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Abstract—Recent advances have facilitated the development
and popularization of Unmanned Aerial Vehicles (UAVs) that
can operate semi or fully autonomously. The real-time, accurate
visual detection of UAVs is crucial for various tasks and appli-
cations including surveillance (e.g., detecting UAVs flying over
restricted areas such as airports) or multi-robot systems (e.g.,
a swarm of UAVs that need to cooperate and avoid collisions
between swarm members in GPS-denied environments). The
small target-to-image ratio and large similarity with other flying
objects makes the visual detection of UAVs a challenging task.
In addition, data distribution shifts can have a major negative
impact to UAV detection frameworks, often trained on a wide
variety of datasets to achieve an adequate level of robustness.
As an attempt to mitigate the effect of these issues, we present a
method that can generate realistic annotated video data depicting
flying UAVs, using as input real background videos and 3D
UAYV models. The conducted experimental evaluation showed that
the synthetic data are both challenging and realistic and that
detectors trained on a combination of real-world and synthetic
data, exhibit an improved generalization performance, achieving
better precision rates when evaluated on real datasets that are
visually distinct from the corresponding real training data.

Index Terms—Drone/UAV Detection, Synthetic Data Genera-
tion

I. INTRODUCTION

Technological progress has led to an increasing use of
semi or fully autonomous Unmanned Aerial Vehicles (UAVs),
with complex signal processing, computer vision and machine
learning algorithms facilitating their operation. UAVs have
proven useful for many civilian and military applications,
such as precision agriculture, inspection, search and rescue
operations, mapping [11], wildlife monitoring, crowd mon-
itoring/management [[19], or aerial media production [10].
Usually UAVs are equipped with a single or multiple cameras
in order to capture visual information about their surroundings
and take decisions.

Occasionally, the UAVs must be able to perceive the exis-
tence of other UAVs in the nearby airspace for tasks related
to surveillance, flight safety (e.g., collision avoidance with
other UAVs [9] ), multi-robot cooperative missions (e.g., self-
organising swarms of UAVs in GPS-denied environments [20])
or UAV cinematography (e.g. avoiding having a UAV entering
the field of view of another UAV in events covered by multiple
UAVs). To this end, a general visual object detector is often
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incorporated in their overall system, assigned with the task to
detect UAVs along with other objects, for which information
about their existence is essential in their operation. Visual UAV
detection is also needed in ground surveillance systems, for
example systems assigned the task of surveying a restricted
airspace for unauthorized UAV presence. However detecting
UAVs is a challenging task, requiring in certain cases a detec-
tor that operates explicitly for this task. Such major challenges
are the difficulty of detecting UAVs in long distances due to
their small size, color and shape variations of UAVs, poor
weather (e.g., fog, rain) and illumination conditions, complex
background when the UAV is filmed over an urban backdrop,
and the visual similarities between UAVs and other aerial
objects, such as birds or airplanes.

UAV detectors, deployed on real-world scenarios, need to
be pretrained on a wide range of positive samples (e.g., various
UAV models in multiple colors and views) and negative sam-
ples (e.g., birds, airplanes, background environments, etc.) to
achieve an adequate level of robustness. In the recent literature,
a significant number of datasets related to the UAV/drone
detection task have been proposed. The UAV Dataset: Amateur
Unmanned Air Vehicle Detection [3|] comprises of more than
4000 annotated images. In most of them, the DJI Phantom
is depicted. The image resolution varies between 300x168
pixels and 4K. The dataset contains also images with non-
UAV objects. The Real World Object Detection Dataset for
Quadcopter Unmanned Aerial Vehicle Detection [13] is a
dataset consisting of 51446 annotated images for training and
5375 annotated images for testing. Its images were either
collected from the Internet or recorded by the authors and
have all been scaled to a resolution of 640x480. Along with
the dataset, the authors present the performance of various
detection algorithms on their dataset, as baselines for the de-
velopment of more complicated detection systems. In addition,
the authors in [16] presented a novel video UAV detection
dataset containing 650 annotated infrared and RGB videos
of UAVs, birds and airplanes and helicopters. The dataset
also contains audio clips of the classes UAVs, helicopters and
background noise. Finally, a large-scale, diverse dataset is the
UAV vs Bird Detection Challenge [6] dataset. The dataset
has been used at the corresponding challenge for evaluating
the performance of algorithms in the task of detecting small



Fig. 1: Assets utilized from the proposed data generation method. First Row: Frames from videos captured from UAVs. Second
Row: 3D models of various UAV models and birds, employed as distractors. (from left to right: DJI Phantom 3, Parrot AR

2.0 and a bird, each in two color variations.)

UAVs in image data. The challenge focuses on the ability of
the detection methods to visually distinguish between UAVs
and birds, particularly at large distances from the capturing
camera. The training set consists of 77 videos, each comprising
of 1384 frames on average. The test set consists of 14 videos
for which no annotations are provided.

Apart from real-world datasets, a number of synthetic
datasets, suitable for training object detection methods, or
approaches for generating the corresponding images, have
been proposed. In [I4]], the authors estimate the rendering
parameters required to synthesize similar to real-world images,
given a coarse 3D model of the target object. The authors
in [3], have generated a synthetic dataset of 6k depth maps
of UAVs, using AirSim simulator in order to train a
deep learning-based UAV detection model with the aim to be
deployed on a dynamic obstacle avoidance method.

Although, as mentioned above, an increasing number of
real-world datasets suitable for UAV detection have become
available in recent years, most of them are relatively poor in
terms of visual diversity, since they involve. for example, a
single/small number of view-points [16], or depict a limited
number of UAV models [3]. In this paper we propose an
effective and low-cost visual data generation method for UAV
detection that:

 is capable of reusing existing diverse aerial videos col-
lected from camera-equipped flying UAVs and augment-
ing them with realistic 3D UAV models, thus eliminating
the need to film videos,

« provides automatically-generated, detailed annotations,

« increases the robustness of UAV detectors, by providing
realistic and diverse training data suitable to be employed
for their training.

To complement this study, the state-of-the-art YOLOv4
and YOLOv4-tiny detectors are employed, in an attempt
to examine whether our synthetic data a) are challenging and
realistic and b) can have a positive impact on the performance
of a detector when they are utilized for its training along with
real-word data. The corresponding detectors were selected
since they can effectively detect objects in various scales,

including objects of very small scales in images of sufficient
input resolutions and they can achieve fast inference runtimes.
In addition, since YOLOv4-tiny is a lightweight detection
method, it is extremely suitable for operating on embedded
devices with limited computing and memory resources that
are installed on autonomous systems such as UAVs

II. PROPOSED DATA GENERATION METHOD

A setting similar to [18]] was adopted for the data generation
process. The proposed method requires as input a) a set of
aerial videos captured by flying UAVs, depicting various real-
world environments, b) a set of 3D UAV models and c) a set
of 3D models of various flying objects that are visually similar
to UAVs, such as airplanes or birds. Aerial videos captured by
having a UAV flying over different areas, videos collected from
the Internet, or suitable videos collected from pre-existing
datasets such as the MultiDrone Dataset or YouTube-
SM can be employed for the data generation process.
In addition, a wide-range of 3D models of UAVs and other
flying objects can be easily acquired from the Web. Texture
re-coloring of those 3D models can be employed to increase
their visual variety. Images of such videos and 3D models are
depicted in Fig [I] Using those assets, a virtual environment
can be constructed, aiming to realistically simulate a scenario
where a UAV is flying while being recorded by another UAV’s
camera.

The described environment was set up on Unreal Engine
4 [8]], while AirSim was used for issuing control com-
mands to the UAV model. However other game or simulation
engines can be employed for this data generation technique.
More specifically, the environment consists of a “’projection”
rectangle, where the input videos are projected, and a virtual
camera, properly placed at [0,0,0], with the z-axis being
parallel to camera’s optical axis in a right-hand coordinate
system, while the camera’s image plane is parallel to the
projection rectangle. The virtual camera is calibrated so that
the videos depicted in the rectangle are fully visible, i.e. they
cover the camera field of view. In our setup we set the AirSim-



Fig. 2: Rough visualization of the data generation virtual
environment.

controlled UAV model to move in a trajectory, where at any
given time, it remains visible to the camera. This setup and the
UAV model trajectory are depicted in Fig [2] In a simplified
camera perspective model, the position of the UAV at any
given time ¢ is expressed in world-coordinates as:
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where d is the time the UAV needs to complete a single
traversal of its trajectory, 2z, and 2,4, are the minimum
and maximum coordinate values of the UAV’s trajectory in z-
axis, w and h are the width and height of the camera’s image
plane and f is the camera’s focal length. In this formulation,
the UAV follows an “eight-shaped” trajectory, in the zy plane
while it simultaneously moves away and then back towards
camera in the z axis. The other 3D assets, including birds or
non-UAV aircrafts can perform similar or linear trajectories in
the scene.

The annotations of the generated data, consist of the 2D
bounding boxes of the depicted UAV model in each frame.
The UAV must be encapsulated in a 3D bounding box during
the data generation process. At each frame, recorded by
the camera, the UAV’s 2D bounding box is automatically
generated based on the outer =,y image plane coordinates of
the projection of the vertices of its 3D bounding box.

III. EXPERIMENTAL EVALUATION

To evaluate the realism and the impact of the synthetic data
on the performance of state-of-the-art deep learning object
detectors, a dataset was generated based on the proposed
method. Three UAV 3D models, namely the Parrot AR UAV
2.0, the DJI Mavic 2 pro and the DJI Phantom 3 were
selected for the data generation process. As non-UAV aerial
objects we used sparse flocks of animated birds colored in
black, grey and white colors. Finally as backgrounds we

selected 21 videos collected from cameras mounted on UAVs,
depicting rural or urban environments. Overall, for each real-
world background video, we generated a series of synthetically
augmented video data, using variations regarding the depicted
UAV model, its color, its projected size, and on whether the
background behind the UAV depicted sky (almost uniform
background) rural landscape (low complexity background) or
buildings (highly complex background). The selected colors
of each employed UAV model are depicted in Tab [l The
dataset consists of 492 videos and was split into a training set,
consisting of 300 videos, and a testing set with the remaining
192 videos. Frames of the generated dataset are illustrated
in Fig. 3] Currently, we cannot make the dataset publicly
available due to restrictions regarding the background videos.
Once permissions are granted, we will make it available for
scientific use.

TABLE I: Color variations of each UAV model employed in
the data generation process.

UAV Models UAV Colors
Black
Grey
White
Grey
Black
White
Red
White
Grey
Black
Yellow

Parrot AR UAV 2.0

DJI Mavic 2 Pro

DIJI Phantom 3

In the first part of the experimental evaluation we examine
whether our data are challenging for state-of-the-art detection
frameworks. For this task, we trained a vanilla YOLOv4-
tiny [21]] model for 64 epochs. Then, the model was evaluated
on the full test set, as well as on several of its subsets aiming to
examine the impact of the depicted background environment
and the depicted UAV’s size, on the detector’s performance.
The results are shown on Tab. [

TABLE 1II: Performance of YOLOv4-tiny on our synthetic
dataset.

Test set Average Precision | Average Recall
APos5 AP(E ARG
UAV size: Large 95.0% 79.2% 82.9%
UAV size: Medium 96.4% 74.6% 78.7%
UAV size: Small 83.2% 56.7% 61.4%
Background: 89.0%  66.1% 70.3%
Buildings
B“ksgli;’““d: 923%  72.8% 75.9%
Background: 929%  67.6% 71.4%
Landscape
Full Test Set 90.1% 67.1% 70.9%

Overall, the detector achieved good precision and recall
rates in the full test set. Among the conducted evaluation
variations, the detector was, as expected, mostly challenged
when the UAV’s depicted size was small, achieving an AP, 5



of 83.2% and an AR5 of 61.4% as well as when the real-
world videos on which the UAV model was projected depicted
urban environments (e.g., building, streets, etc.) achieving an
APy 5 of 89.0% and an ARJ25 of 70.3%.

TABLE III: Formulation of the datasets used in the experimen-
tal evaluation study. “R + S” refers to using real and synthetic
data for training, while “R” refers to using only real data for
training or testing.

Training sets Test set
Dataset S Number of || Number of  Synthetic to Number of
ource . . .
acromym images images Real-World images
in R in R+S ratio in R
Dataset 1 Data from 3611 4426 22.6% 400
Dataset 2 Data from 2040 2877 41.0% 252
Dataset 3 | Data from | 4136 4399 6.4% 1432

o
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Fig. 3: Images from the synthetic video dataset for UAV detection. The UAVs are highlighted in blue boxes, while the birds,
used for making the dataset more challenging, are highlighted in red circles.

o

the model trained on Dataset 2z g achieved a high AP, 5 rate
of 89.7%. This high precision rate, can be explained by the
fact that the real-world training images are far more diverse
in Dataset 2 compared to Datasets 1 and 3. More specifically,
the images from [6], which comprise the real-world data of
Dataset 2, depict a larger amount of diverse environments
while also being collected from a greater variety of viewing
angles, compared to [EI] . However, all models achieve
good precision rates, demonstrating that the synthetic data are
indeed visually similar to real-world data.

TABLE IV: Evaluation of YOLOv4, using real and synthetic
data (R+S) for training and tested on synthetic data.

To conduct the second part of our experimental evaluation,
we employed three real-world UAV datasets presented in [3],
(6] and [16]. A random training-test data split was performed
in [6] and [16]}, since the first doesn’t provide an annotated test
set, and the last doesn’t provide a formal data split. In addition,
for those two video datasets, we sampled only a few frames
from each video. For each dataset, we created two training sets.
The first contains only its corresponding real-world data, while
the second is augmented with a small amount of synthetic
samples. The synthetic to real-world samples ratio varies from
6% to 41% between the three datasets. The synthetic samples
in all three datasets were selected from the same subset of our
dataset, using different sampling ratios. The test sets contain
only real-world images. Information regarding the datasets,
and their corresponding splits is provided in Tab. [[TI]

Aiming to asses the level of realism of the generated
synthetic data, we trained a vanilla YOLOv4 model on
the three separate datasets, whose training set contains mostly
real-world data along with a small percentage of synthetic
data. All detectors were trained for 64 epochs and tested on
the same subset of our synthetic dataset. As shown on Tab.

Training Set APy 5
Dataset 1 (R+S) | 66.6%
Dataset 2 (R+S) | 89.7%
Dataset 3 (R+S) | 60.9%

Finally, we assess the impact of synthetic data used as train-
ing samples along with real-world data, on the performance of
DL-methods tested on real-world data only. More specifically,
two YOLOvV4 models were trained for each of the three real-
world UAV datasets. The first model was trained using only the
real-world training set (R) of a UAV dataset, while the second
was trained on the same set augmented with synthetic data
(R+S). Both models were identical, in terms of parameters,
and were trained for the same number of epochs. Then, both
models were evaluated on the test set of the same dataset
(intra-dataset), as well as on the test sets of the other two
datasets (inter-dataset). Through the intra-dataset evaluation,
we assess the impact of sythetic data on the performance of
a method, in the case where the training and the test data of
a real-world dataset following a similar data distribution. On
the contrary, through the inter-dataset evaluation we assess the
impact of synthetic data, in the case where the test set contains
positive or/and negative samples that are visually distinct from



the training set. The inter- and intra-dataset performances of
the models are reported in Tab

TABLE V: Average Precision at 0.5 IoU (AP 5) in all training
setups. “R” refers to using only real data for training, while
“R + S” refers to using real and synthetic data for training.

Training Setups
Test set dataset 1 dataset 2 dataset 3
(R only) R R+S R R+S R R+S
Dataset 1 | 90.12%  89.48% 14.49%  30.68% 70.84%  79.55%
Dataset 2 | 56.01%  59.68% 81.92% 71.14% 68.47%  70.97 %
Dataset 3 | 41.56%  53.68% 25.12%  31.46% 93.51%  92.90%

In the intra-dataset evaluation, the precision of all models
is decreased when synthetic data are inserted in their training
sets. This performance drop is minimal (< 0.1%) on two of
the three cases. In Dataset 2, the performance drop of the
model may be more significant due to the larger synthetic to
real-world samples ratio of the training set. On the other hand,
the results on the inter-dataset evaluation demonstrated that a
model trained on both synthetic and real data and then tested
on real data, which are not very similar to those it was trained
on, manages to outperform a model which was trained only on
real data. The difference in results between the intra-dataset
evaluation and the inter-dataset evaluation arises from the fact
that the synthetic data alter the distribution of the training set,
making the model trained on both the synthetic and the real
data, less overfitted on the initial real data and more robust to
perform on visually dissimilar data.

IV. CONCLUSIONS

Accurate visual UAV detection is crucial to various applica-
tions related to surveillance and multi-robot systems. Detectors
deployed on real-world environments in this task, must be pre-
trained on various datasets, in order to acquire an adequate
generalization ability. However, most datasets lack in terms
of visual diversity.The proposed synthetic data generation
method, which uses as input sets of real-world videos and 3D
models of UAVs, can create both challenging and realistic data,
suitable for training and evaluating UAV detection methods.
The conducted evaluation showed that when detectors are
trained on a combination of real-world and synthetic data,
exhibit an improved generalization performance, achieving
better precision rates when evaluated on real datasets that are
visually distinct from the corresponding real training data.
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