
3D Multi-Object Tracking Using Graph Neural Networks with
Cross-Edge Modality Attention

Martin Büchner and Abhinav Valada

Abstract—Online 3D multi-object tracking (MOT) has wit-
nessed significant research interest in recent years, largely driven
by demand from the autonomous systems community. However,
3D offline MOT is relatively less explored. Labeling 3D trajectory
scene data at a large scale while not relying on high-cost human
experts is still an open research question. In this work, we
propose Batch3DMOT which follows the tracking-by-detection
paradigm and represents real-world scenes as directed, acyclic,
and category-disjoint tracking graphs that are attributed using
various modalities such as camera, LiDAR, and radar. We present
a multi-modal graph neural network that uses a cross-edge
attention mechanism mitigating modality intermittence, which
translates into sparsity in the graph domain. Additionally, we
present attention-weighted convolutions over frame-wise k-NN
neighborhoods as suitable means to allow information exchange
across disconnected graph components. We evaluate our ap-
proach using various sensor modalities and model configurations
on the challenging nuScenes and KITTI datasets. Extensive
experiments demonstrate that our proposed approach yields an
overall improvement of 3.3% in the AMOTA score on nuScenes
thereby setting the new state-of-the-art for 3D tracking and
further enhancing false positive filtering.

I. INTRODUCTION

3D multi-object tracking (MOT) is an essential component
of the scene understanding pipeline of autonomous robots.
It aims at inferring associations between occurrences of
object instances at different time steps in order to predict
plausible 3D trajectories. These trajectories are then used in
various downstream tasks such as trajectory prediction [1]
and navigation [2]. Tracking multiple objects under real-time
constraints in an online setting is challenging due to both
intermediate track prediction when facing false negatives and
robust false positive filtering. Owing to recent advances in
LiDAR-based object detection [3], the 3D tracking task has
also seen significant performance improvements.

Real-world deployment of these online methods in areas
such as autonomous driving poses several challenges. When
requiring regulatory approval, its robust behavior must be
demonstrated on large sets of reference data which is arduous
to obtain due to the lack of extensive ground truth. Therefore,
performing high-quality offline labeling of real-world traffic
scenes provides the means to test online methods on a larger
scale and further sets a benchmark for what is within the realms
of possibility for online methods. With respect to generating
pseudo ground truth, our proposed method aims at minimizing
the number of false positive trajectories at high recalls.

In this paper, we present Batch3DMOT, an offline 3D
tracking framework that follows the tracking-by-detection

Department of Computer Science, University of Freiburg, Germany.
This work was funded by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR.
This paper provides supplementary material at https://arxiv.org/abs/2203.10926.

t0 t1 t2 t3 t4

Fig. 1: Birds-eye view visualization of a 3D offline tracking scenario showing
the road surface and LiDAR point clouds recorded at different time steps. The
goal in tracking is to find plausible chains of edges connecting objects across
time that best explain the evolution of an object instance. This representation
only shows the edges accompanying a single object instance.

paradigm and utilizes multiple sensor modalities (camera,
LiDAR, radar) to solve a multi-frame, multi-object tracking
objective. Sets of 3D object detections per frame are first turned
into attributed nodes. In order to learn offline 3D tracking, we
employ a graph neural network (GNN) that performs time-
aware neural message passing with intermediate frame-wise
attention-weighted neighborhood convolutions. Different from
popular Kalman-based approaches such as AB3DMOT [4],
which essentially tracks objects of different semantic categories
independently, our method uses a single model that operates
on category-disjoint graph components. As a consequence, it
leverages inter-category similarities to improve tracking perfor-
mance. While Brasó et al. were able to solve a single-category
2D offline tracking objective using graph neural networks [5],
this work focuses on the 3D MOT task while ensuring balanced
performance across different semantic categories.

When evaluating typically used modalities such as LiDAR,
we can make a striking observation: On the one hand, detection
features such as bounding box size or orientation are consis-
tently available across time. A similar observation can be made
for camera features, even if the object is (partially) occluded.
On the other hand, sensor modalities such as LiDAR or radar
do not necessarily share this availability. Due to their inherent
sparsity, constructing a feature, e.g., for faraway objects, is
typically impractical as it does not serve as a discriminative
feature that can be used in tracking. This potential modality
intermittence translates to sparsity in the graph domain, which
is tackled in this work using our proposed cross-edge modality
attention. This enables an edge-wise agreement on whether to
include the particular modality in node similarity finding.

Our main contributions can be summarized as follows:

ar
X

iv
:2

20
3.

10
92

6v
2

 [
cs

.C
V

]
 1

4
M

ay
 2

02
2

• A novel multimodal GNN framework for offline 3D
multi-object tracking on multi-category tracking graphs
including k-NN neighborhood attention across semantic
graph components.

• A cross-edge attention mechanism that uses intermittent
sensor data to substantiate the differentiation between
active and inactive edges.

• Methodology and pre-processing pipeline for constructing
category-disjoint tracking graphs over multiple timesteps
as well as a novel agglomerative trajectory clustering
scheme for effective trajectory generation.

• Extensive evaluations and ablation study on the
nuScenes [6] and KITTI [7] datasets using different
detection approaches.

• The code and pre-trained models are publicly available at
http://batch3dmot.cs.uni-freiburg.de.

II. RELATED WORK

Multi-object tracking (MOT) can be categorized into online
and offline settings. Whereas online methods are limited to
using past and current data, offline methods can efficiently
leverage future data to find solutions to the global data
association problem. Besides a temporal categorization, MOT
can be applied in the 2D [8]–[10] or the 3D domain [3], [4],
[11], [12], exploiting either 2D or 3D object detections. Finally,
two commonly followed approaches involve the tracking-by-
detection paradigm [3], [5], [8] and joint object detection and
tracking [9]. In this section, we briefly review offline 2D MOT
and discuss selected 3D MOT methods, relevant to our work.

2D Multi-Object Tracking: 2D MOT has been extensively
studied by the scientific community. Often, both online and
offline methods are jointly evaluated on a single benchmark
[13]. Typically, the underlying datasets comprise largely static
scenes with various angles of view and at high frame rates show-
ing a single object category. Most offline methods formulate
MOT as a graph association problem solved using optimization
techniques from graph and network theory, e.g., min-cost flow
optimization [14], min-clique graphs [15], lifted multicuts [16],
and lifted disjoint paths [17]. Exploiting deep learning, several
methods investigate either pair-wise appearance similarities [15]
or specifically focus on learning the data association task
via end-to-end backpropagation [14]. The advent of graph
neural networks (GNNs) further allows learning higher-order
similarities on graph structures. Along the same line of research,
the offline tracker NMPTrack [5] proposes neural message
passing to effectively represent both past and future of each
detection by leveraging a time-aware prior. Inspired by this
idea, we also exploit future information via a time-aware prior.

3D Multi-Object Tracking: Compared to popular 2D datasets,
available 3D MOT datasets are more challenging since they
involve intricate sensor motion and significantly smaller frame
rates [6], [7], [13]. On the other hand, 3D instance detection
at varying depth levels allows to effectively resolve occlusion.

Conventional 3D tracking-by-detection approaches mostly
rely on bounding box information, following Bewley et al. [18]
in using a Kalman filter as a motion model and the Hungarian
algorithm for bipartite data association. While Weng et al. [4]

use 3D-IoU as the matching criterion, Chiu et al. [19] employ
the Mahalanobis distance, estimate the initial noise and state
covariance of the Kalman filter from the training set, and choose
a greedy algorithm for data association. Different from these
approaches, CenterPoint [3] is a 3D object detection model that
utilizes a keypoint detector to first predict object centers and
then perform regression of object attributes, e.g., dimension,
orientation, and velocity. Additionally, CenterPoint proposes
3D tracking based on the closest-point matching of object
velocity vectors. Combining both online and offline paradigms,
FG-3DMOT [20] casts the tracking problem as a factor graph
over 3D object detections represented as a Gaussian mixture
model in order to find probabilistic trajectory assignments.
Other models incorporate 2D object detections as they are less
prone to occlusions than their 3D counterparts [11], [21].

In addition to bounding box information, multiple works
include 2D/3D appearance features to substantiate pair-wise
affinity representation [22]. Deep learning allows to learn
semantic features via encoding: Popular methods [12], [21]
use image classification networks as encoders for representing
image data and PointNet [23] architectures for learning point
cloud features. Regarding the inclusion of appearance features,
GNN3DMOT [21] is the work most similar to ours. It concate-
nates encoded modality features before regressing an affinity
matrix used for bipartite matching. Recent state-of-the-art
approaches [21], [24] facilitate graph neural networks to capture
higher-order artefacts on graph structures. OGR3MOT [24]
follows NMPTrack [5] in using neural message passing but
solves the online 3DMOT problem while leveraging Kalman
state predictions for improved track representations.

Although the aforementioned 3D tracking methods show
remarkable results in the online setting, they are insufficient in
the scenario of offline 3D MOT due to moderate false positive
handling. The only two methods solving 3D offline track-
ing [12], [20] do not provide publicly available implementations,
nonetheless we show a comparison on the KITTI benchmark
dataset [7]. Different to these aforementioned offline approaches
we utilize a graph neural network to learn the tracking task
using higher-order node similarities. Our approach differs from
NMPTrack [5] by introducing a novel modality and node
representation scheme relevant for 3D tracking and a novel
agglomerative trajectory clustering scheme that yields high
recall and fewer false positives. Different from OGR3MOT [24],
we include multiple sensor modalities and model trajectories
based on object similarity instead of exploiting Kalman filters
for predictive track representation in online tracking.

III. TECHNICAL APPROACH

Following the tracking-by-detection paradigm, we turn a
set of detections per frame Ot = {o1, ..., on} into nodes on
a directed acyclic graph G = (V,E) that holds an ordered
set of frames. The graph consists of a set of nodes j ∈ V
that are connected via directed edges E ⊆ {(j, i) | (j, i) ∈
V 2 and j 6= i}, where edges are directed in a forward-
time manner. Instead of using detection edges, we follow
the approach of Brasó et al. [5] in collapsing them. As a
consequence, nodes always reside in a specific frame and edges

http://batch3dmot.cs.uni-freiburg.de

only connect nodes at different timestamps while satisfying
tj < ti. Tracking multiple objects in the offline setting entails
finding a set of edge-disjoint trajectories T = {T1, . . . , Tm}
that represents the most plausible association of detections over
time. Since our approach involves learning on graph-structured
data, both nodes and edges are attributed. We refer to the node
feature matrix as X = [h1, ...,hN]T ∈ RN×D where hi ∈ RD
represents a single node feature. Similarly, we denote the edge
features Xe = [...,hji, ...]

T ∈ R|E|×De , where hji is the edge
feature associated with edge (j, i).

A. Feature Representation

In typical tracking scenarios such as autonomous driving,
we are confronted with a multitude of sensor modalities
such as camera, LiDAR, radar, or even thermal images.
While the detections are often derived only from a single
sensor modality such as LiDAR or camera, the entirety of
modalities can still be utilized for improved similarity finding
of detections in the tracking task. Our approach fuses 3D pose
& motion features (3D-PM) from bounding boxes with 2D
as well as 3D appearance features from (surround) cameras
(2D-A), LiDAR (3D-AL) as well as radar sensors (3D-R).
Different from tracking in the image plane, 3D bounding box
information essentially represents a more discriminative feature
in 3D tracking due to available depth information [21]. Most
importantly, this simplifies re-association after false negatives
(FN) generated by occlusions or missed detections but also
eases the identification of false positives (FP). Instead of solely
exploiting bounding box information in terms of relative node
differences for an initial edge feature [5], the 3D-PM feature
constitutes the primary node feature in the proposed approach.

1) 3D Pose and Motion Feature: We turn each 3D bounding
box in the set of detections into an explicit 3D-PM feature
without further encoding:

hPM,i = [x, y, z, w, l, h, γ, vx, vy, c,S, t]T ∈ R11+C , (1)

where x, y, z denotes the 3D object center position in ego-
vehicle coordinates. The 3D bounding box dimensions are
given by w, l, h, while the box orientation is expressed by
the yaw angle γ about the positive z-axis w.r.t. the ego-
vehicle frame. Similarly, vx, vy describe the relative object
center velocity in the x-y-plane. In addition, a one-hot class
vector c over C classes is appended to encode semantic
categories. The detection confidence score S ∈ [0, 1] provides
an additional means to differentiate between plausible and
implausible detections. Finally, a relative timestamp is included.
We choose ego-vehicle coordinates over global map coordinates
to increase generalization performance.

2) 2D Appearance Features: Each detection generates an
appearance that is potentially observed on camera. For each
detection, the 3D bounding box corners are projected into
the image plane and a convex hull of that set is computed.
A hull-enclosing rectangle defines the image patch and the
respective camera showing most of the object is selected.
Thus, the approach includes object backgrounds under the
assumption that in-between frames the background stays
approximately constant. A fully-convolutional auto-encoder
architecture utilizing residual skip connections is employed to

learn image features h2D-A,j as latent space representations. In
the case of occlusions, we still use that respective appearance
feature and overcome this issue using higher-order similarity
finding through the chosen GNN architecture.

3) 3D Appearance Features: In order to include 3D shape
information, the sparse LiDAR point cloud within and in close
proximity to the objects’ 3D bounding box is extracted while
neglecting the points’ reflectance value. In order to account
for pose estimation errors a slightly enlarged cuboid is used to
associate LiDAR points to the respective object. The masked
point cloud is encoded using a PointNet-architecture [23]
that is trained towards predicting object categories. This is
motivated by prior works that showed that PointNet works well
on segmented point clouds [21], [23]. A higher-dimensional
feature h3D-A,j (128-dim.) is taken as the 3D-AL feature used
for tracking.

4) Radar Features: In addition to LiDAR measurements,
radar detections can be used for two reasons: Firstly, they
provide a highly accurate radial velocity measurement between
the particular sensor and the object (not the actual velocity)
and secondly, they provide measurements of objects in large
distances, which are captured imperfectly with cameras or
sparse LiDAR readings. The measured radial velocity vr is
split into two orthogonal components (vx, vy) represented in
the ego-vehicle frame that are each compensated by the ego-
vehicle motion [6]. The raw set of radar reflections is clustered
and the height coordinate is neglected because the radar’s
longitudinal wave characteristic renders the height coordinate
not decisive and erroneous more often than not. We arrive at a
radar parametrization rP = (x, y, vx, vy), where x, y is the 2D
object position after transformation from the radar coordinate
frame into ego-vehicle coordinates. Since each radar detection
does not hold a height coordinate we perform 2D pillar
expansion [25] and associate radar detections to objects as soon
as the enlarged objects’ cuboid and the pillar intersect. Since
the chosen pillar representation does not represent an element
of a Euclidean group as in the LiDAR case, we follow a naive
approach and remove all coordinate-sensitive transforms in the
PointNet architecture and merely transform each object’s fea-
ture that consists of multiple radar detections in a permutation-
invariant manner to arrive at the radar appearance feature hR,j .

B. Graph Construction

The chosen approach arranges nodes on a tracking graph
over 5 frames in a sliding window manner with a stride of 1.
The tracking performance improves drastically when learning
the tracking task with actual detections instead of ground truth
annotations since FP filtering and FN handling pose major
challenges in real-world tracking. Consequently, ground truth
annotation identifiers need to be paired with actual detections in
order to construct edge labels for the learning stage. Under the
assumption that ground truth annotations generally do not show
significant intra-category overlap, we match detection results to
geometrically close annotations in the birds-eye view (BEV).

1) Initial Node and Edge Embeddings: The initial node
features only consists of the 3D-PM feature:

hi = [hPM,i]
T ∈ R11+C+96. (2)

Fig. 2: Overview of our Batch3DMOT architecture. A cross-edge modality attention mechanism fuses the features of the involved objects to construct an edge
feature (left). Message passing including inter-category neighborhood attention propagates information. Blue arrows denote time-aware message passing, and
red arrows denote frame-wise information propagation (middle). Predicted edge scores are turned into trajectory hypotheses using agglomerative trajectory
clustering (right).

Throughout this work, we found that it is more beneficial to
add modality such as h2D-A,i during the message passing stage
instead of as an initial feature as shown in Sec. IV. The edge
features are defined as

hji = [∆xji,∆vji,∆γji,∆sji,∆tji]
T ∈ R5, (3)

where ∆xji denotes Euclidean distance between the object
centers and ∆vji the L2 norm of both velocity vectors. The
smallest signed yaw difference of the two detections is given
by ∆γji while ∆sji is the log-volume-ratio and ∆tji the time
difference.

2) Graph Connectivity: When investigating the effect of
graph connectivity on the tracking result we found that it is
beneficial to only connect nodes of the same object category
rather than utilizing inter-category edges that could potentially
overcome class prediction errors from the object detection
task. This essentially renders the problem a disconnected graph
with multiple components, which generally limits information
propagation when learning. While the 2D MOT task is mostly
focused on one object category, the 3D MOT task faces both the
curse of dimensionality leading to a high number of detections
per frame and multiple object categories. As a consequence, we
found that limiting the number of possible edges represents an
essential prior to the learning problem. Based on the normalized
kinematic similarity metric

v∗ji =
1
2∆x∗ji + 1

4∆γ∗ji + 1
4∆v∗ji

maxq{ 12∆x∗qi + 1
4∆γ∗qi + 1

4∆v∗qi | ∀k : tq < ti}
, (4)

the k-nearest neighbors in the past of every node i are selected
for edge construction, which essentially extracts a promising
corridor based on similar position, velocity vectors, and yaw
angles, while ∆x∗qi,∆γ

∗
qi,∆v

∗
qi itself represent neighborhood-

normalized distances. In the following, directed edges are
constructed pointing from each of the k neighbors to node
i. Regarding the following graph learning step, edge labels
denoting the active/inactive edges are necessary. We examine
whether two nodes hold the same instance identifier and only

connect them as an active edge if they represent the closest
time-wise occurrence of the same object instance. Otherwise,
edges hold labels of value 0.

C. Message Passing Graph Neural Network

This work employs the principle of time-aware neural
message passing [5], which is extended to allow information
exchange between inter-category nodes that reside in particular
disconnected graph components. In addition, we present a novel
way to include intermittent sensor modalities across edges.

1) Cross-Edge Modality Attention: Initial node and edge
features are encoded to produce approximately evenly-sized
node and edge embeddings

fvenc(X) = H(0)
v , feenc(Xe) = H(0)

e , (5)

where the two networks take the form of MLPs. In the case
of additional sensor modalities, the edge feature is augmented
using modality cross-attention between the respective nodes’
features to which edge (j,i) is incident to. Thus, each nodes’
feature is attending and is being attended in order to find an
agreement on whether to utilize the respective modality during
the edge feature update. Based on that, we define the following
queries Q, keys K and values V for both attention directions:

Qij = Xsens,i Kij = Xsens,j Vij = Xsens,j (6)

Qji = Xsens,j Kji = Xsens,i Vji = Xsens,i, (7)

where Xsens,j could represent either a LiDAR h3D-A,j or
radar feature hR,j of the respective node. We use a standard
multi-head attention mechanism per modality in order to
compute attention-weighted features using head-specific linear
transforms (WQ

u ,W
K
u ,W

V
u) to attend to multiple regions with

the respective modality feature:

MultiHead(Q,K,V) = Concat(head1, ...headh)WO, (8)

where headu = Softmax(
QWQ

u)(KWK
u)T√

dk
)VWV

u . (9)

Fig. 3: Both graph connectivity cases: Time-aware message passing operates
on a time-directed acyclic tracking graph that holds disconnected semantic
components (left) while attention-weighted neighborhood convolution is
performed on temporary frame-wise k-NN graphs (right).

The attended modality features are then concatenated and
encoded as depicted in Fig. 2. In the case of both LiDAR
and camera we arrive at:

H∗e,att = fatt,enc
([

X∗3D-A,i,X
∗
2D-A,i,X

∗
3D-A,j ,X

∗
2D-A,j ,Xe

])
,

(10)
which constitutes the attention-weighted modality edge feature
used during the edge update step in message passing that is
briefly covered in the following.

2) Time-Aware Message Passing Using Inter-Category
Graph Attention: A single message passing layer consists of
an edge feature update based on the neighboring node features
h
(l−1)
i , h

(l−1)
j and the current edge feature h

(l−1)
ji . In addition,

our approach involves the multi-modal attention-weighted sim-
ilarity feature h

(0)
ji,att , which is fed in each iteration to substan-

tiate the update based on appearance similar modality features:

h
(l)
ji = fe

([
h
(l−1)
i ,h

(l−1)
j ,h

(l−1)
ji ,hji,att

])
, (11)

where [·, ·, ·] represents the concatenation of the four
representations as an input to a ReLU-activated MLP fe. With
respect to updating node features, messages m

(l)
ij are crafted

based on either neighbors in the past Npast(j) or neighbors in
the future Nfut(j) of a node j. In the next step, all messages
from the future and from the past neighborhood of a node,
respectively, are aggregated using a permutation-invariant sum,
which results in node-specific past and future features:

h
(l)
j,past =

∑
i∈Npast(j)

fpastv

([
h
(l−1)
i ,h

(l)
ji ,h

(0)
i

])
︸ ︷︷ ︸

m
(l)
ij

, (12)

h
(l)
j,fut =

∑
i∈Nfut(j)

ffutv

([
h
(l−1)
i ,h

(l)
ji ,h

(0)
i

])
︸ ︷︷ ︸

m
(l)
ji

. (13)

The functions ffutv and ffutv again take the form of MLPs and
transform the recently updated edge feature h

(l)
ji , the initial

node feature h
(0)
i as well as the current node representation

h
(l−1)
i . The final node update is reached by combining the

past and future feature and feeding it to a function fv:

h
(l)
j = fv

([
h
(l)
j,past,h

(l)
j,fut

])
, (14)

which again takes the form of a ReLU-activated MLP.

In order to enable inter-category information exchange in
between message passing steps, we construct temporary frame-
wise graphs for which each node j is connected to its top-k
neighbors (without self-loops) having identical timestamps
regardless of object category. Then, a graph attention layer
(GAT) [26] propagates node features in an attention-weighted
manner to produce linear combinations of neighbor nodes:

h′j = αiiΘh
(l)
j +

∑
i∈Nt(j)

αjiΘh
(l)
i , (15)

while i and j in this case do not represent nodes in different
frames but in an identical one (ti = tj). Attention weights
among the nodes per frame are used to elect nodes that are of
relevance to one another such as overlapping detections of dif-
ferent semantic categories, which would normally reside in two
different disconnected graph components. The attention weights

αji =
exp

(
LeakyReLU

(
aT [Whi,Whj]

))∑
k∈Ni

exp (LeakyReLU (aT [Whi,Whk]))
(16)

are softmax-normalized across neighborhoods while the
attention-mechanism consists of a single-layer feedforward
neural network represented by a weight vector a. A final edge
classifier MLP frege downprojects each edge feature to a single
Sigmoid-activated scalar that denotes the edge activation score.

3) Loss Formulation: As the approach considers multiple
semantic categories that exhibit different frequencies of occur-
rence, it faces significant category imbalance with respect to the
number of nodes per category. This directly translates to an even
more unbalanced category-specific number of edges contained
in the graph. Having chosen a disconnected graph, the nodes
incident to a particular edge are always of the same category.
Based on that, we employ a class-balanced loss formulation
that takes a binary cross-entropy and weights edges based on
category frequencies:

LCB =
1

|E|
∑

(j,i)∈E

1− β
1− βnji

yji log(pjiφ)+(1−yji) log(1−pjiφ),

where β represents a hyperparameter and nji is the absolute
number of objects with respect to the node categories involved
per edge. The respective weights are estimated based on object
category frequencies in the training set [27].

D. Inference and Graph Traversal
The outputs of the GNN architecture are Sigmoid-valued

scores that represent whether an edge is likely to be ac-
tive/inactive. Instead of thresholding at an edge score of
0.5 to find active/inactive edges to turn into trajectories, we
follow the spirit of ByteTrack [8] and try to associate (nearly)
every detection with a preliminary trajectory. Based on the
assumption that the predicted edge scores show some inherent
order, i.e., FP edges exhibit lower scores than TP edges within
local neighborhoods of the graph, we propose a score-based
agglomerative trajectory clustering paradigm (Algorithm 1).
The edge score predictions of multiple overlapping batches are
averaged per edge. All edges are arranged in descending order
and empty (ordered) clusters are initialized that will later hold
output trajectories. In the following, we loop through all edges
from the highest to lowest score and check whether the edge

Algorithm 1: Agglomerative Trajectory Clustering.
1 Epred, Nmeta ← CombineBatches(GNN(X,Xe))
2 E∗

pred ← DescSortEdgesByScore(epred)
3 vis← CreateVisitedNodesDict()
4 C ← CreateEmptyClustersDict()
5 for eji, score in E∗

pred do
6 if j /∈ vis and i /∈ vis then
7 C ← CreateNewCluster(eji)
8 UpdateVisitedNodes(eji, C)
9 else

10 if j /∈ vis and i ∈ vis then
11 if i is leading node in C(i) then
12 C ← AddToCluster(eji)
13 vis← UpdateVisitedNodes(eji, C)
14 else if j ∈ vis and i /∈ vis then
15 if j is trailing node in C(j) then
16 C ← AddToCluster(eji)
17 vis← UpdateVisitedNodes(eji, C)
18 else if j ∈ vis and i ∈ vis then
19 if j is trailing C(j) and i is leading C(i) then
20 C ← JoinClusters(eji)
21 vis← UpdateVisitedNodes(eji, C)

22 return TurnClustersIntoTrajectories(C)

is constrained or unconstrained. If constrained, it is checked
whether the edge would essentially add time-wise leading or
trailing nodes to one of the temporary clusters or if it joins two
clusters. In the case of joining two clusters, an additional score-
wise threshold needs to be met. Otherwise, the edge does not
violate any tracking constraints and a new cluster is initialized.

IV. EXPERIMENTAL EVALUATION

In this section, we present quantitative and qualitative
evaluations of our proposed Batch3DMOT on the nuScenes [6]
and KITTI [7] datasets using the average multiple-object
tracking accuracy (AMOTA) and multiple-object tracking
accuracy (MOTA) metrics, respectively. Similar to existing
methods, we evaluate our model on the nuScenes test set as
well as the KITTI 2D MOT benchmark. We provide additional
experimental data in the supplementary material.

Detections and GT Matching: In this approach, we use the
detections provided by MEGVII [28] and CenterPoint [3] for
nuScenes. On the KITTI dataset, we use Point-RCNN detec-
tions [29] as also used by FG3DMOT [20] and AB3DMOT [4].
We match detections to ground truth trajectory labels to obtain
identifiers. As proposed earlier [6], [28], the L2 center distance
is often used for matching, which is beneficial for faraway
objects. Our empirical findings show that especially large
objects suffer from this heuristic since, e.g., their respective
length is not predicted correctly, which leads to considerable
object center translations and effectively renders the L2 distance
uninformative. Therefore, we follow a bi-level approach by
first selecting a close radius (L2) and then checking whether
detection and annotation exhibit a significant BEV-IoU overlap.

Implementation Details: Each batch consists of five frames
where each node is connected to its 40-nearest neighbors in the
past. Object 2D-A features are scaled to a 32×32-dimensional
RGB image. The fully-convolutional image encoder is built
upon the ResNet architecture and is trained for 80 epochs using
a learning rate (LR) of 0.002 and a batch size of 32. LiDAR
point clouds are aggregated over multiple frames, normalized,

TABLE I: Comparison of AMOTA scores on the nuScenes validation set.
Bold/underlined numbers denote best/second best model scores, respectively.

Method Overall Bicyc. Bus Car Moto. Ped. Trailer Truck

AB3DMOT [4] [28] 0.179 0.09 0.489 0.36 0.051 0.091 0.111 0.142
Prob3DMOT [19] [28] 0.561 0.272 0.741 0.735 0.506 0.755 0.337 0.580
CenterPoint [3] 0.665 0.458 0.801 0.842 0.615 0.777 0.504 0.656
ProbMM-3DMOT [22] 0.687 0.490 0.820 0.843 0.702 0.766 0.534 0.654

3D-PM-MEGVII [28] 0.623 0.368 0.759 0.789 0.655 0.796 0.378 0.617
3D-PM-CP [3] 0.708 0.540 0.837 0.849 0.728 0.813 0.497 0.689
3D-PM-C-CP [3] 0.709 0.542 0.837 0.851 0.733 0.813 0.502 0.688
3D-PM-CL-CP [3] 0.715 0.540 0.855 0.851 0.748 0.821 0.493 0.695
3D-PM-CLR-CP [3] 0.713 0.545 0.851 0.850 0.736 0.820 0.494 0.696

centered, and rotationally permuted to mimic orientation errors
in 3D object detection. In order to generate a 3D-A feature,
a minimum of five LiDAR points must exist. Otherwise, the
object does not hold a 3D-A feature. The LiDAR PointNet
is trained for 500 epochs using a batch size of 64 and a LR
of 0.001. We do not employ pre-training on other datasets
contrary to previous findings [5] since this decreased model
performance. In the case of radar, each object must hold at
least two radar detections to generate a feature. The radar
network is trained for 1000 epochs using a batch size of 256
and a LR of 0.0002. The GNN models are trained for 100
epochs using a batch size of two (10 frames in total) and
LRs between 4e−5 and 1e−4, which largely depends on the
detections used and the number of edges contained in the graph.
We perform 6 message passing steps with intermediate frame-
wise neighborhood convolutions (20 k-NN), which we ablate
in the experiments presented in the supplementary material
in Sec. S.2.C. We estimate the class-balancing factors based
on the absolute frequencies of ground truth annotations in the
training set and find the hyperparameter β = 0.8 empirically.
While the modality attention modules use two attention heads,
it proved to be sufficient to use a single head in the frame-wise
neighborhood attention mechanism. Our evaluations show that
training feature encoders and the GNN model in an end-to-end
manner or using transfer learning decreases the performance.

A. Quantitative Results and Ablation Study

We report our results on the nuScenes validation set in Tab. II.
Additionally, we also present the category-specific AMOTA
scores in Tab. I. While there is no existing offline method
on the nuScenes benchmark, we compare against a strong set
of state-of-the-art online trackers. The main baselines include
AB3DMOT [4], Prob3DMOT [19], two online Kalman filter-
based methods, and CenterPoint [3] which performs closest-
point matching of predicted velocity vectors. These methods
currently represent the naive choice when generating pseudo
ground truth due to their inherent simplicity and robustness as
well as high tracking accuracy in terms of the AMOTA score.
Nonetheless, we argue that there is room for improvement
by examining multiple frames in a batch-manner. In our
case, we chose a batch length of 5 frames for three reasons:
1) Typical birth and death memory matching time thresholds
used in bipartite association [4] are in a similar range. 2) We
expect an object to reappear after 2-3 frames of false negative
detections while neglecting long-term occlusions. 3) With
an increasing number of objects per batch, the number of
edges increases exponentially, which makes the graph learning
problem significantly more complex. Based on these factors,

TABLE II: Ablation study on the nuScenes validation set. All results shown are derived using CenterPoint detections [3].

Method PM C L R AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN ↓ IDS ↓ FRAG ↓

CenterPoint [3] X 0.664 0.567 0.562 0.698 13187 20446 562 424
OGR3MOT [24] X 0.693 0.627 0.602 – – – 262 332

w/o MP layers X 0.519 0.960 0.471 0.592 7206 33801 7065 2648
60 k-NN X 0.578 0.728 0.493 0.633 12159 27187 4497 1646
Connected graph comp. X X X 0.646 0.842 0.599 0.702 7621 23011 1233 761
TA-NMP [5] X X 0.668 0.698 0.589 0.714 11106 21806 1810 769
w/o Aggl. Traj. Clust. X 0.683 0.682 0.592 0.699 11030 20260 1271 434
Stacked modalities X X X 0.689 0.678 0.602 0.688 9525 20954 938 536
w/o 2D-A attention X X 0.698 0.657 0.602 0.700 9951 20641 886 403
w/o CB Loss X 0.702 0.617 0.607 0.723 11467 18516 758 418
w/o Neigborhood GAT X 0.703 0.644 0.604 0.716 11465 18691 767 416

Batch3DMOT-3D-PM X 0.708 0.630 0.612 0.719 11102 18640 688 383
Batch3DMOT-3D-PM-C X X 0.709 0.622 0.608 0.716 11307 18722 664 375
Batch3DMOT-3D-PM-CL X X X 0.715 0.598 0.612 0.726 11175 18494 598 357
Batch3DMOT-3D-PM-CLR X X X X 0.713 0.592 0.611 0.726 11196 18520 622 385

(a) Ground Truth Trajectories (b) Kalman Filter-Based Tracking [22] (c) Batch3DMOT (Ours)

Fig. 4: Comparison of FP filtering on the nuScenes validation set. The Kalman filter-based tracking approach [22] shows mediocre FP filtering, while our
proposed Batch3DMOT using only 3D-PM features for pseudo ground truth generation shows superior FP filtering.

we see the grounds for comparison with the chosen baselines.
We ablate on the number of frames to consider in Sec. S.2.A.
of the supplementary material.

Tab. II shows that an increase from 40 to 60 k-nearest
neighbors per node results in a stark decrease in tracking
accuracy (-12.8%). The best choice of k can only be found
empirically, however 10e3 serves as a suitable maximum
number of edges per batch. Fig. S.2 (b) in the supplementary
material presents the tracking performance for 10 and 20 nearest
neighbors. Independently, we observe a considerable decrease
in tracking performance when connecting nodes of different
semantic categories (-6%). Phrasing the offline 2D MOT GNN
by Braso et al. [5] as an offline 3D MOT method provides
an additional baseline. It uses identical edge features but the
2D-A feature as the sole node feature, which performs worse
than our architecture, but achieves similar recalls. Moreover,
reducing our model to a node similarity network (no message
passing) results in an AMOTA score of 0.519. Furthermore,
we observe a slight decrease in AMOTA when the frame-
wise neighborhood GAT aggregations are removed (-0.5% wrt.
best performing model). Modality intermittence is especially
severe when stacking all the modalities as a node feature
(Tab. II), which ultimately motivated our modality attention
mechanism. Furthermore, we also observe that the class-
balancing scheme slightly enhances the tracking result. Finally,
we test-wise replace our agglomerative trajectory clustering
with a bidirectional depth-first-search algorithm that iterates
from high score to low score edges, which performs worse
than our proposed agglomerative clustering paradigm. We
provide a more extensive parameter study in Sec. S.2 of the

supplementary material.
We observe the highest AMOTA tracking score for the

3D-PM-CL model on the validation set (see Tab. II), which
demonstrates the efficacy of the proposed modality attention
module (see Tab. II). Including 2D-A features leads to a small
performance increase compared to the pose-only variant (3D-
PM). Here, occlusions are the limiting factor that restricts
a larger improvement in performance, which is supported
by a large accuracy increase when including LiDAR. The
PointNet architecture succeeds effectively at extracting local
object information. The 3D-PM-CLR architecture exhibits a
slight accuracy decrease compared to the CL-counterpart, which
can be attributed to the severe sparsity and quality of the
radar detections in nuScenes. Additionally, we present the
category-specific AMOTA scores in Tab. I. On the nuScenes
test set, the 3D-PM-CL model outperforms the pose-and-motion
variant (Tab. III). Batch3DMOT achieves an AMOTA score of
0.689, which outperforms the state-of-the-art online method
OGR3MOT [24] by 3.3% using the same detections. Note that
EagerMOT uses both 2D and 3D detections which the other
methods do not. We also report the performance on the KITTI
test set for the car category in Tab. IV and observe that our
model achieves competitive results as FG-3DMOT [20], while
using only 5 frames.

B. Qualitative Results

Fig. 4 illustrates the accumulation over 40 frames of a
scene on the nuScenes dataset. We observe that our proposed
Batch3DMOT method removes a large number of detections
that essentially represent FPs when compared with the trajectory

TABLE III: Comparison of the 3D MOT performance on the nuScenes test set evaluated on the official benchmarking server.

Method Detections PM C L AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN↓ IDS↓ FRAG↓

AB3DMOT [4] MEGVII [28] X 0.151 1.501 0.154 0.276 15088 75730 9027 2557
Prob3DMOT [19] MEGVII [28] X 0.550 0.798 0.459 0.600 17533 33216 950 776
ProbMM3DMOT [22] CP [3] X X 0.655 0.617 0.555 0.707 18061 23323 1043 717
CenterPoint [3] CP [3] X 0.650 0.535 0.536 0.680 17355 24557 684 553
OGR3MOT [24] CP [3] X 0.656 0.620 0.554 0.692 17877 24013 288 371
EagerMOT [11] CP [3] + Cascade RCNN X X 0.677 0.550 0.568 0.727 17705 24925 1156 601

Batch3DMOT (Ours) CP [3] X 0.683 0.633 0.568 0.679 15290 22692 994 562
Batch3DMOT (Ours) CP [3] X X X 0.689 0.604 0.570 0.704 15580 22353 718 427

We do not highlight methods that use different sets of detections [4], [11], [19] but still report them in this table for completeness.

TABLE IV: Comparison of the 2D MOT performance on the KITTI test set.
Method MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓

DSM [12] 0.762 0.834 0.600 0.831 296 868
AB3DMOT [4] 0.838 0.853 0.669 0.114 9 224
FG-3DMOT (online) [20] 0.837 0.846 0.680 0.099 9 375
FG-3DMOT (offline) [20] 0.880 0.850 0.755 0.119 20 117

Batch3DMOT (5 frames) [29] 0.886 0.868 0.767 0.088 19 74

ground truth. We also observe that our approach works espe-
cially well on still-standing objects, while Prob3DMOT [19]
yields a higher number of FPs. Additional insight into low-
and high-confidence model predictions is presented in Sec. S.1,
Sec. S.3, and Fig. S.3 of the supplementary material. Fig. 4
meets the requirements with respect to generating pseudo-
groundtruth. This is further exemplified in Sec. S.1.B of the
supplementary material by training on pseudo-labeled test-data
and in Sec. S.1.C for training an online 3D Kalman filter from
data statistics that include weak pseudo-labeled annotations.

V. CONCLUSION

In this work, we proposed a framework for addressing the
offline 3D MOT task using a multi-modal graph neural network
including a novel agglomerative trajectory construction scheme.
We presented extensive results on two challenging datasets
demonstrating that our approach achieves state-of-the-art perfor-
mance. We also showed the benefits of our proposed cross-edge
modality attention in mitigating the effect of modality intermit-
tence. Our method was able to improve tracking accuracy com-
pared to current online methods using the same detections and
shows enhanced false positive filtering. In future work, we plan
to extend our approach to also cope with long-term occlusions.

REFERENCES

[1] N. Radwan, W. Burgard, and A. Valada, “Multimodal interaction-aware
motion prediction for autonomous street crossing,” The International
Journal of Robotics Research, vol. 39, no. 13, pp. 1567–1598, 2020.

[2] M. Mittal, R. Mohan, W. Burgard, and A. Valada, “Vision-based
autonomous uav navigation and landing for urban search and rescue,”
arXiv preprint arXiv:1906.01304, 2019.

[3] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2021, pp. 11 784–11 793.

[4] X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking: A
baseline and new evaluation metrics,” in Int. Conf. on Intelligent Robots
and Systems, 2020, pp. 10 359–10 366.

[5] G. Brasó and L. Leal-Taixé, “Learning a neural solver for multiple object
tracking,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2020, pp. 6246–6256.

[6] W. K. Fong, R. Mohan, H. J. Valeria, L. Zhou, H. Caesar, O. Beijbom, and
A. Valada, “Panoptic nuscenes: A large-scale benchmark for lidar panoptic
segmentation and tracking,” IEEE Robotics and Automation Letters, 2022.

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2012.

[8] Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang,
“Bytetrack: Multi-object tracking by associating every detection box,” arXiv
preprint arXiv:2110.06864, 2021.

[9] J. V. Hurtado, R. Mohan, W. Burgard, and A. Valada, “Mopt: Multi-object
panoptic tracking,” arXiv preprint arXiv:2004.08189, 2020.

[10] F. R. Valverde, J. V. Hurtado, and A. Valada, “There is more than meets
the eye: Self-supervised multi-object detection and tracking with sound by
distilling multimodal knowledge,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2021, pp. 11 612–11 621.

[11] A. Kim, A. Ošep, and L. Leal-Taixé, “Eagermot: 3d multi-object tracking
via sensor fusion,” Int. Conf. on Robotics and Automation, 2021.

[12] D. Frossard and R. Urtasun, “End-to-end learning of multi-sensor 3d
tracking by detection,” in Int. Conf. on Robotics and Automation, 2018.

[13] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid,
S. Roth, K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi
object tracking in crowded scenes,” arXiv preprint:2003.09003, 2020.

[14] S. Wang and C. C. Fowlkes, “Learning optimal parameters for multi-
target tracking with contextual interactions,” Int. Journal of Computer
Vision, vol. 122, no. 3, p. 484–501, 2016.

[15] A. Zamir, A. Dehghan, and M. Shah, “Gmcp-tracker: Global multi-object
tracking using generalized minimum clique graphs,” Europ. Conf. on
Computer Vision, 2012.

[16] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple people
tracking by lifted multicut and person re-identification,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, 2017.

[17] A. Hornakova, R. Henschel, B. Rosenhahn, and P. Swoboda, “Lifted
disjoint paths with application in multiple object tracking,” in Int. Conf.
on Machine Learning, 2020, pp. 4364–4375.

[18] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and
realtime tracking,” in Proc.of the IEEE Int. Conf. on Image Processing,
2016, pp. 3464–3468.

[19] H.-k. Chiu, A. Prioletti, J. Li, and J. Bohg, “Probabilistic 3d multi-object
tracking for autonomous driving,” arXiv preprint arXiv:2001.05673, 2020.

[20] J. Pöschmann, T. Pfeifer, and P. Protzel, “Factor graph based 3d multi-
object tracking in point clouds,” in Int. Conf. on Intelligent Robots and
Systems, 2020, pp. 10 343–10 350.

[21] X. Weng, Y. Wang, Y. Man, and K. M. Kitani, “GNN3DMOT: Graph
neural network for 3d multi-object tracking with 2d-3d multi-feature
learning,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2020, pp. 6498–6507.

[22] H. kuang Chiu, J. Li, R. Ambrus, and J. Bohg, “Probabilistic 3d multi-
modal, multi-object tracking for autonomous driving,” Int. Conf. on
Robotics and Automation, 2021.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[24] J.-N. Zaech, A. Liniger, D. Dai, M. Danelljan, and L. Van Gool,
“Learnable online graph representations for 3d multi-object tracking,” IEEE
Robotics and Automation Letters, pp. 1–1, 2022.

[25] R. Nabati and H. Qi, “Centerfusion: Center-based radar and camera fusion
for 3d object detection,” in IEEE Winter Conference on Applications of
Computer Vision, 2021, pp. 1527–1536.

[26] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Int. Conf. on Learning
Representations, 2018.

[27] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss
based on effective number of samples,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, 2019, pp. 9268–9277.

[28] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping
and sampling for point cloud 3d object detection,” arXiv preprint
arXiv:1908.09492, 2019.

[29] S. Shi, X. Wang, and H. Li, “PointRCNN: 3d object proposal generation
and detection from point cloud,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2019, pp. 770–779.

3D Multi-Object Tracking Using Graph Neural Networks with
Cross-Edge Modality Attention

- Supplementary Material -

Martin Büchner and Abhinav Valada

In this supplementary material, we (i) portray applications
that delineate the usability of generated pseudo-labels, (ii)
we present additional ablation experiments on main model
parameters and (iii) give qualitative insights into low and high
confidence model predictions.

S.1. GENERATING PSEUDO TRAJECTORY LABELS

In this section, we describe different methodologies to
demonstrate whether the proposed model can approximately
meet demands deriving from reference-data generation.

A. Trajectory Postprocessing

Since the proposed model does not include an update step
fusing predictions and measurements, the predicted trajectories
are estimates based on original detections. In order to yield
smoother trajectories serving as labels, we further process them
in a series of steps described below:
• Trajectory interpolation regarding missing timesteps.
• Yaw angle projection into γ ∈ [−π, π] range to prevent

further interpolation errors.
• Compute an intra-track BEV-IoU as a measure for still-

standing objects (e.g. parking cars), which is computed
as the product of all BEV-IoUs of pairs of boxes.

• Yaw correction on still-standing objects that suffer from
orientation error of approx. ±π: For intra-track BEV-
IoUs greater than 0.7, we cluster yaw angles into two
regimes (track-wise). All angles contained in the track
are overwritten using the mean yaw angle of the majority
class.

• Due to the chosen batch-size of 5 trajectories the tra-
jectories suffer from ID switches occasionally, which is
convenient to detect for still-standing objects. For pairs of
trajectories where each track shows an intra-track BEV-
IoU > 0.7 we check for a BEV-IoU > 0.6 of the involved
mean object poses of the two still-standing instances. If
that threshold is met, the two trajectories are joined under
one ID.

• Lastly, we interpolate trajectories using a weighted running
average scheme in order to yield smoother object motion,
which should ultimately guarantee a more suitable pseudo-
ground truth.

Based on these trajectories, we conducted two additional
experiments outlined in the following.

Department of Computer Science, University of Freiburg, Germany.
Project page: http://batch3dmot.cs.uni-freiburg.de

TABLE S.1: Comparison of different training sets used to estimate Kalman
filter covariance matrices of Prob3DMOT [22] using CenterPoint [3] object
proposals. Results are shown in terms of the AMOTA scores on the nuScenes
validation set.

Training Set Overall Bicyc. Bus Car Moto Ped. Trailer Truck

nusc-train 0.614 0.387 0.791 0.780 0.528 0.698 0.494 0.622
nusc-train + pseudo-test 0.624 0.436 0.808 0.779 0.549 0.693 0.457 0.645

pseudo-train + pseudo-test 0.611 0.377 0.822 0.768 0.540 0.695 0.447 0.625

B. Pseudo-Label Training

For testing the efficacy of our model predictions, we employ
a pseudo-label training scheme that is exemplified for the
nuScenes dataset. We use the additional data samples in the
test split, which does not contain openly accessible annotations.
We employ the 3D-PM-CL instance (see Table II) optimized
on the training set to yield pseudo-labels for the test-split.
The postprocessing steps outlined in the previous section are
applied to yield refined trajectories. Using a combination of the
training split and pseudo-labels of the test-split (or a subset),
a new 3D-PM model is trained. In general, we assume that
the unlabeled test split is created by the same data generation
process as the labeled share of the training dataset.

We propose a method to filter high confidence predictions
from the test-split. Leveraging high-confidence model predic-
tions allow to capitalize on strengths of the model instead
of its weaknesses. While we do not know whether a scene
itself is more or less complex, we can analyze whether the
model was confident about its predictions. A batch of 5
frames yields a set of edge scores, each normalized in [0, 1].
As each edge prediction does not represent a statement in
comparison to another randomly chosen edge, each edge stands
for itself. Thus, the problem of edge score prediction essentially
boils down to a case of binary classification. We record the
predicted edge scores per batch, construct a histogram (see
Fig. S.1(a)) and normalize scores in order to construct a
synthetic probability distribution. Computing the normalized
entropy of the distribution as

H = −
∑

(j,i)∈E

z(j,i) log z(j,i)

log |E|
, (1)

provides a measure of tracking uncertainty. A uniform edge
score distribution leads to an entropy of H = 1 and non-
uniform distributions lead to H < 1. In terms of tracking, we
observe that confident model predictions generally show smaller
entropies (their distributions are less uniform) and vice versa
(see Fig. S.3). Note that the histograms depicted in Fig. S.1
are log-scaled. By computing an average scene entropy using

http://batch3dmot.cs.uni-freiburg.de

TABLE S.2: Comparison of different pseudo-label training schemes utilizing the 3D-PM model architecture on the nuScenes validation set.

Training Set AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN↓ IDS↓ FRAG↓

nusc-train 0.708 0.630 0.612 0.719 11102 18640 688 383
nusc-train + pseudo-test 0.709 0.605 0.611 0.717 11470 18566 626 369

nusc-train + pseudo-test-entropy 0.711 0.611 0.607 0.726 11323 18460 663 386
pseudo-train + pseudo-test 0.708 0.592 0.606 0.712 11958 18543 683 365

pseudo-test 0.705 0.592 0.605 0.722 12330 18317 724 376

Fig. S.1: Log-scaled edge score histograms displaying absolute frequencies over respective edge scores including the normalized entropy of the corresponding
normalized probability distribution: Low confidence (left), high confidence (right). Orange bars represent edges with GT label 1, blue bars represent inactive
edges with GT label 0.

the respective batch entropies, the set of unlabeled scenes can
be categorized into relatively certain and uncertain predictions.
The low-confidence (high entropy) model prediction given in
Fig. S.1 shows a large number of false positive predictions
(blue-colored edge scores in [0.6, 1.0]), which is reflected in
the cluttered tracking result depicted in Fig. S.3 (left). On the
contrary, the high-confidence tracking prediction produces a
less-cluttered set of trajectores as given in Fig. S.3 (right). This
is further detailed in Sec. S.3.

As means to demonstrate our findings, we report the
performance of the 3D-PM model when adding either unfiltered
(nusc-train + pseudo-test) or entropy-filtered data (nusc-train +
pseudo-test-entropy) to the human-annotated training set. The
entropy-filtered data contains only scenes that show a scene-
entropy higher than the mean scene entropy. As presented in
Table S.2 the entropy-filtering induces a 0.2% improvement
compared to the unfiltered case. Additionally, we also trained
the same 3D-PM architecture using only trajectory labels
that originate from the 3D-PM-CL instance (pseudo-train
+ pseudo-test), which produced a similar outcome as the
human-annotations case (nusc-train). Most notably, we do
not observe any performance decline as an effect of adding
weaker annotations.

We show that we can even train the 3D-PM model architec-
ture using only pseudo-labels from the test split which contains
150 scenes. We observe an AMOTA of 0.705 (pseudo-test)
and a recall of 0.722 (see Table S.2). Therefore, the model
shows a slight decrease in performance of about half a percent,
however, using only 20% of the data samples that are weaker
than human-annotations.

C. Training an Online Kalman Filter Tracking Model

In addition to the pseudo-label training scheme, the experi-
ments presented in this section use Kalman filter covariance
matrix estimation introduced for Prob3DMOT [22] using
the model generated pseudo-labels. The postprocessing steps
outlined in Sec. S.1 are adopted in the same manner as in the
experiment described above. We use a conjunction of pseudo-
labeled nuScenes test data and human-annotations on the
nuScenes train set to estimate the state uncertainty covariance
Σ, the observation noise covariance R, and process uncertainty
covariance Q used by Prob3DMOT [22].

The results are presented in Table S.1. We observe a
notable 1% gain in overall tracking accuracy compared to
the standard case when using both the original training set
and the pseudo-labels (nusc-train + pseudo-test). Especially
the Bicycle, Motorcycle and Truck classes show performance
improvements. We observe only a small overall decrease (-
1.3%) when using pseudo-labels generated for both training
(pseudo-train) and test set (pseudo-test). This demonstrates
the efficacy of using pseudo-labels for training Kalman filters,
based on data statistics. Analogous to the previous experiment,
we do not observe significant performance decreases due to
weaker annotations.

S.2. ADDITIONAL ABLATION STUDY

In this section, we present an additional ablation study on
the main hyperparameters of the proposed model. The most
influential parameters in the Batch3DMOT framework are the
number of frames, the number of nearest neighbors, and the
GNN depth (the number of message passing steps). In order

2 3 4 5 6 7
0.66

0.68

0.7

0.72

Frames

A
M

O
TA

10 20 40 60
0.55

0.6

0.65

0.7

0.75

Nearest neighbors

A
M

O
TA

0 1 2 3 4 5 6 7
0.5

0.6

0.7

Message passing steps

A
M

O
TA

(a) Effect of different frame rates (b) Variation of the number of nearest neighbors (c) Tracking accuracy over different GNN depths

Fig. S.2: Additional ablation study on the main Batch3DMOT model parameters. All chosen parameters stay constant apart from the one varied while its effect
is measured using the AMOTA tracking score on the nuScenes validation set. The investigated model is the Batch3DMOT-3D-PM variant.

to identify suitable parameters (see Sec. IV), we perform a
parameter study on these variables. All experiments originate
from model trainings on the nuScenes train set and evaluated on
the validation split. In each study, we only vary the parameter
being ablated and keep all the other hyperparameters fixed.

A. Number of Frames

The number of frames per batch determine whether the
FN detections based on occlusions or FP detections due to,
e.g., noisy readings or misjudgement, can be recovered from.
Empirically, we find that a number of 5 frames is sufficient for
stable tracking (especially in case of the 2Hz framerate used in
nuScenes) and still provide the grounds for comparison against
3D Kalman filter tracking models. Note that the Batch3DMOT
framework only performs linear one-step interpolation of output
trajectories to arrive at the results. Thus, the model itself is
not capable of overcoming occlusions based on intermediate
prediction-update steps as used in Kalman filtering settings.
Analogously, the chosen frame rate should allow stable offline
tracking with the exception of long-term occlusion handling.
The study presented in Fig. S.2 (c) shows a gradual increases
in tracking accuracy (measured in terms of AMOTA) until a
number of 5 and 6 frames is reached under 40 nearest neighbors.
For 7 frames, we observe a stark decline, presumably due to
the overall number of edges rising above the critical threshold
as discussed in Sec. IV.

B. Number of Nearest Neighbors

We investigate a variation of the number of nearest neighbors
(NN) leading to a edges connected in the graph construction
stage. This analysis only concerns the case of semantic category-
disjoint edges. Based on the findings presented in Fig. S.2 (b),
an increase in the number of neighbors higher than 40 generally
leads to a performance decrease. As outlined in Sec. IV, we
observe a maximum number of edges that guarantees learning
success, which is exceeded in this case. On the contrary, we do
not observe a performance decrease when only connecting the
20 NN over 5 frames using the proposed kinematic similarity
metric (Eq. (4)), which effectively shows the efficacy of the
metric. In our case, we choose 40 NN so as to overcome
potential ±π orientation flips and velocity misjudgements

stemming of noisy 3D object proposals. For 10 NN, we
observe a 2.1% performance decline compared to 20 and 40
NN (AMOTA 0.708). In general, using 20 NN over 6 frames
allows further performance improvement.

C. Number of Message Passing Steps

The GNN depth is a crucial parameter determining the degree
of information exchange across the proposed tracking graph. As
depicted in Fig. S.2 (c), executing at least one message passing
step increases tracking accuracy from AMOTA 0.519 to 0.670.
Further incremental increases lead to slight improvements of
the tracking performance with a maximum at 6 message passing
steps (AMOTA 0.708). Compared to the other two parameters,
the GNN depth bears less potential for further optimization.

S.3. QUALITATIVE INSIGHTS

The low-confidence and high-confidence scenes shown in
Fig. S.1 are also depicted in an accumulated BEV manner
over 40 frames in Fig. S.3. The left column illustrates the
detections, predicted trajectories and ground truth trajectories
of the low-confidence scene shown in Fig. S.1 (left). The right
column of Fig. S.3 depicts the results for a high-confidence
scene.

In accordance with the edge score histogram (Fig. S.1 right),
we observe a much less cluttered tracking result in (Fig. S.3 (b)
right). On the contrary, the low confidence scene (Fig. S.3
left) exhibits a higher number of (presumably) false positive
detections contained in the predicted trajectories. Therefore, we
attribute the significant portion of incorrectly predicted edge
scores with ground truth label of 0 in the range [0.6, 1.0] (see
Fig. S.1 left).

These findings provide a qualitative understanding of the
efficacy of the introduced entropy-filtering system. Due to the
unavailability of ground truth edge labels in the test split, it is
infeasible to separately assess the prediction quality of either
active (orange regime) or inactive (blue regime) edges in a
segregated manner as shown in Fig. S.1.

Low-confidence scene (H = 0.817771) High-confidence scene (H = 0.731216)

a) Accumulated 3D object proposals of CenterPoint [3] across 40 frames before matching.

b) Accumulated, non-interpolated trajectory predictions of Batch3DMOT-3D-PM-CL across 40 frames (Car category) for two levels of confidence.
Each color denotes a particular tracking ID. Low confidence (left) and high confidence (right).

c) Accumulated ground truth trajectory predictions across 40 frames (Car category). Each color denotes a particular tracking ID.

Fig. S.3: Qualitative tracking results for two exemplary low confidence (left) and high confidence (right) scenes from the nuScenes validation split: Input 3D
object proposals (a), unrefined predicted trajectories (b) and ground truth trajectories (c).

	I Introduction
	II Related Work
	III Technical Approach
	III-A Feature Representation
	III-A1 3D Pose and Motion Feature
	III-A2 2D Appearance Features
	III-A3 3D Appearance Features
	III-A4 Radar Features

	III-B Graph Construction
	III-B1 Initial Node and Edge Embeddings
	III-B2 Graph Connectivity

	III-C Message Passing Graph Neural Network
	III-C1 Cross-Edge Modality Attention
	III-C2 Time-Aware Message Passing Using Inter-Category Graph Attention
	III-C3 Loss Formulation

	III-D Inference and Graph Traversal

	IV Experimental Evaluation
	IV-A Quantitative Results and Ablation Study
	IV-B Qualitative Results

	V Conclusion

	References
	S.1 Generating Pseudo Trajectory Labels
	S.1 Trajectory Postprocessing
	S.2 Pseudo-Label Training
	S.3 Training an Online Kalman Filter Tracking Model

	S.2 Additional Ablation Study
	S.1 Number of Frames
	S.2 Number of Nearest Neighbors
	S.3 Number of Message Passing Steps

	S.3 Qualitative Insights

