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Abstract—Amodal panoptic segmentation aims to connect the
perception of the world to its cognitive understanding. It entails
simultaneously predicting the semantic labels of visible scene
regions and the entire shape of traffic participant instances,
including regions that may be occluded. In this work, we
formulate a proposal-free framework that tackles this task as
a multi-label and multi-class problem by first assigning the
amodal masks to different layers according to their relative
occlusion order and then employing amodal instance regres-
sion on each layer independently while learning background
semantics. We propose the PAPS architecture that incorporates a
shared backbone and an asymmetrical dual-decoder consisting of
several modules to facilitate within-scale and cross-scale feature
aggregations, bilateral feature propagation between decoders,
and integration of global instance-level and local pixel-level
occlusion reasoning. Further, we propose the amodal mask refiner
that resolves the ambiguity in complex occlusion scenarios by
explicitly leveraging the embedding of unoccluded instance masks.
Extensive evaluation on the BDD100K-APS and KITTI-360-APS
datasets demonstrate that our approach set the new state-of-the-
art on both benchmarks.

I. INTRODUCTION

The ability to perceive the entirety of an object irrespective
of partial occlusion is known as amodal perception. This
ability enables our perceptual and cognitive understanding
of the world [1]. The recently introduced amodal panoptic
segmentation task [2] seeks to model this ability in robots.
The goal of this task is to predict the pixel-wise semantic
segmentation labels of the visible amorphous regions of stuff
classes (e.g., road, vegetation, sky, etc.), and the instance
segmentation labels of both the visible and occluded countable
object regions of thing classes (e.g., cars, trucks, pedestrians,
etc.). In this task, each pixel can be assigned more than one class
label and instance-ID depending on the visible and occluded
regions of objects that it corresponds to, i.e. it allows multi-class
and multi-ID predictions. Further, for each segment belonging
to a thing class, the task requires the knowledge of its visible
and occluded regions.

The existing amodal panoptic segmentation approach [2]
and baselines [2] follow the proposal-based architectural
topology. Proposal-based methods tend to generate overlapping
inmodal instance masks as well as multiple semantic predictions
for the same pixel, one originating from the instance head
and the other from the semantic head, which gives rise to
a conflict when fusing the task-specific predictions. This
problem is typically tackled using cumbersome heuristics
for fusion, requiring multiple sequential processing steps in
the pipeline which also tends to favor the amodal instance

Department of Computer Science, University of Freiburg, Germany.
This work was funded by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR.
Supplementary material available on arXiv.

Fig. 1: Overview of our proposed PAPS architecture for amodal panoptic
segmentation. Our model predicts multiple outputs from both the semantic
and instance decoder. We then fuse the instance-agnostic semantic labels and
foreground masks obtained from the segmentation heads with class-agnostic
amodal instances that are obtained from the rest of the heads by grouping and
majority voting to yield the final amodal panoptic segmentation output.

segmentation branch. On the other hand, proposal-free methods
have been more effective in addressing this problem in the
closely related panoptic segmentation task [3]–[5] by directly
predicting non-overlapping segments. In this work, we aim to
alleviate this problem by introducing the first proposal-free
framework called Proposal-free Amodal Panoptic Segmentation
(PAPS) architecture to address the task of amodal panoptic
segmentation. Importantly, to facilitate multi-class and multi-
ID predictions, our PAPS decomposes the amodal masks of
objects in a given scene into several layers based on their
relative occlusion ordering in addition to conventional instance
center regression for visible object regions of the scene referred
to as inmodal instance center regression. Hence, the network
can focus on learning the non-overlapping segments present
within each layer. Fig. 1 illustrates an overview of our approach.

Further, amodal panoptic segmentation approaches tend to
predict the amodal masks of thing class objects by leveraging
occlusion features that are conditioned on features of the visible
regions. Although it is effective when objects are only partially
occluded, it fails in the presence of heavy occlusion as the area
of the visible region is reduced. Motivated by humans whose
amodal perception is not only based on visible and occlusion
cues but also their experience in the world, we propose the
amodal mask refiner module to model this capability using
explicit memory. This module first predicts an embedding that
represents the unoccluded object regions and correlates it with
the amodal features generated using either a proposal-free or
proposal-based method to complement the lack of visually
conditioned occlusion features. We also demonstrate that our
amodal mask refiner can be readily incorporated into a variety

ar
X

iv
:2

20
5.

14
63

7v
1 

 [
cs

.C
V

] 
 2

9 
M

ay
 2

02
2



of existing architectures to improve performance.
An interesting aspect of proposal-free methods is that the

two sub-tasks, namely, semantic segmentation and instance
center regression, are complementary in nature. We leverage
this to our benefit and propose a novel cross-task module
to bilaterally propagate complementary features between the
two sub-tasks decoders for their mutual benefit. Moreover, as
rich multi-scale features are important for reliable instance
center prediction, we propose the context extractor module
that enables within-scale and cross-scale feature aggregation.
Finally, to exploit informative occlusion features that play a
major role in the amodal mask segmentation quality [2], [6],
we incorporate occlusion-aware heads in our PAPS architecture
to capture local pixel-wise and global instance-level occlusion
information. We present extensive quantitative and qualitative
evaluations of PAPS on the challenging BDD100K-APS and
KITTI-360-APS datasets, which shows that it achieves state-of-
the-art performance. Additionally, we present comprehensive
ablation studies to demonstrate the efficacy of our proposed
architectural components and we make the models publicly
available at http://amodal-panoptic.cs.uni-freiburg.de.

II. RELATED WORK

Although the amodal panoptic segmentation task [2] is
relatively new, the inmodal variant called panoptic segmen-
tation has been extensively studied. We first briefly discuss
the methods for panoptic segmentation followed by amodal
panoptic segmentation.

Panoptic Segmentation: We can categorize existing methods into
top-down and bottom-up approaches. Top-down approaches [7]–
[10] follow the topology of employing task-specific heads,
where the instance segmentation head predicts bounding boxes
of objects and its corresponding mask, while the semantic
segmentation head outputs the class-wise dense semantic
predictions. Subsequently, the outputs of these heads are
fused by heuristic-based fusion modules [9], [11]. On the
other hand, bottom-up panoptic segmentation methods [4],
[5] first perform semantic segmentation, followed by em-
ploying different techniques to group [12]–[14] thing pixels
to obtain instance segmentation. In this work, we follow
the aforementioned schema with instance center regression
to obtain the panoptic variant of our proposed architecture.
Our proposed network modules enrich multi-scale features
by enabling feature aggregation from both within-scales and
cross-scales. Additionally, our cross-task module facilitates the
propagation of complementary features between the different
decoders for their mutual benefit.

Amodal Panoptic Segmentation: Mohan et al. [2] propose
several baselines for amodal panoptic segmentation by replacing
the instance segmentation head of EfficientPS [9], a top-
down panoptic segmentation network, with several existing
amodal instance segmentation approaches. EfficientPS employs
a shared backbone comprising of an encoder and the 2-way
feature pyramid in conjunction with a Mask R-CNN based
instance head and a semantic segmentation head, whose outputs
are fused to yield the panoptic segmentation prediction. The
simple baseline, Amodal-EfficientPS [2], extends EfficientPS

with an additional amodal mask head and relies implicitly on the
network to capture the relationship between the occluder and
occludee. ORCNN [15] further extends it with an invisible mask
prediction head to explicitly learn the feature propagation from
inmodal mask to amodal mask. Subsequently, ASN [6] employs
an occlusion classification branch to model global features and
uses a multi-level coding block to propagate these features
to the individual inmodal and amodal mask prediction heads.
More recently, Shape Prior [16] focuses on leveraging shape
priors using a memory codebook with an autoencoder to further
refine the initial amodal mask predictions. Alternatively, VQ-
VAE [17] utilizes shape priors through discrete shape codes by
training a vector quantized variational autoencoder. BCNet [18]
seeks to decouple occluding and occluded object instances
boundaries by employing two overlapping GCN layers to detect
the occluding objects and partially occluded object instances.
The most recent, APSNet [2] which is the current state-of-
the-art top-down approach focuses on explicitly modeling the
complex relationships between the occluders and occludees.
To do so, APSNet employs three mask heads that specialize
in segmenting visible, occluder, and occlusion regions. It then
uses a transformation block with spatio-channel attention for
capturing the underlying inherent relationship between the three
heads before computing the final outputs. In this work, we
present the first bottom-up approach that learns the complex
relationship between the occluder and occludee by focusing
on learning the relative occlusion ordering of objects. We
also employ an occlusion-aware head to explicitly incorporate
occlusion information and an amodal mask refiner that aims
to mimic the ability of humans by leveraging prior knowledge
on the physical structure of objects for amodal perception.

III. METHODOLOGY

In this section, we first describe our PAPS architecture and
then detail each of its constituting components. Fig. 2 illustrates
the network which follows the bottom-up topology. It consists
of a shared backbone followed by semantic segmentation
and amodal instance segmentation decoders. The outputs of
the decoders are then fused during inference to yield the
amodal panoptic segmentation predictions. PAPS incorporates
several novel network modules to effectively capture multi-
scale features from within-layers and cross-layers, to enable
bilateral feature propagation between the task-specific decoders
and exploit local and global occlusion information. Further, it
incorporates our amodal mask refiner that embeds unoccluded
inmodal instance masks to refine the amodal features.

A. PAPS Architecture
1) Backbone: The backbone is built upon HRNet [19]

which specializes in preserving high-resolution information
throughout the network. It has four parallel outputs with a
scale of ×4, ×8, ×16 and ×32 downsampled with respect to
the input, namely, B4, B8, B16, and B32, as shown in Fig. 2.
We then upsample the feature maps to ×4 and concatenate the
representations of all the resolutions resulting in C4, followed
by reducing the channels to 256 with a 1 × 1 convolution.
Lastly, we aggregate multi-scale features by downsampling
high-resolution representations to multiple levels and process
each level with a 3× 3 convolution layer (P4, P8, P16, P32).

http://amodal-panoptic.cs.uni-freiburg.de


Fig. 2: Illustration of our proposed PAPS architecture consisting of a shared backbone and asymmetric dual-decoder followed by a fusion module that fuses the
outputs of the multiple heads of the decoder to yield the amodal panoptic segmentation output. The semantic decoder (yellow-green) and the instance decoder
(dark-red) boxes show the topologies of the dual-decoder employed in our architecture. The black-box shows the architecture of our proposed context extractor
module. The amodal mask refiner module exploits features from both the decoders to improve amodal masks with embedding correlation.

2) Context Extractor: The multi-scale representations from
the backbone are computed over all four scales which we refer
to as cross-scale features. The way these cross-scale features are
computed (concatenation, reduction, and downsampling) leads
to a limited exploration for multi-scale features at a given indi-
vidual scale resolution. Since rich multi-scale representations
are crucial for the instance decoder’s performance, we seek to
enhance the cross-scale features with within-scale contextual
features. To do so, we design a lightweight module called the
context extractor which is based on the concept of spatial pyra-
mid pooling and is known for efficiently capturing multi-scale
contexts from a fixed resolution. We use the context extractor
module at each scale (B4, B8, B16, B32) , and add its output to
P4, P8, P16, and P32, respectively. The proposed context extrac-
tor module shown in Fig. S.1 in the supplementary material, em-
ploys two 1×1 convolutions, two 3×3 depth-wise atrous separa-
ble convolutions with a dilation rate of (1, 6) and (3, 1), respec-
tively, and a global pooling layer. The output of this module con-
sists of 256 channels, where 128 channels are contributed by the
1× 1 convolution and four 32 channels come from each of the
two 3×3 depth-wise atrous separable convolutions and its glob-
ally pooled outputs. We evaluate the benefits of the aforemen-
tioned module in the ablation study presented in Sec. IV-D1.

3) Cross-Task Module: The sub-tasks, semantic segmenta-
tion and amodal instance center regression, are both distinct
recognition problems and yet closely related. The intermediate
feature representations of each task-specific decoder can capture
complementary features that can assist the other decoder to
improve its performance. We propose the cross-task module to
enable bilateral feature propagation between the decoders to
mutually benefit each other. Given feature inputs FI and FS

from the two decoders, we fuse them adaptively by employing
cross-attention followed by self-attention as

FR = (1− g1(FS)) · FI + (1− g2(FI)) · FS , (1)
FO = g3(FR) · FR, (2)

where g1(·), g2(·), and g3(·) are functions to compute feature
confidence score of FS and FI . These functions consist of
a global pooling layer, followed reducing the channels from
256 to 64 using a 1× 1 convolution. Subsequently, we employ
another 1× 1 convolution with 256 output channels to remap
from the lower dimension to a higher dimension and apply
a sigmoid activation to obtain the feature confidence scores.
FO is the output of the cross-task module. The cross-attention
mechanism in this module enables FI and FS to adaptively
complement each other, whereas the following self-attention
mechanism enables enhancing the highly discriminative com-
plementary features. The ablation study presented in Sec. IV-D1
shows the influence in performance due to this module.

4) Semantic Decoder: The semantic decoder takes B32, B16,
C4 feature maps and the output of cross-task module as its
input. First, the B32 feature maps are upsampled (×16) and
concatenated with B16 and are fed to the dense prediction cell
(DPC) [20]. The output of DPC is then upsampled (×8) and
passed through two sequential 3 × 3 depth-wise separable
convolutions. Subsequently, we again upsample (×4) and
concatenate it with C4. We then employ two sequential 3× 3
depth-wise separable convolutions and feed the output (FS)
to the cross-task module. Further, we concatenate FS with
the output of the cross-task module (FO) and feed it to the
multiple heads in the semantic decoder.

We employ three heads, namely, relative occlusion order
segmentation (Lroo), semantic segmentation (Lss), and occlu-
sion segmentation (Los), towards the end of our semantic
decoder. The relative occlusion order segmentation head
predicts foreground mask segmentation for ON layers. The
masks of each layer are defined as follows: All unoccluded
class-agnostic thing object masks belong to layer 0 (O0). Next,
layer 1 (O1) comprises amodal masks of any occluded object
that are occluded by layer 0 objects but not occluded by any
other occluded object. Next, layer 2 (O2) consists of amodal
masks of any occluded object, not in the previous layers that



are occluded by layer 1 objects but not occluded by any other
occluded objects that are not part of previous layers and so on.
Fig. 3 illustrates the separation of thing amodal object segments
into relative occlusion ordering layers. This separation ensures
each thing amodal object segment belongs to a unique layer
without any overlaps within that layer. We use the binary
cross-entropy loss (Lroo) to train this head. Next, the semantic
segmentation head predicts semantic segmentation of both stuff
and thing classes, and we employ the weighted bootstrapped
cross-entropy loss [21] (Lss) for training. Lastly, the occlusion
segmentation head predicts whether a pixel is occluded in the
context of thing objects and we use the binary cross-entropy loss
(Locc) for training. The overall semantic decoder loss is given as

Lsem = Lss + Los + Lroo. (3)

The predictions from all the heads of the semantic decoder are
used in the fusion module to obtain the final amodal panoptic
segmentation prediction.

5) Instance Decoder: The instance decoder employs a
context encoder at each scale (B32, B16, B8, B4) and adds
the resulting feature maps to P32, P16, P8, and P4, respectively.
Then, beginning from (×32), the decoder repeatedly uses a
processing block consisting of two sequential 3 × 3 depth-
wise separable convolutions, upsamples it to the next scale
(×16), and concatenates with the existing features of the next
scale until ×4 feature resolution is obtained (FI ). The FI is
then fed to the cross-task module. The cross-task output FO

is concatenated with FI and is processed by two sequential
3 × 3 depth-wise separable convolutions. Subsequently, the
features from the occlusion segmentation head of the semantic
decoder are concatenated to incorporate explicit pixel-wise
local occlusion information referred to as FIO features.

The instance decoder employs five prediction heads. The
inmodal occlusion-aware center prediction head consists of
two prediction branches, one for predicting the center of mass
heatmap of inmodal thing object instances (Licp) and the other
for predicting whether the heatmap is occluded (Lico). For the
former, we use the Mean Squared Error (MSE) loss (Licp)
to minimize the distance between the 2D Gaussian encoded
groundtruth heatmaps and the predicted heatmaps, for training.
For the latter, we use binary cross-entropy loss (Lico) for
training. Following, the thing semantic segmentation (Ltss)
head predicts Nthing+1 classes, where Nthing is the total number
of thing semantic classes and the ’+1’ class predicts all stuff
classes as a single class. This head is trained with the weighted
bootstrapped cross-entropy loss [21] (Ltss). Next, the inmodal
center regression (Licr) head predicts the offset from each
pixel location belonging to thing classes to its corresponding
inmodal object instance mass center. We use the L1 loss for
training this head (Licr). All the aforementioned heads take
FIO features as input.

The remaining heads of the instance decoder are referred
to as the amodal center offset (Laco) and relative occlusion
order amodal center regression (Lrooacr). The amodal center
offset head predicts the offset from each inmodal object
instance center to its corresponding amodal object instance
center. Whereas, the relative occlusion ordering amodal center
regression head, for each relative occlusion ordering layer,
predicts the offset from each pixel location belonging to thing

Fig. 3: Groundtruth examples for relative occlusion order segmentation (top-
row) and instance center regression (bottom-row) consisting of layer from O0
to O5. Best viewed at ×4 zoom.

classes of the layer to its corresponding amodal object instance
mass center. Here, the layers of relative occlusion ordering
are defined similarly as in the semantic decoder. Further,
we concatenate FIO with features of inmodal occlusion-
aware center prediction head to incorporate object-level global
occlusion features before feeding it to the aforementioned heads.
Finally, we use L1 loss to train both the heads (Laco, Lrooacr).
The overall loss for the instance decoder is

Linst = Ltss+Lico+αLicp+β(Licr+Laco+Lrooacr), (4)

where the loss weights α = 200 and β = 0.01.
Note that we learn amodal center offset instead of the amodal

center itself to have a common instance-ID that encapsulates
both the amodal and inmodal masks.

6) Amodal Mask Refiner: We propose the amodal mask
refiner module to model the ability of humans to leverage priors
on complete physical structures of objects for amodal percep-
tion, in addition to visually conditioned occlusion cues. This
module builds an embedding that embeds the features of the
unoccluded object mask and correlates them with the generated
amodal features to complement the lack of visually conditioned
occlusion features. The amodal mask refiner shown in Fig. 2
consists of two encoders, unoccluded feature embeddings, and a
decoder. We employ the RegNet [22] topology with its first and
last stages removed as the two encoders with feature encoding
resolution of ×16 downsampled with respect to the input.
The two encoders are an inmodal embedding encoder (IEenc
∈ R(H/16)×(W/16)×C ) that encodes unoccluded objects features
and a query encoder (Qenc ∈ R(H/16)×(W/16)×C ) that encodes
the amodal features, where H and W are the height and width
of the input image and C is the feature dimension which is set
to 64. Subsequently, an embedding matrix EIE ∈ RN×D embeds
the IEenc encoding to create the embedding of unoccluded object
masks. Further, to extract the mask embedding information
from EIE, we compute two key matrices, namely, KIE ∈ RN×D

matrix and KQ ∈ R1×D matrix, from IEenc and Qenc encodings,
respectively. Here, N = 128 and D = [(H/16)×(W/16)×C].

Next, we compute the inner product of KIE and KQ followed
by a softmax and take the inner product of the resulting
probability and EIE. We then rearrange this output into
(H/16)× (W/16)×C shape and concatenate it with Qenc and
feed it to the decoder. The decoder employs repeated blocks
of two 3× 3 depth-wise separable convolutions, followed by
a bilinear interpolation to upsample by a factor of 2 until the
upsampled output resolution is ×4 downsampled with respect to
the input. We refer to this output as FAMR. The resulting features
enrich the amodal features of occluded objects with similar



unoccluded object features, thereby enabling our network to
predict more accurate amodal masks.

The amodal mask refiner takes two inputs, namely, the
amodal features and the features of the unoccluded objects.
The input amodal features are obtained by concatenating the
output features (Fig. 2) of relative occlusion ordering heads of
the semantic and instance decoders. To compute the features
of the unoccluded object, we first perform instance grouping
using predictions of the inmodal occlusion-aware, inmodal
center regression, and thing semantic segmentation heads
to obtain the inmodal instance masks. We then discard all
the occluded inmodal instances to generate an unoccluded
instance mask. Next, we multiply the aforementioned mask
with the output of the second layer of the inmodal center
regression head to compute the final unoccluded object features.
Finally, the amodal mask refiner outputs FAMR which is then
concatenated with the amodal features. We employ two similar
heads as relative occlusion ordering amodal center regression
and segmentation that takes the aforementioned concatenated
features as input. We use the same loss functions and loss
weights for training the heads as described in Sec. III-A5.

7) Inference: We perform a series of steps during inference
to merge the outputs of the semantic and instance decoders
to yield the final amodal panoptic segmentation. We begin
with computing the semantic segmentation prediction and
the thing foreground mask. To do so, we duplicate the void
class logit of the thing semantic segmentation head logits
Nstuff -times, such that its number of channels transforms
from 1 + Nthing to Nstuff + Nthing. We then add it to
the logits of the semantic segmentation head and employ a
softmax followed by an argmax function to obtain the final
semantic segmentation prediction. Subsequently, we assign 0
to all the stuff classes and 1 to all the thing classes to obtain
the thing foreground mask. Next, we obtain the inmodal center
point predictions by employing a keypoint-based non-maximum
suppression [5] and confidence thresholding (0.1) to filter out
the low confidence predictions while keeping only the top-
k (200) highest confidence scores on the heatmap prediction
of inmodal occlusion-aware center prediction head. We then
obtain the amodal center points predictions by applying the
corresponding offsets from the amodal instance head to the
inmodal center point predictions. We obtain the class-agnostic
instance-IDs and the inmodal instance mask using simple
instance grouping [5] with the inmodal center prediction and
the thing foreground mask. Further, we compute semantic labels
for each instance-ID by the majority vote of the corresponding
predicted semantic labels with its inmodal instance masks.

Now, for each instance-ID, we have its semantic label,
inmodal mask, and the amodal center prediction. We compute
the relative occlusion order segmentation masks for each
layer by applying a threshold of 0.5 on the outputs of the
relative occlusion ordering segmentation head connected to
the amodal mask refiner. We then assign the instance-ID to its
corresponding relative occlusion ordering layer by checking if
the corresponding amodal center lies within the segmentation
mask of the layer in question. Finally, we again use the simple
instance grouping at each of the relative occlusion ordering
layers. For all instance-IDs belonging to a layer, we apply
the instance grouping using its amodal instance center and

regression along with the corresponding segmentation mask to
compute the amodal mask. In the end, for each thing object,
we have its unique instance-ID, semantic label, inmodal, and
amodal mask along with stuff class semantic predictions from
the semantic segmentation prediction. We obtain the visible
attribute of the amodal mask directly from the inmodal mask
and obtain the occluded attributes of the amodal mask by
removing the inmodal mask segment from the amodal mask.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the datasets that we benchmark
on in Sec. IV-A and the training protocol in Sec. IV-B. We then
present extensive benchmarking results in Sec. IV-C, followed
by a detailed ablation study on the architectural components
in Sec. IV-D and qualitative comparisons in Sec. IV-E. We use
the standard Amodal Panoptic Quality (APQ) and Amodal Pars-
ing Coverage (APC) metrics [2] to quantify the performance.

A. Datasets
KITTI-360-APS [2] provides amodal panoptic annotations

for the KITTI-360 [23] dataset. It consists of 9 sequences
of urban street scenes with annotations for 61,168 images.
The sequence numbered 10 of the dataset is treated as the
validation set. This dataset comprises 7 thing classes, namely,
car, pedestrians, cyclists, two-wheeler, van, truck, and other
vehicles. Further, the dataset consists of 10 stuff classes. These
stuff classes are road, sidewalk, building, wall, fence, pole,
traffic sign, vegetation, terrain, and sky.

BDD100K-APS [2] extends the BDD100K [24] dataset with
amodal panoptic annotations for 15 of its sequences consisting
of 202 images per sequence. The training and validation set
consists of 12 and 3 sequences, respectively. Pedestrian, car,
truck, rider, bicycle, and bus are the 6 thing classes. Whereas,
road, sidewalk, building, fence, pole, traffic sign, fence, terrain,
vegetation, and sky are the 10 stuff classes

B. Training Protocol
All our models are trained using the PyTorch library on

8 NVIDIA TITAN RTX GPUs with a batch size of 8. We
train our network in two stages, with a crop resolution of
376× 1408 pixels and 448× 1280 pixels for the KITTI-360-
APS and BDD100K-APS datasets, respectively. For each stage,
we use the Adam optimizer with a poly learning rate schedule,
where the initial learning rate is set to 0.001. We train our model
for 300K iterations for the KITTI-360-APS dataset and 70K
iterations for the BDD100K-APS dataset, while using random
scale data augmentation within the range of [0.5, 2.0] with
flipping for each stage. We use N = 8 for relative occlusion
order layers. We first train the model without the amodal mask
refiner, followed by freezing the weights of the architectural
components from the previous stage and train only the amodal
mask refiner.

C. Benchmarking Results
In this section, we present results comparing the performance

of our proposed PAPS architecture against current state-of-the-
art amodal panoptic segmentation approaches. We report the



TABLE I: Comparison of amodal panoptic segmentation benchmarking results on the KITTI-360-APS and BDD100K-APS validation set. Subscripts S and T
refer to stuff and thing classes respectively. All scores are in [%].

Model KITTI-360-APS BDD100K-APS

APQ APC APQS APQT APCS APCT APQ APC APQS APQT APCS APCT

Amodal-EfficientPS 41.1 57.6 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.4
ORCNN [15] 41.1 57.5 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.5
BCNet [18] 41.6 57.9 46.2 34.4 58.1 57.6 45.2 46.4 55.0 30.7 64.7 42.1
VQ-VAE [17] 41.7 58.0 46.2 34.6 58.1 57.8 45.3 46.5 54.9 30.8 64.7 42.2
Shape Prior [16] 41.8 58.2 46.2 35.0 58.1 58.2 45.4 46.6 55.0 31.0 64.8 42.6
ASN [6] 41.9 58.2 46.2 35.2 58.1 58.3 45.5 46.6 55.0 31.2 64.8 42.7
APSNet [2] 42.9 59.0 46.7 36.9 58.5 59.9 46.3 47.3 55.4 32.8 65.1 44.5

PAPS (Ours) 44.6 61.4 47.5 40.1 59.2 64.7 48.7 50.4 56.5 37.1 66.4 51.6

APQ and APC metrics of the existing state-of-the-art methods
directly from the published manuscript [2]. Tab. I presents the
benchmarking results on both datasets.

We observe that our proposed PAPS architecture achieves the
highest APQ and APC scores compared to APSNet and other
baselines on both datasets. The improvement of 1.7%-2.7%
in both the metrics can be attributed to the various proposed
components of our architecture. For stuff segmentation, the
complementary features from the cross-task module aid in better
distinguishing stuff and thing classes, while the high resolution
features with the long-range contextual features help in finer
segmentation of the boundaries. Consequently, we observe an
improvement of 0.7%-1.3% in the stuff components of the
metrics for both datasets. The thing components of the metrics
achieve an improvement of 3.2%-7.1% which can be attributed
to the synergy of several factors. The context extractor and the
cross-task modules provide richer multi-scale representations
along with complementary semantic decoder features. This
enables reliable segmentation of far-away small-scale instances.
Further, the incorporation of local and object-level global
occlusion information from the instance and semantic decoder
heads enables explicit amodal reasoning capabilities. We also
believe that the relative occlusion ordering layers force the
network to capture the complex underlying relationship of
objects to one another in the context of occlusions. Lastly, the
amodal mask refiner module with its transformation of amodal
features with unoccluded object mask embeddings improves
the quality of large occlusion area segmentation as observed
from the higher improvement in APC than the APQ metric.
Overall, PAPS establishes the new state-of-the-art on both the
amodal panoptic segmentation benchmarks.

D. Ablation Study

In this section, we first study the improvement due to
the various architectural components that we propose in our
PAPS and study the generalization ability of the amodal mask
refiner by incorporating it in various proposal-based methods.
We then evaluate the performance of PAPS for panoptic
segmentation and amodal instance segmentation tasks.

1) Detailed Study on the PAPS Architecture: In this section,
we quantitatively evaluate the influence of each proposed
architectural component in PAPS, on the overall performance.
Here, the addition of modules to the architecture of the base
model M1 in the incremental form is performed according
to their description in Sec. III. Tab. II presents results from
this experiment. We begin with the model M1 which employs

TABLE II: Evaluation of various architectural components of our proposed
PAPS model. The performance is shown for the models trained on the
BDD100K-APS dataset and evaluated on the validation set. Subscripts S
and T refer to stuff and thing classes respectively. All scores are in [%].

Model APQ APC APQS APQT APCS APCT

M1 45.6 46.9 55.8 30.4 65.7 42.2
M2 45.9 47.1 55.8 31.0 65.7 42.7
M3 46.1 47.2 55.9 31.3 65.8 42.9
M4 46.3 47.3 55.9 31.9 65.8 43.3
M5 46.7 47.7 56.3 32.4 66.2 43.9
M6 47.4 48.5 56.5 33.7 66.4 45.8
M7 (PAPS ) 48.7 50.4 56.5 37.1 66.4 51.6

a semantic decoder as described in Sec. III-A4 without any
cross-task module and occlusion segmentation head and is
similar to [5] with amodal capabilities. For the instance decoder,
it employs the aforementioned semantic decoder with the
heads described in Sec. III-A5 without occlusion-awareness of
center and thing semantic segmentation. In the M2 model, we
replace the instance decoder architecture with that described
in Sec. III-A5 without the cross-task module and the same
heads as the M1 model. The improvement in performance
shows the importance of multi-scale features from cross-layers
for amodal instance center regression. In the M3 model, we
add the thing segmentation head to the instance decoder whose
output is used during inference as described in Sec. III-A7.
The improvement achieved indicates that the two decoders
capture diverse representations of thing classes which further
improves the performance.

In the M4 model, we add the context extractor module.
The higher increase in APQT compared to APCT indicates
that the multi-scale features obtained from the aggregation
of within-scales and cross-scales layers are much richer in
the representation capacity, thereby improving the detection of
small far away objects. Building upon M4, in the M5 model, we
add the cross-task module. The increase in both stuff and thing
components of the metrics demonstrates that the two decoders
learn complementary features which when propagated bidirec-
tionally is mutually beneficial for each of them. In the M6
model, we add the occlusion segmentation head and occlusion
awareness to the inmodal center prediction head. We observe an
improvement of 1.3%-1.9% in thing components of the metrics
demonstrating that the incorporation of occlusion information
is integral for good amodal mask segmentation. Lastly, in the
M7 model, we add the amodal mask refiner. The substantial im-
provement of 3.4% and 5.8% in APQT and APCT , respectively,
demonstrates the efficacy of our proposed module. We note
that the improvement in APCT is higher than APQT indicating



TABLE III: Evaluation of various propsal-based amodal panoptic segmentation
approaches with our proposed amodal mask refiner. The performance is shown
for the models trained on the BDD100K-APS dataset and evaluated on the
validation set. Subscript T refer to thing classes. All scores are in [%].

Model Amodal Mask Refiner APQ APC APQT APCT

ORCNN [15] 44.9 46.2 29.9 41.4
BCNet [18] 45.2 46.4 30.7 42.1
ASN [6] 45.5 46.6 31.2 42.7
APSNet [2] 46.3 47.3 32.8 44.5

ORCNN [15] X 45.3 46.6 30.9 42.8
BCNet [18] X 46.3 47.8 33.2 46.4
ASN [6] X 46.7 48.1 34.4 47.1
APSNet [2] X 47.5 48.9 35.9 49.2

TABLE IV: Performance comparison of panoptic segmentation on the
Cityscapes validation set. − denotes that the metric has not been reported for
the corresponding method. All scores are in [%].

Network PQ SQ RQ PQT PQS AP mIoU

Panoptic FPN [25] 58.1 − − 52.0 62.5 33.0 75.7
UPSNet [11] 59.3 79.7 73.0 54.6 62.7 33.3 75.2
DeeperLab [21] 56.3 − − − − − −
Seamless [7] 60.3 − − 56.1 63.3 33.6 77.5
SSAP [4] 61.1 − − 55.0 − − −
AdaptIS [3] 62.0 − − 58.7 64.4 36.3 79.2
Panoptic-DeepLab [5] 63.0 − − − − 35.3 80.5
EfficientPS [9] 63.9 81.5 77.1 60.7 66.2 38.3 79.3

PAPS (ours) 64.3 82.1 77.3 60.1 67.3 37.2 80.8

that the increase in segmentation quality of objects with larger
occlusion areas is relatively higher than the smaller areas. This
result precisely demonstrates the utility of our proposed amodal
mask refiner, validating our idea of using embeddings of non-
occluded object masks to supplement the amodal features with
correlation for mid-to-heavy occlusion cases.

2) Generalization of amodal mask refiner: In this section,
we study the generalization ability of our proposed amodal
mask refiner by incorporating it in existing proposal-based
amodal panoptic segmentation approaches. To do so, we adapt
the amodal mask refiner by removing all downsampling layers
in the encoders and upsampling layers from its decoder, to
make it compatible with proposal-based approaches. We add
an occlusion classification branch in the amodal instance head
of all the proposal-based methods similar to ASN [6] and add
another identical amodal mask head. The output of the fourth
layer of the amodal mask head of each method is considered as
the amodal features input. For the non-occluded object features,
we multiply the output of the occlusion classification branch
with the output of the fourth layer of the inmodal mask head.
We feed the amodal features and non-occluded object features
to the amodal mask refiner, followed by concatenating its output
with the amodal features. Subsequently, we feed these concate-
nated features to the newly added amodal mask head. To train
the networks, we use the same two-stage procedure described
in Sec. IV-B and the training protocol described in [2].

Tab. III presents the results from this experiment. We observe
a considerable improvement in the performance of all the
proposal-based methods demonstrating the effectiveness and
the ease of integration into existing architectures. Moreover,
the improvement achieved for APSNet is higher than ORCNN
indicating that the performance can vary depending on the
quality of the inmodal and amodal feature representations in
the network.

TABLE V: Amodal instance segmentation results on the KINS dataset. All
scores are in [%].

Model AmodalAP InmodalAP

ORCNN [15] 29.0 26.4
VQ-VAE [17] 31.5 −
Shape Prior [16] 32.1 29.8
ASN [6] 32.2 29.7
APSNet [2] 35.6 32.7

PAPS (Ours) 37.4 33.1

3) Panoptic Segmentation Results on Cityscapes Dataset:
In this section, we evaluate the performance of our proposed
PAPS for panoptic segmentation on the Cityscapes [26] dataset.
In the architecture, we remove the amodal mask refiner,
occlusion segmentation, amodal center offset, relative occlusion
order segmentation, and amodal center regression heads as they
only contribute to obtaining the amodal masks. We train our
network with a learning rate lr = 0.001 for 90K iterations using
the Adam optimizer. We report the Panoptic Quality (PQ), Seg-
mentation Quality (SQ) and Recognition Quality (RQ) metrics
on the validation set of Cityscapes for single-scale evaluation
in Tab. IV. For the sake of completeness, we also report the
Average Precision (AP), and the mean Intersection-over-Union
(mIoU) scores. We observe that PAPS achieves the highest PQ
score of 64.3% which is 1.3% and 0.4% higher than the state-
of-the-art Panoptic-DeepLab and EfficientPS, respectively. The
improvement achieved over Panoptic-DeepLab demonstrates
the efficacy of our proposed modules and architectural design
choices.

4) Performance on KINS Dataset: We benchmark the per-
formance of our proposed PAPS architecture on the KINS [6]
amodal instance segmentation benchmark. This benchmark
uses the Average Precision (AP) metric for evaluating both
amodal and inmodal segmentation. We train our network with
a learning rate lr = 0.001 for 40K iterations using the Adam
optimizer. We use the same validation protocols as [6]. Tab. V
presents results in which our proposed PAPS outperforms the
state-of-the-art APSNet by 1.8% and 0.4% for amodal AP and
inmodal AP, respectively, establishing the new state-of-the-art
on this benchmark. The large improvement in the AmodalAP
compared to the InmodalAP indicates refining amodal masks
with unoccluded object embeddings is an effective strategy.

E. Qualitative Evaluations

In this section, we qualitatively compare the amodal panoptic
segmentation performance of our proposed PAPS architecture
with the previous state-of-the-art APSNet. Fig. 4 presents the
qualitative results. We observe that both approaches are capable
of segmenting partial occlusion cases. However, our PAPS
outperforms APSNet under moderate to heavy occlusion cases
such as cluttered cars and pedestrians. In Fig. 4(a) the faraway
cars on the right are detected more reliably by our network
along with their amodal mask segmentations demonstrating
the positive effects of within-scales and cross-scales multi-
scale features and the occlusion aware heads. In Fig. 4(b),
our model successfully predicts the amodal masks of heavily
occluded pedestrians and cars. This demonstrates the utility of
our amodal mask refiner module. By relying on the unoccluded
mask features, PAPS is able to make a coarse estimate of



APSNet [2] PAPS (Ours) Improvement\Error Map

(a
)

(c
)

Fig. 4: Qualitative amodal panoptic segmentation results of our proposed PAPS network in comparison to the state-of-the-art APSNet [2] on (a) KITTI-360-APS
and (b) BDD100K-APS datasets. We also show the Improvement\Error Map which denotes the pixels that are misclassified by PAPS in red and the pixels that
are misclassified by APSNet but correctly predicted by PAPS in green.

the object’s amodal masks. Furthermore, PAPS achieves more
accurate segmentation of the challenging thin stuff classes such
as poles and fences.

V. CONCLUSION

In this work, we presented the first proposal-free amodal
panoptic segmentation architecture that achieves state-of-the-
art performance on both the KITTI-360-APS and BDD100K-
APS datasets. To facilitate learning proposal-free amodal
panoptic segmentation, our PAPS network learns amodal center
offsets from the inmodal instance center predictions while
decomposing the scene into different relative occlusion ordering
layers such that there are no overlapping amodal instance masks
within a layer. It further incorporates several novel network
modules to capture within-layer multi-scale features for richer
multi-scale representations, to enable bilateral propagation of
complementary features between the decoders for their mutual
benefit, and to integrate global and local occlusion features
for effective amodal reasoning. Furthermore, we proposed the
amodal mask refiner module that improves the amodal segmen-
tation performance of occluded objects for both proposal-free
and proposal-based architectures. Additionally, we presented
detailed ablation studies and qualitative evaluations highlighting
the improvements that we make to various core network
modules of our amodal panoptic segmentation architectures.
Finally, we have made the code and models publicly available
to accelerate further research in this area.
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In this supplementary material, we provide additional abla-
tion studies on the proposed architectural components and the
illustration of the context extractor module.

S.1. ABLATION STUDY

In this section, we first study the importance of the various
components of our proposed cross-task module. Subsequently,
we study the influence of the number of relative occlusion
ordering layers on the performance of our network. For all the
experiments, we train our PAPS network without the amodal
mask refiner on the BDD100K-APS dataset and evaluate it
on the validation set. We use APQ and APC metrics as the
principal evaluation criteria for all the experiments performed
in this section.

A. Evaluation of the Cross-Task Module

In this section, we evaluate our proposed architecture of the
cross-task module to enable bilateral propagation of features
between the task-specific decoders. For this experiment, we
use the PAPS architecture without the amodal mask refiner,
similar to model M6 in Sec. IV-D. Tab. S.1 presents results
from this experiment. We begin with model M61 which does
not use the cross-task module. In model M62, we concatenate
outputs of the opposite decoder as FO. For the instance decoder,
FO = FS where FS are the output features of the semantic
decoder. For the semantic decoder, FO = FI where FI are the
output features of the semantic decoder. The improvement in the
performance shows the utility of propagating features between
the task-specific decoders. In the model M63, we define FO as
the summation of the task-specific decoder features given as

FO = FI + FS . (1)

We observe a drop in performance for model M63 compared
to both model M61 and model M62 indicating that the use of
summation fails to capture complementary features and at the
same time affects learning the relevant primary features of the
decoders themselves. In model M64, we employ self-attention
given by

FR = FI + FS , (2)
FO = g3(FR) · FR, (3)

where g3(·) is the function to compute the confidence scores
of FR. This model achieves improved performance over both
model M62 and model M63 demonstrating that the attention

TABLE S.1: Ablation study on various configurations of our proposed cross-task
head. The performance is shown for the models trained on the BDD100K-APS
dataset and evaluated on the validation set. Subscripts S and T refer to stuff
and thing classes respectively. All scores are in [%].

Model APQ APC APQS APQT APCS APCT

M61 46.9 48.1 56.1 33.2 66.0 45.2
M62 47.0 48.1 56.2 33.3 66.1 45.3
M63 46.7 48.0 55.9 32.9 65.9 45.1
M64 47.1 48.2 56.3 33.4 66.3 45.4
M65 47.0 48.1 56.2 33.3 66.1 45.3
M66 47.1 48.2 56.3 33.4 66.3 45.4
M67 47.4 48.5 56.5 33.7 66.4 45.8

mechanisms are beneficial for learning complementary features.
As a next step, we employ self-attention to each individual
task-specific decoder features in model M65 and define FO as

FO = g1(FI) · FI + g2(FS) · FS , (4)

where g1(·) and g2(·) are the functions to compute the
confidence scores. Model M65 achieves a score lower than
Model M64 and similar to Model M62. This indicates that
applying self-attention to each input of the cross-task module
effectively reduces them to be similar to a summation operation.
Hence, in Model M66, we employ cross-attention in FO as
follows

FO = (1− g1(FS)) · FI + (1− g2(FI)) · FS . (5)

This model achieves a performance similar to Model M64
demonstrating that cross-attention is equally important as self-
attention. Lastly, we use our proposed cross-attention followed
by self-attention cross-task configuration (Eq. (1) and Eq. (2)),
which yields the highest overall improvement. Consequently,
from this experiment, we infer that cross-attention enables
learning of adaptive complementary decoder features, whereas
the following self-attention enables enhancement of these highly
discriminative complementary features.

B. Detailed Study on the Relative Occlusion Ordering Layers

In this section, we study the effects of the number of relative
occlusion ordering layers on the performance of our proposed
architecture. Similar to Sec. S.1-A, for this experiment we
use the PAPS architecture without the amodal mask refiner
module. Tab. S.2 shows results from this experiment. We begin
with N = 4 where N is the number of relative occlusion
ordering layers. The model achieves an improved score of
45.4% and 46.6% in APQ and APC, respectively compared to
the baselines. This indicates that with four relative occlusion
ordering layers, we can encapsulate sufficient object instances
present in a given scene. Next, we use N = 6 and obtain a



TABLE S.2: Influence on varying the number of layers of the relative occlusion
ordering layers. The performance is shown for the models trained on the
BDD100K-APS dataset and evaluated on the validation set. N is the number
of layers, subscripts S and T refer to stuff and thing classes respectively. All
scores are in [%].

N APQ APC APQS APQT APCS APCT

4 45.4 46.6 56.1 29.3 65.9 41.1
6 46.8 47.8 56.3 32.6 66.2 44.3
8 47.4 48.5 56.5 33.7 66.4 45.8
10 47.4 48.5 56.5 33.7 66.4 45.8
12 47.4 48.5 56.5 33.7 66.4 45.8

Fig. S.1: Topology of our proposed context extractor module.

significant improvement in the thing components of the metrics.
Subsequently, we train the model with N = 8 which yields a

lower performance in the metrics compared to N = 6. This
indicates that N = 6 covers the majority of object instances
in a given scene throughout the dataset. We then train the
network with N = 10 and N = 12. These models do not
achieve any improvement over the model with N = 8 layers
demonstrating that with eight relative occlusion ordering layers,
we can encapsulate the maximal number of object instances in
the dataset.

S.2. CONTEXT EXTRACTOR

Our proposed context extractor module enriches cross-scale
features with within-scale contextual features, resulting in a
rich multi-scale representation. This yields an improvement in
performance for the instance decoder of our PAPS architecture
as shown in Sec. IV-D-B. Fig. S.1 illustrates the architecture
of the context extractor module. It splits the input into
two parallel branches and employs two 1 × 1 convolutions.
One of the branches is further subdivided into two parallel
branches. Here, each branch uses a 3 × 3 depth-wise atrous
separable convolutions with a dilation rate of (1, 6) and (3, 1),
respectively. These branches are again subdivided into two
parallel branches each. In each of these two parallel branches,
one branch employs a global pooling layer. Finally, all the
outputs of the remaining parallel branches are concatenated.
Please note that each of the convolutions is followed by batch
normalization and ReLU activation function.
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