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Abstract

Transformers in their common form are inherently limited to operate on whole
token sequences rather than on one token at a time. Consequently, their use
during online inference on time-series data entails considerable redundancy due
to the overlap in successive token sequences. In this work, we propose novel
formulations of the Scaled Dot-Product Attention, which enable Transformers
to perform efficient online token-by-token inference on a continual input stream.
Importantly, our modifications are purely to the order of computations, while the
outputs and learned weights are identical to those of the original Transformer
Encoder. We validate our Continual Transformer Encoder with experiments on
the THUMOS14, TVSeries and GTZAN datasets with remarkable results: Our
Continual one- and two-block architectures reduce the floating point operations
per prediction by up to 63× and 2.6×, respectively, while retaining predictive
performance.

1 Introduction

Many real-life usage scenarios such as the perception in self-driving cars and live monitoring of
critical resources process a continual stream of inputs and require near-instantaneous predictions per
time-step. This stands in contrast to what many common benchmarks for deep learning evaluate,
namely the operation on distinct batches of data with no inter-batch relationships. Consequently, a
plethora of methods have been developed [1, 2, 3, 4, 5, 6, 7, 8], which focus on batch-wise processing,
but fail to optimise for online operation, where new information (e.g., a video frame / token) arrives
at each step from a continual input stream, and future information is not available at the current
time-step. We need a class of networks, which operate efficiently on both batches of data and on
continual streams.

Accordingly, we propose a reformulation of the Transformer Encoder as a Continual Inference
Network (CIN, Section 2.1) which accelerates the stream processing on time-series data, while
retaining weight-compatibility. Specifically, we derive two variants of Continual Scaled Dot-Product
Attention (SDA) for the cases where prior output tokes should and should not be updated after
observing a new input token. Notably, our attention formulations reduce the per-step cost of SDA [6]
from time complexity O(n2d) to O(nd) and memory complexity O(n2) to O(nd) and are readily
embedded into Continual Multi-Head Attention (MHA) and Continual Transformer Encoder blocks.
Finally, we propose the use of Recycling Positional Encoding to accommodate progressive caching
of partial attention results for continual data streams.

Due to the interdependence of SDA outputs, Continual Transformers are most efficient for shallow
architectures. Shallow Transformers have many applications such as augmentations of CNNs [9],
light-weight Natural Language Processing [10], fusion operations in multi-modal (e.g. audio-visual)
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Figure 1: Multi-block Continual Transformer Encoder with Recycling Positional Encoding.
For b > 2 blocks, regular Transformer Encoder blocks can be added between an initial Continual
Retroactive block and a final Single-Output block. A class-token may be used after the initial block.

settings [11] and early exit branches in multi-exit architectures [12, 8]. In our experiments1, we
validate their exceptional efficiency improvements on common benchmarks in Online Action Detec-
tion [13] and Online Audio Classification [14].

2 Related Work

2.1 Continual Inference Networks

Definition (Continual Inference Network). A Deep Neural Network, which
• is capable of continual step inference without computational redundancy,
• is capable of batch inference corresponding to a non-continual Neural Network,
• produces identical outputs for batch- and step inference given identical receptive fields,
• uses one set of trainable parameters for both batch and step inference.

These requirements ensure that a Neural Network has broad applicability for both (offline) batch-wise
inference (i.e., most research benchmarks) and online stream processing. While non-CINs can
operate on streams of data by caching prior steps in a first-in first-out (FIFO) queue and aggregating
them to a full (spatio-)temporal input, which is processed similarly to an offline batch, this entails
computational redundancy in proportion with the sequence length. CINs perform step-wise inference
without such caching and repeat computation. Uni-directional Recurrent Neural Networks are an
example of Continual Inference Networks. Their default mode of operation is by time-step and
they are easily applied to spatio-temporal batches of data by concatenation of the step-wise outputs.
Recently, a modification to the spatio-temporal 3D convolution was proposed [15], which enables
existing 3D CNNs to operate efficiently during continual inference. A similar principle was used to
enhance Spatio-temporal Graph Convolutions as well [16]. In Section 3, we derive a CIN formulation
for Transformer Encoders.

2.2 Transformer architectures

Initially proposed for sequence-to-sequence modelling in Natural Language Processing, the Trans-
former [6] has become a canonical building block in many applications of Deep Learning, including
Computer Vision [17, 7, 18, 19] and Audio Classification [20]. Their success can be partly attributed
to reduced inductive bias compared with CNNs and RNNs, which allows better adaptations when
sufficiently large datasets are available; the Scaled Dot-Product Attention (SDA) maps a set of input
tokens to a set of outputs without inherent preconceptions. However, this many-to-many attention
exhibits quadratic growth in time and space complexity with the token count n in the set.

A great deal of research has sought to improve the efficiency of Transformers [21]. Block-wise or
Chunking methods such as Image Transformer [22] and Vision Transformer [17] group up entities of a

1Source is code provided in supplementary material. Link will be made available upon acceptance.
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local receptive field into a single block, reducing theO(n2) complexity toO(n2b), where nb < n is the
number of blocks. Techniques such as sliding windows, dilation and pooling can be used to achieve a
similar effect [23]. The Reformer [24] reduces the complexity to O(n log n) by learning groupings
in a data-driven manner via Locality-Sensitive Hashing (LSH). A different paradigm aims to derive
approximations of the self-attention matrix. Methods such as Linformer [25], Nyströmformer [26]
and Performer [27] reduce the complexity from O(n2) to O(n). Unlike these efforts, our approach
produces the exact same computational outputs for temporal sequences as the original Multi-Head
Attention.

3 Continual Transformers

The Scaled Dot-Product Attention (SDA) is central to the Transformer. Consider the case, where the
query, key and value inputs to the SDA constitute a continual stream of d-dimensional tokens and
we wish to compute the outputs for each step immediately considering n− 1 prior tokens. Let us
examine three SDA implementations and derive the complexity of each.

3.1 Regular Scaled Dot-Product Attention

Denoting query, key, and value sequence matrices by Q,K,V ∈ Rn×d, the regular Scaled Dot-
Product Attention first defined by Vaswani et al. [6] can be written as:

Att(Q,K,V) = D−1AV A = exp
(
QK>/

√
d
)

D = diag
(
A1>n

)
, (1)

where A,D ∈ Rn×n and 1n is a row-vector of n ones. In each time-step, we can update Q, K, and
V by discarding their oldest token and prepending a new one in a FIFO manner. This is a common
implementation for step-wise inference, e.g. found in the FAIRSEQ library [28].

Each time-step results in 2n2d+2ndmultiplications, 2n2d−nd−n additions, and n2 exponentiations
as accounted for in Appendix A.1, which amounts to a time complexity of O(n2d) and a O(n2)
memory complexity originating from the transient feature-map A. Furthermore, a constant-sized
cache of size 3(n− 1)d is needed to store the n− 1 latest tokens in Q, K and V. We could avoid
considerable redundancy by caching QK> directly. However, this comes with a memory penalty of
(n− 1)2. Fortunately, another computational scheme can be devised.

3.2 Continual Retroactive Scaled Dot-Product Attention

We can compute D−1AV in a step-wise manner using the latest query, key, and value steps,
qnew,knew,vnew ∈ R

1×d, alongside appropriately cached partial results. The softmax normali-
sation with D−1 can be efficiently implemented via column-aligned element-wise multiplications
(denoted by � hereafter) of a column-vector d = A1>n . If we cache the n− 1 values for the prior
step tokens, i.e. dmem = A

(−n+1:−1)
prev 1

>
n−1, alongside Q and K, we can define the step update as:

d(−n+1:−1) = d(−n+2:0)
mem − exp

(
Qmemk

>
old

)
+ exp

(
Qmemk

>
new

)
(2)

d(0) = exp
(
qnew√
d

(Kmem ‖ knew)
>
)
1
>
n , (3)

where Qmem (Kmem) are the n− 1 prior query (key) tokens, kold is the key from n steps ago, and ‖
denotes concatenation of matrices along the first dimension. Negative indices indicate prior time-steps.
An update for AV can likewise be defined as a function of the n− 1 prior values AVmem:

AV(−n+1:−1) = AV(−n+2:0)
mem − exp

(
Qmemk

>
old

)
vold + exp

(
Qmemk

>
new

)
vnew (4)

AV(0) = exp
(
qnew√
d

(Kmem ‖ knew)
>
)
(Vmem ‖ vnew) . (5)

Finally, we compute the Continual Retroactive Attention output in the usual manner:
CoReAtt(qnew,knew,vnew) = d−1 �AV. (6)

An visual depiction of these update steps is provided in Appendix A.2. A time-step can now be
computed with 7nd+2n−3d multiplications, 6nd+3n−6d−3 additions, and 3n−2 exponentials.
This time complexity ofO(nd) per step and aO(nd) memory complexity is a significant improvement
over the prior O(n2d) and O(n2) complexities in Section 3.1.
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3.3 Continual Single-Output Scaled Dot-Product Attention

Both the Regular and Continual Retroactive Dot-Product Attentions produce attention outputs for
the current step, as well as n− 1 retroactively updated steps. In cases where retroactive updates are
not needed, we can simplify the computation greatly via a Continual Single-Output Dot-Product
Attention (CoSiAtt). In essence, the regular SDA is reused, but prior values of k and v are cached
between steps (as in [28]), and only the attention corresponding to a single query token q is computed:

CoSiAtt(q,knew,vnew) = a (Vmem ‖ vnew) /a1
>
n , a = exp

(
q√
d
(Kmem ‖ knew)

>
)
. (7)

A step output is computed with 2nd+ 2d multiplications, 2nd− d− 1 additions, and n exponentials.
The time- and memory complexities remain O(nd) per step. Using the (leading) query qnew as input,
the attention is purely causal. Alternatively, prior (lagging) query vectors could be cached and used
as query input, though this would introduce a network delay.

3.4 Comparison of Scaled Dot-Product Attentions

Assuming n− 1 prior q, k and v steps have been calculated by the Continual SDA modules, and that
Q = (Qmem ‖ qnew), K = (Kmem ‖ knew), and V = (Vmem ‖ vnew), we have the correspondence:

Att(Q,K,V)(t) = CoReAtt(qnew,knew,vnew)
(t) = CoSiAtt(qt,knew,vnew) (8)

Here, qt is the tth row of Q, i.e. Q(t). During stream processing, the complexity of the Continual
Retroactive SDA scales significantly more favourably that the regular SDA. For example, the floating
point operations (FLOPs) are reduced by 31× when n = d = 100 and 308× when n = d = 1000.
If retroactive output updates are not needed, the Continual Single-Output SDA reduces FLOPs by
respectively 100× and 1000×. The scaling properties are detailed in Appendix A.1.

3.5 Continual Multi-Head Attention

Continual Scaled Dot-Product Attentions can replace regular SDA’s directly in a Multi-Head Attention
(MHA). Given a new query, key, and value, q,k,v, the Continual MHA is defined as

CoMHA(q,k,v) =

(
h−1
‖
i=0

CoAtt(qWi
Q,kW

i
K ,vW

i
V )

)
WO, (9)

where ‖ denotes concatenation of h heads and Wi
Q,W

i
K ∈ R

d×dK/h, Wi
V ∈ R

d×dV /h, and
WO ∈ RdV ×dO are projection matrices of head i. CoAtt can be either CoReAtt or CoSiAtt.

3.6 Continual Transformer Encoder

A Continual MHA block can be integrated in a Continual Transformer Encoder block as follows:

z = LayerNorm (y + FF(y)) , y = LayerNorm (Sel(x) + CoMHA(x,x,x)) , (10)

where x corresponds to the newest step input and Sel(·) selects a single (last) token of x if CoSiMHA
is used, or selects all tokens otherwise. FF(·) is a two-layer feed-forward network with weights
W1,W2, biases w1, w2, and a activation function σ(·), i.e. FF(x) = σ(xW1+w1)W2+w2. Aside
from the residual selection, this is identical to common Transformer Encoder implementations [6,
17].

3.7 Recycling Positional Encoding

Since a Transformer Encoder does not provide positional bias, it is common to augment a token xi
with a positional encoding p, i.e. x̃i = xi ◦pi, where ◦ could be addition or concatenation. In regular
Transformers, the index i denotes a position in a sequence rather than a position in time. However, this
static positional assignment is problematic in the context of continual inference; the last token at time
t = 0 will be the next-to-last token at time t = 1, and thus in need of a different positional encoding
than in the prior time-step. Instead, CINs require dynamic positions. There have been multiple prior
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works [29, 30, 31] which create relative encodings by augmenting the SDA with positional offsets
between query and keys. While such a modification to the continual attentions is possible, it hinders
compatibility with the regular SDA. Instead, we use a Recycling Positional Encoding (RPE), which
lets the positional encoding follow each token in time and recycles old encodings:

x̃t = xt + pτt , τt = (τt−1 + 1) mod T, (11)

where T is the number of encodings. While RPE does not specify relative encodings explicitly, the
absolute positional interpretation of each token changes dynamically when a new token arrives. In
practice, the network learns relative, shift-invariant positional information by training with random τ0
for each batch. Random shifts during training were recently explored in [32, 33, 34] as well. RPE
can use either learned or predefined encodings. In the latter case, Cyclic Positional Encoding [35], a
sinusoidal encoding inspired by Gray code, is a good fit. If we reuse the encoding immediately after
an old token has “slided out”, i.e. T = n, a token will have the same positional encoding relative
to another whether it was m steps older or n −m steps newer. The positional ambiguity can be
avoided by extending the number of positional tokens to T = 2n− 1. We explore both options in
Section 4.1.2.

3.8 Architectural considerations

Block count In Section 3.4, we observed an exact correspondence between the results of the
continual and regular SDA layers. However, the correspondence does not necessarily hold for stacked
layers. Consider the result of stacking two Continual Single-Output Transformer Encoder blocks.
While the first block outputs a step t that is identical to that in a corresponding regular block, the
second block would have been initialised with prior step-wise inputs, which were the result of
prior input windows instead of the current one; the correspondence would not hold. Though it
is not convertible to/from a regular Transformer Encoder, the stacked Single-Output Transformer
Encoder architecture has the merit of efficiency. This was exploited in Transformer-XL [31]. Given
a single step input, the Continual Retroactive Transformer Encoder block produces output tokens
corresponding to the entire observed sequence inside the window. Due to this one-to-many input-
output mapping, it is not possible to stack multiple such layers. Nevertheless, it can be used in
conjunction with a Continual Single-Output Transformer Encoder with optional regular Transformer
Encoder blocks in between as illustrated in Fig. 1. The Regular Transformer Encoder blocks in
the resulting architecture have a significantly larger computational complexity than the Continual
Retroactive and Single-Output blocks. Consequently, we recommend that Continual Transformer
Encoders be used primarily in lightweight architectures with one or two blocks unless compatibility
with non-continual Transformers is not required and only Single-output blocks are used.

Class token It is common to add a class token as input to transformers [36, 17], which accumulates
information from other tokens prior to classification. However, it cannot be used naïvely with CINs, as
this would effectively double the number of input steps. In practice, it can be employed in Continual
multi-block Transformer Encoders as input to the second block (see Fig. 1), but this placement
limits class token interaction with downstream layers. It can also be used for one-block Transformer
Encoders if the value token is omitted as input.

Peak memory reduction trick The FLOPs for Att(Q,K,V) are exactly n times those of
CoSiAtt(q,knew,vnew). Comparing their memory complexity, the regular SDA is O(n2), while the
Single-output SDA is O(nd). In practical applications where system memory is limited, we may thus
reduce the maximum memory requirement of the computational device at inference by up to d/n
(assuming n� d) by computing each row of the attention individually. However, this may reduce
throughput due to reduced parallelism.

4 Experiments

We provide case studies within two perception disciplines, namely Online Action Detection (Sec-
tion 4.1) and Audio Classification (Section 4.2). In each case, we will start with a brief overview of
the field, followed by experiments and results.
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4.1 Online Action Detection

Online Action Detection (OAD) [37] entails the per-frame classification of human actions in a video
stream as they happen without the ability to change prior predictions nor to use future information.
This is fundamentally more restrictive than Temporal Action Localisation, where the whole video
clip is processed before start and end frames of an action are determined [38, 39, 40, 41].

The dominant design in OAD works at the time of writing is to employ a two-stream Convolutional
Neural Network as backbone for frame-wise feature extraction with RGB images as inputs in one
stream and Optical Flow fields in the other [42, 43, 44, 18, 45]2. On top of these, OAD methods
encode temporal information and perform predictions per time-step, e.g. by means of RNNs [42,
43, 44] or Transformers [18, 45]. Alongside the action detection for the current frame, an action
anticipation task may be learned in parallel by means of decoder structures, as this has been found to
improve the primary OAD task.

Unlike RNNs, an output update for the regular SDA in a Transformer block cannot be naïvely
computed for a single step by feeding successive video frames. Instead, prior step features must be
cached, re-loaded and re-processed by the Transformer in each step in correspondence with a prede-
fined window-size of prior steps. As laid out in Section 3.8, Continual Transformers are especially
efficient when either one or two Continual Transformer Encoder blocks are used. Accordingly, we
start our experiments with a set ablation studies to simplify a recent transformer-based architecture,
the OadTR [18]. We further investigate the impact of ablating class token position and the use of
Recycling Positional Encoding and compare different RPE schemes for Continual Transformers.
Finally, we evaluate our configurations on two widely used OAD datasets, THUMOS14 [13] and
TVSeries [37].

4.1.1 Experimental setup

The THUMOS14 dataset [13] for OAD has 200 and 213 validation and test videos, respectively,
with frame-level class annotations across 20 classes. As in prior OAD works, the model is trained
on the validation set and evaluated on the test set. Similar to [18] we use pre-extracted features
from a two-stream Temporal Segment Network (TSN) [46] trained on ActivityNet v1.3 [47] or
Kinetics-400 [2].

For TVSeries [37], the network learns on the train and validations sets (20 videos) and evaluates on the
test set (7 videos) as in [18]. RGB and Optical Flow features were extraced using an MMAction2 [48]
pipeline with ActivityNet v1.3 [47] and Kinetics-400 [2] pretrained TSN ResNet-50 [49] backbones.
This is similar to the feature extraction process used by LSTR [45].

Following Wang et al. [18], we use a batch size of 128, sequence length 64, initial learning rate 10−4

with a factor ten reduction each epoch, alongside weight decay 10−4, and dropout with probability
0.1. We report results using two epochs of training on a Nvidia RTX2080 Ti GPU. We track mean
Average Precision (mAP) for THUMOS14 and calibrated mean Average Precision (cmAP) [37] for
TVSeries, alongside FLOPs per prediction and parameters of the OAD module (feature extraction
excluded). We report the mean ± standard deviation over five runs.

4.1.2 Ablation studies

Removing the Decoder As a first step to make an efficient Continual OadTR, we remove the
decoder blocks used for action anticipation, which has a large impact on computational efficiency and
the ease of transformation to a Continual Inference Network. The first two lines of Table 1a present
the results of the removal. Contrary to the observations of Wang et al., we did not find any drop in
accuracy when excluding the decoder. We do, however, gain a large reduction in FLOPs and model
size; they were reduced to 58% and 30%, respectively. Given these computational improvements, we
exclude the decoder in subsequent experiments.

(Re)moving the Class token Class tokens should not be input naively to the first Transformer
Encoder layer of a CIN (see Section 3.8). Accordingly, we ablate its use and position. In cases where

2The feature extraction commonly used in Online Action Detection (OAD) works is in itself quite compu-
tationally costly. We consider the optimisation of the backbone as orthogonal future work and will follow the
same feature extraction procedure as other OAD works at this time.
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Table 1: Ablation experiments on THUMOS14 with TSN-Anet features. Best metrics are high-
lighted. ‘-’ indicates that a particular feature was not used.

(a) Class token variations with OadTR. CLS pos.
is the encoder block into which CLS is input.

Enc. Dec. CLS mAP FLOPs Params
blocks pos. (%) (M) (M)

3 X 1 57.0±0.5 2445.6 74.7
3 - 1 57.0±0.4 1430.6 22.2
3 - 2 57.3±0.7 1423.5 22.2
3 - 3 56.7±0.6 1417.2 22.2
3 - - 56.8±0.3 1410.9 22.2

2 - 1 56.5±0.5 1020.7 15.9
2 - 2 56.7±0.3 1014.5 15.9
2 - - 56.6±0.3 1008.1 15.9

1 - 1 57.1±0.6 611.7 9.6
1 - - 56.3±0.2 605.5 9.6

(b) Positional encodings variations for CoOadTr.

Enc. Re- Learn Pos. mAP FLOPs Params
blocks cycling tokens (%) (M) (K)

2 - X n 45.3±0.9 410.9 15832
2 X X n 56.4±0.3 410.9 15832
2 X X 2n−1 56.0±0.5 410.9 15897
2 X - n 55.8±1.0 410.9 15767
2 X - 2n−1 56.8±0.4 410.9 15767
1 - X n 44.0±0.8 9.6 9535
1 X X n 55.6±0.3 9.6 9535
1 X X 2n−1 55.6±0.3 9.6 9599
1 X - n 54.4±1.8 9.6 9469
1 X - 2n−1 56.1±0.7 9.6 9469

it is removed, we predict on the token corresponding to the last input token. The results of varying
CLS pos are noted in Table 1a. For the one-block architecture, the removal came with noticeable drop
in mAP, while the two-block architecture saw small improvements when removing or introducing the
class token later. For the three block model, the use of class tokens in block two achieved the highest
mAP. Though it is commonly accepted, that class tokens should be introduced alongside other inputs
in the first block, our results indicate that they can accumulate sufficient information with only one or
two blocks, and that later stage introduction may work better in some applications. In general, the
achieved mAP when varying CLS pos. and number of blocks are very similar to one another, while
(re)moving the class token and reducing the block size both reduce computational complexity. This
encourages the use of shallow Transformer Encoders over deeper ones as well as the removal of class
tokens, as we do in the following experiments.

Positional Encodings We can transfer parameters from the simplified one- and two block OadTR
to the corresponding Continual architecture, CoOadTR. Here, the one block version (CoOadTR-b1)
uses CoSiMHA, and the two block model (CoOadTR-b2) uses CoReMHA in the first block and
Single-output MHA in the second. However, a regular positional encoding is not suited for continual
inference (see Section 3.7). We evaluate the performance of using non-continual encodings for
continual inference, as well as of our proposed Recycling Positional Encodings with fixed or learned
parameters. In addition, we explore the impact of extending the number of tokens from n to 2n− 1
to avoid positional ambiguity. As seen in Table 1b), non-continual encoding used in the continual
setting result in severe mAP drop. Recycling Positional Encodings alleviate this. Comparing learned
and fixed encodings, we find the learned encodings to work better when the number of encoding
tokens corresponds to the sequence length n and the fixed encoding to work best when positional
ambiguity is alleviated by extending the number of tokens to 2n− 1. Fixed encoding with 2n− 1
tokens works best overall and is employed in subsequent experiments unless stated otherwise. There
is no difference in FLOPs for either strategy, and the difference in parameter count is negligible.

4.1.3 Comparison with prior works

We evaluate the (Co)OadTR architectures on THUMOS14 and TVSeries with two sets of features
as described in Section 4.1.1. Since no prior OAD works have reported complexity metrics, we
measured the FLOPs for TRN [43] based on the publicly available source code to serve as a point
of reference. The results of this benchmark are presented in Table 2 and Fig. 2. OadTR and
our simplified (continual) one-block (b1) and two-block (b2) versions without decoder and class
tokens generally achieve competitive precision in comparison with prior works, surpassing all but
OadTR and LSTR. On THUMOS14, our reproduced OadTR results are slightly lower than originally
reported [18]3, whereas achieved TVSeries results are higher4. The (Co)OadTR-b# architecture
largely retain precision and allow significantly reduced FLOPs per prediction. Our proposed continual
variants CoOadTR-b1 and CoOadTR-b2 reduce FLOPs by 255× and 6.1×, respectively, compared

3The reported 58.3% on THUMOS14 could not be reproduced using their publicly available code.
4We attribute our higher mcAP to differences in the feature extraction pipeline.
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Table 2: Online Action Detection results. FLOPs per pre-
diction are noted for inference on THUMOS14. The best
and next-best metrics are highlighted.

Model Feat. THUMOS14 TVSeries FLOPs
mAP (%) mcAP (%) (M)

RED [42]

A.Net

45.3 79.2 -
TRN [43] 47.2 83.7 1387.5
FATS [50] 51.6 81.7 -
IDN [44] 50.0 84.7 -
TFN [51] 55.7 85.0 -
LSTR [45] 65.3 88.1 -
OadTR [18] 58.3 85.4 2445.6
OadTR† 57.0±0.5 88.6±0.1 2445.6
OadTR-b2† 56.6±0.3 88.3±0.2 1008.1
OadTR-b1† 56.3±0.2 88.1±0.1 605.5
CoOadTR-b2 (ours) 56.8±0.4 87.7±0.6 410.9
CoOadTR-b1 (ours) 56.1±0.7 87.6±0.7 9.6
TRN [43] 62.1 86.2 1462.0
FATS [50]

Kin.

59.0 84.6 -
IDN [44] 60.3 86.1 -
PKD [52] 64.5 86.4 -
LSTR [45] 69.5 89.1 -
OadTR [18] 65.2 87.2 2513.5
OadTR† 64.2±0.3 88.6±0.1 2513.5
OadTR-b2† 64.5±0.5 88.3±0.2 1075.7
OadTR-b1† 63.9±0.5 88.1±0.1 673.0
CoOadTR-b2 (ours) 64.4±0.1 87.6±0.7 411.9
CoOadTR-b1 (ours) 64.2±0.4 87.7±0.4 10.6

†Using official source code or modifications there-off.
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Figure 2: Visual comparison of
OAD methods on THUMOS14 and
TVSeries for backbones trained on
ActivityNet 1.3 and Kinetics-400.

to OadTR. On average, continual and non-continual (Co)OadTR-b# models achieve similar mAP
on THUMOS14, while OadTR-b# have slightly higher mcAP on TVSeries. We attribute these
discrepancies to differences in positional encoding.

4.1.4 Audio-Visual Online Action Detection

To showcase the validity of our method in audio-visual settings as well, we explore the addition of
audio-features to the Online Action Detection task on THUMOS14. As described in Section 4.2,
audio-features are extracted using Mel spectrograms and an AudioSet pre-trained VGGish net-
work [53] (output of the penultimate layer) on 1.0 second windows with a step size of 0.2 seconds to
match the 5.0 FPS sampling rate of the video features.

The audio-features by themselves do not provide enough signal to reach good Online Action Detection
performance (yielding only 6.7% mAP with an OadTR network). When concatenated with RGB and
Flow they do provide a modest improvement as seen in Table 3. On average, this amounts to +0.6%
mAP when combined with ActivityNet features and +0.5% mAP when used with Kinetics-400
features with shallower models enjoying the largest improvements.

4.2 Audio Classification

4.2.1 Background

Audio Classification is the categorisation of audio waveforms. Though waveform sequences can be
used directly [54], it is common to first convert them to spectrograms. Mel spectrograms are obtained
by a nonlinear transformation of a frequency scale [55], which is designed based on empirical
knowledge about the human auditory system [56]. By employing spectrograms, audio classification
can be approached in the same way as image classification [57].

4.2.2 Experiments

We conduct experiments on the Music Genre Classification dataset GTZAN [58]. It consists of 100
30-second clips for each of ten music genres. Each audio clip is sampled at 22,050 Hz. Since there
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Table 3: Audio-Visual result, THUMOS14.

Model Feat. mAP (%) FLOPs (M)
OadTR 57.6±0.6 2714.9
OadTR-b2 A.Net 57.5±0.5 1277.0
OadTR-b1 + 57.4±0.4 874.1
CoOadTR-b2 AudioSet 56.5±1.1 415.0
CoOadTR-b1 56.8±0.5 13.8
OadTR 64.4±0.4 2781.9
OadTR-b2 Kin. 65.0±0.4 1344.1
OadTR-b1 + 64.5±0.4 941.2
CoOadTR-b2 AudioSet 64.7±0.8 416.0
CoOadTR-b1 64.8±0.3 14.8

Table 4: Audio Classification results for
GTZAN.

Method Pos. Enc. Acc. FLOPs Par.
(%) (M) (K)

Maj. Voting - 92.0 - 0
Trans-b2 learned 95.0±0.6 47.4 509
Trans-b1 learned 93.8±0.8 15.2 286
CoTrans-b2 fixed 94.4±1.0 27.0 509
CoTrans-b1 learned 93.2±1.1 0.3 286

are no predefined splits for GTZAN, we randomly select 10% of the data for validation and 10%
for testing. The input is transformed to a temporal sequence by sliding a one-second window over
each 30-second clip with a slide step size of 250ms, leading to 120 one-second clips. These are
subsequently converted to Mel spectrograms. We then fine-tune a VGGish network, pre-trained
on AudioSet [53] and use the penultimate layer for feature extraction. A batch size of 64 and the
Adam optimizer [59] are used with an initial learning rate of 10−4. The learning rate is reduced by
a factor of 0.6 on plateau with a tolerance of two epochs, and an early stopping mechanism, where
a maximum of 100 epochs are allowed. The VGGIsh base-network attains an accuracy of 86.1%
on the dataset of one-second clips with 72.1M parameters and 864.7M FLOPs. Subsequently, the
audio features are passed to a (Continual) Transformer Encoder which has 16 attention heads, an
embedding dimension of 192 and an MLP dimension of 384. The Transformer Encoder is trained on
the whole temporal sequence using a batch size of 32 and the AdamW optimizer [60] with a learning
rate of 10−5 and a weight decay of 10−4 for 50 epochs. Since the Transformer Encoder is trained on
entire 30-second clips, there are less data points available for this training. Accordingly, the size of
the validation set is increased to 18%. All audio classification training procedures were carried out
on a single Nvidia RTX 2080 Ti GPU. Table 4 presents the accuracy and efficiency of regular and
Continual Transformers during online inference. As a baseline, we also include the result of majority
voting among the clips to classify the entire sequence. The Continual Transformers obtain similar
accuracy as regular a Transformers while consuming 1.76× less FLOPs when using two blocks and
51.5× less FLOPs when using one Transformer Encoder block.

5 Conclusion

In this work, we presented Continual Transformers, a redundancy-free reformulation of Transformers
tailored for online inference. Central to the Continual Transformer are the Continual Retroactive
and Single-Output Attention operations, which produce outputs identical to the original Scaled
Dot-Product Attention for continual input sequences, while greatly reducing the time and memory
complexity per prediction. The applicability of Continual Transformer architectures was experi-
mentally validated in Online Action Detection and Online Audio Classification settings, observing
upwards of multiple orders of magnitude reduction in time complexity for lightweight architectures
at modest accuracy concessions. Continual Transformers constitute an algorithmic innovation, which
could make possible hitherto unseen precision, speed, and power efficiency in online inference
use-cases. With applications spanning enhanced perception and reactivity of robots and autonomous
vehicles, weather forecasting, price prediction and surveillance, we hope it will be used for the
common good.
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A Appendix

A.1 Scaling properties of Continual and regular Multi-head Attention

A detailed account for the floating point operations involved in computing Regular-, Continual
Retroactive-, and Single-output Scaled Product Attentions is given in Tables 5, 6, and 7.

Table 5: Floating Point Operations for the Scaled Dot-Product Attention in Eq. (1). D−1(·) can be
efficiently computed as element-wise multiplication with AV.

Mul. Add Exp

Eq. (1.1) n2d+ nd nd(n− 1) 0
Eq. (1.2) n2d+ nd n2(d− 1) n2

Eq. (1.3) 0 n(n− 1) 0

Table 6: Floating Point Operations for the Continual Retroactive Dot-Product Attention in Eqs. (2)
to (6). The outputs of the exponentials in Eq. (2) and Eq. (3) can be reused in Eq. (4) and Eq. (5)
respectively, and are omitted in the count.

Mul. Add Exp

Eq. (2) 2(n− 1)d 2(n− 2)d+ 2(n− 1) 2(n− 1)
Eq. (3) nd+ n+ d nd+ (n− 1) + d n
Eq. (4) 2(n− 1)d 2(n− 1)d 0
Eq. (5) nd (n− 1)d 0
Eq. (6) nd+ n 0 0

Table 7: Floating Point Operations for the Continual Single-Output SDA in Eq. (7).

Mul. Add Exp

Eq. (7.1) nd+ d (n− 1)d+ n− 1 0
Eq. (7.2) nd+ d n(d− 1) n

Fig. 3 illustrates the scaling of FLOPs and memory footprint with increasing sequence length n and
embedding dimension d. Here, the Continual Retroactive and Single-Output SDAs spend significantly
less FLOPs than the Regular SDA, which scales O(n2) as opposed to O(nd) the continual variants.
The Continual Single-Output SDA reduces memory footprint for all value combinations, and the
Continual Retroactive SDA does so when n ' d.

A.2 Supplemental visualisations

For the visually inclined, we supply a complementary graphical depictions of the Continual Retroac-
tive SDA corresponding to Eqs. (2) to (6) in Fig. 4 and the Single-Output SDA in Eq. (7) in Fig. 5.

A schematic illustration of the Audio Classification experiments architecture is depicted in Fig. 6.
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