
Probabilistic Online Self-Distillation

Maria Tzelepi, Nikolaos Passalis, Anastasios Tefas
Aristotle University of Thessaloniki, Department of Informatics

Abstract

Deploying state-of-the-art deep learning models on devices with limited compu-

tational power imposes certain computation and storage restrictions. Knowledge

Distillation, i.e. training compact models by transferring knowledge from more

powerful models, constitutes a promising route to address this issue that has been

followed during the recent years. A limitation of conventional knowledge distilla-

tion is that it is a long-lasting, computationally and memory demanding process,

since it requires multiple stages of training process. To this end, a novel online

probabilistic self-distillation method, namely Probabilistic Online Self-Distillation

(POSD), aiming to improve the performance of any deep neural model in an on-

line manner, is proposed in this paper. We argue that considering a classification

problem, apart from the explicit concepts expressed with the hard labels, there are

also implicit concepts expressed with the so-called latent labels. These implicit

concepts reflect similarities among data, regardless of the classes. Then, our goal

is to maximize the Mutual Information between the data samples and the latent

labels. In this way, we are able to derive additional knowledge from the model

itself, without the need of building multiple identical models or using multiple

models to teach each other, like existing online distillation methods, rendering

the POSD method more efficient. The experimental evaluation on six datasets

validates that the proposed method improves the classification performance.

Keywords: Knowledge Distillation, Probabilistic Online Self-Distillation,

Quadratic Mutual Information.

Email addresses: mtzelepi@csd.auth.gr (Maria Tzelepi), passalis@csd.auth.gr (Nikolaos
Passalis), tefas@csd.auth.gr (Anastasios Tefas)

Preprint submitted to Journal of LTEX Templates November 2, 2021

1. Introduction

Over the recent years deep learning (DL) models [1], have eclipsed previous

solutions in a wide range of challenging computer vision tasks, [2, 3, 4, 5, 6, 7].

State-of-the-art DL models are generally parameter-heavy, containing millions or

even billions of parameters [8, 9, 10, 11], assisted to some extent by the availability5

of increasingly powerful GPUs. That is, the outstanding performance of DL

models stems from their depth and complexity. For instance, amongst others,

ResNets [12], introducing the concept of residual learning, achieve state-of-the-

art performance by increasing the depth of the networks, while Wide-ResNets [13]

are designed to be wider, by reducing the depth. Therefore, applying these models10

in real-time terms, and/or on devices with restricted computational resources such

as mobile phones and embedded systems, is obstructed by their enhanced capacity.

Thus, an apparent need for developing compact yet effective models, diminish-

ing the storage requirements and the computational cost, has been arisen. Sub-

stantial research work has been performed over the recent few years to achieve15

this goal [14]. This work epigrammatically includes developing compact and ef-

fective models by design, such as [15, 16, 17, 18, 19, 20], parameter pruning, where

the redundancy in the parameters of the model is investigated and the com-

plexity of the model is reduced by removing the redundant parameters [21, 22],

network quantization where in a similar way the required bits for the param-20

eter representation are removed in order to compress the model [23, 19], and

finally, Knowledge Transfer (KT), [24, 25, 26, 27, 28, 29]. KT has been emerged

as a highly promising approach to address this issue proposing to transfer the

knowledge from one, usually larger, model to a more compact model. Knowledge

Distillation (KD) [30, 31, 32, 33] constitutes the most prominent offshoot of KT.25

KD, in its typical version, refers to the procedure where the knowledge of a

heavyweight and powerful model, known as teacher, which achieves high perfor-

mance, is transferred to a lighter and faster model, known as student. The latter

is trained to match the so-called soft labels generated by the teacher model, by

2

raising the temperature of the softmax activation function on the output layer of30

the network. The above procedure is also known as softening the output distribu-

tion. The underlying rationale behind this practice is that these soft labels relay

more information about the way that the model learns to generalize, comparing to

the hard labels. Apart from the aforementioned strategy, where the knowledge is

transferred from a complex model to a weaker one, there have also been proposed35

strategies where the knowledge is transferred from a weaker to a more complex

model [26] or the knowledge is transferred from teachers to students of identical

capacity [34, 35, 36]. The latter process is known as self-distillation. Amongst

the self-distillation works, we distinguish [36] where the knowledge is discovered

from the model itself.40

KD methods fall into two categories: online and offline KD. The multi-stage

procedure of initially training a powerful teacher model and then distilling the

knowledge to a weaker student model, stands for offline KD. However, offline

distillation is accompanied by some flaws. That is, it is a long-lasting, complex,

and computationally and memory demanding process, since it requires to train45

first a powerful and heavyweight model, and after the convergence to transfer the

acquired knowledge to a faster model. Thus, in the recent literature several online

KD methods have been proposed, in order to circumvent the aforementioned flaws

of offline KD . Online KD describes the procedure where the teacher and the

student models are trained concurrently, that is without the stage of pre-training50

the teacher model. Online KD includes methods proposing to train multiple

(student) models mutually from each other [37, 38], where each model acts as a

teacher to other model, as well as methods proposing to train k copies of a target

(student) model in parallel by adding a distillation term to the loss function of

the i-th model to match the average prediction of the other models [37]. Existing55

online distillation methods are thoroughly discussed in the Related Work Section.

In this work, a novel probabilistic single-stage self-distillation method, called

Probabilistic Online Self-Distillation (POSD), is proposed. The proposed method

is model-agnostic, that is, it improves the performance of any deep neural model

considering object classification tasks (i.e., lightweight and common heavyweight60

3

models, as it is demonstrated through the conducted experiments) in an online

manner. Thus, as compared to conventional offline KD methods, reduces the com-

putational and memory requirements. It should be emphasized that the proposed

method derives the additional knowledge from the model itself -that is without

any powerful teacher model- as in [36], but also in an online manner.65

More specifically, we argue that in each classification problem there are explicit

concepts, expressed with the hard labels, but there are also implicit concepts,

expressed with so-called latent labels. These implicit concepts reflect potential

sub-clusters formed by data samples that share specific attributes, or similarities

among data samples regardless of the class labels. That is, they are cross-label70

concepts, which convey useful information about the relationships between data

samples.

Thus, while conventional KD argues that it is useful to maintain the similar-

ities of the samples with the classes (that express the explicit concepts) during the

training process, we argue that there are samples that also share other semantic75

attributes, extending beyond the explicit classes. Therefore, we aim to discover

these similarities during the training process and then appropriately employ them

to transfer additional knowledge. To achieve this goal, we use a well-established

metric in Information Theory, that is mutual information, which allows us to

quantify the information regarding these implicit concepts. Since mutual informa-80

tion is in general impractical and inefficient to be estimated in high dimensional

spaces, we utilize a variant of mutual information, that is Quadratic Mutual In-

formation [39], which allows us to efficiently optimize the network toward the

aforementioned objective. That is, our goal is to maximize the Mutual Informa-

tion (MI) between the distribution of the data samples and the latent labels. In85

this way, the model is not only able to discriminate between different classes, but

also to better encode the geometric relationships between them.

The overarching motivation of the proposed work is to mine further knowl-

edge beyond the hard labels from the model itself and also in an online manner,

so as to overcome the limitations of the conventional knowledge distillation (i.e.,90

time consuming, complex, and computationally and memory demanding process).

4

Thus, taking also into consideration the observations that useful information can

be obtained even by transferring knowledge from a model of identical capacity to

the student [35], and also that small models usually have the same representa-

tion capacity as their heavier counterparts but they are harder to train [33], we95

propose a single stage self-distillation methodology for developing fast-to-execute

yet effective models for various applications with computational and memory re-

strictions.

To the best of our knowledge, the proposed POSD method, is the first method

proposing an online self-distillation methodology in a single stage training pipeline,100

without affecting the model architecture or employing multiple models, and also

without the need of tuning the temperature hyper-parameter like the most distilla-

tion methods. At the same time, the proposed method constitutes a powerful and

efficient approach for exploiting the manifold structure of the feature space formed

by the various layers of neural networks. In this way, the proposed method can105

significantly reduce over-fitting and, as a result, improve the classification ac-

curacy of the models, as experimentally demonstrated in this paper. Finally, it

should be highlighted that the proposed distillation method can be combined with

any other method for developing effective and faster models, e.g. [16, 17].

110

The main contributions of this paper can be summarized as follows:

• We propose a novel Probabilistic Online Self-Distillation method.

• The POSD method acquires the soft labels from the model itself in an online

manner, without requiring the utilization of multiple models or instances

/ copies of the model like the most online KD methods, rendering it more115

efficient.

• The proposed method is model-agnostic, that is, it is applicable to several

neural network architectures.

• The experimental evaluation indicates that the POSD method can improve

the classification performance of any deep neural model.120

5

The rest of the manuscript is structured as follows. Section 2 contains a

discussion on relevant works on knowledge distillation. Section 3 presents the

proposed method. Subsequently, in Section 4 we provide the experimental evalua-

tion of the proposed method, including the utilized CNN model and the datasets,125

the implementation details, as well as the experimental results. Finally, the con-

clusions are drawn in Section 5.

2. Related Work

In this section recent works in the general area of KT, as well as on online

KD, which is more relevant to our work, are presented.130

Knowledge Transfer, for transferring the knowledge from one neural network

to another, has been extensively studied during the recent few years with a wide

range of applications [40, 41, 42, 43]. Firstly in [32] and then in [30] the idea of

distilling the knowledge from a powerful teacher to a weaker student by encour-

aging the latter to regress the soft labels produced by the teacher by appropriately135

raising the temperature of the softmax activation function on the output layer of

the network, is proposed. Subsequently, a new pre-training approach is proposed

in [44], utilizing soft labels. The knowledge transfer procedure is employed for

domain adaptation in combination with limited labeled data, in [45], whilst sim-

ilarly knowledge is transferred from a recurrent neural network (RNN) model to140

a small CNN model, in [25]. From a different perspective in the sense that the

teacher is assumed to be weaker than the student, knowledge from conventional

deep neural networks is used to train a RNN model in [26].

Subsequently, the idea of KD [30] is expanded to allow for thinner and deeper

students, by using not only soft labels but also hints from the teacher’s interme-145

diate layers in order to guide the training of the student model, in [31]. A KD

method where the student model is encouraged to mimic the attention map of

the teacher model is proposed in [46], whilst an approach where the parameters

of the student model are initialized according to the parameters of the teacher

6

model is proposed in [24]. Subsequently, a method where the student model is150

trained to maintain the same amount of mutual information between the learned

representation and a set of labels as the teacher model is proposed in [28], while

a method that uses similarity-induced embedding to transfer the knowledge be-

tween two layers of neural networks, is proposed in [27]. Additionally, under

the information-theoretic perspective, knowledge transfer is formulated as maxi-155

mizing the mutual information between the student and the teacher networks in

[47]. A multi-step KD approach where an intermediate-sized network is utilized

to bridge the gap between the student model and the teacher model is proposed

in [48], since as it is stated the performance degrades when the gap between the

teacher model and student model is large. Subsequently, an effective KD method160

even when there is a distribution mismatch between teacher’s and student’s train-

ing data is proposed in [49]. That is, the method first learns a distribution based

on student’s training data from which images well-classified by the teacher are

sampled. In this way, the data space where the teacher has good knowledge to

transfer is discovered. In addition, a new loss function is proposed for training165

the student network.

Surveying the recent literature, several works has been emerged, proposing

self-distillation approaches. Self-distillation as we have already mentioned refers

to the kind of distillation where distillation is applied from one model to another

of identical architecture. For instance, KD is applied from a teacher to a student170

of identical architecture where the student accomplishes better performance while

it is also optimized faster, in [34]. The flow of solution procedure matrix is utilized

in this approach instead of the previously mentioned hints for transferring the

knowledge between the intermediate layers. A self-distillation approach where

a teacher model is initially trained, and then after its convergence an identical175

student model is trained with both the goals of the hard labels and matching

the output of the teacher model is proposed in [35], however without softening

the logits (i.e. the inputs to the final softmax activation function) by raising the

temperature. Similarly, a target model is trained with a conventional supervised

loss, the self-discovered knowledge is extracted, and in the second training stage,180

7

the model is trained both with the supervised and distillation losses, in [36].

Finally, a framework, named Self-Supervised Knowledge Distillation, proposes

to employ self-supervised tasks in order to acquire richer knowledge from the

teacher model to the student model in [50]. Moreover, the impact of various

self-supervised pretext tasks and the effect of noisy self-supervised predictions to185

the distillation performance are investigated.

In the recent literature, several works proposing online distillation have also

been emerged. A method namely co-distillation improves the accuracy by propos-

ing to train k copies of a target model in parallel by adding a distillation term to

the loss function of the i-th model to match the average prediction of the other190

models [37]. A quite similar approach, where multiple students teach each other

throughout the training process, is proposed in [38]. That is, each student is

trained with a conventional supervised learning loss, and a distillation loss that

matches each student’s class posterior probabilities with the class probabilities of

other students. In this way, each model acts as a teacher of the other models.195

In this approach, as opposed to the aforementioned co-distillation method [37],

different model architectures can be utilized for the mutual training.

Subsequently, an online distillation approach proposes to build a multi-branch

version of the network by adding identical branches, each of which constitutes

an independent classification model with shared low level layers, and to create200

a strong teacher model utilizing a gated logit ensemble of the multiple branches

in [51]. Each branch is trained with the conventional classification loss and

the distillation loss which regresses the teacher’s output distributions. Next, a

framework of collaborative learning which trains several classifier heads of the

same network at the same time, on the same training data, is proposed in [52].205

More specifically, the framework generates a population of classifier heads during

the training process, where each head learns, apart from the hard labels, from the

soft labels produced by the whole population. Furthermore, the method involves

an intermediate-level representation sharing with backpropagation rescaling that

aggregates the gradient flows for all the heads.210

Next, a recent work [53], combines the previous works [38] and [51], by propos-

8

ing an online mutual knowledge distillation method for enhancing both the per-

formance of the fusion module and the sub-networks. That is, when different

sub-networks are used, the sub-networks are trained similar to [38], while when

identical sub-networks are used, the low level layers are shared, and a multi-215

branch architecture similar to [51] is used. The architecture consists of an en-

semble classifier using the ensemble logit produced from the sub-networks and a

fused classifier, using the fused feature map. The model distills knowledge from

the ensemble classifier to the fused classifier, and simultaneously from the fused

classifier to each sub-network classifier.220

Subsequently, a two-level distillation methodology, named Online Knowledge

Distillation with Diverse peers (OKDDip), where two types of students are in-

volved, i.e., multiple auxiliary peers and one group leader, is proposed in [54].

Distillation is conducted among auxiliary peers with a mechanics for preserving

diversity, and then an ensemble of predictions of these peers is further distilled to225

the group leader. Finally, based on [53], a method named Dense Feature Fusion

for Online Mutual Knowledge Distillation (DFL), where the mid-level features

from the subnetworks are also fused, is proposed in [55].

In this paper, we propose an efficient online self-distillation method which uses

soft labels to reveal the implicit relationships between data samples. Furthermore,230

a key attribute of the proposed method is that the knowledge is distilled within

the same model online, without requiring multiple training stages that typically

increase the computational cost, which renders the proposed method more efficient

compared to existing online KD methods.

3. Proposed Method235

In each classification problem there are explicit concepts, expressed with the

hard labels, but there are also implicit concepts, associated with the latent labels.

Deep neural models transform the probability distribution of the data, layer by

layer, learning increasingly complex layer representations. As the distribution of

the data is being transformed through the layers during the training procedure,240

9

we aim to derive useful information about the relationships among the data

samples which is ultimately ignored, as the samples are forced by the conventional

supervised loss to suppress the implicit concepts. To this aim, we propose to

introduce an auxiliary objective aiming to encode the useful implicit concepts, that

reflect similarities among the data, from the model itself. These implicit concepts245

are unknown, and they can be discovered through several ways. For example,

they could be pre-calculated using clustering, or discovered by exploiting the local

manifold structure of the space, etc. In this work, without loss of generality, we

consider the degenerated case where the each sample defines a different implicit

concept.250

More specifically, we consider a C-class classification problem, and the labeled

data {xi, li}Ni=1, where xi ∈ <
D an input vector and D its dimensionality, while li ∈

ZC corresponds to its C-dimensional one-hot class label vector (hard label). For

an input space X ⊆ <D and an output space F ⊆ <C , we consider as φ(· ;W) :

X → F a deep neural network with NL ∈ N layers, and set of parameters W =255

{W1, . . . ,WNL }, where WL are the weights of a specific layer L, which transforms

its input vector to a C-dimensional probability vector. That is, φ(xi ;W) ∈ F

corresponds to the output vector of xi ∈ X given by the network φ with parameters

W.

Thus, considering the typical classification problem, we seek for the parameters

W∗ that minimize the cross entropy loss, Jce, between the predicted and hard

label distributions:

W∗ = arg min
W

N∑
i=1

Jce(li, φ(xi ;W)), (1)

The cross entropy loss for a set of N samples is formulated as:

Jce = −

N∑
i=1

C∑
m=1

lmi log(zm
i), (2)

where lmi is the m-th element of li one-hot label vector, and zm
i is defined as the

output of the softmax operation on the C-dimensional network’s output:

10

zm
i =

exp(φ(xi ;W)m)∑C
j=1 exp(φ(xi ;W) j)

, (3)

where the notation φ(xi ;W)m is used to refer to the m-th value of the output260

vector of the network.

The cross entropy loss generally suppresses the aforementioned implicit con-

cepts, and thus our goal is to circumvent this by enforcing the data samples to

maintain the MI with these concepts.

For simplicity, we consider Y to be a random variable representing the image265

representations of the feature space generated by a specific deep neural layer

L, that is yi = φ(xi ;WL). We also consider a discrete-value variable C that

represents the latent labels. Each feature representation y defines an implicit

concept and it is associated with a latent label c.

MI measures dependence between random variables, that is, it measures how

much the uncertainty for the latent label c is reduced by observing the feature

vector y. Let p(c) be the probability of observing the latent label c, and p(y, c)

the probability density function of the corresponding joint distribution. The MI

between the two random variables is defined as:

MI(Y,C) =

N∑
c=1

∫
y

p(y, c) log
p(y, c)

p(y)P(c)
dy, (4)

where P(c) =
∫

y p(y, c)dy. Instead of utilizing MI, we use Quadratic Mutual Infor-

mation [39], since directly calculating MI is not computationally tractable. That is,

MI can be interpreted as a Kullback-Leibler divergence between the joint probabil-

ity density p(y, c) and the product of marginal probabilities p(y) and P(c). Thus,

QMI is derived by replacing the Kullback-Leibler divergence by the quadratic

divergence measure [39]. That is:

QMI(Y,C) =

N∑
c=1

∫
y

(p(y, c) − p(y)P(c))2dy. (5)

11

And thus, by expanding eq. (5) we arrive at the following equation:

(6)
QMI(Y,C) =

N∑
c=1

∫
y

p(y, c)2dy +

N∑
c=1

∫
y

p(y)2P(c)2dy

−2
N∑

c=1

∫
y

p(y, c)p(y)P(c)dy.

The quantities appearing in eq. (6), are called information potentials and

they are defined as follows: VIN =

N∑
c=1

∫
y

p(y, c)2dy, VALL =

N∑
c=1

∫
y

p(y)2P(c)2dy,

VBTW =

N∑
c=1

∫
y

p(y, c)p(y)P(c)dy, and thus, the QMI between the data samples

and the corresponding latent labels can be expressed as follows utilizing the

information potentials:

QMI = VIN + VALL − 2VBTW . (7)

As we have previously mentioned, we consider that each sample defines an270

implicit concept, expressed with a latent label, and thus there are N different latent

labels. Under the manifold assumption [56], we consider that the implicit concepts

are expressed in the feature space as the geometric proximity between the data

samples. That is, nearest neighbors, in terms of Euclidean distance, in the feature

space for each sample defining an implicit concept, share the same concept. Note,275

that the nearest neighbors are updated at each iteration, and thus throughout the

network’s training we obtain more useful nearest neighbors, since the procedure

is driven by the supervised loss. It is also noteworthy that manifold assumption

allows us to infer only similarities, not dissimilarities. Therefore, we can infer

that two neighbors are similar because they are close to each other, however,280

being far apart does not guarantee that they do not share the same implicit

concept. We should also highlight that as the network is optimized to discriminate

between the different classes (hard labels), the intermediate representations and

the corresponding manifolds are distorted in a way that facilitates the task at

hand. Therefore, some implicit concepts that are not relevant to the task at hand285

are suppressed, while other, relevant to the task at hand, are possibly reinforced.

12

Thus, each of N different latent labels consists of kp samples (i.e. a certain

number of nearest samples and the sample itself), and the class prior probability

for the cp latent label is given as: P(cp) =
kp

N , where N corresponds to the total

number of samples. KDE can be used to estimate the joint density probability:290

p(y, cp) =
1
N

kp∑
j=1

K(y, yp
j ;σ

2), for a symmetric kernel K, with width σ, where we

use the notation yp
j to refer to the j-th sample of the p-th latent label, that is the

j-th nearest neighbor, as well as the probability density of Y as p(y) =

kp∑
p=1

(y, cp) =

1
N

N∑
j=1

K(y, y j;σ2).

Therefore, the information potentials that appear in (7) can be efficiently cal-

culated as:

VIN =
1

N2

N∑
p=1

kp∑
k=1

kp∑
l=1

K(yp
k , y

p
l ; 2σ2), (8)

VALL =
1

N2

(N∑
p=1

(
kp

N
)2
) N∑

k=1

N∑
l=1

K(yk, yl; 2σ2), (9)

VBTW =
1

N2

N∑
p=1

kp

N

kp∑
j=1

N∑
k=1

K(yp
j , yk; 2σ2). (10)

The pairwise interactions described above between the samples can be inter-295

preted as follows:

• VIN expresses the interactions between pairs of samples sharing each implicit

concept

• VALL expresses the interactions between all pairs of samples, regardless of

the latent label300

• VBTW expresses the interactions between samples of each implicit concept

against all other samples

The kernel function K(yi, y j;σ2) expresses the similarity between two samples i

and j. There are several choices for the kernel function, [57]. For example, in [39]

the Gaussian kernel is used, while in [27] the authors utilize a cosine similarity

13

based kernel to avoid defining the width, in order to ensure that a meaningful

probability estimation is obtained, since fine-tuning the width of the kernel is not

a straightforward task, [58]. In this work, we use the power kernel. Power kernel,

KP , also known as unrectified triangular kernel is defined as follows:

KP = ||yi − y j||
d (11)

Our goal is to maximize the QMI between the distribution of the data samples

sharing implicit concepts with the distribution of the latent labels. This pro-

cess can be accelerated by observing that VBTW term includes only the distant305

neighbors to each implicit concept and, as a result, it typically has a negligible

contribution to the optimization compared to VIN . Furthermore, the VALL term is

just a contractive term that tends to shrink all the samples in the feature space,

contributing equally to all data samples, regardless their label. Given that our

goal is not to accurately estimate the exact value of MI, but to enhance the im-310

plicit concepts that appear in the data, we propose accelerating the optimization

by using VIN as a proxy to QMI. This approximation allows for accelerating the

training process, while having only a negligible effect on the optimization.

Thus, the overall loss, J can be formulated as:

J = JCE − λJPOS D, (12)

where JPOS D = VIN , and λ balances the importance between the hard and the

latent labels.315

Simple SGD is utilized to train the model:

∆W = −η
ϑJ
ϑW

(14). (14)

In this way, the model is trained synchronously both with the conventional

supervised loss (hard labels) so as to discriminate between different classes, and

distillation loss so as maximize the QMI of the samples with the latent labels. We

should finally highlight that in the early stages of training, the POSD methodol-

ogy may bring less informative knowledge. That is, the nearest neighbors share320

by definition some concepts, and hence they are near in the feature space, but

14

these shared concepts may be less informative for the classification performance.

However, as it also verified through the figures that illustrate the test accuracy

throughout the training process in the subsequent Section, as the training pro-

gresses, we are assured that more useful nearest neighbors are brought, since the325

process is driven by the supervised loss.

4. Experimental Evaluation

Six datasets were used to validate the performance of the proposed method. In

the following subsections, the descriptions of the datasets and the utilized models’

architectures are provided. Three sets of experiments were conducted for three330

different batch sizes considering also four different number of nearest samples in

each case. Throughout this work, test accuracy (i.e. Top-1 accuracy) were used for

evaluating the proposed method. Each experiment was repeated five times and the

mean value and the standard deviation are reported, considering the maximum

value of test accuracy for each experiment. The curves of mean test accuracy are335

also provided. Finally, we use the sum of floating point operations (FLOPs) to

evaluate the complexity of the proposed POSD method.

4.1. Datasets

In order to evaluate the performance of the proposed online self-distillation

method extensive experiments were conducted on three datasets (Cifar-10, SVHN,340

and Fashion MNIST). Additionally, since the input dimensions of all the utilized

datasets are 32 × 32, we have also performed representative experiments on

Crowd-drone and Tiny-ImageNet datasets. Finally for comparisons against state-

of-the-art, we also perform experiments on Cifar-100.

4.1.1. Cifar-10345

The Cifar-10 dataset, [59], consists of 60,000 images of size 32 × 32 divided

into 10 classes with 6,000 images per class. 50,000 images are used as the train

set and 10,000 images as the test set. Sample images of the Cifar-10 dataset are

provided in Fig. 1.

15

Figure 1: Sample images of the Cifar-10 dataset.

4.1.2. Cifar-100350

The Cifar-100 dataset, [59], consists of 60,000 images of size 32× 32 divided

into 100 classes with 600 images per class. 50,000 images are used as the train

set and 10,000 images as the test set.

4.1.3. Street View House Numbers

The Street View House Numbers (SVHN) dataset, [60], obtained from house355

numbers in Google Street View images. It contains 73,257 train images and

26,032 test images, divided into 10 classes, 1 for each digit from 0 to 9. Input

images are of size 32 × 32 and sample images are provided in Fig. 2.

Figure 2: Sample images of the SVHN dataset.

4.1.4. Fashion MNIST

The Fashion MNIST dataset, [61] comprises of 28 × 28 gray-scale images of360

70,000 fashion products from 10 categories, with 7,000 images per category. The

training set has 60,000 images and the test set has 10,000 images. Sample images

are presented in Fig. 3.

16

Figure 3: Sample images of the Fashion MNIST dataset.

4.1.5. Tiny-ImageNet

The Tiny-ImageNet dataset contains a training set of 200 classes, each of365

them containing 500 images, and a validation set consisting of 50 images per

class. Input image are of size 64 × 64. Sample images are provided in Fig. 4.

Figure 4: Sample images of the Tiny-ImageNet dataset.

4.1.6. Crowd-drone

The Crowd-drone dataset is an augmented version the dataset presented in

[3]. Crowd-drone is a binary dataset that contains drone-captured images that370

depict human crowds, and non-crowded scenes. The training set of the dataset

consists of 7,000 crowd images, and 7,000 non-crowd images, while the test set

consists of 3,000 crowd images, and 3,000 non-crowd images. Images are of size

128 × 128. Sample images are presented in Fig. 5.

17

Figure 5: Sample images of the Crowd-drone dataset.

4.2. CNN Models375

The main focus of this work is to evaluate the effect of the proposed KD

method on training lightweight model that can be effectively deployed on em-

bedded and mobile devices. Therefore, three lightweight CNN architectures are

employed for the conducted experiments. In the case of the first two datasets

(i.e., Cifar-10, and SVHN-10) we utilize a simple CNN model consisting of five380

layers; two convolutional layers with 6 filters of size 5 × 5 and 16 filters of size

5 × 5 respectively, followed by a Rectified Linear Unit (ReLU) [62] activation,

and three fully connected layers (128 × 64 × 10). The convolutional layers are

followed by a 2 × 2 max-pooling layer with a stride of 2. In the first two fully

connected layers the activation function is the ReLU, while the last output layer385

is a 10-way softmax layer which produces a distribution over the 10 class labels

of the utilized datasets. In the case of the Fashion MNIST dataset we also utilize

a simple architecture consisting of two convolutional with 20 filters of size 5 × 5

and 50 filters of size 5×5 followed by a ReLU activation, and two fully connected

layers (64× 10). The convolutional layers are followed by 2× 2 max-pooling layer390

with a stride of 2. In the first fully connected layer a ReLU activation is applied,

while the last output layer is a 10-way softmax layer.

In the case of the Crowd-drone dataset, we use a lightweight fully convolu-

tional network consisting of four convolutional layers followed by a ReLu activa-

tion. The first convolutional layer is followed by a max-pooling layer. In the case395

of Tiny-ImageNet, we use the ResNet-50 model, since it is a challenging dataset.

Finally, for comparison purposes against previous online KD approaches, we also

18

utilize Wide ResNet 16-2 (abbreviated as WRN-16-2) and Wide ResNet 28-10 (ab-

breviated as WRN-28-10) [13], Wide ResNet 20-08 (abbreviated as WRN-20-08),

and ResNet-32 [12] to perform experiments on Cifar-10 and Cifar-100 datasets.400

4.3. Implementation Details

All the experiments were performed using the PyTorch framework. We use

the mini-batch gradient descent for the networks’ training. That is, an update is

performed for every mini-batch of Nb training samples. Experiments conducted

for Nb = 32, 64, 128 samples. The learning rate is set to 10−3, and the mo-405

mentum is 0.9. The models are trained on an NVIDIA GeForce GTX 1080 with

8GB of GPU memory for 100 epochs. The parameter λ in eq. (12) for controlling

the balance between the contributing losses is set to 0.0001 for all the utilized

datasets, however we also utilize different values of λ, in order to investigate its

impact to the performance of the POSD method. That is, for fixed number of 4410

nearest neighbors, we perform experiments for various values of λ on Cifar-10

dataset, for mini-batch of 64 samples. Evaluation results are provided in Table 1

and Fig. 6. As it is shown, the POSD method improves the baseline performance

for any considered λ.

415

Method Cifar-10

W/o Distillation 64.734% ± 0.654%

λ = 0.1 66.042% ± 0.575%

λ = 0.01 65.595% ± 0.467%

λ = 0.001 65.482% ± 0.533%

λ = 0.0001 66.362% ± 0.726%

λ = 0.00001 65.354% ± 0.330%

Table 1: Test Accuracy - Batch Size: 64, 4NN

19

Figure 6: On the parameter λ in eq. (12).

.

4.4. Experimental Results

The first set of experiments setting the mini-batch size to 32 for the first three

utilized datasets (i.e., Cifar-10, SVHN-10, and Fashion MNIST) is presented in

Table 2. Four different values of nearest neighbors (NN), that is 2NN, 4NN,420

8NN and 10NN were used and their performance was compared with the baseline

model, that is without applying knowledge distillation. Best results are printed

in bold. As we can observe, the proposed online distillation method improves the

baseline performance for all the values of nearest neighbors on all the utilized

datasets. We can also see that better performance for mini-batch size equal to 32425

is accomplished utilizing the maximum considered number of nearest neighbors,

that is 10NN.

The corresponding results setting the mini-batch size to 64 for all the utilized

datasets are presented in Table 3. Similar remarks are drawn in this set of experi-

ments. The proposed method achieves improved performance over the baseline in430

any considered case. In this case, we can observe that better results are obtained

for fewer nearest neighbors as compared to the previous case, that is considering

4NN and 8NN.

Finally, the evaluation results considering 2NN, 4NN, 8NN and 10NN for

mini-batch size set to 128 are provided in Table 4. As we can notice the enhanced435

20

performance of the proposed distillation approach against the baseline is also

confirmed in this case. It also shown that as the mini-batch size increases, better

performance is achieved utilizing fewer nearest neighbors.

Method Cifar-10 SVHN-10 Fashion MNIST

W/o Distillation 64.826% ± 0.573% 88.822% ± 0.217% 91.278% ± 0.141%

POSD-2NN 65.508% ± 0.729% 89.223% ± 0.404% 91.770% ± 0.160%

POSD-4NN 65.674% ± 0.526% 89.483% ± 0.279% 91.810% ± 0.115%

POSD-8NN 65.622% ± 0.595% 89.478% ± 0.154% 91.822% ± 0.127%

POSD-10NN 66.280% ± 1.190% 89.512% ± 0.379% 91.882% ± 0.108%

Table 2: Test Accuracy - Batch Size: 32

Method Cifar-10 SVHN-10 Fashion MNIST

W/o Distillation 64.734% ± 0.654% 88.706% ± 0.306% 91.214% ± 0.141%

POSD-2NN 65.472% ± 0.914% 89.625% ± 0.307% 91.624% ± 0.111%

POSD-4NN 66.782% ± 0.691% 89.534% ± 0.500% 91.650% ± 0.138%

POSD-8NN 66.140% ± 1.013% 89.912% ± 0.250% 91.730% ± 0.157%

POSD-10NN 66.336% ± 0.699% 89.522% ± 0.260% 91.548% ± 0.172%

Table 3: Test Accuracy - Batch Size: 64

Method Cifar-10 SVHN-10 Fashion MNIST

W/o Distillation 65.048% ± 0.620% 88.013% ± 0.083% 91.058% ± 0.130%

POSD-2NN 66.248% ± 0.592% 89.387% ± 0.433% 91.728% ± 0.175%

POSD-4NN 66.362% ± 0.726% 89.946% ± 0.433% 91.636% ± 0.154%

POSD-8NN 66.760% ± 0.680% 89.491% ± 0.363% 91.724% ± 0.121%

POSD-10NN 66.304% ± 0.919% 89.655% ± 0.334% 91.592% ± 0.151%

Table 4: Test Accuracy - Batch Size: 128

Figs 7-11 illustrate the comparisons of the mean test accuracy over the epochs

of training of the proposed method considering 2NN, 4NN, 8NN and 10NN, for440

the three considered mini-batch sizes. The enhanced performance of the proposed

21

(a) Cifar-10: Batch Size of 32 samples. (b) Cifar-10: Batch Size of 64 samples.

Figure 7: Evaluating the test accuracy during the training process for different methods.

(a) Cifar-10: Batch Size of 128 samples. (b) SVHN-10: Batch Size of 32 samples.

Figure 8: Evaluating the test accuracy during the training process for different methods

method is depicted.

Subsequently, we have conducted representative experiments on datasets con-

sisting of larger images (i.e., 64 × 64, and 128 × 128), that is Tiny-ImageNet

and Crowd-drone. The experimental results for the Tiny-ImageNet case are pro-445

vided in Table 5 for different numbers of NNs, while Figure 12 illustrates test

accuracy throughout the training process for the baseline and training with the

POSD methods with the optimal number of NNs (i.e., 2NNs). Correspondigly,

for the Crowd-drone case, the experimental results are provided in Table 6 for

batch size of 32 samples, and for various numbers of NNs, while Figure 13 illus-450

22

(a) SVHN-10: Batch Size of 64 samples. (b) SVHN-10: Batch Size of 128 samples.

Figure 9: Evaluating the test accuracy during the training process for different methods

(a) Fashion MNIST: Batch Size of 32 samples. (b) Fashion MNIST: Batch Size of 64 samples.

Figure 10: Evaluating the test accuracy during the training process for different methods

23

Figure 11: Fashion MNIST: Evaluating the test accuracy during the training process for different

methods, batch Size of 128 samples.

Method Test Accuracy

W/o Distillation 29.700% ± 0.510%

POSD - 2NN 30.639% ± 0.409%

POSD - 4NN 30.406% ± 0.750%

POSD - 8NN 30.620% ± 0.697%

POSD - 10NN 30.000% ±0.508%

Table 5: Tiny-ImageNet dataset.

trates test accuracy throughout the training process for the baseline and training

with the POSD methods with the optimal number of NNs (i.e., 2NNs). From the

demonstrated results, it is evident that the POSD method improves the baseline

classification performance on datasets of 64 × 64 and 128 × 128 input dimensions,

too.455

Next, we have performed experiments in order to compare the proposed meth-

ods with state-of-the-art online distillation methods. More specifically, first we

utilize a common architecture, that is WRN-16-2 [13], we apply the proposed on-

line distillation method on Cifar-10 dataset, and compare the performance with

the competitive online distillation methods, [51, 53]. In order to ensure a fair460

comparison, we follow the same training setup as in [53, 13]. That is, we use

24

Figure 12: Tiny-ImageNet: Evaluating the test accuracy during the training process for the baseline

and training with the POSD methods with the optimal number of NNs.

Method Test Accuracy

W/o Distillation 96.576% ± 0.811%

POSD - 2NN 97.672% ± 0.269%

POSD - 4NN 96.743% ± 0.563%

POSD - 8NN 96.823 % ± 0.364%

POSD - 10NN 97.103% ± 0.360%

Table 6: Crowd-drone dataset.

Figure 13: Crowd-drone dataset: Evaluating the test accuracy during the training process for the

baseline and training with the POSD methods with the optimal number of NNs.

25

the SGD with Nesterov momentum and set the momentum to 0.9. The initial

learning rate is set to 0.1 and drops by 0.2 at 60, 120 and 160 epochs. Models are

trained for 200 epochs using mini-batch of 128 samples.

We compare the proposed method with ONE [51] and FFL [53]. It should465

be emphasized that the proposed POSD method is a single branch method, that

is, it does not utilize multiple copies/branches of the network. Thus, for as

much as possible fair comparisons, we use only two sub-networks in all the

competitive approaches, similar to [53]. Note that the manuscript in [51] reports

the experimental results utilizing three copies of the network. Therefore, we470

compare the POSD method with ONE distillation method, considering the average

performance of the two branches, and correspondingly with the FFL-S distillation

method considering the average performance of the two sub-networks. We should

note that the number of parameters in both FFL-S and ONE cases is identical

to the POSD case, since the additional branches in both cases as well as the475

fusion module in FFL-S are discarded in the test phase. Furthermore, even we do

not follow an ensembling methodology, we also compare the performance of the

proposed POSD method with the ensembling methods, that is ONE-E and FFL.

We should note that the number of parameters in ONE-E is 1.24M, and 1.29M

in FFL, while the number of parameters of POSD is 0.70M, considering WRN480

16-2. Evaluation results are presented in Table 7. As it can be observed from the

demonstrated results, the proposed online distillation method achieves superior

performance over competitive online distillation methods. Best performance is

achieved utilizing 2NN. Furthermore, as it is demonstrated that the proposed

method can even outperform ensembling methods.485

Subsequently, we perform experiments utilizing the ResNet-32 [12] and WRN-

28-10 [13] models, in order to compare the performance of the POSD method

against online distillation methods (i.e., DML [38]) and also offline self-distillation

methods (i.e., SRDL [36]) on Cifar-10 and Cifar-100 datasets. Besides, we provide

comparisons against the common offline KD method [30].490

Regarding the ResNet-32 model, we use the same experimental setup as in

[38] in order to ensure a fair comparison. That is, we use SGD with Nesterov

26

Method Test Accuracy

WRN 16-2 93.55% ± 0.11%

ONE [51] 93.76%± 0.16%

FFL-S [53] 93.79% ± 0.12%

ONE-E [51] 93.84%± 0.20%

FFL [53] 93.86% ± 0.11%

POSD 94.39% ± 0.17%

Table 7: Comparisons against online distillation methods on Cifar-10 utilizing the WRN 16-2 archi-

tecture.

momentum and set the initial learning rate to 0.1, momentum to 0.9 and mini-

batch size is set to 64. The learning rate dropped by 0.1 every 60 epochs and

we train for 200 epochs. Evaluation results are presented in Table 8 for the495

Cifar-10 dataset, and in Table 9 for the Cifar-100 dataset. In the case of DML,

we report both the average accuracy of the two networks, as well as the accuracy

of each one separately. As it is demonstrated, regarding the Cifar-10 dataset, the

proposed method achieves superior performance as compared to the competitive

ones. Note also that KD [30], using as teacher model the powerful ResNet-110500

model achieves accuracy 92.75%, which is also inferior as compared to the pro-

posed POSD method’s performance. Regarding the Cifar-100 dataset, the proposed

method achieves superior performance as compared to the DML method, how-

ever is slightly inferior as compared to the SRDL method. Furthermore, the KD

[30] method utilizing as teacher achieves accuracy 71.17%, which is also inferior505

compared to the proposed method.

Subsequently, we compare the performance against DML [38] and SRDL [36]

on Cifar-10 and Cifar-100 datasets, using the WRN-28-10 model [13]. To ensure

a fair comparison we use the same experimental setup as in [13]. That is, we use

SGD with Nesterov momentum and set the initial learning rate to 0.1, momentum510

to 0.9 and mini-batch size is set to 128. The learning rate dropped by 0.1 every 60

epochs and we train for 200 epochs. Experimental results are presented in Table

27

Method Test Accuracy

ResNet-32 92.47%

DML [38] 92.74% (Net1: 92.68% Net2: 92.80%)

SRDL [36] 93.12%

POSD 93.16% ± 0.14%

Table 8: Comparisons against online and offline distillation methods on Cifar-10 utilizing the ResNet-

32 architecture.

10 for the Cifar-10 dataset and in Table 11 for the Cifar-100 dataset. As it can

be observed the proposed method achieves superior performance against all the

compared methods.515

Next, we use the WRN-20-08 model to perform experiments on the Cifar-10

and Cifar-100 datasets, and compare the performance of the proposed method

with the OKDDip [54], DFL [55], DML [38], ONE [51], and CL-ILR [52] methods.

In order to ensure fair comparisons, we use the same setup as described in

[54]. That is, the models are trained for 300 epochs, the mini batch size is520

set to 128, and the learning rate is set to 0.1 and is divided by 10 at 150 and

225 epochs. The experimental results are provided in Tables 12 and 13 for the

Cifar-10 and Cifar-100 datasets respectively. As it can be observed, the proposed

POSD method accomplishes superior performance over the state-of-the-art online

distillation works.525

Consequently, the proposed method achieves in general (except one case) supe-

rior performance against all the compared online and offline distillation methods,

utilizing different baseline models, as well as on different datasets, validating the

effectiveness of the proposed method.

Subsequently, we evaluate the complexity of the proposed online distillation530

method using the sum of floating point operations (FLOPs) in one forward pass

on a fixed input size. FLOPs are estimated according to https://github.com/

1adrianb/pytorch-estimate-flops. Model size, represented by the model’s

parameters, is also reported for each of the utilized models. We utilize the

28

https://github.com/1adrianb/pytorch-estimate-flops
https://github.com/1adrianb/pytorch-estimate-flops
https://github.com/1adrianb/pytorch-estimate-flops

Method Test Accuracy

ResNet-32 68.99%

DML [38] 70.97% (Net1: 71.19% Net2: 70.75%)

SRDL [36] 71.63%

POSD 71.31% ± 0.28%

Table 9: Comparisons against online and offline distillation methods on Cifar-100 utilizing the ResNet-

32 architecture.

Method Test Accuracy

WRN-28-10* 95.83%

DML [38] 95.65% (Net1: 95.66% Net2: 95.63%)

SRDL [36] 95.41%

POSD 96.03% ± 0.11%

Table 10: Comparisons against online and offline distillation methods on Cifar-10 utilizing the WRN-

28-10 architecture. *As reported in [13]

Method Test Accuracy

WRN-28-10* 79.50%

DML [38] 80.18% (Net1: 80.28% Net2: 80.08%)

SRDL [36] 79.38%

POSD 80.28% ± 0.28%

Table 11: Comparisons against online and offline distillation methods on Cifar-100 utilizing the WRN-

28-10 architecture. *As reported in [13]

29

Method Test Accuracy

WRN-20-8 94.73% ± 0.06%

DML [38] 94.96% ± 0.08%

ONE [51] 94.73% ± 0.02%

CL-ILR [52] 94.88% ± 0.16%

OKDDip [54] 95.16% ± 0.07%

POSD 96.14%± 0.16%

Table 12: Comparisons against online distillation methods on Cifar-10 utilizing the WRN-20-8 archi-

tecture.

Method Test Accuracy

WRN-20-8 77.50% ± 0.44%

DML [38] 79.79% ± 0.11%

ONE [51] 78.81% ± 0.12%

CL-ILR [52] 79.56% ± 0.13%

OKDDip [54] 80.37% ± 0.07%

DFL [55] 80.51% ± 0.49%

POSD 80.80%± 0.10%

Table 13: Comparisons against online distillation methods on Cifar-100 utilizing the WRN-20-8

architecture.

30

Method Teacher Student Complexity

KD [30] ResNet-110 (1.7M) ResNet-32 (0.5M) 0.33 GFLOPs

POSD - ResNet-32 (0.5M) 0.07 GFLOPs

KD [30] WRN-40-2 (2.26M) WRN-16-2 (0.7M) 0.43 GFLOPs

POSD - WRN-16-2 (0.7M) 0.10 GFLOPs

Table 14: Complexity of the proposed POSD and KD [30] methods using the sum of floating point

operations (FLOPs) in one forward pass on a fixed input size utilizing the Cifar-10 dataset. Model

size, represented by the model’s parameters, is also reported inside parentheses for each of the utilized

models.

ResNet-32 and WRN-16-2 models on the Cifar-10 dataset. In order to validate535

the efficiency of the proposed method, we compare the complexity with the most

famous offline KD method, [30]. In this case, for the ResNet-32 student model,

we use as teacher the stronger ResNet-110 model. Correspondingly, for the WRN-

16-2 student model, we use as teacher the stronger Wide ResNet 40-2 model

(abbreviated as WRN-40-2).540

Evaluation results are presented in Table 14. As it can be observed from the

demonstrated results, the proposed POSD method is significantly more efficient

compared to the conventional offline methodology. Furthermore, it should be

noted that competitive online distillation methods that utilize multiple branches

or copies of a given network, require at least two times more FLOPs than the545

proposed one. That is, the proposed online distillation method is also more

efficient as compared to competitive online methods, too.

Furthermore, on the evaluation of the efficiency of the POSD methodology,

we highlight that apart from the common strong models, used mainly for com-

parison purposes against state-of-the-art online distillation works, we use fast550

and lightweight models. The proposed models, trained with the POSD method-

ology are extremely low-memory demanding, considering the memory required

for training the models using the proposed training pipeline. More specifically,

the required memory to train the lightweight models is 918 MiB in the case

31

Method Required Memory

KD (ResNet 110/ResNet32) 3196 MiB

POSD (ResNet 32) 1222 MiB

KD (WRN-40-2/WRN-16-2) 2950 MiB

POSD (WRN-16-2) 1256 MiB

Table 15: Required memory for training common models with the POSD method against conventional

KD.

of CIfar-10 and SVHN datasets, and 920 MiB in the case of Fashion MNIST555

dataset. To gain some more insights on the efficiency with respect to the memory

requirements for training with the proposed online methodology, we can compare

the performance of the POSD methodology with the conventional offline KD[30]

using the ResNet-32 and WRN-16-2 models. The POSD method requires 1222

MiB, while the conventional KD requires 1974 MiB for training first the power-560

ful ResNet-110 model and the 1222 MiB to train the ResNet-32 transferring the

knowledge acquired from ResNet-110. Correspondingly, 1256 MiB are required for

training with the POSD method using the WRN-16-2 model, while for training

first the powerful WRN-40-2 model and transferring the knowledge to the WRN-

16-2 model with the offline KD methodology are required 2950 MiB. The overall565

results are presented in Table 15.

Finally, as it is shown in Table 16, the proposed method requires extremely

low memory for storing the trained models weights. Again, to gain some more in-

sights on the efficiency, we can compare the performance of the proposed method-

ology using e.g., the ResNet-32 model, or WRN-16-2, compared to an offline KD570

methodology that needs to store a strong teacher to mine additional knowledge,

e.g., ResNet-110 or WRN-40-2. The required memory for each of these cases is

provided in Table 17. As it is shown, the POSD methodology would provide ex-

ceptional performance (as it validated through the experiments with respect to test

accuracy) requiring only 3.6MiB, while offline KD would also require 13.4MiB,575

considering the ResNet case.

32

Lightweight Model Required Memory

Cifar-10 248 KiB

SVHN 248 KiB

Fashion MNIST 303.9 KiB

Table 16: Required memory for storing the weights of the lightweight models trained with the proposed

POSD methodology.

Model Required Memory

ResNet-32 3.6 MiB

ResNet-110 13.4 MiB

WRN-16-2 5.4 MiB

WRN-40-2 17.2 MiB

Table 17: Required memory for storing common models trained with the proposed POSD methodology.

5. Conclusions

In this paper, we proposed a novel single-stage online self-distillation ap-

proach, namely Probabilistic Online Self-Distillation. The proposed method con-

siders that there are implicit concepts in each classification task expressed with580

latent labels. These concepts convey useful information about the relationships

between data samples. Our goal is to maximize the QMI between data samples

and the latent labels. We are able, in this way, to derive additional knowledge

directly from the data, without affecting the model architecture by adding multiple

branches or employing multiple models, and at the same time in a single stage585

training pipeline. The experimental evaluation indicates the effectiveness of the

proposed method to improve the classification performance.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 871449 (OpenDR).590

33

This publication reflects the authors’ views only. The European Commission is

not responsible for any use that may be made of the information it contains.

References

[1] L. Deng, A tutorial survey of architectures, algorithms, and applications for

deep learning, APSIPA Transactions on Signal and Information Processing595

3 (2014) e2.

[2] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M. S. Lew, Deep learning for

visual understanding: A review, Neurocomputing 187 (2016) 27–48.

[3] M. Tzelepi, A. Tefas, Graph embedded convolutional neural networks in hu-

man crowd detection for drone flight safety, IEEE Transactions on Emerging600

Topics in Computational Intelligence.

[4] J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, arXiv preprint

arXiv:1612.08242.

[5] M. Tzelepi, A. Tefas, Deep convolutional learning for content based image

retrieval, Neurocomputing 275 (2018) 2467–2478.605

[6] A. Graves, A. Mohamed, G. E. Hinton, Speech recognition with deep recur-

rent neural networks, CoRR abs/1303.5778.

[7] N. Passalis, A. Tefas, Deep reinforcement learning for controlling frontal

person close-up shooting, Neurocomputing 335 (2019) 37–47.

[8] R. K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in:610

Advances in neural information processing systems, 2015, pp. 2377–2385.

[9] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected

convolutional networks, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 4700–4708.

34

[10] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transforma-615

tions for deep neural networks, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 1492–1500.

[11] D. Han, J. Kim, J. Kim, Deep pyramidal residual networks, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,

pp. 5927–5935.620

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

CoRR abs/1512.03385.

[13] S. Zagoruyko, N. Komodakis, Wide residual networks, arXiv preprint

arXiv:1605.07146.

[14] Y. Cheng, D. Wang, P. Zhou, T. Zhang, A survey of model compression and625

acceleration for deep neural networks, arXiv preprint arXiv:1710.09282.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks

for mobile vision applications, arXiv preprint arXiv:1704.04861.

[16] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient con-630

volutional neural network for mobile devices, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–

6856.

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2:

Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Con-635

ference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

[18] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer,

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb

model size, arXiv preprint arXiv:1602.07360.

[19] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural640

network with pruning, trained quantization and huffman coding, in: ICLR,

2016.

35

[20] G. Huang, S. Liu, L. Van der Maaten, K. Q. Weinberger, Condensenet: An

efficient densenet using learned group convolutions, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.645

2752–2761.

[21] S. Srinivas, R. V. Babu, Data-free parameter pruning for deep neural net-

works, arXiv preprint arXiv:1507.06149.

[22] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convo-

lutional neural networks for resource efficient inference, arXiv preprint650

arXiv:1611.06440.

[23] J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantized convolutional neural

networks for mobile devices, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 4820–4828.

[24] T. Chen, I. Goodfellow, J. Shlens, Net2net: Accelerating learning via knowl-655

edge transfer, arXiv preprint arXiv:1511.05641.

[25] W. Chan, N. R. Ke, I. Lane, Transferring knowledge from a RNN to a DNN,

CoRR abs/1504.01483.

URL http://arxiv.org/abs/1504.01483

[26] Z. Tang, D. Wang, Z. Zhang, Recurrent neural network training with dark660

knowledge transfer, in: 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2016, pp. 5900–5904.

[27] N. Passalis, A. Tefas, Learning deep representations with probabilistic knowl-

edge transfer, in: Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 268–284.665

[28] N. Passalis, A. Tefas, Unsupervised knowledge transfer using similarity em-

beddings, IEEE Transactions on Neural Networks and Learning Systems

30 (3) (2019) 946–950.

36

http://arxiv.org/abs/1504.01483
http://arxiv.org/abs/1504.01483

[29] J. Kim, S. Park, N. Kwak, Paraphrasing complex network: Network com-

pression via factor transfer, in: Advances in Neural Information Processing670

Systems, 2018, pp. 2760–2769.

[30] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,

arXiv preprint arXiv:1503.02531.

[31] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets:

Hints for thin deep nets, arXiv preprint arXiv:1412.6550.675

[32] C. Buciluǎ, R. Caruana, A. Niculescu-Mizil, Model compression, in: Pro-

ceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’06, 2006.

[33] J. Ba, R. Caruana, Do deep nets really need to be deep?, in: Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.), Advances680

in Neural Information Processing Systems 27, 2014, pp. 2654–2662.

[34] J. Yim, D. Joo, J. Bae, J. Kim, A gift from knowledge distillation: Fast

optimization, network minimization and transfer learning, in: The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[35] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, A. Anandkumar, Born685

again neural networks, in: ICML, 2018.

[36] X. Lan, X. Zhu, S. Gong, Self-referenced deep learning, in: Asian Conference

on Computer Vision, Springer, 2018, pp. 284–300.

[37] R. Anil, G. Pereyra, A. T. Passos, R. Ormandi, G. Dahl, G. Hinton, Large

scale distributed neural network training through online distillation, 2018.690

URL https://openreview.net/pdf?id=rkr1UDeC-

[38] Y. Zhang, T. Xiang, T. M. Hospedales, H. Lu, Deep mutual learning, in:

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

37

https://openreview.net/pdf?id=rkr1UDeC-
https://openreview.net/pdf?id=rkr1UDeC-
https://openreview.net/pdf?id=rkr1UDeC-
https://openreview.net/pdf?id=rkr1UDeC-

[39] K. Torkkola, Feature extraction by non-parametric mutual information max-695

imization, Journal of machine learning research 3 (Mar) (2003) 1415–1438.

[40] B. Pan, Y. Yang, H. Li, Z. Zhao, Y. Zhuang, D. Cai, X. He, Macnet: Transfer-

ring knowledge from machine comprehension to sequence-to-sequence mod-

els, in: Advances in Neural Information Processing Systems, 2018, pp. 6092–

6102.700

[41] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge dis-

tillation for semantic segmentation, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 2604–2613.

[42] J. Mun, K. Lee, J. Shin, B. Han, Learning to specialize with knowledge dis-

tillation for visual question answering, in: Advances in Neural Information705

Processing Systems, 2018, pp. 8081–8091.

[43] X. Wang, R. Zhang, Y. Sun, J. Qi, Kdgan: knowledge distillation with gener-

ative adversarial networks, in: Advances in Neural Information Processing

Systems, 2018, pp. 775–786.

[44] Z. Tang, D. Wang, Y. Pan, Z. Zhang, Knowledge transfer pre-training, CoRR710

abs/1506.02256.

[45] E. Tzeng, J. Hoffman, T. Darrell, K. Saenko, Simultaneous deep transfer

across domains and tasks, CoRR abs/1510.02192.

[46] S. Zagoruyko, N. Komodakis, Paying more attention to attention: Improving

the performance of convolutional neural networks via attention transfer,715

CoRR abs/1612.03928.

[47] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, Z. Dai, Variational in-

formation distillation for knowledge transfer, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 9163–

9171.720

38

[48] S. Mirzadeh, M. Farajtabar, A. Li, H. Ghasemzadeh, Improved knowledge dis-

tillation via teacher assistant: Bridging the gap between student and teacher,

CoRR abs/1902.03393.

[49] D. Nguyen, S. Gupta, T. Nguyen, S. Rana, P. Nguyen, T. Tran, K. Le, S. Ryan,

S. Venkatesh, Knowledge distillation with distribution mismatch, in: Joint725

European Conference on Machine Learning and Knowledge Discovery in

Databases, Springer, 2021, pp. 250–265.

[50] G. Xu, Z. Liu, X. Li, C. C. Loy, Knowledge distillation meets self-supervision,

in: European Conference on Computer Vision, Springer, 2020, pp. 588–604.

[51] x. lan, X. Zhu, S. Gong, Knowledge distillation by on-the-fly native ensemble,730

in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

R. Garnett (Eds.), Advances in Neural Information Processing Systems 31,

2018, pp. 7517–7527.

[52] G. Song, W. Chai, Collaborative learning for deep neural networks, Advances

in Neural Information Processing Systems 31 (2018) 1832–1841.735

[53] J. Kim, M. Hyun, I. Chung, N. Kwak, Feature fusion for online mutual

knowledge distillation, CoRR abs/1904.09058. arXiv:1904.09058.

URL http://arxiv.org/abs/1904.09058

[54] D. Chen, J.-P. Mei, C. Wang, Y. Feng, C. Chen, Online knowledge distillation

with diverse peers, in: Proceedings of the AAAI Conference on Artificial740

Intelligence, Vol. 34, 2020, pp. 3430–3437.

[55] D. Ni, Dense feature fusion for online mutual knowledge distillation, in:

Journal of Physics: Conference Series, Vol. 1865, IOP Publishing, 2021, p.

042084.

[56] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric745

framework for learning from labeled and unlabeled examples, Journal of

machine learning research 7 (Nov) (2006) 2399–2434.

39

http://arxiv.org/abs/1904.09058
http://arxiv.org/abs/1904.09058
http://arxiv.org/abs/1904.09058
http://arxiv.org/abs/1904.09058
http://arxiv.org/abs/1904.09058

[57] D. W. Scott, Multivariate density estimation: theory, practice, and visualiza-

tion, John Wiley & Sons, 2015.

[58] S.-T. Chiu, Bandwidth selection for kernel density estimation, The Annals750

of Statistics (1991) 1883–1905.

[59] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny

images, Tech. rep., Citeseer (2009).

[60] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading digits

in natural images with unsupervised feature learning.755

[61] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747.

[62] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann

machines, in: Proceedings of the 27th international conference on machine

learning (ICML-10), 2010, pp. 807–814.760

40

	Introduction
	Related Work
	Proposed Method
	Experimental Evaluation
	Datasets
	Cifar-10
	Cifar-100
	Street View House Numbers
	Fashion MNIST
	Tiny-ImageNet
	Crowd-drone

	CNN Models
	Implementation Details
	Experimental Results

	Conclusions

