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Abstract— Accurate localization is a critical requirement for
most robotic tasks. The main body of existing work is focused
on passive localization in which the motions of the robot are
assumed given, abstracting from their influence on sampling
informative observations. While recent work has shown the
benefits of learning motions to disambiguate the robot’s poses,
these methods are restricted to granular discrete actions and
directly depend on the size of the global map. We propose Active
Particle Filter Networks (APFN), an approach that only relies
on local information for both the likelihood evaluation as well as
the decision making. To do so, we couple differentiable particle
filters with a reinforcement learning agent that attends to the
most relevant parts of the map. The resulting approach inherits
the computational benefits of particle filters and can directly act
in continuous action spaces while remaining fully differentiable
and thereby end-to-end optimizable as well as agnostic to the
input modality. We demonstrate the benefits of our approach
with extensive experiments in photorealistic indoor environ-
ments built from real-world 3D scanned apartments. Videos and
code are available at http://apfn.cs.uni-freiburg.de.

I. INTRODUCTION

The ability of a robot to accurately localize itself is
a core requirement across almost all robotic tasks from
navigation [1], [2] to mobile manipulation [3], [4], [5].
Accordingly, a broad body of research has been devoted to
this topic. The by far most common approach is to first define
an initial guess of the robot’s pose, then manually move the
robot until the localization algorithm has roughly converged
and continue to constantly localize the robot while it executes
its tasks. This is known as passive, local localization.

Most localization algorithms rely on a form of feature
matching between the current observations and a given (2D)
map of the environment. As such their performance strongly
depends on the current observations, which in turn are
decided by the robot’s motions which decide what parts
of the map will be observed. But the ability to sample
informative observations has remained largely unexplored. In
this work, we investigate the benefits of active localization,
in which the robot can actively seek observations that are
most informative of its current pose in the environment.
Furthermore, the agent can counteract the strengths and
weaknesses of particular localization modules by actively
avoiding ambiguous situations and failure modes of the
localization module.

Previous work has extended Adaptive Markov Localiza-
tion to active control by greedily maximizing information
theoretic quantities [6], [7], but for the most part, remained
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Fig. 1: To localize itself, a robot has to match its observations with a given
map of the environment. To distinguish ambiguous poses requires to find
observations that maximally disambiguate among the true pose given the
robot’s belief over its current pose. To do so, certain trajectories through the
apartment reveal clearly more information than others. We propose Active
Particle Filter Networks which combines learned particle filters with active
decision making to sample the most informative observations.

restricted to analytical observation models and structured
observations. More recently, learning-based methods have
shown the benefits of active decision making for localiza-
tion [8], [9], though have remained constrained to simple
environments [8] or discrete actions and small maps [9],
having to process the global map at every possible orientation
of the agent at each step.

We present an approach that couples probabilistic and
learning-based methods through learned particle filters [10]
and deep reinforcement learning (RL) to generalize to con-
tinuous action spaces and arbitrary sensor modalities inde-
pendent of map size. Particle filters [11] enable efficient
representation of multi-modal beliefs over large maps. These
mechanisms can be made fully differentiable [10], [12],
enabling us to learn the components of a particle filter end-
to-end, thereby extending it to abstract observations such as
pixels or depth maps. Importantly, these networks only need
to process local information for each particle. We then train a
reinforcement learning agent that selects actions to minimize
the overall localization error, following the same principle
of processing only local information over the most likely
hypotheses through a hard attention mechanism. In contrast
to previous work, this enables us to process hypotheses over
continuous poses [8], [9] while at the same time breaking
the dependency on processing the full map with a neural
network.
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We evaluate our approach in extensive photorealistic
scenes of real-world 3D scanned apartments from the gibson
dataset [13] in the iGibson simulator [14] and find substan-
tial improvements in localization error over the baselines,
demonstrating the benefits of the learned policy.

To summarize, this work makes the following main con-
tributions:
• We leverage the combination of probabilistic principles

with learned methods to achieve a very flexible and fully
differentiable approach for active localization which
does not depend on a specific sensor modality.

• We break the dependency of learning-based approaches
on action granularity and map size, enabling the ap-
proach to work in continuous action spaces and arbitrary
map sizes.

• We demonstrate the benefits of this approach in large
photo-realistic indoor environments built from real-
world 3D scanned apartments.

• We make the code publicly available at http://
apfn.cs.uni-freiburg.de.

II. RELATED WORK

Localization is a well studied field with a long-standing
history. In the following, we discuss both passive and active
localization methods which have been tackled using classical
and learning-based techniques.

Passive Localization: A large number of established local-
ization approaches rely on Bayesian filtering-based tech-
niques. These include methods based on Kalman filters [15]
which are restricted to modeling unimodal (Gaussian) be-
liefs, Multi-Hypothesis Kalman filters that use mixtures of
Gaussians [16] and non-parametric particle filters which can
model arbitrary distributions. Particle filters are widely used
in methods such as Monte Carlo Localization and Adap-
tive Monte Carlo Localization (AMCL) [11]. Though these
methods usually rely on structured observations and analytic
observation models and therefore are most commonly used
with LiDAR observations. While there are approaches that
incorporate depth or camera images [17], [18], construct-
ing observation models for them is extremely challenging.
Recently, fully differentiable versions of particle filters have
been introduced [10], [12]. These fully differentiable versions
enable the use of arbitrary modalities through end-to-end
optimization. LASER extends MCL with learned circular
features and rendering in latent space [19]. Learning-based
methods have also been proposed to extract explicit features
such as room layout edges [20] or to estimate odometry
directly from visual inputs [21], [22].

Active Localization: Active localization has received com-
parably little attention in the past. Active versions of both
Markov Localization [6], [7] and Kalman filters [23] have
been proposed. These methods inherit the need for structured
observations or expert-specified observation models and as
such cannot easily incorporate contextual clues or high-
dimensional observations. Their objectives are to maximize
information theoretic quantities such as the reduction in

entropy of the belief. Chaplot et al. [8] introduce a learnable
Bayesian filtering approach in combination with reinforce-
ment learning. While they are able to learn good active
policies, the model relies on access to observations from
across the environment to compute features ahead of time
and at each step has to process the full map for every
possible discrete orientation. As a consequence, the approach
does not easily generalize to different map sizes at test
time and does not scale well to large maps or continuous
actions. Gottipati et al. [9] introduce a hierarchical likelihood
model in which the full map only has to be processed at
a coarse resolution and only likely areas are processed at
higher resolutions. Nonetheless, the dependency on the map
size remains and only discrete actions can be evaluated. For
both approaches, the dimensionality of the reinforcement
learning agent’s inputs scales linearly with the discretization
of the rotation actions. In contrast, our approach never has to
process the full map with a neural network and can directly
evaluate continuous poses and actions.

Active SLAM: In simultaneous localization and mapping both
information gain objectives [24], [25] and reinforcement
learning based approaches [26], [27] have been used to
control a robot while performing both the mapping and lo-
calization. In contrast to active localization, these approaches
do not have access to the prior knowledge of the map to steer
the robot towards informative states [28].

III. ACTIVE PARTICLE FILTER NETWORKS

We propose Active Particle Filter Networks (APFN) con-
sisting of two modules: a learned particle filter network main-
taining a distribution over the current belief of the robot’s
pose and a reinforcement learning agent taking decisions
based on the current observations and belief. An overview
of our approach is depicted in Figure 2.

In the following, we will define the active localization task
that we aim to solve and then introduce our approach.

A. Problem Statement

We assume a mobile robot that receives exteroceptive
sensor readings senst and proprioceptive odometry measure-
ments mt, placed randomly in an environment. Given a map
M of the environment, we seek the sequence of actions a1:T
that minimizes the pose error of the robot over a fixed time
horizon T . We may be given an initial guess of the initial
pose of the robot (local localization) or have to start from a
uniform belief over the full map (global localization).

B. Localization Module

The robot starts with an initial belief b0, either uniformly
distributed over the map or based on an initial guess. Given
the current observation ot = [senst,mt], we then use a
differentiable particle filter network (PF-net) [10] to update
the current belief over the robot’s pose. PF-net uses neural
networks to present the observation and transition model of a
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Fig. 2: Overview of the proposed Active Particle Filter Networks. Given the robot’s observations, the PF-net updates the belief over the current pose of
the robot, modeled as a particle distribution. This distribution is then projected into a belief map over the environment. The RL agent attends to the local
regions across the most likely hypotheses as well as the raw robot observations and produces actions at to move the robot’s base, which then result in the
next sensory observations for the PF-net.

particle filter. By using a soft-resampling, where new particle
weights w

′k
t of K particles are sampled from a distribution

q(k) = αwkt +
(1− α)
K

(1)

the gradients are non-zero for values of α 6= 1, enabling
us to optimize through the whole network. The observation
model calculates the likelihood fkt of a particle based on an
encoding of the current sensor readings and particle-centric
local map which is extracted from the global map through
a differentiable spatial transformer module [29]. As a result,
the likelihood of each particle can be evaluated based on
local information without the need to process the full global
map.

This provides a number of advantages for active local-
ization: (i) the network is fully differentiable and thereby
can be jointly optimized with deep reinforcement learning
algorithms, (ii) it is flexible to arbitrary robot sensors, making
it applicable to a wide range of robotic platforms and (iii) it
can handle continuous actions and arbitrary map sizes.

The model is trained end-to-end to minimize the mean
squared pose error

Lpfnet =
∑
t

(x̂t − x∗t )2 + (ŷt − y∗t )2 + β(φ̂t − φ∗t )2, (2)

where x̂, ŷ, φ̂ and x∗, y∗, φ∗ are estimated and ground-truth
pose of the robot and β is weighting term. We follow the
architecture of the original work [10] which uses convolu-
tional encoders for both the raw observations and the local
maps, then process the concatenated features with a stack of
locally fully-connected and fully-connected layers.

C. Active Localization

We aim to learn a policy to move the agent such that, given
the current belief about the robot’s pose and the localization

module, it can best disambiguate the true pose. The agent
is operating in a Partially Observable Markov Decision Pro-
cess (POMDP) M = (S,A,O, T (s′|s, a), P (o|s), r(s, a))
where S,O and A are the state, observation and action
spaces, T and P describe the transition and observation
probabilities, and r and γ are the reward and discount
factor. The agent’s objective is to learn a policy π(a|·) that
maximises the expected return Eπ[

∑T
t=1 γ

tr(st, at)].

Belief Representation: As the ground truth robot pose is
not directly observable, the agent has to act based on its
current belief over the state. The PF-net provides us with a
multi-modal belief bt over the global map, represented by the
particle state. We transform this into a spatial, permutation
invariant representation by projecting the particles into a
belief map of dimension H × W × 4 where H and W
are the height and width of the global map and the first
channel is the occupancy map, the second channel is the
aggregated weights for all particles in a given cell and the
third and fourth channel are the weighted sine and cosine of
all particles in a given cell. The sine and cosine are used to
circumvent the non-linearity in the angles.

Agent: We propose a reinforcement learning agent that ob-
serves both its current belief together with the low-level robot
observations and learns a policy π(at|bt, ot; l) where l is the
localization module. This allows it to improve the localiza-
tion in two ways: (i) actively sample the most informative
sensor readings and (ii) take into account the localization
module’s strengths and weaknesses, e.g. avoid observations
where the localization module does not perform well.

While the belief stretches the full map, we find that within
very few steps the particles concentrate on a small number
of most likely regions. As such we apply the principle of
local information to break the dependency on the full map.
To do so, we extract local maps around the modes of the
particle distribution from the belief map. The agent then



Parameter PF-net RL

Train steps 400,000 1,000,000
batch size 8 256
lr 2.5e−3 3e−4
resample false true
α – 0.5
β 0.36 0.36
T 25 50
particles 30 500
initial distribution tracking semi-global
initial std translation 0.3 0.3
initial std angular π/6 π/6
transition noise translation 0.0 0.01
transition noise angular 0.0 π/36
control frequency 1.7Hz 1.7Hz
τ – 0.005
γ – 0.99
replay buffer size – 50,000
entropy coefficient – learned
λcollision – 0.1

TABLE I: Training hyperparameters for the PF-net (left) and the reinforce-
ment learning agent (right).

observes a stack of k local belief maps, each centered and
oriented according to a mode of the distribution. This is
akin to a hard attention mechanism, which can be made
fully differentiable if desired [30]. In practice, we find that
just using the mean position and orientation of the particles
works well, but extending this to cover the top k modes is
straightforward. In contrast to previous work, this allows us
to process and generalize to arbitrary map sizes and arbitrary
continuous poses and actions.

The agent is trained to directly minimize the prediction
error of the localization network. At each step, it receives a
reward

r = −Lpfnet − λcollision ∗ 1collision, (3)

where Lpfnet is the prediction loss of the PF-net, 1collision
is a binary collision indicator and λcollision is a weighting
constant. The agent has a fixed number of environment steps
to localize itself, after which the episode terminates.

Training: While the approach is fully differentiable and can
be optimized end-to-end, we find it beneficial to pretrain
the localization network for better stability. Though joint
finetuning may be able to further improve results. For
pretraining we use a goal-reaching agent (see Section IV-A
for details) to collect a dataset of 4,000 episodes of
length 25 and then perform supervised training following
Karkus et al. [10], using a tracking task with only 30
particles. We train the RL agent with soft-actor critic (SAC)
[31], which has been shown to produce strong policies in
continuous control and robotics tasks. Hyperparameters for
all components are reported in Table I.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approach, we perform
extensive experiments in photorealistic indoor environment.
With these experiments we aim to answer the following
questions:

• Does the PF-net localization module scale to complex,
photorealistic indoor environments and generalize to
unseen apartments in these settings?

• Does our proposed approach learn to localize itself in
both seen and unseen apartments and across different
tasks from local to global localization?

• Is the learned policy able to find trajectories that achieve
better localization than alternative control policies?

A. Experiment Setup

To evaluate our approach, we train a LoCoBot robot in the
photorealistic iGibson simulator [14]. The LoCoBot robot
has a differential drive and is equipped with an RGB-D
camera with a field-of-view of 90° and a maximum depth
of 10m as well as a LiDAR with a range of 240°. The
action space consists of the linear and angular velocities for
the base. We use a subset of 45 apartment scenes from the
gibson dataset [13], split into 38 training and 7 unseen test
apartments. The test apartments are completely unseen by
both the PF-net and the RL agent.

Baselines: To evaluate the policy of the reinforcement learn-
ing agent, we compare our approach against the following
baselines:

• Avoid: A simple heuristic policy that drives forward
until its depth camera recognizes a close object. We
divide the depth image into four horizontal quarters and,
depending on in which quarter of the depth image the
close object is, drive backwards or turn away from the
obstacle.

• Goalnav: A policy that navigates towards a random
target in the environment. It uses a path-planner based
on access to the ground truth traversability map and
robot pose to reach this goal.

• Turn: An agent that always turns in place at maximum
angular velocity.

Tasks: We focus on three localization tasks, ranging from
local to global localization. These are

• Tracking: the initial particles are sampled from a multi-
variate Gaussian distribution with a standard deviation
of 0.3m and 30° and centered at a random pose sampled
with the same standard deviations around the ground
truth robot pose. The PF-net uses 300 particles.

• Semi-global localization: We uniformly sample 500
particles from a box of 3.3×3.3m around the initial
guess.

• Global localization: We sample 3,000 particles uni-
formly across the traversable area of the whole map.

Metrics: We report the root mean squared positional error in
centimeters and root mean squared angular error in radians,
referred to as position and orient in the tables. All metrics
are averaged over 50 episodes.



Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Modality position orient position orient position orient position orient position orient position orient

LiDAR 20.8 0.13 27.2 0.21 111.4 0.33 18.9 0.12 23.7 0.16 141.2 0.38
RGB-D 24.8 0.15 30.2 0.20 126.6 0.30 24.5 0.16 29.2 0.18 144.1 0.34

TABLE II: Passive localization results on the iGibson dataset for different localization tasks. We report the average root mean squared positional error in
centimeter (position) and the root mean squared orientation error of the robot’s yaw in radians (orient). Evaluated with the pretraining settings for T = 25
timesteps.

Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Agent position orient position orient position orient position orient position orient position orient

Goalnav 16.8 0.12 18.2 0.12 99.3 0.24 14.9 0.11 21.4 0.15 113.3 0.21
Avoid 15.8 0.13 22.4 0.15 152.0 0.32 15.8 0.12 33.5 0.19 162.9 0.29
Turn 11.8 0.80 14.6 0.09 103.1 0.30 13.9 0.10 19.8 0.12 115.9 0.31
APFN (ours) 13.4 0.10 11.7 0.08 74.8 0.16 11.1 0.08 16.3 0.11 63.3 0.17

TABLE III: Active localization results in the iGibson simulator in seen and unseen apartments. The localization module is based on LiDAR occupancy
maps. We report the average root mean squared positional error in centimeter (position) and the root mean squared orientation error of the robot’s yaw in
radians (orient).

Fig. 3: Examples for the tracking (top), semi-global (mid) and global (bottom) localization tasks. Left: the initial particle distribution, second from left:
the global map and trajectory of the agent. Green arrows denote the estimated poses and red the ground truth poses at each step. Circles denote the final
estimated and ground-truth poses. Third from left to right: the local belief map observed by the RL agent, the current observations: occupancy grid, RGB
and depth.

B. Passive Localization

The original PF-net model has focused on evaluation in
the simpler, static House3D dataset [32]. We implement
a version of this model based on the author’s code for
the iGibson simulator and evaluate it on scenes from the
photorealistic gibson dataset, which are based on real-world
3D scans of apartments. We report the results for passive
localization for different modalities based on the goalnav
agent that collected the training data in Table II. LiDAR

scans are converted to occupancy maps in which 0 is free
space, 1 unexplored, and 2 occupied.

We find that the PF-net performs well in these more
complex scenes, achieving a positional error of around 20-
25 cm for tracking, which, for both modalities, is actually
lower than the 40−49 cm error reported on the House3D
dataset [10]. Moreover, the network generalizes well to un-
seen apartments, showing no significant generalization gap.
Even though the field-of-view of the RGB-D camera is much
smaller than what the LiDAR can sense, both modalities



achieve relatively similar performance, highlighting that the
network is able to extract rich information in the complex
pixel observations.

C. Active Localization

For active localization, we focus on the best performing
LiDAR modality. The RL agent observes the robot state con-
sisting of current forward and angular velocities, a collision
flag, and the remaining steps in the episode together with
the occupancy map from the LiDAR and the local belief
map. To ensure it can learn full obstacle avoidance, it also
receives the RGB-D observations. The policy consists of
a shared feature encoder, made up of three convolutional
networks, one for RGB-D and one for the occupancy map.
Each network consists of layers with (channels, kernel size,
stride) of [(32, (3, 3), 2), (64, (3, 3), 2), (64, (3, 3), 1), (64,
(2, 2), 1)]. These features are then concatenated with the
robot state and passed to the actor and critic, consisting of a
two-layer MLP with 512 neurons. All intermediate layers are
followed by ReLU activations. All pixel-based observations
are of size 56 × 56. While we train the PF-net on ground
truth odometry data, during the policy training we add zero-
centered Gaussian noise with standard deviation of 1 cm and
5° to the transitions. We train the policy with 500 particles
and at test time evaluate with varying numbers of particles
as defined for the different tasks.

Table III reports the results for the active localization
tasks for both seen and unseen apartments. First of all, we
find large differences in localization performance across the
different motion models. This highlights the strong depen-
dence on the robot’s movements and confirms the importance
of active decision making for globalization. We find that
the reinforcement learning agent consistently achieves the
best localization across all tasks. The only exception is
the positional error in the tracking task, in which the turn
policy achieves a very low positional error, but suffers from
a large angular error. Note that in this task the initial
particle distribution is already fairly accurate, as such it may
actually be beneficial to remain in place. Moreover, the agent
successfully generalizes to unseen apartments. Note that
these apartments have not been seen by both the RL agent
and the localization module. To succeed in these apartments,
the agent has to learn general movement patterns and the
ability to seek out informative regions. Lastly, we find that
differences in localization performance are particularly large
in the global localization task with our approach reducing the
positional error by over 60% in comparison to other motions.
This is expected as in global localization we have the least
amount of prior information about the robot’s pose.

Qualitatively we find that the reinforcement agent per-
forms targeted movements through the room with frequent
rotations which reveals a large area of the apartments and
is aligned with the strong performance of the turn baseline.
Examples of the agent’s trajectories and inputs are shown in
Figure 3 and in the accompanying video.

V. CONCLUSION

In this work, we introduce Active Particle Filter Networks
which combines probabilistic filtering methods with learned
decision making to accurately localize a robot in realistic
indoor environments. In contrast to previous methods, our
approach scales to continuous action spaces and arbitrary
map sizes by selectively attending to only local information.
In extensive experiments, we evaluate this ability in pho-
torealistic indoor environments and find that it is able to
accurately localize itself in both seen and completely unseen
apartments. The learned policy considerably outperforms the
baselines, demonstrating strong improvements in localization
performance by sampling informative observations.

In future work, we aim to extend the approach to si-
multaneously control sensors such as actuated cameras,
which promises to benefit even more from active perception.
Another promising avenue is the extension of learning-
based localization and attention mechanisms to dynamic
environments and noisy, partial or incorrect maps in which
it becomes important to selectively filter out uncertain or
incorrect observations. Lastly, the trade-off between active
localization and other task objectives is an exciting direction
for future work.
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