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Abstract—Robotic systems are capable of interacting with their
environment in order to better sense their surroundings. This
key ability of robotic systems is often ignored when developing
Deep Learning models, since the later are usually trained using
static datasets. This limits the ability of robots to perceive
the environment in challenging scenarios. On the other hand,
integrating perception and action in tightly coupled systems while
operating on-the-edge, holds the credentials for deploying DL-
enabled robots in such scenarios; Thus leading to more robust
agents that can solve challenging tasks more accurately. In this
work, we investigate whether active perception approaches can be
employed and integrated into robotic systems in order to improve
face recognition accuracy, as well as, study the effect of such an
approach on the computational requirements for edge applica-
tions. To this end, we propose a DRL-based control approach
for training agents that are able to identify task-relevant objects,
as well as, issue the appropriate control commands to acquire
better results. Through the conducted experimental evaluation,
we demonstrate that the proposed method leads to significant
improvements in face recognition over the rest of the evaluated
approaches by providing accurate control commands.

Index Terms—Active Perception, Active Vision, Deep Rein-
forcement Learning

I. INTRODUCTION

Recent advances in Deep Learning (DL) led to a number
of spectacular applications, ranging from self-driving cars and
robots that outperform humans in various tasks [1]. Despite
the enormous success in these areas, DL methods operate in
a static fashion, i.e., they do not typically provide means for
interacting with the environment in order to better perceive it.
This is in contrast, with the way many organisms, including
humans, perceive their environment since perception and ac-
tion usually form a tightly coupled system at various levels.
For example, eyes can adjust to various illumination conditions
while we tend to examine an object from different angles
and/or distances when we are uncertain about it. This process
is called active perception [2], and it is thought to be a critical
component of robotic agents that can work in challenging real-
world scenarios.

There have been several recent attempts to integrate active
perception principles into DL models [3], [4]. Most of them
focused on robotics tasks, where they attempt to appropriately
manipulate a camera and/or a robot in order to improve the
accuracy of the models. However, training DL models for such

tasks is not trivial, since most datasets used for training DL
models do not provide the appropriate data and/or annotations
that can be exploited in active perception scenarios. Indeed,
active perception requires an agent that can interact with its
environment and acquire an improved view of the world.
To overcome this limitation, existing methods either employ
simple handcrafted rules for implementing active perception
feedback [3], or use multi-view datasets to simulate some of
the effects of active perception feedback [4]. However, due
to the lack of appropriate datasets, such methods are still
usually trained with simplistic rules, e.g., to predict if moving
left/right will increase/decrease the confidence on correctly
recognizing a person [4]. Another closely related line of work
employs Deep Reinforcement Learning (DRL) algorithms to
perform a specific control task [S], [6], [7], e.g., acquire a
frontal view of a person [8]. Despite the effectiveness of
DRL approaches in these robotics tasks, applying them on
challenging computer vision tasks typically require realistic
simulation environments and/or appropriate training methods,
e.g., sim2real approaches [9]. At the same time, the lengthy
training time of DRL methods further limits their applications
in robotics. As a result, despite their enormous potential for
developing active perception approaches their application faces
significant obstacles.

The main contribution of this work is to propose a DRL-
based active perception approach integrated with state-of-the-
art DL-based face recognition models. More specifically, our
goal is to investigate whether active perception approaches
can be employed and integrated into robotic systems, in order
to improve face recognition results, as well as, study the
effect of such an approach on the computational requirements.
To this end, we propose a DRL-based control approach for
training agents that are able to identify and focus on task-
relevant objects, i.e., humans, as well as issue appropriate
control commands accordingly to acquire better results. To
train and evaluate the proposed method, we developed a
simulation environment using the Webots simulator [10] and
generated several 3D human models using the MakeHuman
software [11]. The proposed method aims to control a drone,
equipped with a camera, in order to improve face recognition
results over existing baseline and rule-based active perception
approaches. Indeed, as the experimental results demonstrate,



the proposed method managed to lead to significant im-
provements in face recognition over the rest of the evaluated
approaches by issuing the appropriate control commands.
Indeed, the trained agents showed an emergent behavior that
can resemble those of humans, e.g., move closer or around a
person in order to more confidently identify it. At the same
time, it is demonstrated that the proposed method can also
lead to computational savings under certain conditions.

The rest of the paper is structured as followed. First, the
related work is briefly introduced in Section II. Then, the pro-
posed method is introduced in Section III. The experimental
evaluation is provided in Section IV, while conclusions are
drawn in Section V.

II. RELATED WORK

Face recognition research in the past years has made
tremendous leaps. From traditional approaches that represent
faces with hand-crafted features extracted from an image [12],
to modern deep learning approaches that automatically learn
the distinctive features of a face, when trained on massive
datasets [13], [14], [15]. The face recognition pipeline of
such approaches typically consists of four stages: a) face
detection and cropping, b) (optionally) face alignment, c)
feature extraction, and d) classification/verification. The two
first stages are often considered as preprocessing stages. A
face recognition model requires an input image that is carefully
cropped and aligned. This preprocessed image is then fed into
a DL model which extracts a discriminative feature vector.
Finally, this vector is compared to a set of feature vectors
of people of interest [13], [14], [15], performing the final
classification or verification task. The method proposed in
this paper is orthogonal to these approaches, since it can be
readily combined with any face recognition model and further
increase its accuracy. Indeed, as demonstrated in Section IV,
the proposed method can be readily combined with a state-
of-the-art DL-based face recognition system and increase its
accuracy by integrating it into an active vision pipeline.

This work is also closely related to active perception ap-
proaches. According to Bajscy [16], [17], an actively per-
ceiving agent is one which can, among others, appropriately
control its mechanical components in order to enable the
best sensing of its surroundings, as well as, select the best
viewpoint to achieve the task in hand. However, there are
only a few recent approaches to active face recognition using
DL [3], [4]. An active face recognition system that employs a
DL model to extract the facial features and a controller module
to act based on the results of the DL model was proposed
in [3]. The controller module works as a rule-based controller
that selects the most appropriate action according to the face
recognition confidence and predefined thresholds for each
action. A fully end-to-end trainable DL-based approach was
also proposed in [4], where a DL model was trained to output
both the face feature embeddings, as well as, a suggested
action. The network was trained on a small dataset containing
facial images at various pans and tilts, providing a proof-of-
concept demonstration for a DL-based pipeline for active face

recognition. Moreover, this approach cannot fully exploit the
potential of active perception, since it only considers 1-step
actions for training the control branch of the DL model.

The proposed method goes beyond these approaches by
employing a powerful RL-based formulation that is both end-
to-end trainable and does not make any assumption regarding
the control policy. In this way, more advanced policies can
be discovered without introducing any strong prior, using
handcrafted rules either for training or inference. However, the
proposed method requires a realistic simulation environment
for training, since the control module cannot be trained using
the existing static datasets. To overcome this limitation, in this
work, we employed the realistic Webots simulator, along with
3D human models generated using the MakeHuman software.
A sample of the generated human models can be seen in
Fig. 2. Furthermore, both aforementioned works require the
use of a face detector to appropriately crop the face image
before feeding it to the face recognition module. On the other
hand, the proposed method allows for significantly reducing
the computational requirements by working independently of
the face recognition model. In this way, a lightweight DL
model is used for performing control and the heavy face
recognition pipeline (face detection and recognition) is only
employed when deemed appropriate.

III. PROPOSED METHOD

Let x € RW>HXC be an image that contains a face to be
recognized, where W, H and C are the width, height, and
number of channels of the corresponding image. As described
before, face recognition algorithms require to first employ a
face detection model to detect and crop the bounding box that
encloses each face. Therefore, let

X, = fp(x) c RWPXHPXCP (1)

be the cropped face image, where the notation f,(-) is used to
refer to the face detector and preprocessing pipeline employed
to crop the image and W,,, H,, and C,, are the width, height
and number of channels of the cropped image. Most recent
deep face recognition methods, e.g., [15], aim at learning
an appropriate model y = f.(x,) € RP that will extract a
discriminative identify-oriented representation from each face
image, where D denotes the dimensionality of the embedding
space used for representing the input face images.

Different loss functions have been proposed to train the face
recognition model f,, to extract discriminative embeddings. In
this work, we employ the Additive Angular Margin Loss [13],
which is minimized when embeddings that belong to the same
identity are close, while the representations of face images
that do not belong to the same person are far. After training
the model y = f,(x,), the identity of a person depicted in an
image X,, can be obtained simply by calculating the Euclidean
distance between the feature vector of that image and the
feature vectors on a database that contains images x; of known
identities, i.e., Xy = {(x;,1;)}, where [; is the identity of the
person depicted in the i-th image. Therefore, during inference
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Fig. 1. Proposed Active Perception Approach: A DRL agent is employed to issue control commands in order to acquire the most appropriate view for improve

face recognition accuracy.
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Fig. 2. Realistic human models generated using MakeHuman.

the identity [ of a person appearing in a novel image x is
obtained as [ = [, where

k= argmin[[f(x;) — f(X)|l2 (V(xi,li) € Xa). (2)

The proposed method aims to teach an agent that can
appropriately control a robot in order to re-acquire an input
image x in which the depicted person can be more confidently
identified, as shown in Fig. 1. To this end, another model
fa,w (x) is introduced, where W denotes the trainable param-
eters of the model. This model is responsible for controlling
the position and orientation of the robot in order to recognize
the human in the scene with the greatest confidence possible.
Five possible actions are supported by this model:

1) stay, where the robot does not move and initiates the

face recognition pipeline,

2) move forward/backward, where the robot moves for-

ward/backward, and

3) move left/right, where the robot rotates and translates its

position on a predefined arc either on the left or right.
All actions translate into discrete actions in the simulation
environment, e.g., moving forward/backward moves the agent
0.1m to the corresponding direction. Note that the face recog-
nition pipeline is only employed when the agent issues the
stay command. This can significantly reduce the computational
complexity of the employed pipeline, since both the face
detection and recognition models run only when the control
agent is confident enough that the depicted person can be

indeed recognized. This is in contrast with other active vision
approaches that require all models to run simultaneously,
e.g., [4].

The proposed agent is trained using DRL. More specifi-
cally, the Proximal Policy Optimization (PPO) algorithm was
used [6]. The reward used for training the DRL agent was
defined based on the face recognition confidence of a pre-
trained face recognition model. If the person was not correctly
identified, the agent received a reward of 0. Therefore, after
identifying the embedding of the most similar person (k) in
the database according to (2), the reward at time-step ¢ can be
defined as:

if Iy — yxl2<a

c
fr— 5 3
"t { 0 otherwise )

where yi, = f(xx), ¢ is the face recognition confidence, and a
is a cut-off value for recognizing a person, i.e., if the Euclidean
distance is larger than a, then we assume that the person
has not been recognized. The face recognition confidence is
calculated simply as the negative of the normalized Euclidean
distance between the current embedding vector and the em-
bedding vector of the most similar person in the database:

y =yl
il

=1 @)
Note that ¢ is bounded between 0 and 1, since the Euclidean
distance cannot exceed the value of a, due to the used cut-off
threshold.



A deep convolutional neural network, receiving input im-
ages of 400 x 300 pixels, was used to implement the policy,
ie., fo,w(x), as well as, to estimate the advantage value. A
lightweight DL model was used to this end. The architecture
of the model was the following: 2 convolutional layers with
16 (8 x 8) and 32 (4 x 4) filters respectively utilizing the
ReLU activation function, one fully connected layer of 256
neurons and two output layers. The first layer was responsible
for providing the policy function f,w(x) function. This
layer was composed of the same number of neurons as the
number of available actions and employed the softmax function
to provide the final action probabilities. The other one was
used for implementing the critic function and was composed
of one output neuron providing the current advantage. To
constraint the advantage values the tanh activation function
was employed for this branch.

Each training episode lasts 1,000 steps and the agent ini-
tially starts at a random position around the human model,
which also faces at different directions in each episode. The
simulation world consists of a square room, a human model
at the center and a drone robot controlled by the DRL agent.
After each time-step the agent must decide whether or not
its position and orientation must be adjusted. For training the
network we employed the Adam optimization algorithm with
a learning rate of 0.0003, while a total of 10,000,000 steps
where performed during the training.

IV. EXPERIMENTAL EVALUATION

The proposed method was evaluated under two different
setups. In the first setup, the agent was trained to select one
of the first three actions (“stay”, “move forward” and “move
backward”). In this setup, the human was always initialized
to be in front of the drone and correctly centered. The aim of
this ablated setup was to evaluate the ability of the agent to
control the movement in just one axis in order to increase the
face recognition model’s confidence. In the second setup, the
agent was allowed to select any of the available control actions,
evaluating the ability of the proposed method to perform more
complicated sequences of actions, in order to improve face
recognition accuracy.

The proposed method was also compared to two other
baselines. First, a face recognition pipeline was employed
to evaluate the ability of existing approaches to detect and
recognize humans at different distances. This setup was called
“static” in the conducted experiments. Then, we also employed
an active perception enabled agent that uses rules. The rule-
based agent employed a face detector to detect if a face exists
in the scene. If a face is found, it outputs the appropriate
control commands to center it to its field of view based on
the detected bounding box and then moves forward based
on the face recognition model’s confidence, until it reaches
the maximum confidence. This method is called “rule-based”
in the conducted experiments. For all methods we used Arc-
Face [13] for the face recognition and RetinaFace [18] for the
face detection. Furthermore, the database of known identities
consists of one feature vector extracted from cropped frontal

TABLE I
EVALUATION FOR CONTROLLING ONE AXIS (SETUP 1). FACE
RECOGNITION CONFIDENCE IS REPORTED. A VALUE OF ZERO IS USED
WHEN A PERSON IS NOT CORRECTLY RECOGNIZED.

Distance | Static | Rule-based | Proposed

1m 0.76 0.77 0.78
2m 0.55 0.77 0.78
3m 0.43 0.78 0.77
4m 0.19 0.76 0.76
Sm 0 0.77 0.77
6m 0 0.63 0.75
7m 0 0 0.76
10m 0 0 0.71
15m 0 0 0.68
20m 0 0 0.48

In this setup the drone is initialized at a distance of 20m, which
decreases by 1m in every evaluation episode. We report the average
face recognition confidence reached for 4 different human models at
each distance.

face images of 5 different human models that were used for
the conducted experiments.

The experimental results for the first setup are reported in
Table I. In this setup, the drone was positioned at various
distances in front of the human subject, ranging from 1m to
20m. Using a static setup, where the drone does not move,
allows for recognizing persons only up to 4 meters. On the
other hand, the rule-based approach, which allows the drone
to move closer to the subject at hand, enables confident
recognition up to 6 meters. This demonstrates that active
perception, even when implemented using simple rules, can
indeed lead to improved perception accuracy. The proposed
method outperforms all the other evaluated methods, since it
allows for confidently recognizing persons even up to 15m,
while it can work correctly even for larger distances (up to
20m).

Similar conclusions can be also drawn for the evaluation
results reported in Table II, using the second setup. Again, the
proposed method can significantly improve the view invariance
of face recognition, allowing not only for recognizing the
persons at different distances, but also in a wide range of
different angles, for some of which most face recognition
pipelines typically fail. It is worth noting that at a distance
of 7m only the proposed method manages to work correctly,
while the provided face recognition accuracy is virtually the
same with a robot that was initially placed in close distance in
front of a human subject. Additionally, note that the proposed
method does not need a face detector to actively perceive
the surroundings, which can lead to significant performance
improvements. Indeed, the proposed method runs on 180 FPS
on average, while the rule-based approach runs on 62 FPS.
A GPU-enabled workstation (8 GB VRAM, 9 TFLOPS) was
used for measuring the performance of the evaluated agents.



TABLE II
EVALUATION FOR CONTROLLING TWO AXES (SETUP 2). FACE
RECOGNITION CONFIDENCE IS REPORTED. A VALUE OF ZERO IS USED
WHEN A PERSON IS NOT CORRECTLY RECOGNIZED.

Angle | Static | Rule-based | Proposed

3m
0° 0.48 0.77 0.76
60° 0.24 0.32 0.78
120° 0 0 0.78
180° 0 0 0.76
240° 0 0 0.79
300° 0 0.14 0.78

Sm
0° 0.18 0.53 0.79
60° 0 0.32 0.79
120° 0 0 0.79
180° 0 0 0.77
240° 0 0 0.78
300° 0 0.13 0.79

7m
0° 0 0 0.78
60° 0 0 0.78
120° 0 0 0.77
180° 0 0 0.76
240° 0 0 0.77
300° 0 0 0.77

In this setup the drone is initialized at three different distances, while
for each distance we also evaluated the performance of the agents at
6 different angles around the human model. We report the average
face recognition confidence reached for 4 different human models at
each distance.

V. CONCLUSIONS

Despite its potential in a wide variety of robotics systems,
active perception using DL models is a field not yet explored
deeply. Indeed, it is expected that a robot should be able to
interact with its environment to better understand it, improve
situational awareness and make informed decisions. In this
work we demonstrated that active perception approaches can
indeed lead to improved face recognition accuracy in a wide
variety of setups, including challenging ones, e.g., when
images taken from the back side of humans or faces appear too
small to be detected by traditional face detection models. At
the same time, it was also shown that DRL can be efficiently
integrated into such active perception pipelines, given that
the appropriate reward function has been defined. Also, the
proposed method can lead to performance improvements,
apart from more accurate agents, since it can replace part
of the existing DL pipelines. This work paves the way for
more advanced DRL-based active perception approaches for
human-centric perception.These approaches can be trained
on more complex simulation environments, employ sim2real
approaches [9], while also consider the trade off between the
expected accuracy improvement and energy expenditure for
each control action.
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