robot base and end-effector poses.
Leveraging state-of-the-art RL methods we achieve high success
rates across different robot platforms for both seen and unseen
end-effector motions. This demonstrates the potential of this
approach to enable the application of any system that generates
task specific end-effector motions across a diverse set of mobile
manipulation platforms.

While we achieve very good results in terms of kinematic
feasibility during trajectory generation, the approach so far
does not consider collisions with the environment. In future
work, we plan to incorporate obstacles and object detection
into the training to enable the agent to also avoid collision
while moving the base. Furthermore, we observed occasional
undesired configuration jumps in the arms with high degrees of
freedom which we aim to avoid by incentivising smooth joint
movements through the reward function. In order to improve
the performance in real world deployment, we will investigate
the use of a shared controller for base and arm that will allow
a faster and smoother compensation of the arm towards motion

56

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

of the base. In addition to yielding a higher accuracy, this will
also allow for faster execution.

REFERENCES

[1] J. A. Bagnell et al., “An integrated system for autonomous robotics ma-
nipulation,” in Proc. Int. Conf. Intell. Robots Syst., 2012, pp. 2955-2962.

[2] K. Blomgqvist et al., “Go fetch: Mobile manipulation in unstructured

environments,” 2020, arXiv:2004.00899.

J. Stiickler, M. Schwarz, and S. Behnke, “Mobile manipulation, tool use,

and intuitive interaction for cognitive service robot cosero,” Front. Robot.

Al vol. 3,no. 1, p. 58, 2016.

F. Xia, C. Li, R. Martin-Martin, O. Litany, A. Toshev, and S. Savarese,

“Relmogen: Leveraging motion generation in reinforcement learning for

mobile manipulation,” in Proc. Int. Conf. Robot. Automat., 2021.

F. Paus, P. Kaiser, N. Vahrenkamp, and T. Asfour, “A combined approach

for robot placement and coverage path planning for mobile manipulation,”

in Proc. Int. Conf. Intell. Robots Syst., 2017, pp. 6285-6292.

F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion plan-

ning for manipulation of articulated objects,” in Proc. Int. Conf. Robot.

Automat., 2013, pp. 1656-1662.

T. Welschehold, C. Dornhege, F. Paus, T. Asfour, and W. Burgard, “Cou-

pling mobile base and end-effector motion in task space,” in Proc. Int.

Conf. Intell. Robots Syst., 2018, pp. 1-9.

F. Burget, M. Bennewitz, and W. Burgard, “Bi2rrt*: An efficient sampling-

based path planning framework for task-constrained mobile manipula-

tion,” in Proc. Int. Conf. Intell. Robots Syst., 2016, pp. 3714-3721.

N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement based

on reachability inversion,” in Proc. Int. Conf. Robot. Automat., 2013,

pp. 1970-1975.

[10] D. Leidner, A. Dietrich, F. Schmidt, C. Borst, and A. Albu-Schiiffer,
“Object-centered hybrid reasoning for whole-body mobile manipulation,”
in Proc. Int. Conf. Robot. Automat., 2014, pp. 1828-1835.

[11] J. Kindle, F. Furrer, T. Novkovic, J. J. Chung, R. Siegwart, and J. Nieto,
“Whole-body control of a mobile manipulator using end-to-end reinforce-
ment learning,” 2020, arXiv:2003.02637.

[12] C.Wangetal.,“Learning mobile manipulation through deep reinforcement

learning,” Sensors, vol. 20, no. 3, p. 939, 02 2020.

S. Otte, A. Zwiener, R. Hanten, and A. Zell, “Inverse recurrent models -

an application scenario for many-joint robot arm control,” in Proc. Artif.

Neural Netw. Mach. Learn., 2016, pp. 149-157.

[14] Z. Guo, J. Huang, W. Ren, and C. Wang, “A reinforcement learning
approach for inverse kinematics of arm robot,” in Proc. Int. Conf. Robot.
Automat., 2019, pp. 95-99.

[15] L.P. Kaelbling, “Learning to achieve goals,” in Proc. 13th Int. Joint Conf.
Artif. Intell., 1993, pp. 1094-1098.

[16] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in Proc. 32nd Int. Conf. Mach. Learn., vol. 37, 2015,
pp. 1312-1320.

[17] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1-2, pp. 181-211, 1999.

[18] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1726-1734.

[19] L.P.Kaelbling, “Hierarchical learning in stochastic domains: Preliminary
results,” in Proc. 10th Int. Conf. Mach. Learn.,vol.951, 1993, pp. 167-173.

[20] C.Li, E Xia, R. Martin, and S. Savarese, “Hrl4in: Hierarchical reinforce-

ment learning for interactive navigation with mobile manipulators,” in

Proc. Conf. Robot Learn., 2019, pp. 603-616.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-

imation error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn.,

vol. 80, 2018, pp. 1587-1596.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. 35th Int. Conf. Mach. Learn., vol. 80,2018, pp. 1861-1870.

[23] T. Welschehold, C. Dornhege, and W. Burgard, “Learning mobile manip-
ulation actions from human demonstrations,” in Proc. Int. Conf. Intell.
Robots Syst., 2017, pp. 3196-3201.

[24] A.Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann,
“Stable baselines3,” 2019, Accessed: 8.7.2021. [Online]. Available: https:
//github.com/DLR-RM/stable-baselines3.

[25] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2004, pp. 2149-2154.

—
(98]
—

[4

[}

[5

—

[6

—_

[7

—

[8

[

[9

—

[13]

[21]

D5.2: Second report on deep robot action and decision making 57

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making

D

5894

AgroRL: End-to-end Path Planning of Air-Ground Multi-Robot Team
for Green Digital Farming

Halil Ibrahim Ugurlu, Deniz Bardakci, Huy Xuan Pham and Erdal Kayacan

Abstract— Increasing the operational efficiency of agricul-
tural machines is essential by the use of artificial intelligence
(AI)-based navigation, planning, and control algorithms to
handle the increasing demand for food production without
compromising sustainability. In this study, a novel end-to-end
path planning algorithm (AgroRL) is proposed for multiple
aerial-ground robots team for green transition in agriculture.
In the proposed solution, while main operations in the field are
handled by the ground vehicle, the aerial robot is responsible
for re-planning a collision-free trajectory for the ground robot
when the robot faces an obstacle. Deep reinforcement learning
is used for training the end-to-end policy for local re-planning
of the aerial robot. The agent, informed by the global trajec-
tory, generates local plans based on depth images. Variational
autoencoders are also investigated for dimension reduction of
the depth images in obstacle avoidance context to speed up
deep reinforcement learning and alleviate the computational
complexity of the policy network. The agriculture environment
is developed in the Webots open-source robot simulator. Finally,
the efficiency and efficacy of the ground-aerial robot team
are evaluated over a number of cluttered field scenarios. The
extensive simulation and real-world experiments demonstrate
that the use of an aerial robot enhances the ground robot’s
capabilities significantly compared to having further sensors
on the ground robot.'

I. INTRODUCTION

Robot teams are commonly used for their ability to work
on a single task collaboratively. They are especially advan-
tageous when the robots have different capabilities and/or
operate in different domains. For instance, a collaboration
between an aerial and a ground robot might be helpful: long-
term and close contact tasks are assigned to the ground robot
due to its relatively higher power source, and observation
tasks are assigned to the aerial vehicle due to its better field
of view.

In this study, a collaborative solution is proposed in an
agricultural field to leverage the efficiency of the agricultural
operation with artificial intelligence (Al)-based navigation
methods. Particularly, unmanned ground vehicles (UGVs)
are responsible for field operations, e.g., seeding, and an
unmanned aerial vehicle (UAV) deals with the navigation
performance enhancement of the team. Since machinery and
equipment are the major costs in agricultural operations and
ground vehicles (e.g., a tractor costs around 200K USD) are
significantly more expensive than the aerial robots (e.g., a

H.I. Ugurlu, D. Bardakci, H.X. Pham, E. Kayacan are with Ar-
tificial Intelligence in Robotics Laboratory (Air Lab), the Depart-
ment of Electrical and Computer Engineering, Aarhus University, 8000
Aarhus C, Denmark (email: {halil, huy.pham, erdal} at
ece.au.dk; deniz-bardakci at outlook.com)

IThe code, trained models and simulation environment will be available
at https://github.com/open-airlab/agro_rl

typical mid-size UAV costs 10K USD), the motivation behind
this study is to reduce the overall cost of the operation
by also increasing the accuracy and productivity. In order
to minimize the cost of the ground vehicle, the UGV is
considered blind in its contribution to the planning task and
accomplishes its field tasks with the given motion commands.
This work focuses on the motion planning of the robot team
using the information of a global path to follow and the
depth camera on the UAV. In case of an obstacle occurrence
on the global path, the UAV follows a collision-free path and
informs the UGV about the required maneuver. In this way,
the required sensor costs on the UGV is minimized.

State estimation, perception, planning, and control are
conventionally considered as separate problems to be solved
in autonomous robot navigation. On the other hand, recent
developments in machine learning, particularly in deep rein-
forcement learning (DRL), enable an agent to learn various
navigation tasks with only a single neural network policy.
These methods are promising to solve navigation problems
faster since they do not deal with the unnecessary optimiza-
tion of particular problems; however, they are also hard to
debug, making them hard to apply in real scenarios. In this
work, as an end-to-end planning method, a policy network
for collaborative agricultural planning is trained using DRL,
which provides position steps using a multi-modal input, a
depth camera, and global trajectory information.

While DRL methods allow solving sequential decision-
making tasks by only defining a reward function, they are
considered sample inefficient. They need enormous amount
of training samples in order to reach a satisfactory perfor-
mance. The sample inefficiency rises with the dimension of
state or action spaces in the problem definition. An option
to reduce the dimensionality is to encode -i.e., using a
variational autoencoder (VAE)- high-dimensional data, such
as the depth image. Therefore, the effect of encoding the
depth image is investigated to reduce the load on the DRL
algorithm and to obtain a faster policy in this study.

A. Contributions

The contributions of this paper are fourfold:

« We propose an open-source RL framework (AgroRL)
for training an end-to-end planner for a quadrotor UAV.

« We investigate VAE-based state representation for end-
to-end reactive planning of UAVs.

« We integrate multiple UGVs working in an agricultural
field with the UAV agent to generate collision-free local
motion plans.

OpenDR

No. 871449

o The method is evaluated with extensive experiments
in a Webots-based simulation environment and demon-
strated in a real-world indoor scenario.

B. Related work

As a machine learning paradigm, reinforcement learning
(RL) aims to solve sequential decision-making problems
through the interaction of a learning agent with its environ-
ment [1]. With the success of the deep learning models in
machine learning, it is also applied with RL, which brings
DRL field with success in several benchmark problems such
as video games [2] or continuous control tasks [3]. Several
methods are proposed to optimize deep neural networks to
learn the value function [2], policy function [4], or both [3],
[5] in the RL domain, such as the proximal policy optimiza-
tion (PPO) [6] algorithm, a state-of-the-art method utilized in
this work. Nevertheless, model-free DRL methods are sample
inefficient, especially when applied to high dimensional ob-
servations such as pixels [7]. One approach in the literature to
cure this issue is to apply representation learning to provide a
better representation of the observation to the policy network
using auto-encoders [8], data augmentation [9], or contrastive
learning [10]. This work has investigated the effects of a
VAE-based [11] latent representation of the images on the
learning performance.

These developments in DRL are applied to robotics ap-
plications, including real-world demonstrations. Specifically,
neural network policies are trained to control quadrotor
UAVs in attitude [12] or position [13], [14] level using
full state information. They are also applied to navigate a
UAV with visual information such as corridor following [15],
drone racing [16], or obstacle avoidance [17].

With the increasing demand to the using agricultural re-
sources efficiently and sustainably, the need for involvement
of the new technologies has become an inevitable fact.
As a result, aerial robots have been adopted for various
tasks, such as spraying [18], environment mapping [19],
monitoring [20], [21], remote sensing [22], and many more,
to achieve this ambitious goal. In addition to UAVs, ground
vehicles are also getting more autonomy in the production
phases starting from soil preparation to crop harvesting
with the implementation of both learning-based [23] and
model-based [24]-[27] advanced methods. After all, multi-
robot UAV-UGV cooperative systems are widely studied
in agricultural robotics for sensor planning [28], collabora-
tive mapping [29], monitoring [30], and handling sensory
faults [31]. In this work, a depth camera-equipped UAV is
considered to help a team of UGVs for obstacle-free path
planning.

The remainder of this paper is organized as follows.
Section II explains the end-to-end planning methodology for
a quadrotor UAV with the formalization of the RL problem.
The section also delivers the details of the local replanning
and control of UGVs in the agricultural scenario. Section
IIT provides the experimental setup and the comprehensive
tests of the proposed method in the simulation environment.
The section also provides the results of the real-time tests.

59

partial observation
(depth image)

N

motion commands

o s

moving target

Local

planner

Global

planner

UGV

Fig. 1: The aerial-ground robot team is commanded by
handling the partial observation acquired with the depth
camera on the UAV. The team follows the global trajectory
while avoiding obstacles.

Finally, Section IV concludes this work with future research
directions.

II. END-TO-END MOTION PLANNING OF UAV AND UGVs
A. Problem definition and assumptions

The general block diagram of the methodology is given
in Fig. 1. The local planner is informed about the global
plan as a moving target. The local planner incorporates the
moving target together with the current depth image and
generates local plans for UAV and UGV. Therefore, it helps
the UAV-UGYV team to track the globally defined trajectory
while avoiding obstacles. The local planner is implemented
as a learning-based end-to-end motion planner.

B. Reinforcement learning formalization of the environment

An RL problem is generally formalized as a Markov
decision process (MDP) with state, action, and reward com-
ponents with discrete time steps, ¢. For the problem of end-
to-end agricultural local planning, the state is multi-modal
data containing the depth image and the vector representing
the moving target point, defined as,

6]

where Igepin,+ 1s 64 x 64 matrix representing depth image
and p; = [z,)T is 2 x 1 vector representing the position
of the target point with respect to the body frame.

There are seven actions defined as a combination of 1m
position step in three possible directions and a turn in yaw
angle with respect to the drone’s reference frame, as shown
in Table I. Possible actions are also illustrated in Fig. 3a.
The position step direction is kept small in order to fit with
the field-of-view (FOV) of the depth camera so that the UAV
does not hit an unseen object. On the other hand, yaw angle
change enables a sharper turn around an obstacle as well
as a change of point of view if required. An episode is
started when the UAV is at the beginning of a route. At each
timestep, an action is applied to the UAV, then the depth
image and next target point are obtained as the new state.
Fig. 2 illustrates the selection of the target point projected on
the global path and 5m ahead of the drone for consecutive
time steps. The episode is finalized under three conditions:
crashing an obstacle, deviating from the global trajectory,
and finalizing the route.

St = (Idepth,t7 Pt)’

¥ Obstacle ‘ L4 B

A Target point]

® UAV L4

— Global path L4 .’nﬂ L4 L4
-’Jm{ % W L4

time step:

—

Fig. 2: Moving target generation for the end-to-end agent.
The target point is located 5m in advance of the current
location of the UAV projected onto the global path. The trees
(obstacles), generated target points, UAV, and the global path
are represented as shown in the legend. The UAV takes a
position step at each time step and is informed with the vector
showing the generated target point. The overall trajectory is
demonstrated at the k’th time step.

The reward signal is based on the UAV’s relative motion at
every time step if the episode is not terminated. For termina-
tion of an episode, the collision and excessive deviation are
punished with constant values. On the other hand, finishing
a route normally is rewarded. The reward signal is defined
as,

2Ax — dy + 0.3df, for non-terminal steps

= Rap, for dy .>.5m,)
Rep, for collision,
Ry, for finishing normally

where Az, dy and df are the distance traveled forward, the
distance to the global trajectory and yaw angle difference
from forward looking, Rg4, = —10, R., = —50 and Ry, =
20 are punishment for excessive deviation, punishment for
collision, and reward for finishing an episode without any
crash. This reward logic enables the agent to avoid obstacles
while quickly navigating to goal.

C. Policy network architecture

The policy network (7 (s¢)) structure for this task is given
in Fig. 3a. The neural network feeds the depth image to
convolutional layers and the vector of moving target position
to fully connected layers. The two networks are concatenated
to fully connected layers, and the action is generated. The

TABLE I: Each action is applied as a position step and a
turn in heading angle with respect to the drone’s reference
frame.

Choice Position step (z,y) Heading angle
Action 1 (cos(22.5°)m, sin(22.5°)m) 22.5°
Action 2 (cos(22.5°)m, sin(22.5°)m) 0°
Action 3 (1m, Om) 22.5°
Action 4 (1m, Om) 0°
Action 5 (1m, Om) —22.5°
Action 6 | (cos(22.5°)m, — sin(22.5°)m) 0°
Action 7 | (cos(22.5°)m, — sin(22.5°)m) —22.5°

60

algorithm trains this policy network with given settings using
a DRL method, PPO [6].

Additionally, we have trained a VAE to have a latent
representation of the depth image. As shown in Fig. 3b, this
representation is appended with the moving target and fed
to a simpler policy network. Such a framework makes the
overall network more lightweight than the vanilla setting.
We have collected around 10° depth images with obstacles
around the environment to train the VAE.

‘nln‘uln re
relu
((1114 \I 1 anh

Depth

Image Action
tanh
X, I anh tanh ?
Vi
; Qé%o%oééo
Moving X 7
Target vy
\ |/
&

(a) Policy network structure of the end-to-end local planner. The
actions of the end-to-end planning agent are illustrated at the
output of the network, where the FOV, position steps, and heading
angle are presented as blue lines, dashed lines, and red arrows,
respectively.

[0 O 0 O]

_tanh anh _tanh anh _tanh | anh
Action

I\[()\ ing
Target

Depth
Image

Encoder

(b) Policy network structure of end-to-end local planner with
encoded depth image. The latent representation of the depth image
is concatenated with the moving target. The neural network with
two hidden layers is trained with DRL.

Fig. 3: Policy network structures

D. Local re-planning for UGV

The path generated by the UAV is employed for the path
planning of the UGV as presented in Algorithm 1. The
algorithm uses the waypoints of the UAV in a list, pathqy,
and the y-axis value that the global trajectory lies on, ¥giopai-
The waypoints are considered on the global trajectory within
a certain threshold, £0.4. When the deviation from the global
path exceeds the threshold, the waypoints are shifted to the
right or left accordingly to provide a safe target point for the
UGYV as the body of the UGV is bigger than the UAV. The
target point, (py, py), is passed to the controller of the UGV.
If the distance to the target point decreased under a threshold
waypoint counter, p.ount, is increased by two. Therefore two
consecutive waypoints provided to the UGV are around 2m
apart due to the size of the UGV deployed.

The controller of the UGV is presented in Algorithm 2,
which commands the steering angle, 6., and the cruising

speed, v, to the tractor UGV. Proportional controllers with
saturation are implemented to reduce both yaw angle error,
ep, and the distance error, e4, of the UGV. The steering
angle command is passed through a discrete low-pass filter
to prevent the tractor from falling due to a sharp turn. The
settling time of the filter is adjusted around 1s with the
frequency of the controller 60Hz.

III. EXPERIMENTS AND RESULTS

This section explains the simulation setup to train and test
the end-to-end planning agent, the conducted collaborative
work experiments of the UAV and the UGV in a cluttered
agriculture field, and real-time test results in the laboratory
environment (Artificial Intelligence in Robotics Laboratory
at Aarhus University, Denmark).

A. Simulation setup

A Webots-based simulation environment has been devel-
oped to train and test the proposed algorithms (See Fig. 4).
Webots [32] is an open-source three-dimensional mobile
robot simulator, which allows different programming inter-
faces, such as C/C++, python, or ROS, several kinds of robots
in various application fields. The 2021a release of Webots has
been utilized to develop the cluttered agriculture environment
and deploy the UAV and UGVs with the required sensory
equipment. A third-party software package, ArduPilot, is
selected to implement a quadrotor UAV in Webots to benefit
from its MAVLink extendable communication featured stable
and reliable UAV with its Webots SITL extension. The UAV
robot is then equipped with a depth camera to provide the
required information to carry end-to-end planning operations.
The environment needed to be reset every time collision oc-
curs in training which is a benefit we can have in simulation
throughout the trial and error process.

The simulation environment is wrapped as an OpenAl
gym environment [33] to allow the required communication
between the DRL algorithm and the environment. The robot

Algorithm 1 UGV planner

Require: pathuav[]7 Yglobal
Pcount < 0
while p.ount < path_size do
Dz — pathuav [pcount]nr
Py pathyay [pcount}-y
if Py — Yglobal < —0.4 then

> Get the next waypoint.

Py < Py — 0.5 > Extend point to the right.
else if p, — Y4000 > 0.4 then

Py < Py +0.5 > Extend point to the left.
else

Dy < Yglobal > Keep point on the global path.
end if

eq < UGV_CONTROLLER(pz,py)
if ¢4 < 0.2 then
Pcount <= Pcount + 2
end if
end while

61

Algorithm 2 UGV controller

function UGV_CONTROLLER(p,;, py)
€9, €eq < CALCULATE_ERRORS(Pz, py)
0!, < min(max(—Kyeg, —0.65), 0.65)
0.+ 0.05(6, — 0.) + 6.
Ve + min(Kgeq,0.4)
COMMAND_TRACTOR(v,, 6.)
return ey

end function

l;a—\—vﬂ\s

|
A
*
state
ArduPilot i — End-to-end
avROS
UAV < 1 planner (UAV)
position cmd
3 % (\'1‘*\\ o
o o © o
G Sensors Qev 5
= 2
! Local re-planner
UGV

obstacle

(UGV)

free path

Rigorithm 1 UGV planner

Fig. 4: Overall block diagram of the collaborative operations.
A single UAV is generating obstacle-free way points by
deploying the end-to-end planner network to guide multiple
UGVs in the agricultural field.

operating system (ROS) [34] handles this communication
between the gym wrapper and the simulation. Specifically,
the MAVROS package is used to acquire the global posi-
tioning system (GPS) location of the quadrotor UAV and
send position commands. The remaining information, such
as depth image, collision, UGV position, and UGV steering
commands, is communicated directly by individual Webots
ROS topics. The gym environment interfaces the simulation
environment as an MDP for the DRL algorithm, as explained
in Section II-B.

B. Training in simulation

The end-to-end planner is trained in Webots with seven
routes to present a variety of data for the deep network, as
given in Fig. 5a. The agent is subject to different obstacle
shapes and different kinds of obstacle densities starting
from no obstacle. That enables the agent to generalize the
experience during RL training. Each episode begins on a
randomly selected route and terminates either at the end of
the route or in a collision.

TABLE II: Completion time (in seconds), travel distance (in meters), and success rate of methods over 20 runs at 10 test
routes. The completion time is calculated over fully completed tracks and given as mean and standard deviation. The travel
distance is given as mean and standard deviation.

Environment: Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8 Route 9 Route 10 Overall

time 1365 £23 [1320 £25 [1343 £ 1.1 | 1305 £ 1.1 1328 £ 1.9 1306 £0.0 | 1342+ 16 | 1352 £ 1.1 [1355+05 [1344 £0.0 | 1338 £27

PF distance 30.0 + 0.0 24.14 £ 8.0 | 2581 + 4.2 274 £32 24.1 £6.7 26.75 £ 0.9 2652 £ 72 | 1056 9.7 | 18.06 8.5 | 1447 £+ 104 228 £9.1

success rate 100% 60% 50% 60% 50% 5% 80% 20% 10% 5% 44%
time 131.8 2.0 | 1298 = 1.4 | 1287 £ 1.6 | 1265 £ 1.0 1304 £ 1.3 1275+ 1.1 130.1 £ 1.2 | 1302+ 1.8 | 1322+ 1.5 128.6 + 1.7 1294 +£22
AgroRL distance 2759+ 72 | 2771 £ 5.1 30.0 £ 0.0 30.0 £ 0.0 17.61 £ 9.0 2448 + 6.3 2927 £ 3.2 30.0 £ 0.0 2113 £ 7.7 27.64 + 7.1 26.5 + 6.9
success rate 90% 80% 100% 100% 30% 45% 95% 100% 30% 90% 76%

time 1337 £ 15 [1334+ 17 [130713 [1327 £3.8 | 1373 £34 1BL.6 £ 1.7 [1323 £ 1.7 [1320 £22 [1307 £08 | 1312 £ 14 | 1325+£27

AgroRL - R¢p = —20 distance 30.0 £ 0.0 17.05 £ 9.1 | 29.52 £+ 2.1 30.0 £ 0.0 21.42 £+ 10.1 2346 £ 9.2 30.0 £ 0.0 2949 £ 1.6 157 £ 9.6 27.58 £ 6.9 254 £ 84
success rate 100% 30% 95% 100% 50% 60% 100% 90% 25% 85% 73.5%

time 1350+ 1.6 | 1320+ 1.3 | 131.5£26 | 1303 £13 1315 £ 3.1 131.1 £ 1.1 1313+ 1.4 | 1329+ 1.7 | 1321 £ 1.3 131.1 £ 0.7 1319 £ 22

AgroRL - nsteps = 128 distance 2776 £ 6.7 | 1785 +£9.9 | 25.66 + 4.4 30.0 £ 0.0 23.63 + 104 30.0 £+ 0.0 30.0 £ 0.0 30.0 £ 0.0 21.67 £39 | 19.28 £ 11.8 256 £ 7.9
success rate 90% 40% 50% 100% 70% 100% 100% 100% 15% 55% 72.0%

time 1324 £ 16 [1296 £ 1.5 [1308 £ 1.1 | 129.1 £ 1.6 | 1274 £ 0.0 130.7 £ 07 [1314 £ 1.0 | 1302 £ 1.4 - 1298 £ 1.7 | 1304 £ 1.8

AgroRL - Ry, =0 distance 27.86 + 6.4 30.0 = 0.0 2377 £ 7.5 | 2885+ 5.0 14.51 + 4.7 20.85 + 3.9 29.12 £ 2.6 | 2591 &£ 6.0 | 17.69 &+ 3.8 27.09 £+ 6.9 246+ 172
success rate 90% 100% 55% 95% 5% 15% 90% 65% 0% 70% 58.5%

time 1902 + 1.5 - 1894+ 15 | 1877 £ 1.8 - 1912 £ 0.0 1904 + 1.7 | 1875+ 1.2 | 1885+ 1.2 186.7 £ 1.9 188.7 + 2.1

AgroRL - lstep = 0.5 distance 30.0 + 0.0 9.65 £ 0.4 24.18 + 4.8 | 2394 + 83 741 £3.7 19.83 £ 23 30.0 £ 0.0 29.23 £ 34 | 2351 + 64 26.86 + 7.7 225 +9.0
success rate 100% 0% 40% 65% 0% 5% 100% 95% 40% 85% 53.0%

AgroRL_VAE time 1319 £29 | 1288 £ 1.6 | 1436 £ 1.4 | 1282 £ 0.6 | 1283 £0.7 1295 £ 1.8 - - 1282 £00 | 1281 £09 | 1298 £33

- distance 30.0 = 0.0 2587 83 | 16.63 =79 | 29.68 + 1.4 | 12.14 £+ 10.6 | 14.45 + 12.7 55+02 1047 £ 1.5 | 2694 =53 7.63 £54 179 £ 11.2
success rate 100% 80% 15% 95% 25% 40% 0% 0% 75% 5% 43.5%

The policy network is trained with PPO algorithm imple-
mentation in stable-baselines [35] with python 3. A custom
policy is implemented for the neural network shown in Fig.
3a to receive both image and vector input. The algorithm is
trained through 40000 time-steps, and the best network is
stored during training based on the reward performance in
the recent 20 episodes.

C. UAV tests in simulation

A different set of 10 routes has been designed to test
and compare the proposed method’s efficiency, as shown in
Fig. 5b. The obstacles from the training phase are mixed in
paths with differing sizes and densities to create the challenge
to compare methods. Also, each route starts with a random
offset of £0.5m in vertical for evaluation purposes. Each
method is evaluated 20 times in each lane, and success
rate, completion time, and traveled distance are listed sta-
tistically in Table II. The proposed method is reported as
“AgroRL” with five versions to investigate the effect of a
single parameter change on the resulting planner. The four
modified options are listed with the labels “R., = —207,
“Nsteps = 1287, “Rypp = 07 and “lg4ep, = 0.5” where R,
and Ry, are parameters in Eqn. 2, ngieps is the number of
time steps for PPO policy update, and I, is the position
step length of an action. The proposed method using VAE-
based representation of the depth image is reported with the
label “VAE”.

As a baseline method, an artificial potential field-based
planner is implemented and reported as “PF” in Table II.
In the implementation, each pixel in the middle row of the
depth image creates a repulsive force, and the moving target
creates an attractive force. So, the algorithm uses the same
observation with the end-to-end planner. The action is also
selected from the same action set according to the direction
of the common artificial force in the reference frame of
the UAV. The angle space, [180°, —180°], is divided at the
degrees {30°,20°,5°, —5°, —20°, —30°}, and an action from
1 to 7 is selected for each slot, respectively. These parameters
are manually tuned on the training routes and then tested to
compare with the proposed method.

(a) Seven training routes. From left to right: one no-obstacle, two
with geometric-shaped hanging obstacles, three paths with tree
models, one with blocks. Black lines represent the projection of
a 30m global trajectory on the ground.

(b) Ten testing routes. The obstacles are mixed to create various
levels of challenges in paths. Black lines represent the projection
of a 30m global trajectory on the ground.

Fig. 5: Training and testing routes.

According to the test results, the finishing reward and the
step length have a higher effect on performance when com-
pared to the other two options. The finishing reward shows
the importance of a higher level reward in the RL setting. In
this case, while every step is rewarded in lower-level if the
policy sticks with the global trajectory, the finishing reward
allows the algorithm to evaluate the policy’s performance
over the whole episode, which is critical for having a safer
flight. As a result, the policy will be more robust in dense
obstacle environments with the finishing reward, e.g., the
”AgroRL - Ry, = 0” method has a higher success rate in

62

= @
L 4

-

9
‘j:_/;_"/‘:
| @

[

\,_

®
7 ‘.

am

=

Global
UAV
UGV-1
UGV-2
tree

20 40 60

(a) Global trajectory and trajectories of UAV and UGVs are plotted. The trees are represented

equivalent with their radius in simulation environment.

80

100

(b) The simulated agricultural field.

Fig. 6: Multiple UGV guidance is demonstrated in the agricultural simulation track with one UAV and two UGVs/tractors.
The global trajectory covers the field with forward and backward 80m length paths. While each UGV acts on a single
forward and backward path, the UAV follows the whole route and generates obstacle-free plans for each UGV.

sparse routes, such as routes 1 and 2, when compared to
”AgroRL”. We have also tested a lower position step length
which yields a higher resolution in the planning configuration
space. However, this case completes the episodes slower and
achieves a worse performance in the environment. We deduce
that 1m step length is sufficient for the obstacle sizes in
agricultural applications considering tree size in the field.

In the experiments with VAE, the model cannot achieve
comparable performance with the vanilla case. One possible
explanation is the generalization capacity of the encoder
model. A single hidden layer network is implemented for
the encoder and the decoder to obtain a lower computational
complexity than AgroRL, which can be run 15Hz in an
Nvidia Jetson TX2 board. The second explanation for the
performance of AgroRL_VAE is the representation learning
methodology. The encoder is trained with previously col-
lected data from the simulation environment, and then the
DRL algorithm runs on top of it. However, there are methods
in the literature combining DRL with the representation
learning in the same training and feeding the representation
learning block with the reward information from the envi-
ronment, which can result in a more accurate representation
of the data.

D. UAV and multiple UGV scenario in simulation

The method is also tested in the simulated agricultural field
with a UAV guiding multiple UGV tractors. An 80m long
agricultural field with a global trajectory is designed going
forward and backward for covering the area, as seen in Fig.
6b. Each tractor follows one forward and one backward path;
however, this can be extended to a higher number of tractors.
The UAV follows the entire trajectory while providing an
obstacle-free path to the relative UGV. While UGVs are
moving slower due to their field operations, the UAV can
continue generating a new path for the next UGV. We have
plotted the GPS locations of the UAV and UGVs in the given
scenario in Fig. 6a, where the UAV successfully generates a
path following the global trajectory while diverging from a
safe distance to the trees.

63

E. Real time experiments

The real-world experiments demonstrate that the proposed
UAV planner trained solely with simulation can directly work
in a real environment. A quadrotor is deployed carrying an
Intel Realsense depth camera D435i running at 30Hz, as
shown in Fig. 7. The drone is controlled by a Pixhawk
autopilot [36]. The overall framework runs entirely on-board
on an NVIDIA Jetson TX2 computer, except that the robot’s
localization is provided by a motion capture system. The

Pixhawk 4 ‘

flight controller ‘

Nvidia
Jetson TX2

Intel Realsense
D435i

Fig. 7: Custom drone used in real-time experiments.

(a) The experimental setting with (b) A resulting trajectory of the
randomly placed obstacles. drone running AgroRL.

Fig. 8: The end-to-end planner is deployed in real-time
experiments with 10m route and cluttered obstacles in the
motion capture laboratory.

actions of the policy network are converted into desired poses
at 15Hz in the drone frame, and a geometric controller [37]
is used to track the poses accurately.

Since the real depth images are noisy compared to simu-
lated data, we enhance raw input images by using a fast depth
dilation algorithm [38] and then resize the cropped top part
of the image to 64 x 64 to feed the policy network. We found
that processed depth images help to bridge the gap between
simulation and the real world. Fig. 8 shows the trajectory?
of our drone navigating at 2m/s safely through a 10m route
with multiple obstacles densely placed along the global path.
Similar to the simulations, the drone successfully navigates
through obstacles, with the narrowest passage being approx-
imately three times the drone size. The movements of the
drone in the experiments are very jerky due to poor low-
level controller tuning. This issue can be improved by using
minimum-jerk trajectory generation [39] and better controller
tuning and will be addressed in our future work. However, the
network still performs robustly under aggressive movement
noises, and the task is completed satisfactorily.

I'V. CONCLUSION AND FUTURE WORK

In this work, an end-to-end planner is trained with DRL
for local replanning in agricultural use-case. An agricultural
simulation environment has been developed in Webots. The
end-to-end planning algorithm is trained and tested in com-
prehensive simulations. The guidance of multiple UGVs is
also demonstrated with a single UAV deployed with the end-
to-end planner. The method is also deployed in real-world
indoor environment successfully.

The end-to-end planner outperforms a baseline implemen-
tation based on the artificial potential field method, which
has a lower success rate, especially in cluttered obstacle
settings. This shows that AgroRL has learned to make better
long-term decisions. The importance of a high-level reward
in DRL training is also verified by providing a reward for
successfully finishing an episode to the agent where the agent
shows an 18% higher success rate. One downside of the
method is that it is not sufficient to deploy continuously
on an onboard computer, such as NVIDIA Jetson TX2.
So, the method is implemented discretely where a new
position reference is provided once in a while. To decrease
computational complexity, a VAE-based representation of the
depth image is utilized in training. However, the performance
cannot match the proposed method.

One possible future research direction is to implement a
better representation learning methodology instead of decou-
pling representation learning and DRL. When the algorithm
can run continuously in real-time, there is a possibility to
provide lower-level control commands to the UAV, which
yields a faster flight. Another future direction is to integrate
multiple robots (UAV and UGVs) in the same learning
problem. Since the end-to-end planner is separated from the
UGYV planner, only common obstacles can be considered in

2The video of real-time experiment can be found: https://youtu.
be/dWoW464F82s

64

the problem. However, one advantage of having a UAV is
its better FOV. Combining multi-robot planning in the same
problem will provide the ability to avoid obstacles in the
ground without bothering the UAV.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
2020 Research and Innovation Program (OpenDR) under
Grant 871449. This publication reflects the authors’ views
only. The European Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. =~ PMLR,
2018, pp. 1861-1870.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

Y. Yu, “Towards sample efficient reinforcement learning.” in IJCAI,
2018, pp. 5739-5743.

D. Yarats, A. Zhang, 1. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning
from images,” arXiv preprint arXiv:1910.01741, 2019.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srini-
vas, “Reinforcement learning with augmented data,” arXiv preprint
arXiv:2004.14990, 2020.

A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsu-
pervised representations for reinforcement learning,” arXiv preprint
arXiv:2004.04136, 2020.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
learning for uav attitude control,” ACM Transactions on Cyber-
Physical Systems, vol. 3, no. 2, pp. 1-21, 2019.

A. Molchanov, T. Chen, W. Honig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(multi)-real: Transfer of low-level robust control
policies to multiple quadrotors,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2019,
pp. 59-66.

H. I. Ugurlu, S. Kalkan, and A. Saranli, “Reinforcement learning
versus conventional control for controlling a planar bi-rotor platform
with tail appendage,” Journal of Intelligent & Robotic Systems, vol.
102, no. 4, pp. 1-17, 2021.

K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generaliza-
tion through simulation: Integrating simulated and real data into deep
reinforcement learning for vision-based autonomous flight,” in 2019
international conference on robotics and automation (ICRA). 1EEE,
2019, pp. 6008-6014.

R. Bonatti, R. Madaan, V. Vineet, S. Scherer, and A. Kapoor, “Learn-
ing visuomotor policies for aerial navigation using cross-modal repre-
sentations,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2020, pp. 1637-1644.

E. Camci, D. Campolo, and E. Kayacan, “Deep reinforcement learning
for motion planning of quadrotors using raw depth images,” learning
(RL), vol. 10, p. 12, 2020.

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

B. S. Faical, H. Freitas, P. H. Gomes, L. Y. Mano, G. Pessin,
A. C. de Carvalho, B. Krishnamachari, and J. Ueyama, “An adaptive
approach for uav-based pesticide spraying in dynamic environments,”
Computers and Electronics in Agriculture, vol. 138, pp. 210-223,
2017.

W. Dong, P. Roy, and V. Isler, “Semantic mapping for orchard
environments by merging two-sides reconstructions of tree rows,”
Journal of Field Robotics, vol. 37, no. 1, pp. 97-121, 2020.

S. W. Chen, S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu,
C. J. Taylor, and V. Kumar, “Counting apples and oranges with deep
learning: A data-driven approach,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 781-788, 2017.

J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and
V. Kumar, “Devices, systems, and methods for automated monitoring
enabling precision agriculture,” in 2015 IEEE International Confer-
ence on Automation Science and Engineering (CASE). 1EEE, 2015,
pp. 462-469.

W. H. Maes and K. Steppe, “Perspectives for remote sensing with
unmanned aerial vehicles in precision agriculture,” Trends in plant
science, vol. 24, no. 2, pp. 152-164, 2019.

E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Learning in
centralized nonlinear model predictive control: Application to an
autonomous tractor-trailer system,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 1, pp. 197-205, 2015.

, “Distributed nonlinear model predictive control of an au-
tonomous tractor—trailer system,” Mechatronics, vol. 24, no. 8, pp.
926-933, 2014.

T. Kraus, H. J. Ferreau, E. Kayacan, H. Ramon, J. De Baerdemaeker,
M. Diehl, and W. Saeys, “Moving horizon estimation and nonlinear
model predictive control for autonomous agricultural vehicles,” Com-
puters and electronics in agriculture, vol. 98, pp. 25-33, 2013.

E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Robust tube-based
decentralized nonlinear model predictive control of an autonomous
tractor-trailer system,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 1, pp. 447-456, 2015.

E. Kayacan, H. Ramon, and W. Saeys, “Robust trajectory tracking
error model-based predictive control for unmanned ground vehicles,”
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 806—
814, 2016.

P. Tokekar, J. V. Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic vav and ugv system for precision agriculture,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1498-1511, 2016.

C. Potena, R. Khanna, J. Nieto, R. Siegwart, D. Nardi, and A. Pretto,
“Agricolmap: Aerial-ground collaborative 3d mapping for precision
farming,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1085-1092, 2019.

A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege,
T. Falck, F. Fleckenstein, A. Fontenla, M. Imperoli, R. Khanna et al.,
“Building an aerial-ground robotics system for precision farming: An
adaptable solution,” arXiv preprint arXiv:1911.03098, 2019.

H. Kandath, T. Bera, R. Bardhan, and S. Sundaram, “Autonomous
navigation and sensorless obstacle avoidance for ugv with environment
information from uvav,” in 2018 Second IEEE International Conference
on Robotic Computing (IRC). 1EEE, 2018, pp. 266-269.

O. Michel, “Cyberbotics 1td. webots™: professional mobile robot sim-
ulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A
system for autonomous flight using onboard computer vision,” in 2011
IEEE International Conference on Robotics and Automation. 1EEE,
2011, pp. 2992-2997.

M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of

65

[38]

[39]

high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620-626, 2017.

J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical
image processing: Fast depth completion on the cpu,” in 2018 15th
Conference on Computer and Robot Vision (CRV). 1EEE, 2018, pp.
16-22.

M. Burri, H. Oleynikova, , M. W. Achtelik, and R. Siegwart, “Real-
time visual-inertial mapping, re-localization and planning onboard
mavs in unknown environments,” in Intelligent Robots and Systems
(IROS 2015), 2015 IEEE/RSJ International Conference on, Sept 2015.

D5.2: Second report on deep robot action and decision making 66

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making

E

:' frontiers

in Robotics and Al

67/94

ORIGINAL RESEARCH
published: 19 October 2021
doi: 10.3389/frobt.2021.734548

OPEN ACCESS

Edited by:
Matteo Saveriano,
University of Innsbruck, Austria

Reviewed by:

Weiwei Wan,

Osaka University, Japan
Yi-Shiuan Tung,

University of Colorado Boulder,
United States

*Correspondence:
Roel Pieters
roel.pieters@tuni.fi

These authors have contributed
equally to this work and share first
authorship

Specialty section:

This article was submitted to
Field Robotics,

a section of the journal
Frontiers in Robotics and Al

Received: 01 July 2021
Accepted: 07 October 2021
Published: 19 October 2021

Citation:

Angleraud A, Mehman Sefat A,
Netzev M and Pieters R (2021)
Coordinating Shared Tasks in Human-
Robot Collaboration by Commands.
Front. Robot. Al 8:734548.

doi: 10.3389/frobt.2021.734548

Frontiers in Robotics and Al | www.frontiersin.org 1

Check for
Updates

Coordinating Shared Tasks in
Human-Robot Collaboration by
Commands

Alexandre Angleraud T, Amir Mehman SefatT, Metodi Netzev and Roel Pieters*

Cognitive Robotics Group, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland

Human-robot collaboration is gaining more and more interest in industrial settings, as
collaborative robots are considered safe and robot actions can be programmed easily by,
for example, physical interaction. Despite this, robot programming mostly focuses on
automated robot motions and interactive tasks or coordination between human and robot
still requires additional developments. For example, the selection of which tasks or actions
a robot should do next might not be known beforehand or might change at the last
moment. Within a human-robot collaborative setting, the coordination of complex shared
tasks, is therefore more suited to a human, where a robot would act upon requested
commands.In this work we explore the utilization of commands to coordinate a shared
task between a human and a robot, in a shared work space. Based on a known set of
higher-level actions (e.g., pick-and-placement, hand-over, kitting) and the commands that
trigger them, both a speech-based and graphical command-based interface are
developed to investigate its use. While speech-based interaction might be more
intuitive for coordination, in industrial settings background sounds and noise might
hinder its capabilities. The graphical command-based interface circumvents this, while
still demonstrating the capabilities of coordination. The developed architecture follows a
knowledge-based approach, where the actions available to the robot are checked at
runtime whether they suit the task and the current state of the world. Experimental results
on industrially relevant assembly, kitting and hand-over tasks in a laboratory setting
demonstrate that graphical command-based and speech-based coordination with
high-level commands is effective for collaboration between a human and a robot.

Keywords: collaborative robot (cobot), human-robot interaction, task coordination, knowledge-based, speech
recognition

1 INTRODUCTION

Collaborative robots (cobots) are at increasing rate being deployed in industrial environments,
sharing tasks and the work space with humans (Villani et al., 2018a). Tasks can be individually
configured in a human-robot team setting, where the operator demonstrates task sequences and skills
for the robot, and the robot repeats them (Ogenyi et al., 2021). This avoids having to go through a
development phase, considerably speeding up integration time. Cobots are crucial for this, as they are
small, light-weight and can be safely moved around by a human operator (Kumar et al., 2021).
However, this programming of tasks is typically targeted only for independent robot motions, and
task execution usually does not include human-robot interaction or physical collaboration. This

October 2021 | Volume 8 | Article 734548

OpenDR

No. 871449

Angleraud et al.

implies that programming is still done offline, while the robot and
the tasks are being prepared, and the actual execution phase is
mostly autonomous execution of the robot. While applications
can be found (Sadrfaridpour and Wang, 2017; Johannsmeier and
Haddadin, 2017; Darvish et al., 2021) that integrate coordinated
actions (e.g., waiting for human input or trigger), still this is pre-
programmed and planned to happen at certain specified
occurrences. Coordination is thus planned in advance and
both agents (i.e., human and robot) act as decided by a fixed
protocol. If and when problems occur, or when changes need to
be made in the collaboration, the work flow is disrupted and has
to be restarted when problems get fixed or when changes are
implemented. This limitation affects the natural collaboration
and fluency between human and robot (Hoffman, 2019), as no
spontaneous actions are allowed besides simply halting the robot
and the action plan. While exceptions exist (see e.g., (Darvish
etal., 2021), which takes into account last-minute changes of task
allocation), task plans are typically short, to avoid a large task plan
network that is complex to model and track.

To allow more natural and fluent human-robot interaction, we
believe collaboration between human and robot should be
coordinated by the human, assisted by the robot and its
knowledge and reasoning capabilities. At any given time
during the collaboration, the human worker should be able to
select suitable actions from the robot to assist the shared task. The
robot verifies that the action is suitable and possible, based on its
current state of the world and capabilities. Such knowledge is
incorporated in a knowledge base that is updated at regular
intervals by observations and human instructions. The
selection of actions for the robot thus requires human
commands to allow for intuitive instructions. Speech and text-
based commands are most suitable as, similar to human-human
communication (Rocci and Saussure, 2016), semantics can be
included.

In this work, we present the developments to allow human
coordination in shared human-robot collaborative tasks. The
main contributions of this paper are:

e A knowledge-based system architecture that supports
reasoning, planning and knowledge integration

e Shared task coordination by human commands, either by a
graphical interface or by speech

e Industrially relevant use case scenarios that evaluate the
approach

The paper is organized as follows. Section 2 reviews the state
of the art in human-robot collaboration and verbal
communication in robotics. Section 3 presents the proposed
system, with the knowledge and reasoning architecture
(Section 3.2) that describes the state of the world, the actors
present within it and the capabilities and properties each contain.
Then, in Section 3.3 the selection of robot actions is enabled by
both a graphical command-based and speech-based user interface
that is connected to the knowledge base for reasoning over
capabilities and actions. Results of the approach are presented
in Section 4 by evaluation of human-robot collaborative tasks
inspired from real industrial use cases. Section 5 presents a

Coordinating Human-Robot Collaboration by ‘Commands

discussion on the work, including its limitations. Finally,
Section 6 concludes the work.

2 RELATED WORK

2.1 Human-Robot Collaboration

Collaboration between human and robot within industrial
environments has received considerable attention in recent
years (Villani et al, 2018a; Kumar et al, 2021). Clear
distinctions are made between different categories of
collaboration, for example, whether tasks and the environment
are shared and which agent takes which task (Kolbeinsson et al.,
2019). This allocation of tasks requires careful planning and
depends on several (in)dependent factors, such as the
capabilities of the robot, the difficulty of re-programming and
re-configuring the setup, complexity of the task, among many
others. Cobots are well suited to be integrated in such
environments, due to their light weight, integrated safety
functions and human-centered robot programming interfaces
(Villani al, 2018a,b). Industrial integration requires
adherence to international standards that assess the safety
aspects (i.e., (ISO-10218-1/2:2011, 2011), for industrial robots
and systems, and (ISO-15066:2016, 2016), for collaboration) by a
formal risk assessment, where, besides the robot itself, additional
systems (Halme et al., 2018) can be incorporated to guarantee
safety of the human worker. Additional trends in collaboration
between human and robot take the fluency of interaction
(Hoffman, 2019) or human factors (Chen and Barnes, 2014)
into account. This implies that the user experience (Chowdhury
et al., 2020) and user acceptance (Miiller-Abdelrazeq et al., 2019)
is considered by design of the interaction, with suitable
technology that improves, instead of hinders, the outcome.

Even though much research and development is ongoing to
accelerate the uptake and deployment of collaborative robots,
there is no universal solution that fits all. This is perhaps best
exemplified by the variety of modalities available for interaction
and the magnitude of differences in industrial environments,
tasks and contexts. Several different modalities have been utilized
for communication, as demonstrated for gestures (Liu and Wang,
2018), augmented and virtual reality (Dianatfar et al, 2021),
verbal and non-verbal communication (Mavridis, 2015) and
physical interaction (Ogenyi et al., 2021).

The mentioned works on human-robot collaboration
demonstrate that communication is crucial in achieving the
goals of the interaction. Depending on the modality, this
information exchange can take many forms, such is robot
goal poses, safety zones, basic commands, task messages, etc.
Non-verbal commands, however, typically transmit different
information, as compared to verbal commands. Human to
human communication, for example, thrives in verbal
communication (Rocci and Saussure, 2016), as information
can be shared efficiently and with different nuance and
meaning. Enriching robots with the capabilities to
interpret, understand and react to verbal commands, or
even natural language, is, however, still in early stages of
development.

et

Frontiers in Robotics and Al | www.frontiersin.org

68

October 2021 | Volume 8 | Article 734548

Angleraud et al.

2.2 Verbal Communication in Robotics
Verbal interaction between humans and robots has seen success

in many different cases (Mavridis, 2015; Marin Vargas et al.,
2021). Often, literal commands provide the robustness for
communication, as the commands are known, and only basic,
short sentences are utilized. The step of going beyond literal
command-based instructions aims at extending communication
to include semantic annotations of commands (Dukes, 2013) or
purely natural language (Williams et al., 2015). One advantage of
natural language, as compared to literal commands, is the
inclusion of semantics, enabling similar expressions in
different ways, such that it is most and
comfortable for the human. Moreover, higher-level (cognitive)
concepts, such as intention, emotion and action, can be (in)
directly included in a phrase, as typically present in everyday
human language. The extraction of such information for a
Natural Language Processing (NLP) system is, however, not an
easy feat. State of the art approaches, utilizing deep neural
networks (Otter et al, 2022) or other learning based
techniques (Sharma and Kaushik, 2017), have shown real-time
conversational skills, as, for example by IBM’s Watson (High,
2012) or GPT-3 (Brown et al., 2020).

With respect to robotics, the understanding and
acquisition of language can take advantage of the
situational nature of a robot, as it is placed in a dedicated
environment where tasks and context are known (Taniguchi
etal., 2019). Research works have focused on specific contexts
for extractions and interpretations of robot instructions, such
as manipulation (Misra et al., 2016), grasping (Chen et al,,
2021), intention recognition (Mi et al., 2020; Sun et al., 2021)
and grounding (Misra et al., 2016; Shridhar et al., 2020; Vanzo
et al.,, 2020). Other approaches interpret natural language
through human-robot dialog (Thomason et al., 2015), or
utilize additional sensor modalities, such as vision (Sun
et al., 2021; Chen et al., 2021). Research has also targeted
semantics, both to understand the world and to execute robot
actions within it (Ramirez-Amaro et al., 2019). Approaches
specific to learning or assigning the semantics of assembly
tasks can be found in (Stenmark Malec, 2014;
Savarimuthu et al., 2017).

Most of the presented works consider the tasks as fixed, with
little variation in task allocation (Johannsmeier and Haddadin,
2017) or with a low number of total tasks to be executed (Darvish
etal,, 2021). The reason for this is that with increasing variation in
tasks, the task models easily become too large to manage and
track. However, when considering Industry 4.0, the trend of
smart manufacturing pushes production processes to include
wide variations in products, which are to be completed at
irregular and unknown time instances. Collaboration between
human and robot is suitable to achieve this with higher efficiency
than robots (i.e., full automation) or humans (i.e., full manual
labour) alone, as it avoids large and complex task plans that
include all possible product variations, and avoids large robot
programming efforts. The problem then becomes how to
command and coordinate robots effectively and efficiently.

In this work, we address the collaboration between human and
robot from the point of view of coordination. In order to enable

convenient

and

Coordinating Human-Robot Collaboration by ‘Commands

fluent collaboration, human coordination decides when and
which robot actions should be executed. This is done by
human command phrases (actions and targets), that can be
communicated by speech or via a graphical user interface, at
any given time during the shared task. Reasoning over the
knowledge base that holds an up-to-date world model, then
ensures that robot tasks are executed at the correct time (e.g.,
when the robot is free) and with the correct functionalities (e.g.,
robot is capable to reach an object). Command phrases, in
combination with a dedicated knowledge representation of the
world, has the advantage of including semantic annotation to all
knowledge, making the system customizable to the user (e.g., by
preferred phrases) and to the tasks (e.g., no predefined task plan,
but the user decides who does what and when).

3 MATERIALS AND METHODS

The methodology of the proposed approach and its materials are
explained by the system architecture and its contents, which
includes the knowledge base and reasoning, action planning and
the different interaction modalities, i.e., graphical command-
based and speech-based.

3.1 Terminology
The terminology, used throughout the work is clarified as follows:

Coordination-the act of managing actions towards a common
goal, while handling problems, conflicts and collaboration.

Communication-the exchange of information by different
modalities.

Command-a word that the robot knows and reacts to.

Natural Language Processing (NLP)-refers to the
computational approach of analyzing, understanding and
manipulating natural language text or speech.

Automated Speech Recognition (ASR)-converts spoken
language to text.

Semantic annotation-is a process of attaching relevant (meta)
data.

In context of the human-robot collaborative tasks, our
contributions lie in the human coordination of robot actions
by utilizing commands, which are known in the system.
Automated Speech Recognition (ASR) tools capture the
spoken commands and convert them to text. Natural
Language Processing (NLP) takes the text and matches them
to existing or related phrases by semantic information that is
annotated to the contents of the knowledge base. To reduce the
complexity in modelling and tracking shared task plans, the tasks
commanded to the robot are short (only few actions) and are not
integrated in a higher level goal. This implies that a (shared) goal
is only taken into account by the human, who coordinates the
actions of him/herself and the robot. Nevertheless, as the world
and the low-level tasks are represented in an ontology, this allows
for their evaluation, before a robot action is executed. Practically,
the current state of the world and the task, and the requested
commands are evaluated for matching conditions and
capabilities. For example, whether the robot can reach a
destination or is holding an object for placement.

Frontiers in Robotics and Al | www.frontiersin.org

69

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

Knowledge Base

/

Reasoning Reasoning

Ontology Ontology Ontology

World:
Agents
Objects

Actions
Tasks

N

Reasoning

Action Planning NLP
(o st
HTN for: Word dictionary
Tasks & filtering steps
Conditions i
Goal _Graphlcal
‘ \ |n(erfat‘:f
Robot ASR
API for: MQ’/ Sphinx API
Motion control L)
Gripper e
/ Interaction = Speech
- interface

FIGURE 1 | The system architecture is divided in several blocks as follows. The knowledge base (KB) holds all knowledge of the world in form of ontologies, which

are updated by reasoning and human input. Action planning generates shared plans in form of hierarchical task networks (HTN), which take input from the KB. Robot
capabilities are integrated via a separate robot application programming interface (API) where skills and motion primitives are defined. Automated speech recognition
(ASR) and natural language processing (NLP) are separate modules that provide the human input for coordinating the collaborative tasks.

TABLE 1 | Coordination of shared tasks is commanded by <action, target>-pairs that specify an action to be executed by the robot, with an accompanying target.
Specific details of the architecture are as follows: Pre-conditions-checks whether certain conditions of the world and its content prior to execution are met (e.g., object

location, state/capabilities of the robot). Signature-specifies onto which the action/target acts; object, robot and/or human. Semantics-lists the different commands that can
be used for triggering the same action/target. Format-describes the underlying knowledge format. Explanation-provides details of the action/target and its specific (sub)

tasks.

Action Pre-conditions Signature
moveTo isWithinReach isReady Object

graspObject gripperEmpty isReady holdsObject Object Robot
placeObject isWithinReach isReady Object Robot
handOver isWithinReach isReady humanPresent Object Robot Human
kitParts isWithinReach isReady Object Robot
Target

Parts isWithinReach canBeGrasped Object Robot Human
Box isWithinReach isReady isEmpty Object Robot

Table isWithinReach isReady isEmpty Object Robot
Human isWithinReach isReady humanPresent Object Human

3.2 System Architecture

The architecture of our system is based on previous developments
on knowledge-based planning for human-robot collaborative
tasks (Angleraud et al., 2018). One crucial difference is that no
high-level planner is utilized and autonomous robot actions, as
inferred from the knowledge base and reasoning, are excluded.
Instead, human coordination decides which actions are selected
and executed, verified by the reasoning module. The system is
depicted in Figure 1 and the individual modules are explained in
detail, as follows.

3.2.1 Knowledge Base and Reasoning

Knowledge on the world and its content is represented by
ontologies, and referred to as the Knowledge base (KB). As
main advantage, ontologies offer a structured description of
knowledge, its domain and the relationships that hold between
its contents. The KB contains the objects and agents present, and
includes relevant information for the tasks and the goals, such as
their location, pose, status, etc. Executable actions of the robot, such
as end-effector motion, grasping and object placement are
expressed as an < action, target > -pair that can be called
by the human at any requested instance. The KB and its knowledge

Semantics Format Explanation
Come Go move action Move robot end-effector
Pick Take motion action gripper action Grasps object
Place Deposit motion action gripper action Places object
Give Hand motion action gripper action Hand-over object
Kit Stock motion action gripper action Pick and place objects

Bolt Bolts Tool 3D Pose Location of parts

Box Kit Container 3D Pose Location of box
Storage Kit_store Back 3D Pose Pose on table

Here Me 3D Pose Human hand-over pose

representation allow for relationships to be defined between
actions, targets and the world state, such that dependencies and
conditions can be checked in order to update the KB. Moreover,
relationships enable verification of conditions for robot action
execution. Reasoning over the KB, therefore, serves two functions:
World update - Observations external and internal from robot
and the world are utilized to update the KB. For example, the state
of the robot, such as end-effector pose, gripper state, and its
actions being executed. Moreover, human commands (i.e., <
action, target > -pairs) are used to update the KB.
Action execution checks-Relationships between entries of the
KB are checked when robot actions are queried. These pre-
conditions verify and enable the execution of robot actions.
Table 1 lists a subset of < action, target > -pairs present
in the KB, which is utilized for updating the KB and for
coordination of the shared human-robot collaborative tasks.

3.2.2 Action Planning

Robot action plans are constructed from mid-level action
sequences that execute requested tasks. At a higher level,
human coordination guides the collaboration, in order to
achieve a shared goal. Action plans are represented by

Frontiers in Robotics and Al | www.frontiersin.org

70

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Hierarchical Task Networks (Georgievski and Aiello, 2015),
which take input from the KB to generate a plan. On a
practical level, this implies that at each action plan node, the
state of the robot and the human is checked (e.g., whether the
human is active or not, represented by the is Ready state). When
the robot is ready, additional pre-conditions of the world are
verified that assess whether the actions can be executed (e.g., end-
effector pose can be reached: is withinReach, object present: can
Be Grasped, gripper empty: gripper Empty; see Table 1, pre-
conditions column). When verified correct, the actions are
executed. One example explains this planning concept. A
robot grasping task is planned as a sequence of actions
(i.e., robot motion, gripper motion), where each node in the
plan represents the different steps in between the robot actions.
At each node, pre-conditions are checked, towards the state of the
world and the actions requested, prior to execution. A high level
understanding of the shared task is therefore not present in the
KB, but only the actions that can be requested from the human.
This simplifies the formal planning definition and leaves the high-
level coordination towards the shared goal to the human.

3.2.3 Semantic Annotations

Ontologies are well suited to incorporate (semantic) annotations
to knowledge. Properties, relations and dependencies can be
easily connected to individual entities and link entities
together to form (chains of) relationships. Table 1 lists few
examples in the pre-conditions column that represent relations
and attributes in the world. In regards to the interpretation of
semantics towards robot commanding, our system offers the
incorporation of semantic annotations, as selected commands
can be assigned to address specific actions and targets (see
Semantics column in Table 1). Integration of such additional
semantics requires the requested commands to be included in the
NLP dictionary and the planning domain ontology.

3.3 Interaction Modalities

Interaction between human and robot can be divided into modalities
utilized for programming robot actions and modalities utilized for
task coordination. Physical interaction, such as hand-guiding a robot
motion, demonstrates an end-effector pose and is part of a set of
robot capabilities developed by the robot manufacturer (i.e., gravity-
compensated hand-guiding). Here, we focus on the core interaction
modalities of our work, ie., a graphical command-based interface and
a speech-based interface.

3.3.1 Graphical Command Interface

The graphical command-based interface enables a human to instruct
actions to the robot, by an < action, target > -pair selected from
a graphical user interface (GUI). Based on the current state of the
world, a single action can be selected, followed by a suitable target (see
Table 1). It has to be noted that the semantics of the actions and the
targets are not fixed and can be arbitrarily chosen by the human, by
simply changing the terminology in the specific ontology.

3.3.2 Speech Interface
An ASR module enables the shared human-robot collaborative
tasks to be coordinated by verbal commands. This essentially relies

Coordinating Human-Robot Collaboration by ‘Commands

on the same functionality as the command interface but now,
speech has to be interpreted and connected to individual actions
and targets to form < action, target > -pairs. While ASR
depends on an external software tool, several NLP steps and filters
are included to our proposed system. To reduce the complexity of
the NLP steps, several additional requirements are set for the
acceptance of the command phrases. These are explained as follows.

Word exclusion-Common words are removed from a phrase,
such as articles (e.g., ‘the’, ‘@, ‘an’)

Word limit-A maximum of two words are accepted for
processing.

As general rule, from a command phrase, the NLP system accepts
only the words that are defined in the dictionary, and a command
phrase should only contain one action and one target. In other cases
(e.g, multiple actions/targets or one action/target missing), the
command is not accepted. Following, it is checked whether there
exist properties of the action and the target, such that a meaningful
task can be extracted for the robot. This is done by reasoning and
verification over the knowledge base, where all actions and targets are
described by suitable properties and relationships.

3.3.3 Knowledge Integration

Integrating new knowledge into the system can be done in various
ways, depending on the type of knowledge and its format, as
summarized in Table 2. Robot actions to be included are divided
in primitive actions, such as single motions or gripper actions,
and tasks, which are a list of actions. In both cases the action is
demonstrated by the human or programmed in the action library
of the robot and linked to the ontology by suitable function call
definition. As part of the ontology, conditions should then be
defined that will be evaluated before action execution.

Targets, which can be locations in 3D space and target objects to
grasp (see Table 1), are defined as 3D poses in the world space, to be
utilized for the robot, and defined by either hand-guiding the robot or
by hard-coding the pose into the KB. This means objects and robot
motion are not predefined, but are taught to the system before the
execution of the shared task. Annotations to the target in the ontology
can be included to provide additional and sufficient information to
the target pose. For example, objects such as boxes, into which objects
can be placed, require a pose that denotes the location within the box,
instead of the pose of the box itself.

Direct inclusion of alternative words (synonyms) for existing
commands in the ontologies can be easily done via an ontology
editor, such as Protégé (Musen, 2015). This enables semantics to be
added to all knowledge, by taking advantage of the functionalities of
the OWL2 language. Similarly, new reasoning rules can be added by
defining new rules in the SWRL language'.

4 EXPERIMENTS

In this section we present the results of our work, by describing
and evaluating two use case scenarios that are representative for
industrial human-robot collaboration.

'https://www.w3.org/Submission/SWRL

Frontiers in Robotics and Al | www.frontiersin.org

71

October 2021 | Volume 8 | Article 734548

Angleraud et al.

TABLE 2 | Procedure for integrating new knowledge into the system.

Coordinating Human-Robot Collaboration by ‘Commands

Action Format Modality Explanation
Primitive Robot action Software integration Python and ontology Primitive robot actions can be included by function call from ontology to action
library
Task List of robot actions Software integration Python and ontology Higher level tasks can be included by defining a list of robot actions
Target
Pose/object 3D pose Robot hand-guiding New targets are defined by hand-guiding the robot to a desired pose. This target is
then recorded in the ontology
Other
Reasoning rue ~ SWRL Software integration Python and ontology ~ New reasoning rules are defined in the SWRL language and integrated to update
the ontology
Synonym Words Ontology population Synonyms to all actions and targets can be included by creating new ontology
instances
| Grasp <« Page 1
Release
Give Bolt
G
NLP comman o Send NLP comman¢ Tool Send
Come Back
Take Here
Store Kit
Place X Kit_store
Action: Action:
Ki :
2 % Plan Gripper Blan
Targets: Put Targets: Bolt C
FIGURE 2 | The graphical command interface enables actions and targets to be selected from a drop-down menu. Left: available actions. Right: available targets.

4.1 Implementation
The system architecture and interaction modalities are developed

in Python3, utilizing ROS for robot communication and control.
The graphical user interface (see Figure 2) is developed in Qt and is
launched as single interaction mechanism, enabling also the speech
module to pass commands to the system. The Google Speech
Recognition engine” enables spoken words to be converted to text.
Ontologies are defined using OWL2 standard’® with owlready2*
and Protégé (Musen, 2015) as ontology editor. Reasoning over the
knowledge is done by evaluating rules in the SWRL languagel.
Use case scenarios are demonstrated with the Franka Emika
Panda® collaborative robot that provides robust motion profiles
and control actions for object pick-and-place and hand-over
tasks. Industrial parts and tools from a local Diesel engine
manufacturer are utilized to demonstrate the capabilities of the

*https://pypi.org/project/SpeechRecognition
*https://www.w3.org/TR/owl2-syntax
*https://pypi.org/project/ Owlready2
*https://franka.de

proposed system, which includes (collaborative) tasks for the
assembly of Diesel engine components and human-robot hand-
over tasks for robot assistance. The work environment consists of
two tables; one for the robot and parts/tools to be placed, and one
for the human operator and the Diesel engine assembly. Both tables
are accessible for the human operator and the robot, implying that
the whole environment is a shared work space. For the robot, two
separate supportive tasks, and thus experiments, are defined:

1. human-robot hand-overs of parts/tools-enables the robot to act
as a support to workers, while they are engaged in a Diesel engine
(dis)assembly task. Hand-over actions from robot to human
and from human to robot are coordinated with industrial parts,
such as bolts and tools. Human actions include assembly
operations of parts to a Diesel engine and the handling of tools.

2. Robot assisted kitting-enables the robot to group individual
items into relevant kits. This assists the human operator in a
Diesel engine disassembly procedure, for example by
collecting and keeping track of all parts. As a separate
activity, kitting occurs alongside the human disassembly
procedure. Parts to be handled are bolts and hand-tools.

Frontiers in Robotics and Al | www.frontiersin.org

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

FIGURE 3| Different stages of the hand-over scenario by graphical command-based coordination. Left: 00:00 - command <give, tool>is send, which instructs
the robot to hand-over the wrench from the table to the person. Middle: 01:30 - commands <come , here>and <take, bolt>are used to instruct the robot to receive a
bolt from the person. Right: 01:45 - command <give, bolt>is used to instruct the robot to pick up and hand-over a bolt from the table to the person.

Human
Robot

Receiving
Handover

Disassembling
Picking
00:00
<give,tool>

Time (min:sec) 00:15 00:30 00:45 01:00

Command

Move
01:15
<take,bolt>

Handover Receiving | Assembling

Receiving Handover Reset

01:30

Placing
01:45

Picking
02:00
<give,bolt>

02:15 02:30

Total:

H-IDLE
R-IDLE
F-DEL
C-ACT

(C-ACT). Functional delay (F-DEL) is avoided completely.

FIGURE 4 | Task assignment chart for hand-over tasks by graphical command-based coordination. The chart depicts the actions of the human (blue) and the robot
(green) in the shared collaborative scenario. The fluency metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity

0.36
0.27

0.45

Both tasks are evaluated by the graphical and speech
command interface. A video of the experiments can be seen
here: https://youtu.be/SzIuLHzLYpA. In addition, the hand-over
task is compared to two baseline methods (i.e., strict turn taking
and fast robot cycle), from which clear objective metrics can be
extracted that assess the fluency of coordination (Hoffman, 2019).
The metrics are human idle time (H-IDL), robot idle time
(R-IDL), functional delay (F-DEL) and concurrent activity
(C-ACT). For all experiments metrics were calculated with a
resolution of 15 sec. This was chosen to be coherent with all
experiments and their analysis. In practice, these results were
obtained from analyzing the videos of the experiments and
finding a common resolution between the different robot and
human actions. Experiments were repeated five times. The
experimental scenarios are as follows.

4.2 Use Case Scenario 1: Command-Based
Collaboration

To evaluate human-robot collaboration by commands, a scenario
is defined where a human operator selects robot actions (in form
of < action, target > -pairs) from a graphical user interface
(GUI). The list of actions and targets can be selected from a drop-
down menu in the GUI, as depicted in Figure 2. Both tasks,
i.e., human-robot hand-over and kitting, are demonstrated as
follows.

Figure 3 depicts different stages of the human-robot hand-
over scenario by graphical command-based coordination.
Figure 4 depicts a task assignment chart, which visualizes

when different agents, i.e., robot or human, are active and with
what activity. The commands requested by the human and
utilized for robot coordination are depicted as well, and
demonstrate the variation in robot actions and how they
can be requested. In this case, commands are utilized for
object picking and placing (i.e., give and take), robot
motion (come) and hand-over tasks from robot to human
and human to robot. Parts and locations are described by
tool, bolt and here.

Figure 5 depicts different stages of the kitting scenario by
graphical command-based coordination. Figure 6 depicts a task
assignment chart, which visualizes when the robot is active and
with what activity. The commands requested by the human and
utilized for robot coordination are depicted as well, and
demonstrate the variation in robot actions and how they can
be requested. In this case, commands are utilized for object
picking and placing (pick, place, kit and take) and
robot motion (go). Parts and locations are described by
tool, box, back, bolts, kit and kit store.

4.3 Use Case Scenario 2: Speech-Based
Collaboration

To evaluate human-robot collaboration by speech, a scenario is
defined where a human operator requests robot actions (in form
of <action, target > -pairs) by speech. A list of actions and
targets are available, which are known by the human operator.
Again, both tasks, i.e., human-robot hand-over and kitting, are
demonstrated as follows.

Frontiers in Robotics and Al | www.frontiersin.org

73

October 2021 | Volume 8 | Article 734548

Angleraud et al. Coordinating Human-Robot Collaboration by ‘Commands

FIGURE 5 | Different stages of the kitting scenario by graphical command-based coordination. Left: 00:00 - commands <pick, tool>and <place, box>are
send, which instructs the robot to pick and place the tool from the table to the kit. Second left: 01:00 - command <kit, bolts>is used to instruct the robot to place all
bolts from the table into the kit. Second right: 02:00 - command <take, kit>is used to instruct the robot to pick up the kit from the table. Right: 02:15 - command
<place, kit_store>is used to instruct the robot to place the kit on the other table.

Human
Robot | Pick&place | Pick&place Pick&place | | Pick&place
Time (min:sec) [00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15
Command | <pick,tool> | <place,box> | <go,back> | <kit,bolts> <take,kit> | <place,kit_store>

FIGURE 6 | Task assignment chart for the kitting task by graphical command-based coordination. The chart depicts only the actions of the robot (green), as it
acts alone.

FIGURE 7 | Different stages of the hand-over scenario by speech command-based coordination. Left: 00:00 - command <give, tool>is spoken, which instructs
the robot to hand-over the wrench from the table to the person. Middle: 01:30 - commands <come, here>and <take, bolt>are spoken to instruct the robot to
receive a bolt from the person. Right: 01:45 - command <give, bolt>is spoken to instruct the robot to pick up and hand-over a bolt from the table to the person.

Human Receiving Disassembling Handover Receiving | Assembling
Robot| Picking Handover Move Receiving Placing Picking Handover Reset
Time (min:sec)|00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15

Command| <give,tool> <come,here>| <take,bolt> <give,bolt> Total:
HDLE 030
R-IDLE _- 0.20
F-DEL
cacT I I] oso

FIGURE 8 | Task assignment chart for hand-over tasks by speech command-based coordination. The chart depicts the actions of the human (blue) and the robot
(green) in the shared collaborative scenario. The commands requested by the human to the robot are identical to the graphical command-based scenario. The fluency
metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity (C-ACT). Functional delay (F-DEL) is avoided completely.

Figure 7 depicts different stages of the human-robot hand- ~ commands requested by the human and utilized for robot
over scenario by speech-based coordination. Figure 8 depicts a coordination are depicted as well, and demonstrate the
task assignment chart, which visualizes when different agents, variation in robot actions and how they can be requested. In
i.e, robot or human, are active and with what activity. The this case, commands are identical to the graphical command-

Frontiers in Robotics and Al | www.frontiersin.org 8 October 2021 | Volume 8 | Article 734548

74

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

FIGURE 9 | Different stages of the kitting scenario by speech command-based coordination. Left: 00:00 - commands <take, tool>and

<deposit, container>are spoken, which instruct the robot to pick and place the tool from the table to the container. Second left: 01:00 - command
<stock, bolts>is spoken to instruct the robot to place all bolts from the table into the container. Second right: 02:00 - command <take, container>is spoken to
instruct the robot to pick up the kit from the table. Right: 02:15 - command <deposit, storage>is spoken to instruct the robot to place the kit on the other table.

Human
Robot | Pick&place | Pick&place Pick&place | | Pick&place |
Time (min:sec) | 00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15
Command | <take,tool> | <deposit,container> | <go,back> <stock,bolts> <take,container> | <deposit,storage>

FIGURE 10 | Task assignment chart for kitting by speech coordination. The chart depicts only the actions of the robot (green), as it acts alone. The commands
requested by the human to the robot are different from the graphical command-based scenario.

based hand-over scenario, ie., object picking and placing
(i.e., give and take), robot motion (come) and hand-over
tasks from robot to human and human to robot. Parts and
locations are again described by tool, bolt and here.

Figure 9 depicts different stages of the human-robot hand-
over scenario by speech-based coordination. Figure 10 depicts a
task assignment chart, which visualizes when different agents,
i.e, robot or human, are active and with what activity. The
commands requested by the human and utilized for robot
coordination are depicted as well, and demonstrate the
variation in robot actions and how they can be requested. In
this case, commands are utilized for object picking and placing
(take, deposit and stock) and robot motion (go). Parts and
locations are described by tool, container, back, bolts,
container and storage.

In all cases, robot actions are requested at an instance as
decided by the human operator and are executed without major
delay, if the robot is not active in other tasks. If the robot is busy,
the action is executed as soon as the robot becomes
available again.

4.4 Baseline Comparison

In order to assess the fluency of collaboration between the human
and the robot, resulting from our coordination approach, we
devised two baseline approaches as comparison:

1. Strict turn taking-each action is immediately followed by the
next action of the other teammate, implying that tasks are
done sequentially, instead of parallel. Exceptions are the hand-
over actions as they require both agents to complete.

Fast robot cycle-each robot action is executed as fast and as
soon as possible, irrespective of the actions of the human.

In both baseline approaches the actions of the robot are not
commanded by a human, but executed according to a predefined
protocol, as could be found in a factory automation setting. From
the objective fluency metrics the following conclusions can be
drawn. In strict turn taking (see Figure 11) the human idle time
(H-IDL) is relatively high (0.46 or almost half of the time), as
concurrent activity (C-ACT) is avoided. Exceptions are the
handover tasks that require both agents to collaborate.
Similarly, the robot idle time (R-IDL) is also relatively high
(0.31 or almost a third of the time), due to the similar reason.
The functional delay (F-DEL), however, is avoided, as the agents
are never waiting for the completion of each other’s action and are
never idle at the same time. In the fast robot cycle approach (see
Figure 12) the idling time of both the human (H-IDL, 0.30 or a
almost a third of the time) and the robot (R-IDL, 0.20 or one fifth
of the time) are low, indicating an efficient utilization of
resources. Moreover, the concurrent activity (C-ACT) is high
(0.5 or half of the time). The functional delay (F-DEL) is, again,
avoided. Following, we compare the baseline approaches to the
proposed coordination approaches.

5 DISCUSSION

Based on the experiments presented in Section 4, here we discuss
and compare their outcome, and present limitations and
future work.

5.1 Comparison to the Baselines

Human-robot collaboration fluency can be compared in detail
according to the metrics of human and robot idle time (H-IDL
and R-IDL), functional delay (F-DEL) and concurrent activity

Frontiers in Robotics and Al | www.frontiersin.org

75

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

Human Disassembling
Robot

Time (min:sec)

Receiving
Handover
00:15

Reset
00:30

Picking
00:00

00:45 01:00 01:15

Move
01:30

Handover
Receiving
01:45

Receiving
Handover
02:30

Assembling
Reset
02:45

Placing
02:00

Picking
02:15

03:00 Total:

H-IDLE
R-IDLE
F-DEL|
C-ACT

avoided completely.

FIGURE 11 | Task assignment chart for the baseline approach of strict turn taking, where each action is immediately followed by the next action of the other
teammate. The fluency metrics indicate a relatively high human and robot idle time (H-IDL and R-IDL) and low concurrent activity (C-ACT). Functional delay (F-DEL) is

0.46
0.31

0.23

Human Receiving Disassembling Handover Receiving | Assembling
Robot| Picking Handover Reset ‘ Receiving Placing Picking Handover Reset
Time (min:sec)|00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 Total:
H-IDLE 0.30
R-IDLE 0.20
F-DEL
C-ACT 0.50

FIGURE 12| Task assignment chart for the baseline approach of fast robot cycle, where each robot action is executed as fast and as soon as possible. The fluency
metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity (C-ACT). Functional delay (F-DEL) is avoided completely.

(C-ACT). In all cases functional delay is avoided, as the agents are
never waiting for the completion of each other’s action and are
never idle at the same time. In both command-based approaches
the fluency metrics are roughly the same, as the commands are
requested at similar time instances during the collaborative task.
This indicates a relatively high rate of concurrent activity
(C-ACT, almost half of the time) and a relatively low human
and robot idle time (for all cases almost a third of the time or less).
Compared to all other approaches (fast robot cycle baseline and
both command-based approaches) the strict turn taking baseline
has the worst performance, with higher idling times (H-IDL and
R-IDL), a lower concurrent activity (C-ACT) and the longest
scenario execution time. The baseline approach of fast robot cycle
has a very close performance compared to the command-based
approaches, with minor differences in when actions are executed.
This indicates that the proposed command-based approaches are
very efficient as the robot has a high utilization rate. However, the
most important benefit, which cannot be measured by the fluency
metrics, is not possible for both baseline approaches. That is, the
flexibility to coordinate and command the actions of the robot at
any time and any rate.

5.2 Coordination by Commanding

Coordination by commands gives control to the human operator
to direct at his/her level of interaction and pace. This implies that
its not determined beforehand which tasks are shared and in what
level of interaction, leading to an inherently flexible system that
suits a wide variety of collaboration. This level of flexibility is not
present in the baseline approaches, which assume a predefined
sequence of actions, at a fixed pace. Both coordination scenarios
demonstrate fluent collaboration between human and robot that
is not predefined by a fixed task sequence. High-level robot tasks
that contribute to the shared goal (assembly) are object pick and

placement and physical interaction for human-robot hand-overs
(haptic cues). During each shared task (2.5 minutes), multiple
robot commands are requested, i.e., pick and place, and hand-
over actions, all while the human operator is engaged, and not
disturbed, in the (dis)assembly procedure.

However, a graphical user interface (GUI), even if it
approaches the capabilities of a speech recognition system, can
be unsuitable for industrial environments. The main reasons
identified for this are as follows. First, a GUI takes attention
away from the task and the shared environment. Even though this
does not necessarily imply danger, it could halt the work or even
lead to a reduction in work quality and efficiency. Second,
industrial tasks, such as assembly, often require manual
handling or manipulation, which cannot be interrupted at
random. Collaborative actions would need to be halted and
parts would need to be put down in order to interact with
the GUL

Despite these limitations, supportive functions to the GUI can
be included to enhance and simplify the interaction. The selection
of tasks can be narrowed down by reasoning assistance on the
current state of the world (what robot actions are possible) and
the actions commanded by the human (what actions are most
likely to be needed). This means that only the actions that are
suitable at the current moment are available to command and
other actions are removed from the selection list.

5.3 Commands Vs Speech

To humans, speech is one of the dominant modalities for direct
communication (Rocci and Saussure, 2016). In a collaborative
work scenario, where manual tasks are taking most attention,
speech can be utilized for directing actions and queries to co-
workers and, as demonstrated in this work, to robots. However, in
industrial environments background noise is very likely to

Frontiers in Robotics and Al | www.frontiersin.org

76

October 2021 | Volume 8 | Article 734548

Angleraud et al.

interfere with the reliable recognition of speech. The graphical
command interface is one alternative that can replace the
recognition of speech, while still ensuring the same
functionality of the system. Unfortunately, and unsurprisingly,
the graphical interface is less convenient than speech, as it
requires manual operation and takes attention away from the
task at hand. As a result, robot commanding by GUI takes more
time leading to less efficient operations. A disadvantage of the
speech interface is it reliability in recognizing correct speech
commands and connecting them to the correct action or target
phrase. Speech can be misinterpreted and strict guidelines need to
be in place that specify how phrases are verbalized. This issue is
not present in the GUI interface, as only existing <
action, target > -pairs can be selected.

One matter that holds for both interface modalities, is the
number and format of commands. As robot skills are plentiful, a
limit should be set to how many commands (actions and targets)
are available to be executed. In practice, the number of commands
to be memorized by the human operator should be limited, as
looking up commands from a cheat-sheet has negative effects to a
desired fluent collaboration. Likewise, scrolling through a long list
of commands from a GUI has the same negative effect.
Commands should be intuitive, such that they are directly
understandable by the human operator, thereby representing
their functionality.

5.4 Limitations and Future Work

As demonstrated by the use cases, the system is currently limited
by the low number of robot actions and their complexity.
However, additional actions, such as motion trajectories,
advanced controllers and compound actions are readily
available for most collaborative robots and can be added to
the knowledge base (see Section 3.3.3 and Table 2). The
integration of such new actions involves populating the
ontology with instances and creating new relationships and
conditions between them. Unfortunately, this is still a manual
activity requiring core expertise on ontologies and their
properties.

Recent and future developments in speech recognition might
offer promising solutions to the mentioned problems in noisy
environments. Neural networks and the utilization of other bio-
signals (Schultz et al., 2017) are being developed with increasing
recognition quality for individual words, as well as for natural
language. This includes other sensor systems besides standard
microphones, such as throat microphones, or neural devices.

Future work will combine computer vision and speech
recognition for collaborative tasks. This allows for tasks that
are more descriptive and can be better explained than pre-
programmed. For example, a human operator could command
the robot to hand over a tool with a red handle from a table with
multiple colored tools. Such communication is well-suited to
human cognitive skills, as it does not require much cognitive
effort for object detection and requesting a command. For robots,
on the other hand, such knowledge needs to be integrated
beforehand by semantic annotation to the ontology and visual
processing of camera images. In addition, feedback from speech
recognition can make the system more explainable. Whenever the

Coordinating Human-Robot Collaboration by ‘Commands

recognition of speech fails, incorrect words are used or an
incorrect combination of words, a suitable command returned
to the human would help in improving the collaboration. Similar
troubleshooting procedures can be utilized for the reasoning over
knowledge as well. Finally, future work will focus on user studies
to analyse whether the collaboration is fluent and what concepts
contribute to this, specifically targeting concepts such as
efficiency, commitment and trust (Paliga and Pollak, 2021).

6 CONCLUSION

Coordination of shared tasks between a human and robot
requires interaction modalities that are convenient, do not
interfere with the task and can be adapted to new or changing
situations. As including all possible scenarios and their outcomes
into a robot action plan becomes easily intractable, this work
enables a human to coordinate when and which robot actions are
executed. Directing the robot is achieved by both a graphical user
interface and a speech interface that takes known commands, in
form of < action, target > -pairs, and transforms them into
low-level actions. All information on actions, tasks and the
world is stored in a knowledge base, which is utilized to track
the actions and check whether selected actions are suitable or
possible at the requested instance. The proposed system is
evaluated by several industrial use cases, tested in a laboratory
environment, where human-robot collaborative tasks require
human coordination by command or speech. Results
demonstrate that human coordination with simple commands
is suitable to achieve and fulfill collaborative tasks in a fluent
manner. Compared to the graphical interface, commanding by
speech is preferred, as it does not require physical contact and
attention stays with the shared task. On the other hand, noise and
faulty speech recognition might prove to be problematic in real
industrial environments. A thorough evaluation in real industrial
environments, with tasks of similar complexity is, therefore,
planned as future studies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AA, AS and RP designed the study. AA, AS and MN developed
the methods and performed experiments. AA, AS, MN and RP
analyzed the data and wrote the paper.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 871449 (OpenDR).

Frontiers in Robotics and Al | www.frontiersin.org

77

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

REFERENCES

Angleraud, A, Houbre, Q., Kyrki, V., and Pieters, R. (2018). “Human-robot
Interactive Learning Architecture ~ Using Ontologies Symbol
Manipulation,” in Proceedings of the IEEE International Symposium on Robot
and Human Interactive Communication, Nanjing, China, 27-31 Aug. 2018
(Nanjing, China: RO-MAN), 384-389. doi:10.1109/ROMAN.2018.8525580

Brown, T. B., Mann, B, Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). Language Models Are Few-Shot Learners. arXiv preprint arXiv:
2005.14165

Chen, J. Y. C, and Barnes, M. J. (2014). Human-Agent Teaming for Multirobot
Control: A Review of Human Factors Issues. IEEE Trans. Human-mach. Syst.
44, 13-29. doi:10.1109/thms.2013.2293535

Chen, Y., Xu, R, Lin, Y., and Vela, P. A. (2021). A Joint Network for Grasp
Detection Conditioned on Natural Language Commands. arXiv preprint arXiv:
2104.00492

Chowdhury, A., Ahtinen, A., Pieters, R, and Vaananen, K. (2020). “User
Experience Goals for Designing Industrial Human-Cobot Collaboration: A
Case Study of Franka Panda Robot,” in Proceedings of the 11th Nordic
Conference on Human-Computer Interaction: Shaping Experiences (Tallinn,
Estonia: Shaping Society), 1-13. doi:10.1145/3419249.3420161

Darvish, K., Simetti, E., Mastrogiovanni, F., and Casalino, G. (2021). A Hierarchical
Architecture for Human-Robot Cooperation Processes. IEEE Trans. Robot. 37,
567-586. doi:10.1109/tr0.2020.3033715

Dianatfar, M., Latokartano, J., and Lanz, M. (2021). Review on Existing VR/AR
Solutions in Human-Robot Collaboration. Proced. CIRP 97, 407-411.
doi:10.1016/j.procir.2020.05.259

Dukes, K. (2013). “Semantic Annotation of Robotic Spatial Commands,” in
Proceedings of the Language and Technology Conference (Dublin, Ireland:
LTC). doi:10.3115/v1/S14-2006

Georgievski, I, and Aiello, M. (2015). HTN Planning: Overview, Comparison, and
beyond. Artif. Intelligence 222, 124-156. doi:10.1016/j.artint.2015.02.002

Halme, R.-]., Lanz, M., Kimiriinen, J., Pieters, R., Latokartano, J., and Hietanen, A.
(2018). Review of Vision-Based Safety Systems for Human-Robot
Collaboration. Proced. CIRP 72, 111-116. doi:10.1016/j.procir.2018.03.043

High, R. (2012). The Era of Cognitive Systems: An inside Look at IBM Watson and
How it Works. IBM Corporation, Redbooks 1, 16.

Hoffman, G. (2019). Evaluating Fluency in Human-Robot Collaboration. IEEE
Trans. Human-mach. Syst. 49, 209-218. doi:10.1109/thms.2019.2904558

1SO-10218-1/2:2011 (2011). Robots and Robotic Devices - Safety Requirements
for Industrial Robots - Part 1: Robots/Part 2: Robot Systems and Integration.
Standard. Geneva, Switzerland: International — Organization for
Standardization.

1SO-15066:2016 (2016). Robots and Robotic Devices — Collaborative Robots.
Standard. Geneva, Switzerland: International Organization for Standardization.

Johannsmeier, L., and Haddadin, S. (2017). A Hierarchical Human-Robot
Interaction-Planning Framework for Task Allocation in Collaborative
Industrial Assembly Processes. IEEE Robot. Autom. Lett. 2, 41-48.
doi:10.1109/1ra.2016.2535907

Kolbeinsson, A., Lagerstedt, E., and Lindblom, J. (2019). Foundation for a
Classification of Collaboration Levels for Human-Robot Cooperation in
Manufacturing. Prod. Manufacturing Res. 7, 448-471. doi:10.1080/
21693277.2019.1645628

Kumar, S., Savur, C., and Sahin, F. (2021). Survey of Human-Robot Collaboration
in Industrial Settings: Awareness, Intelligence, and Compliance. IEEE Trans.
Syst. Man. Cybern, Syst. 51, 280-297. doi:10.1109/tsmc.2020.3041231

Liu, H,, and Wang, L. (2018). Gesture Recognition for Human-Robot Collaboration:
A Review. Int. J. Ind. Ergon. 68, 355-367. doi:10.1016/j.ergon.2017.02.004

Marin Vargas, A., Cominelli, L., Dell'Orletta, F., and Scilingo, E. P. (2021). Verbal
Communication in Robotics: A Study on Salient Terms, Research fields and
Trends in the Last Decades Based on a Computational Linguistic Analysis.
Front. Comput. Sci. 2, 63. doi:10.3389/fcomp.2020.591164

Mavridis, N. (2015). A Review of Verbal and Non-verbal Human-Robot Interactive

Syst. 63, 22-35. doi:10.1016/

and

Communication. Robotics Autonomous
j.robot.2014.09.031
Mj, J., Liang, H., Katsakis, N., Tang, S., Li, Q., Zhang, C,, et al. (2020). Intention-

related Natural Language Grounding via Object Affordance Detection and

Intention Semantic Extraction. Front. Neurorobot. 14, 26. doi:10.3389/
fnbot.2020.00026

Misra, D. K., Sung, J., Lee, K., and Saxena, A. (2016). Tell Me Dave: Context-
Sensitive Grounding of Natural Language to Manipulation Instructions. Int.
J. Robotics Res. 35, 281-300. doi:10.1177/0278364915602060

Miiller-Abdelrazeq, S. L., Schonefeld, K., Haberstroh, M., and Hees, F. (2019).
Interacting with Collaborative Robots-A Study on Attitudes and Acceptance in
Industrial Contexts. Social Robots: Technological, Societal and Ethical Aspects of
Human-Robot Interaction. Springer, 101-117. doi:10.1007/978-3-030-17107-0_6

Musen, M. A. (2015). The Protégé Project. AI Matters 1, 4-12. doi:10.1145/
2757001.2757003

Ogenyi, U. E,, Liu, J., Yang, C,, Ju, Z,, and Liu, H. (2021). Physical Human-Robot
Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies,
Sensors, and Actuators. IEEE Trans. Cybern. 51, 1888-1901. doi:10.1109/
tcyb.2019.2947532

Otter, D. W., Medina, J. R,, and Kalita, J. K. (2022). A Survey of the Usages of Deep
Learning for Natural Language Processing. IEEE Trans. Neural Networks Learn.
Syst. 32, 604-624. doi:10.1109/TNNLS.2020.2979670

Paliga, M., and Pollak, A. (2021). Development and Validation of the Fluency in
Human-Robot Interaction Scale. A Two-Wave Study on Three Perspectives of
Fluency. Int. J. Human-Computer Stud. 155, 102698. doi:10.1016/j.ijhcs.2021.102698

Ramirez-Amaro, K., Yang, Y., and Cheng, G. (2019). A Survey on Semantic-Based
Methods for the Understanding of Human Movements. Robotics Autonomous
Syst. 119, 31-50. doi:10.1016/j.robot.2019.05.013

Rocci, A., and Saussure, L. d. (2016). Verbal Communication. Berlin, Boston: De
Gruyter.

Sadrfaridpour, B., and Wang, Y. (2017). Collaborative Assembly in Hybrid
Manufacturing Cells: an Integrated Framework for Human-Robot
Interaction. IEEE Trans. Automation Sci. Eng. 15, 1178-1192.

Savarimuthu, T. R., Buch, A. G., Schlette, C., Wantia, N., Roffmann, J., Martinez,
D, et al. (2017). Teaching a Robot the Semantics of Assembly Tasks. IEEE
Trans. Syst. Man, Cybernetics: Syst. 48, 670-692. doi:10.1109/
TSMC.2016.2635479

Schultz, T., Wand, M., Hueber, T., Krusienski, D. J., Herff, C., and Brumberg, J. S.
(2017). Biosignal-based Spoken Communication: A Survey. leee/acm Trans.
Audio Speech Lang. Process. 25, 2257-2271. doi:10.1109/taslp.2017.2752365

Sharma, A. R., and Kaushik, P. (2017). “Literature Survey of Statistical, Deep and
Reinforcement Learning in Natural Language Processing,” in In Proceedings of
the IEEE International Conference on Computing, Communication and
Automation (Greater Noida, India: ICCCA), 350-354. doi:10.1109/
ccaa.2017.8229841

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., et al.
(2020). “Alfred: A Benchmark for Interpreting Grounded Instructions for
Everyday Tasks,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 10740-10749. doi:10.1109/
cvpr42600.2020.01075

Stenmark, M., and Malec, J. (2014). Describing Constraint-Based Assembly Tasks
in Unstructured Natural Language. IFAC Proc. Volumes 47, 3056-3061.
doi:10.3182/20140824-6-za-1003.02062

Sun, Z, Li, Z, Mu, Y, Song, S., Su, J, and Zhang, J. (2021). Intention
Understanding in Human-Robot Interaction Based on Visual-NLP
Semantics. Front. Neurorobotics 14, 121.

Taniguchi, T., Mochihashi, D., Nagai, T., Uchida, S., Inoue, N., Kobayashi, L, et al.
(2019). Survey on Frontiers of Language and Robotics. Adv. Robotics 33,
700-730. doi:10.1080/01691864.2019.1632223

Thomason, J., Zhang, S., Mooney, R. J., and Stone, P. (2015). “Learning to
Interpret Natural Language Commands through Human-Robot Dialog,” in
Proceedings of the International Joint Conference on Artificial Intelligence,
1923-1929.

Vanzo, A., Croce, D., Bastianelli, E., Basili, R., and Nardi, D. (2020). Grounded
Language Interpretation of Robotic Commands through Structured Learning.
Artif. Intelligence 278, 103181. doi:10.1016/j.artint.2019.103181

Villani, V., Pini, F., Leali, F., Secchi, C., and Fantuzzi, C. (2018b). Survey on
Human-Robot Interaction for Robot Programming in Industrial Applications.
IFAC-PapersOnLine 51, 66-71. doi:10.1016/j.ifacol.2018.08.236

Villani, V., Pini, F,, Leali, F., and Secchi, C. (2018a). Survey on Human-Robot
Collaboration in Industrial Settings: Safety, Intuitive Interfaces and Applications.
Mechatronics 55, 248-266. doi:10.1016/j.mechatronics.2018.02.009

Frontiers in Robotics and Al | www.frontiersin.org

12

78

October 2021 | Volume 8 | Article 734548

Angleraud et al.

Coordinating Human-Robot Collaboration by ‘Commands

Williams, T., Briggs, G., Oosterveld, B., and Scheutz, M. (2015). “Going beyond
Literal Command-Based Instructions: Extending Robotic Natural Language
Interaction Capabilities,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 1387-1393.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Angleraud, Mehman Sefat, Netzev and Pieters. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Robotics and Al | www.frontiersin.org

79

13

October 2021 | Volume 8 | Article 734548

D5.2: Second report on deep robot action and decision making 80

OpenDR No. 871449

D5.2: Second report on deep robot action and decision making 81

F

SingleDemoGrasp: Grasping from a single image
demonstration.

Amir Mehman Sefat™, Alexandre Angleraud™!, Esa Rahtu? and Roel Pieters'*

December 15, 2021

Abstract

Learning-based grasping models typically require a vast amount of training data and training
time to train an effective grasping model. Alternatively, small non-generic grasp models have
been proposed that are tailored to specific objects by, for example, directly predicting the object’s
location in 2/3D space, and determining suitable grasp poses by post processing. In both cases,
data generation is a bottleneck, as it has to be separately collected for each individual object.
Moreover, most works consider objects in household scenarios. In this work, we tackle these issues
and propose a light-weight grasping pipeline that is divided in four main steps: 1. single object
demonstration, 2. object data augmentation, 3. grasp model training and 4. object grasping
action. Four different vision-based methods are evaluated for deriving the relative rotation of the
object with respect to the reference/target frame alongside an object detection module. Evaluation
considers the grasping of different industrial and 3D printed objects with an industrial collaborative
manipulator, and shows >90% success rate.

1 INTRODUCTION

Collaborative robots have gained popularity in industry as they are designed to be safe, particularly
where human and robot share the workspace. Accompanied by intuitive programming interfaces, robot
tasks can be programmed efficiently [1]. Despite the benefits, the application of cobots in industrial
settings are mainly limited to offline tasks where the actions and targets are defined to the system
beforehand [2, 3]. For example, in object pick and place tasks, the pose of the objects is fixed, and
the robotic arm should go through a predefined trajectory to reach the exact grasping pose. Although
there has been a great effort to mitigate these limitations by applying Artificial Intelligence (AI) and
learning approaches [4], the accuracy of such methods is still not sufficient for industrial applications.

Grasping objects has been studied for a long time and with the advent of machine learning ap-
proaches and especially deep learning, researchers have been trying to develop stand alone models that
are able to propose grasp poses for unseen objects. The most recent models are reported to have above
90% accuracy E.g. Dex-net 4.0 [5] is reported to achieve above 95% accuracy; However, most of the
works has been done on generic household items where their complexity in terms of shape, texture
and brightness and other parameters are totally different than the objects used in industrial scope
which in many cases result in unsuccessful grasping attempts. Such learning-based models require
vast amounts of training data and considerable training time on high-performance computing clusters.
Consequently, grasping models are large in size and slow to execute.

In addition, most grasping models and datasets are limited to a specific object set or class type,
such as household objects , industrial parts or warchousing items [6]. Extending datasets or retraining
a grasping model is in most cases not an option, due to unavailable data or limitations in resources and

*1Unit of Automation Technology and Mechanical Engineering, 2Unit of Computing Sciences, Tampere University,
33720, Tampere, Finland; Tboth authors contributed equally, firstname.surname@tuni.fi

OpenDR

No. 871449

BBX

KPS
Mask

480x640x3
FPN

. 000
. 000

.. 0000

—>

224x224x3

o o
o o
o o

x360 output node
representing angle

0000

Convolution + pooling Fully connected
layers

Figure 1: Should be replaced with actual figure

computation power. These problems exist in particular for small and medium sized (SME) companies,
who do not have the knowledge and resources available for model training and fine-tuning.

In order to have an intelligent, meanwhile robust system to pick objects that are placed randomly
in the workspace from a certain pose, De Coninck et al. [7] have suggested a hybrid model to combine
neural network models that are capable of predicting location and orientation of an object followed by
some pre-programming steps that results in a robust and successful grasp.

Inspired by [8], we propose an approach that utilizes state of the art deep learning approach ” Faster-
RCNN” [9] instead of CNN models to improve the efficiency of whole grasping pipeline. In this work,
our grasping pipeline generates an augmented training dataset from a single user demonstration which
consist of a few images of the object from different camera views. These images then go through data
augmentation process to generate training data which are then utilized to train a grasping model.

Our main observation to motivate this work is that collecting or generating training data for
industrial parts is a tedious, time-consuming and costly task, which is often out of reach for industrial
stakeholders. Even though plenty datasets can be found, each are limited (to some extend) to the
objects they contain. Industrial SMEs require the handling of objects that, in most cases, do not
resemble objects in these datasets, or the objects themselves can change depending on a customer’s
requirement. In addition, SMEs often do not have the knowledge and computation infrastructure to
train novel grasp detectors, even if object models are available.

In this work, different variats of faster-rcnn architecture using Detectron2 [10] models are evaluated
to identify the best representation for specific object properties, i.e., shape complexity, texture and for
different environmental conditions. Results are demonstrated in simulation (Gazebo and Webots) and
real experiments (Franka Panda with standard gripper) with an industrial object set are performed to
study the performance of our proposed pipelines.

82

The main contribution of our work are as follows:
e 3D planar grasp model for industrial parts
e data generation by augmenting a single object demonstration

e training applicable networks

evaluation of the approach in simulation and with real experiments

The paper is organized as follows: Section 2 reviews related works and state of the art in computer
vision and grasping methods with respect to neural networks. Section 3 and Section 4 define the
considered problem statement and research methodology, respectively. Section 5 describes the imple-
mentation details of the proposed grasping pipeline, and Section 6 reports the results and provides a
comparison to the state of the art. Finally, Section 7 concludes the work.

2 Related Work

In the context of grasping, Object detection, pose estimation and grasp detection are closely related,
as grasp poses or grasp actions can be directly generated from an object pose. This section presents a
brief overview of related approaches.

2.1 Object detection and pose estimation

Traditionally, object detection and pose estimation algorithms have utilized classical 2D features that
exploit local salient details, such as corners, edges and ridges. Well-known detectors like SIFT [11],
SURF [12] and ORB [13] can extract robust keypoints from a scene by relying on texture on objects or
of the scene itself. Texture-less keypoint detection, on the other hand, utilizes geometrical primitives
as features in methods such as BOLD [14], BORDER ([15] and BIND [16]. In addition, alternatives to
traditional keypoints are template matching, where a image patch provides the template to localize
within an image, or deep features that extract keypoints based on high-level cues captured by convo-
lutional neural networks. The latter is a recent development that has gained popularity due to their
data-driven property and promising performance [17], as compared to hand-crafted features. Analo-
gous to 2D keypoints for RGB images, 3D keypoints can be extracted from 3D data representations,
such as pointclouds or volumetric images [18]. Following the detection of keypoints from a raw image,
follow-up steps include the description of the keypoint and the matching of them over two or multiple
images.

In a similar manner, Convolutional Neural Network (CNN) based detectors, such as YOLOV3
[19] or Faster R-CNN [9], could be utilized to detect objects, after which their orientation should be
computed to obtain a planar grasp candidate.

Object pose estimation on the other hand can be done using three different approaches [20].

e correspondence-based methods such as LCD [21] and 3DMatch [22].
e Template-based 6D object pose estimation methods such as PoseCNN [23].
e Voting based methods such as PVN3D [24] and DenseFusion [25].

2.2 Grasp detection

Object grasp detection is a popular topic in robotics and can be divided in several categories to
differentiate between approaches and their assumptions. For example, the representation of a grasp is
an important consideration and determines the complexity of the problem and its application. When
considering only a planar grasp pose representation, grasp detection is simplified to finding the object

83

Figure 2: objects used for evaluation of grasping pipelines

and its orientation on a planar surface, typically represented as an (oriented) bounding box. On the
other hand, in case a complete 3D pose of the object is required for grasping, detection should return the
full 3D position and 3D orientation of the object. In context of learning-based grasp detection, typical
data-driven approaches differentiate between the utilization of RGB, depth (in form of pointclouds) or
a combination of both (RGB-D). In addition, objects to be grasped can be known, similar (i.e., different
instance of a known category) or novel, which should be considered when deciding (or developing) on
the data representation, collection and training approach. A comprehensive survey of approaches is
presented in [20].

2.3 Datasets

Existing datasets for 2D object detection, such as Pascal VOC [26], COCO [27] and, more recently,
Objectron [28] for 3D objects, are widely available, including common objects that are present in
everyday scenes. There are also datasets designed more specifically such as EGAD! by creating 3D
meshes with diverse properties [29] to cover variations in object properties and also ACRONYM [30]
where the collected data are from simulation physics.

These publicly available datasets are although makes it possible to have a generic dataset and
include different categories of object and makes it possible to have a reasonable comparison and
evaluation of the performance, they are not suitable for applications where the target application is
specific to a particular group of objects. On the other hand, they are not easily extendable as this is
an expensive process in terms of time and resources.

2.4 Robot Grasping Solutions

The methods explained in the previous sections generates grasp pose outputs that have a specific
format that are defined in 2D or 3D and there are robustness factors defined to measure the accuracy
of such models [3]. Such methods require motion planning to send the end effector to the desired grasp
pose from the correct trajectory to achieve a successful grasp. The motion planning approaches for
this purpose can be listed in a very general manner as DMP-based methods, Imitation learning and
reinforcement learning methods [20]. On the other hand, There are approaches to develop a visuomotor
controller to directly generate robot motion from inferred input [31] for example using reinforcement
learning [20].

84

3 Problem Statement

3.1 Object Grasping Scenario

The robot object grasping scenario considers a robot manipulator with standard gripper and objects
that are located on a planar table in front of it. Objects originate partly from a Diesel engine assembly
use case and have both simple and complex geometry (see Fig. 3). All objects should allow for a stable
grasp, without alteration to the gripper or object pose and be light enough to be lifted (< 1 kg). As
general rule, we denote that each object can be represented by a 3D planar position and orientation
{z,y,0,}, from which a grasp pose is extracted. The grasping problem can then be stated as follows:
from a single object image demonstration, generate suitable training data to train a grasp detection
model that can run in real-time to successfully grasp new and unknown objects.

In this scenario, eight different objects (see fig. 2) are selected from a real diesel engine and also
four 3D-printed objects that are different in terms of mass distribution, texture, symmetry and scale
that describes the general properties of objects in industrial settings. For example, fuel line from the
engine block has a small width and a non symmetric shape with even mass distribution while a piston
has a symmetric shape, low aspect ratio meanwhile an uneven mass distribution. However, to simplify
the problem, the objects are selected carefully to be distinguishable from different views and the grasp
locations are reachable easily by the end-effector.

3.2 Planar and 3D grasp representation

The grasping model should produce an grasp pose in the form of a grasp location with a relative
orientation represented as b = {z,y,0,} € R3 that defines the grasp pose in planar space. In 3D
world space, A rigid pose of the gripper, connected to the end-effector of the robot, is defined as
T, = (Ry,t,) € SE(3).

In addition to the grasp pose, two intermediate poses are defined to assist in the grasping sequence:
a hover pose T, = (Rp,ty) € SE(3) and a pre-grasp pose T, = (Rp,t,) € SE(3). Hover pose in
fact represent an imaginary pre-grasp pose after which the actual grasp is possible by going through
a pre-defined trajectory. On the other hand, the pre-grasp pose is defined as an offset with respect to
grasp pose in z-direction to avoid collision with the object.

The translation from the planar output of the detection module to world frame is done using the
mathematical equations 1 and 2 that holds in pin-hole camera model after camera calilbration.

A
yzy? 2)

where X, Y, Z correspond to world coordinates and x, y denote pixel coordinate and f is the focal
length of the camera.

4 Methodology

The proposed method is separated into a baseline grasping approach, complimented by four different
perception models, to compute a planar grasp pose. The grasping approach (Fig. 1) consists of the
following four distinct steps:

85

Figure 3: Object grasping setup.

Table 1: Object grasp detection model. Abbreviations: BB - bounding box, KP - keypoints, CL - class
label.

Object position estimation Object orientation estimation
G::jggllg Pr;t:g:llEd Output format Pr;‘:fli:llEd Method Human input | Training data
A Faster R-CNN BB CNN Classification | Object BB BB, cropped box
B Keypoint R-CNN | BB and KP Keypoint R-CNN | KP Objiect BB BB, KP, CL
C Keypoint R-CNN | KP Keypoint R-CNN | KP askJa d2 I,(P KP, CL
D Mask R-CNN BB and object mask | Mask R-CNN mask + SIFT | 1ask an BB, Mask, CL

1. Human input - captures and annotates the object in the field of view of the camera.
2. Training data - is generated automatically by applying data augmentation techniques.
3. Object grasp pose - is estimated based on different state of the art neural networks.

4. Grasping action - is done after converting planar grasp to 6D pose.

Following, we describe the four different combinations of perception modules.

4.1 Object detection alongside a CNN for predicting orientation

The object grasp location and orientation are estimated separately by training a Faster R-CNN and a
basic CNN;, respectively.

The Faster R-CNN network takes pairs of images and their corresponding annotations (bounding
boxes) as input for training, and generates a bounding box around the objects if they are present in
the image scene. The input images are simply annotated by defining a bounding box around the object
followed by data augmentation. The architecture of the Faster-RCNN model and the input format are
illustrated in Fig. 1.

In order to predict the relative orientation, a simple CNN network is implemented where the final
layer consist of 360 output node to represent the class of the object’s orientation that limits the
precision to one degree which is enough in this case for our grasping pipeline.

86

Table 2: Predictors’ used hyper-paramethers. Abbreviations: Ir: learning rate, iters: iterations, ipb:
image per batch, num_cls: number of classes

A B C D
Ir: 0.005 Ir: 0.0008 | Ir: 0.0008 Ir: 0.008
Object iters: 500 iters: 1000 | iters: 1000 | iters: 1000
Detector ipb: 8 ipb: 2 ipb: 2 ipb: 2
num_cls: 1 num_cls: 1 | num_cls: 1 | num_cls: 1
loss:
categorical _crossentropy
Orientation epochs: 15 .
Predictor ba‘?chjize: 32 Not applicable
optimizer: adam
num_cls: 360

The first layer of this CNN network accepts image arrays with a shape of (224 x 224 x 3) to extract
features and classifies the object based on the highest score to predict the corresponding orientation.
To generate training data, the same procedure is followed as explained for Faster-RCNN method, with
the difference that at each step of augmentation, the bounding boxes are used to crop and resize the
region of interest that are labeled with the corresponding orientation.

In order to keep track of the network’s performance, the following angle error metric is used:

e = ||||9tme - epH - 180”7 (3)

where 0y, is the true angle and 0, is the predicted angle.

4.2 grasp pose extraction using Keypoint detection

In contrast with the previous pipeline, here a single network (Keypoint- RCNN) which is a variant of
Faster-RCNN network is utilized to detect both object and keypoints. During input annotation in this
pipeline, 12 keypoint on the object is defined carefully on a straight line that represent the reference
orientation.

Finally, The bounding box center is used as the planar hover position and the relative orientation
is extracted from the keypoints to form the planar grasp pose as follows: t, = (x,y,) which is then
converfted to 6D pose for the final grasping action.

As a result, the proposed pipeline now only comprises of one stage of augmentation and one stage
of prediction.

4.3 Keypoint detection for proposing direct grasp poses

While the keypoint detector module demonstrated a greater stability and robustness in terms of suc-
cessful grasps, one could improve the pipeline by directly assuming the center of keypoints to be the
center of grasp pose.

For this purpose, the same network mentioned in B, is used where in this case the pipeline only
utilizes the keypoints themselves to localize the “grasp location” instead of bounding boxes’ center
and the relative orientation is calculated similar to B.

Having the information about location and orientation of the grasp pose, the system could directly
transfer the 2D coordinates to 3D from camera frame to the world frame in order to directly pick the
object and there is no more need to reach the hover pose as the end-effector can be directly sent to the
grasp pose which simplifies the baseline model to a great extend and also shows more stable results as
illustrated in table 3.

87

Reference Orientation

— .
— and relative camera pose

recovery

Inference

4
n SIFT/SURF feature extractor

Figure 4: recovering camera pose using predicted mask and local feature extractors

4.4 grasp pose extraction using mask prediction

Object mask estimation can return a planar object position and orientation based on predicted mask
using Mask R-CNN architecture. This is possible, as the grasping model only requires 2D object
information, based on the object mask that separates the object from the background.

Mask-RCNN again is a variant of Faster-RCNN which is designed to detect object on the image
and predict a mask (polygon) over the object. To train such network, it is required to prepare the
training data such that it include both bounding box around the object and also a list of keypoints
that construct the mask around the object as shown in Fig. 1

One additional step is necessary to determine the grasp orientation, which in case of this study is
done by converting the mask over the object to a binary image followed by local feature extraction
methods to estimate the relative orientation as shown in Fig. 4.

For this purpose, the detection part consist of the following steps:

1. mask detection network generate mask over objects.
2. the generated mask is filtered to extract geometrical features of the object.

3. the extracted binary mask is now being used to find local feature based and consequently relative
rotation between the reference binary mask and extracted binary mask from the prediction.

4.5 Augmented Dataset Generation

Dataset generation utilizes a single input image (RGB, 480 x 640 x 3) taken above the workspace in
which the target object is visible. These images are then annotated as illustrated in Fig. 1 with respect
to their corresponding pipeline input format.

Augmentation of the reference image is done as follows: First, the image is annotated and labeled
by defining the required bounding boxes or keypoints over the object and a sequence of common
augmentation techniques are performed, i.e., cropping, zooming, rotation, translation, etc. Finally, the
data-augmentor automatically translates all the annotations from the input image to the augmented
images accordingly.

During each data augmentation process, 1500 training samples and 200 validation samples are
generated, for position and orientation data, respectively. For the CNN network of first pipeline, the

f v I ¥

Learner:
User demo: i . .
) Data augmentation | | object/keypoint | ===\
Input images
detector

X X
Inference on
Motion planner: y camera
Moveit z y
image frames
e)
1 J _Jt

Figure 5: schematic representation of the grasping architecture.

number of generated samples for training angle predictor is 5000. More details about each pipeline
can be found in table 3.

5 Implementation

Details concerning the implementation of the proposed grasping models are described in the following
section and includes the perception module, robot motion generation as well as simulation.

5.1 Architecture

The grasping pipeline is divided into two major computation nodes, which are explained as follows.

Perception - feeds the neural network models with the input images, runs inference and generates
an output. The raw output of the models as explained in section 4 are then used to calculate the planar
grasp pose of the object with respect to the image plane. The 2D information is then translated into
3D coordinates in the world frame and sent to the motion controller node. The translation from 2D
to 3D is done using equations 1 and 2 that holds in pin-hole camera models when all the intrinsic and
extrinsic parameters of the camera are available. The structure of the perception module is illustrated
in Fig. 1.

Motion control - generates the actions and motions of the robot manipulator and gripper in order
to execute a grasp. It receives input from the perception node, and directly commands a grasping
action. Motion generation is done using ROS Movelt!, with a Cartesian position controller running
on the robot at 1000 Hz.

The overall structure of the single demonstration grasping is illustrated in figure 5.

Thttps://moveit.ros.org

89

Figure 6: Implementation of grasping pipeline in Webots simulator

5.2 Grasp Detection Network

All the pipelines utilize Detectron2 [10] as their perception module. The generated training data
and their corresponding labels are fed to the learner, according to the corresponding pipeline input
format. Table 1 and 2 summarizes the information regarding the implementation and specification for
perception module of each individual pipeline.

The detection networks as mentioned previousely, utilize Faster-RCNN or one of its variants de-
pending on the application. Similar to generic use cases where networks are designed to be trained for
multiple object classes, one can take benefit of that by developing such generic detector, however it
would require larger datasets and higher training times. In this work, the pipeline is developed such
that each demonstration result in a completely new and unique detector for each individual object.
For this purpose, only 1500 training samples is sufficient accompanied by 200 validation samples.

All the models as explained in 4 have as output a bounding box, where the bounding box center
represents the hover position, except for 4.3 where the hover pose is not utilized and the center of the
keypoints is taken as the grasp position.

Finally, the pipelines learn how to find grasp locations and orientations by post processing the
outputs of trained networks, followed by corresponding robot action as explained in 3.2.

5.3 Simulation environment

For quick evaluation of the developed grasp models, two simulation environment containing all relevant
steps are implemented. This enables grasping models to be assessed without costly robotic hardware,
speeding up developments considerably. For this purpose, 3D models of all objects are obtained to
have a better idea on performance and limitations when doing real experiments. Both Gazebo and

90

Webots (see figure 6) are utilized to demonstrate the functionalities, and are provided freely available
to the research community.

6 Results and Comparison

Experimental results, their analysis and a comparison to other related work follows in this section.

To evaluate the performance of studied pipelines, the grasping scenario is performed in simulation
environment and extensive grasp experiments, executed with a collaborative robot (Franka Emika
Panda), RGB-D camera (Intel Realsense D-435) and standard gripper (see Fig. 3). All objects are
placed at random configurations on the table in front of the robot and 10 robot grasp attempts are
executed for each object from different robot starting configurations.

Table 3 illustrates the performance of each developed pipelines on average, on all the objects. The
success rate in this study translates to the percentage of successful grasping attempts with respect to
total attempts.

During the experiments, random objects are also placed in the view of the camera to see the
affect of unseen and similar objects where the detector performed perfectly as long as the optimal
score threshold and hyper parameters are being used. However, illumination and brightness of the
environment still is a major affecting factor in this work and generally in vision applications.

6.1 Grasp Detection Results

The first pipeline turns the learning process into a two-stage detector where two separate training is
needed and during inference, two consecutive predictions are needed to get location and orientation of
the object, which makes the pipeline computationally inefficient. On the other hand, another dataset
must be generated to train the convolutional neural network. Although this model showed above
90% success rate, having to train two different network bring extra complexity to the system and the
CNN angle predictor shown higher error comparing to keypoint detection module. Moreover, the high
success rate reported during the experiments is due to the fact that faster-rcnn showed a more robust
bounding box detection performance than the keypoint detectors in terms of finding Minimum Area
Rectangle (MAR).

The second pipeline utilizes keypoint-recnn architecture and the outputs are directly used to derive
planar grasping pose. This pipeline simplifies the pipeline as there is less effort needed by the user
for input demonstration. However, still user is required to demonstrate a final grasping action to
the system from hover pose to pre-grasp pose. On the other hand, although the detection accuracy of
keypoint-renn shows similar performance to faster-recnn, minimal errors observed in the MAR prediction
were the main reason of lower success rate with respect to the first pipeline.

Pipeline C showed the highest success rate among all the pipelines. Although the same network
from pipeline B is used for training, however the minimal change in the input to the network mitigates
the accuracy issues of the second pipeline by directly using keypoints center instead of bounding
boxes’ center as the grasping planar position. Not only this makes the prediction more accurate, it
also simplifies the grasping system as the final grasp pose can directly be reached by translating the
2D coordinate of grasp location to 3D as explained in 3.2.

Implementing pipeline D was with the objective of directly retrieving the 3D camera relative pose
with respect to the input demonstration. However, this requires a huge number of features on the
scene which makes the problem complicated when the shapes share similarities with each other. The
annotation of input image is much complicated and time consuming as the user have to draw a
mask/polygon over the object which is not consistent with the final objective of this work to develop
a user friendly grasping pipeline.

Inference performance of the pipeline’s detection modules are measured on a desktop and laptop
GPU (Nvidia GTX 1080 Ti and GeForce 940mx). Then computational performance of the pipelines
in terms of training data, data size, training time, inference time etc. are illustrated in 3.

91

Table 3: grasping results in terms of success rate, training performance and inference speed

Grasping success rate Inference speed (FPS)
Grasping pipeline Average success rate, 80 attempts | GTX 1080 ti | Geforce 940mx
A 0.9125
B 0.825
C (simulation) 0.935 20 2.5
C (real experiment) 0.8875
D 0.775
Training
Dataset size training time (average) model size
00:14:00 faster-rcnn: 300 mb
1500 (faster rcnn), 5000 (CNN) 00:02:00 ONN: 8 mb
1500 00:07:30 450 mb
1500 00:07:00 450 mb
2000 00:08:00 450 mb
1500 00:06:30 330 mb

Other than the characteristics of each pipeline, there are also other factors that highly affect
the performance of pipelines. For example, shape complexity, texture, color and brightness of the
environment still have effect on the performance as other 2D RGB vision applications. Due to the
same reason, as depth information is not available, grasping height is also must be known prior to
grasping which is another limitation of developed grasping modules.

It is worth mentioning that in an experiment with pipeline C, 7 different views of the object
was demonstrated to the system that dramatically increased the robustness of detection in different
environmental conditions.

7 CONCLUSIONS

Based on the results from the previous section, pipeline C has shown the most robust grasping method
where both in simulation and real experiments, demonstrate a high success rate and reliability com-
pared to the other tested methods. On the other hand, not only it requires less computational resources,
but also eliminates the need for the user to demonstrate the final grasping movement which makes it
more intuitive, simple, and faster. Although the proposed model still is limited to known objects and
planar movements, still it can extend the freedom of objects by mitigating the need for fixed object
locations which can be highly effective in human-robot-collaborative tasks.

Acknowledgements

Project funding was received European Union’s Horizon 2020 research and innovation programme,
grant agreement no. 871449 (OpenDR).

References

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot collaboration in industrial
settings: Safety, intuitive interfaces and applications,” Mechatronics, pp. 248266, 2018.

[2] S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming for collaborative industrial
tasks: An overview,” Robotics and Autonomous Systems, vol. 116, pp. 162-180, 2019.

92

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati, “Human-robot collaboration
in manufacturing applications: A review,” Robotics, vol. 8, no. 4, p. 100, 2019.

K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A survey on learning-based robotic
grasping,” Current Robotics Reports, pp. 1-11, 2020.

J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg, “Learn-
ing ambidextrous robot grasping policies,” Science Robotics, vol. 4, no. 26, 2019.

J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-net 3.0: Computing robust
vacuum suction grasp targets in point clouds using a new analytic model and deep learning,” in
IEEFE International Conference on Robotics and Automation (ICRA), 2018, pp. 1-8.

E. De Coninck, T. Verbelen, P. Van Molle, P. Simoens, and B. Dhoedt, “Learning to grasp
arbitrary household objects from a single demonstration,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 2372-2377.

——, “Learning robots to grasp by demonstration,” Robotics and Autonomous Systems, vol. 127,
p- 103474, 2020.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” https://github.com/
facebookresearch/detectron2, 2019.

D. G. Lowe, “Object recognition from local scale-invariant features,” in IFEFE international con-
ference on computer vision (ICCV), vol. 2, 1999, pp. 1150-1157.

H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in IEEE European
Conference on Computer Vision (ECCV), 2006, pp. 404—417.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or
SURF,” in International conference on computer vision (ICCV), 2011, pp. 2564-2571.

F. Tombari, A. Franchi, and L. Di Stefano, “BOLD features to detect texture-less objects,” in
IEEFE International Conference on Computer Vision (ICCV), 2013, pp. 1265-1272.

J. Chan, J. Addison Lee, and Q. Kemao, “Border: An oriented rectangles approach to texture-less
object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 2855-2863.

——, “Bind: Binary integrated net descriptors for texture-less object recognition,” in IEEFE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2068-2076.

J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching from handcrafted to deep features:
A survey,” International Journal of Computer Vision, vol. 129, no. 1, pp. 23-79, 2021.

F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d keypoint detectors,”
International Journal of Computer Vision, vol. 102, no. 1-3, pp. 198-220, 2013.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from object localization,
object pose estimation to grasp estimation for parallel grippers: a review,” Artificial Intelligence
Review, pp. 1-58, 2020.

93

[21]

[22]

[27]

[28]

Q.-H. Pham, M. A. Uy, B.-S. Hua, D. T. Nguyen, G. Roig, and S.-K. Yeung, “LCD: Learned
cross-domain descriptors for 2D-3D matching.” in AAAI 2020, pp. 11 856-11 864.

A. Zeng, S. Song, M. Nieiner, M. Fisher, J. Xiao, and T. Funkhouser, “3dmatch: Learning local
geometric descriptors from RGB-D reconstructions,” in IEEFE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 1802-1811.

C. Capellen, M. Schwarz, and S. Behnke, “Convposecnn: Dense convolutional 6D object pose
estimation,” arXiv preprint arXiv:1912.07333, 2019.

Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A deep point-wise 3D keypoints
voting network for 6DOF pose estimation,” in IEEE/CVFE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 11632-11641.

C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and S. Savarese, “Densefusion: 6D
object pose estimation by iterative dense fusion,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 3343-3352.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual
object classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303—
338, 2010.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in IEEE European Conference on Computer Vision
(ECCV). Springer, 2014, pp. 740-755.

A. Ahmadyan, L. Zhang, J. Wei, A. Ablavatski, and M. Grundmann, “Objectron: A large
scale dataset of object-centric videos in the wild with pose annotations,” arXiv preprint
arXiv:2012.09988, 2020.

D. Morrison, P. Corke, and J. Leitner, “EGAD! an evolved grasping analysis dataset for diversity
and reproducibility in robotic manipulation,” IEEE Robotics and Automation Letters, 2020.

C. Eppner, A. Mousavian, and D. Fox, “ACRONYM: A large-scale grasp dataset based on simu-
lation,” arXiv preprint arXiv:2011.09584, 2020.

S. Caldera, A. Rassau, and D. Chai, “Review of deep learning methods in robotic grasp detection,”
Multimodal Technologies and Interaction, vol. 2, no. 3, p. 57, 2018.

94

	Introduction
	Deep Planning (T5.1)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Deep Navigation (T5.2)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Deep Action and Control (T5.3)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Human Robot Interaction (T5.4)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Connection to Project Objectives

	Deep Planning
	End-to-end Path Planning of Air-Ground Multi-Robot Team
	Introduction and objectives
	Description of work performed so far
	Future work

	Deep Navigation
	Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning
	Introduction and objectives
	Description of work performed so far
	Future work

	Audio-Visual Navigation in Complex Unmapped Environments with Moving Sounds
	Introduction and objectives
	Description of work performed so far

	Deep action and control
	DeepKoCo: Efficient latent planning with a task-relevant Koopman representation
	Introduction and objectives
	Description of work performed so far
	Future work

	Inclined Quadrotor Landing using Deep Reinforcement Learning
	Introduction and objectives
	Description of work performed so far
	Future work

	EAGERx
	Introduction and objectives
	Description of work performed so far
	Future work
	Hyperparameter Tuning
	Introduction and objectives
	Description of work performed so far
	Future work

	Single demonstration grasping
	Introduction and objectives
	Description of work performed so far
	Future work

	Human robot interaction
	Human-Robot Collaboration by Commands
	Introduction and objectives
	Description of work performed so far
	Future work

	Conclusions
	DeepKoCo: Efficient latent planning with a task-relevant Koopman representation
	Inclined Quadrotor Landing using Deep Reinforcement Learning
	Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning
	AgroRL: End-to-end Path Planning of Air-Ground Multi-Robot Team for Green Digital Farming
	Coordinating shared tasks in human-robot collaboration by commands
	SingleDemoGrasp: Grasping from a single image demonstration

