
1

Online Skeleton-based Action Recognition
with Continual Spatio-Temporal Graph

Convolutional Networks
Lukas Hedegaard, Negar Heidari, and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm, negar.heidari, ai}@ece.au.dk

Abstract—Graph-based reasoning over skeleton data has
emerged as a promising approach for human action recogni-
tion. However, the application of prior graph-based methods,
which predominantly employ whole temporal sequences as their
input, to the setting of online inference entails considerable
computational redundancy. In this paper, we tackle this issue by
reformulating the Spatio-Temporal Graph Convolutional Neural
Network as a Continual Inference Network, which can perform
step-by-step predictions in time without repeat frame processing.
To evaluate our method, we create a continual version of ST-
GCN, CoST-GCN, alongside two derived methods with different
self-attention mechanisms, CoAGCN and CoS-TR. We investigate
weight transfer strategies and architectural modifications for
inference acceleration, and perform experiments on the NTU
RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400
datasets. Retaining similar predictive accuracy, we observe up
to 109× reduction in time complexity, on-hardware accelerations
of 26×, and reductions in maximum allocated memory of 52%
during online inference.

Index Terms—Continual Inference Networks, Graph-
Convolution, Attention, Convolutional Neural Network,
Skeleton-based Action Recognition, Human Activity Recognition,
Online Inference

I. INTRODUCTION

A human action can be described by a temporal sequence
of human body poses, each of which is represented by a set of
spatial joint coordinates forming a body skeleton. Accordingly,
skeleton-based action recognition methods process a sequence
of skeletons (instead of an image sequence) to recognize
the performed action. Compared with predicting actions from
videos, a sequence of skeleton data not only gives the spatial
and temporal features of the body poses, but also provides
robustness against different background variations and context
noise [1]. The estimation of such skeletal data has become
a staple in the human action recognition toolkit thanks to
publicly available toolboxes such as OpenPose [2].

Early deep learning methods for skeleton-based action
recognition either rearrange the body joint coordinates of each
skeleton to make a pseudo-image which is used to train a
CNN model [3, 4, 5, 6, 7, 8], or concatenate the human
body joints as a sequence of feature vectors and train a RNN
model [9, 10, 11, 12, 13, 14]. However, these methods cannot
take advantage of the non-Euclidean structure of the skeletons.
Recently, Graph Convolutional Networks (GCNs) have shown
prowess in the modeling of skeleton data. ST-GCN [15]

109 1010 1011

FLOPs / prediction

80

82

84

86

88

90

92

To
p-

1 
ac

cu
ra

cy
 (%

)

4
2

1

4

2

1

4
2

1

2

1

2

1

2

1

2

1
2

1

2

1
2

1

2

1

2

1

2

1

2

1

2

1

CoST-GCN
CoST-GCN*
ST-GCN
ST-GCN*

CoAGCN
CoAGCN*
AGCN
AGCN*

CoS-TR
CoS-TR*
S-TR
S-TR*

Shift-GCN++
Shift-GCN
AS-GCN
AGC-LSTM
DGNN

Fig. 1: Accuracy/complexity trade-off on NTU RGB+D
60 X-Sub for � Continual and � prior methods during
online inference. Numbers denote streams for each method.
∗Architecture modification with stride one and no padding.

was the first GCN-based method proposed for skeleton-based
action recognition. It uses spatial graph convolutions to extract
the per time-step features of each skeleton and employs tempo-
ral convolutions to capture time-varying dynamics throughout
the skeleton sequence. Since its publication, several methods
have sprung from ST-GCN, which enhance feature extraction
or optimize the structure of the model.

2s-AGCN [16] proposed to learn the graph structure in each
GCN layer adaptively based on input graph node similarity and
also utilized an attention method which highlights both the
existing spatial connections in the graph (bones) and new po-
tential connections between them. MS-AAGCN [17] extended
2s-AGCN by proposing a multi-stream framework which uses
four different data streams for training the model. Moreover
it enhanced the adaptive graph convolution in 2s-AGCN with
a spatio-temporal channel attention module to highlight the
most important skeletons, nodes in each skeleton, and features
of each node. DGNN [18] modeled the spatial connections
between the graph nodes with a directed graph and utilized
both node features and edge features simultaneously. Hyper-
GNN [19] captured the non-physical connections between the
nodes by constructing hyperedges which help to extract both

ar
X

iv
:2

20
3.

11
00

9v
1 

 [
cs

.C
V

] 
 2

1 
M

ar
 2

02
2



2

local and global features in each graph. FGCN [20] proposed
to extract coarse to fine spatio-temporal features by a multi-
stage temporal sampling strategy and introduced a feedback
mechanism in graph convolution to transfer the high-level
features to the shallower layers of the network. Similarly, MS-
G3D [21] has proposed multi-scale graph convolutions for
long-range feature extraction.

Unfortunately, the high computational complexity of these
GCN-based methods makes them infeasible in real-time ap-
plications and resource-constrained online inference settings.
Multiple approaches have been explored to increase the ef-
ficiency of skeleton-based action recognition recently: GCN-
NAS [22] and PST-GCN [23] are neural architecture search
based methods which try to find an optimized ST-GCN
architecture to increase the efficiency of the classification
task; ShiftGCN [24] replaces graph and temporal convolu-
tions with a zero-FLOPs shift graph operation and point-
wise convolutions as an efficient alternative to the feature-
propagation rule for GCNs [25]; ShiftGCN++[26] boost the
efficiency of ShiftGCN further via progressive architecture
search, knowledge-distillation, explicit spatial positional en-
codings, and a Dynamic Shift Graph Convolution; SGN [27]
utilizes semantic information such as joint type and frame
index as side information to design a compact semantics-
guided neural network (SGN) for capturing both spatial and
temporal correlations in joint and frame level; TA-GCN [28]
tries to make inference more efficient by selecting a subset
of key skeletons, which hold the most important features for
action recognition, from a sequence to be processed by the
spatio-temporal convolutions.

Yet, none of the above-described GCN-based methods are
tailored to online inference, were the input is a continual
stream of skeletons and step-by-step predictions are required.
During online inference, these methods would need to rely on
sliding window-based processing, i.e., storing the T − 1 prior
skeletons, appending the newest skeleton to get a sequence
of length T , and then performing their prediction on the
whole sequence. In this paper, we reduce such redundant
computations by reformulating the ST-GCN and its derived
methods as a Continual Inference Network, which processes
skeletons one by one and produces updated predictions for
each time-step without the need to include past skeletons in
every input as is the case for the prior GCN-based methods.
This is achieved by using Continual Convolutions in place
of regular ones for aggregating temporal information. In
particular, we propose the Continual Spatio-Temporal Graph
Convolutional Network (CoST-GCN), CoAGCN, and CoTR-
S and evaluate them on the skeleton-based action recognition
datasets NTU RGB+D 60 [29], NTU RGB+D 120 [30], and
Kinetics Skeleton 400 [31] with striking results: Our continual
models achieve up to 108× FLOPs reduction, 26× speedup,
and 52% reduction in max allocated GPU memory compared
to the corresponding non-continual models.

The remainder of the paper is structured as follows: Sec-
tion II provides an introduction to skeleton-based action recog-
nition and of the related methods, from which we derive a con-
tinual counterpart, Section III describes Continual Inference
Networks, and Section IV presents our proposed Continual

3
1

2

3

COG

Tim
e

Fig. 2: Graph illustration for a spatially partitioned skeleton
(left) and spatio-temporal graph (right).

Spatio-temporal Graph Convolutional Networks. Experiments
on weight transfer strategies, performance benchmarks, and
comparisons with prior works are offered in Section V, and a
conclusion is given in Section VI.

II. RELATED WORKS

A. Spatio-Temporal Graph Convolutional Network

GCN-based models for skeleton-based action recogni-
tion [15, 16, 18, 22, 23, 27, 28] operate on sequences
of skeleton graphs. The spatio-temporal graph of skeletons
G = (V, E) has the human body joint coordinates as nodes
V and the spatial and temporal connections between them as
edges E . Figure 2 (right) illustrates such a spatio-temporal
graph where the spatial graph edges encode the human bones
and the temporal edges connect the same joints in subsequent
time-steps. We model this graph as a tensor X ∈ RC(0)×T×V ,
where C(0) is the number of input-channels of each joint,
T denotes the number of skeletons in a sequence, and V is
the number of joints in each skeleton. A binary adjacency
matrix A ∈ RV×V encodes the skeleton-structure with ones
in positions connecting two vertices in a skeleton and zeros
elsewhere.

The ST-GCN [15] and AGCN [16] methods refine the
spatial structure of each skeleton by employing a partitioning
method which categorizes neighboring nodes of each body
joint into three subsets: (1) the root node itself, (2) the root’s
neighboring nodes which are closer to the skeleton’s center
of gravity (COG) than the root itself, and (3) the remaining
neighboring nodes of the root node. An example of this subset
partitioning is shown in Figure 2 (left). Accordingly, the graph-
structure of each skeleton is represented by three normalized
binary adjacency matrices

{
Ap ∈ RV×V | p = 1, 2, 3

}
, each

of which is defined as

Âp = D
− 1

2
p ApD

− 1
2

p , (1)

where Dp denotes the degree matrix of the neighboring subset
p. Inspired by the GCN aggregation rule [25], the spatial graph
convolution receives the hidden representation of the previous



3

layer H(l−1) as input, where H(0) = X, and performs the
following graph convolution (GC) transformation:

GC
(
H(l−1)

)
=

σ

(
Res(H(l−1)) + BN

(∑
p

(Âp ⊗M(l)
p )H(l−1)W(l)

p

))
(2)

where σ(·) denotes a ReLU non-linearity, W
(l)
p ∈

RC(l)×C(l−1)

is the weight matrix which transforms the fea-
tures of the neighboring subset p and BN(·) denotes batch
normalization. Moreover, a learnable matrix M

(l)
p ∈ RV×V

is multiplied element-wise with its corresponding adjacency
matrix Âp as an attention mechanism that highlights the
most important connections in each spatial graph. In order
to retain the model’s stability, the input to a layer is added
to the transformed features through a residual connection
Res(H(l−1)) which is defined as:

Res(H(l−1)) =

{
H(l−1), C(l) = C(l−1),

H(l−1)W
(l)
res, otherwise,

(3)

where W
(l)
res ∈ RC(l)×C(l−1)

is a learnable mapping matrix
which transforms the layer’s input to have the same channel
dimension as the layer’s output.

The graph convolution block is followed by a temporal
convolution, TC(·), which propagates the features of the graph
nodes through different time steps to capture the motions
taking place in an action. In the temporal graph, each node
only has two fixed neighbors which are its corresponding
nodes in the previous and next skeletons. The adjacency
matrices and partitioning process are not involved in temporal
feature propagation. In practice, the temporal convolution is a
standard 2D convolution which receives the output of the graph
convolution obtained in Eq. 2 and performs a transformation
with a kernel of size C(l) ×K × 1 to keep the node feature
dimension unchanged and aggregate the features through K
consecutive time steps.

The whole spatio-temporal convolution block has the form

H(l) = σ
(

Res(H(l−1)) + BN(TC(GC(H(l−1))))
)
. (4)

The ST-GCN model is composed of multiple such spatio-
temporal convolutional blocks. A global average pool and fully
connected layer perform the final classification.

B. Adaptive Graph Convolutional Neural Networks

The fixed graph structure used in Eq. (2) is defined based
on natural connections in the human body skeleton which
restricts the model’s capacity and flexibility in representing
different action classes. However, for some action classes such
as “touching head” it makes sense to model a connection
between hand and head even though such a connection is not
naturally present in the skeleton. AGCN [16] allows for such

possibilities by adopting an adaptive graph convolution which
utilizes a data-dependent graph structure as follows:

AGC
(
H(l−1)

)
=

σ

(
Res(H(l−1)) + BN

(∑
p

(Âp + M(l)
p )H(l−1)W(l)

p

))
,

(5)

where M
(l)
p is defined as:

M(l)
p = B(l)

p + C(l)
p (6)

The attention matrix in this definition is composed of two
learnable matrices which are optimized along with other model
parameters in an end-to-end manner. B

(l)
p ∈ RN×N is a

squared matrix that can be unique for each layer and each
sample, and C

(l)
p ∈ RN×N is a similarity matrix whose

elements determine the strength of the pair-wise connections
between nodes. This matrix is computed by first transforming
the feature matrix H(l−1) ∈ RC(l−1)×T×V with two embed-
ding matrices W

(l)
pθ , W(l)

pφ of size Cde×C(l−1). The obtained
feature maps are then reshaped to CdeT × V and multiplied
to obtain the C

(l)
p ∈ RN×N matrix as follows:

C(l)
p = softmax(H(l−1)>W

(l)>

pθ W
(l)
pφH

(l−1)), (7)

where softmax normalizes the matrix values. The additive
attention mechanism in Eq. (5), thus, lets the adaptive graph
convolution in Eq. (7) model the skeleton structure as a fully
connected graph.

C. Skeleton-based Spatial Transformer Networks

S-TR [32] is an attention-based method which models
dependencies between body joints at each time step using the
self-attention operation found in Transformers [33]. In this
method, a Spatial Self-Attention (SSA) module is designed to
adaptively learn data-dependent pairwise body joint correla-
tions using multi-head self-attention.

The SSA module at each layer l applies trainable query,
key, and value transformations W

(l)
q ∈ RC(l−1)×dq , W(l)

k ∈
RC(l−1)×dk, W(l)

v ∈ RC(l−1)×dv on the feature vector hti ∈
RC(l−1)

of node i at time step t to obtain the query, key, and
value vectors qti ∈ Rdq , kti ∈ Rdk, vti ∈ Rdv . The correlation
weight for each pair of i, j nodes at time t is obtained using
a query-key dot product

αtij = qti
>
ktj . (8)

The updated feature vector of node i at time t has size C(l)

and is obtained using a weighted feature aggregation of value
vectors:

h̄ti =
∑
j

softmaxj

(
αtij√
dk

)
vtj . (9)

For each attention head, the feature transformation is per-
formed with a different set of learnable parameters while the
transformation matrices are shared across all the nodes. The
output features of the SSA module are finally computed by



4

applying a learnable linear transformation on the concatenated
features from S attention heads:

h̄ti = (

Sn

s=1

h̄tis)Wo. (10)

SSA has similarities to a graph convolution operation on a
fully connected graph for which the node connection weights
are learned dynamically. The first three layers of the S-TR
model extract features with GC and TC blocks as defined
in Eq. 4 while in the remaining layers of the model SSA
substitutes GC.

III. CONTINUAL INFERENCE NETWORKS

First introduced in [34] and subsequently formalized in [35],
Continual Inference Networks are Deep Neural Networks that
can operate efficiently on both fixed-size (spatio-)temporal
batches of data, where the whole temporal sequence is known
up front, as well as on continual data, where new input steps
are collected continually and inference needs to be performed
efficiently in an online manner for each received frame.

Definition (Continual Inference Network). A Continual
Inference Network is a Deep Neural Network, which
• is capable of continual step inference without computa-

tional redundancy,
• is capable of batch inference corresponding to a non-

continual Neural Network,
• produces identical outputs for batch inference and step

inference given identical receptive fields,
• uses one set of trainable parameters for both batch and

step inference.

Recurrent Neural Networks (RNNs) are a common family
of Deep Neural Networks, which possess the above-described
properties. 3D Convolutional Neural Networks (3D CNNs),
Transformers, and Spatio-Temporal Graph Convolutional Net-
works are not Continual Inference Networks since they cannot
make predictions time-step by time-step without considerable
computational redundancy; they need to cache a sliding win-
dow of prior input frames and assemble them into a fixed-size
sequence that is subsequently passed through the network to
make a new predictions during online inference.

Recently, Continual 3D CNNs were made possible through
the proposal of Continual 3D Convolutions [34]. Likewise,
shallow Continual Transformers based on Continual Dot-
product Attentions were introduced in [35]. We continue this
line of work by extending Spatio-Temporal Graph Convolu-
tional Networks (ST-GCNs) with a Continual formulation as
well. To do so, let us first present and expand on the theory
on Continual Convolutions.

A. Continual Convolution

The Continual Convolution operation produces the exact
same output as the regular convolution does, but performs the
computation in a streaming fashion while caching intermediary
results. Consider a single channel 2D convolution over an input
X ∈ RT×V with temporal dimension T and a dimension
of V vertices. Given a convolutional kernel with weights

Fig. 3: Continual Convolutions are performed in two stages:
First, the input is zero-padded and convolved with the convo-
lutional kernel (K = 3 in illustration) to produce intermediary
results. Subsequently, these are cached and summed up to
produce the final output.

W ∈ RK×V , where K is the temporal kernel size, and a
bias w0, a regular convolution would compute the output y(t)

for time-step t ∈ K..T as

y(t) = w0 +

K∑
k=1

V∑
v=1

Wk,v ·X(t−k−1)
v . (11)

Considering this computation in the context of online process-
ing, where T −→∞ and one input slice X(t) is revealed in each
time step, we find that K − 1 previous slices, i.e. (K − 1) ·V
values, need to be stored between time-steps.

An alternative computational sequence is used in Continual
Convolutions. Here, the input slice X(t) is convolved with
the kernel W in the same time-step it is received. This is
specified in Eq. (12a). The intermediate results are then cached
in memory m (K − 1 values stored between time-steps) and
aggregated according to Eq. (12b).

m(t) =

[
V∑
v=1

Wk,v ·X(t)
v : k ∈ 1..K

]
(12a)

y(t) = w0 +

K∑
k=1

m
(t−k−1)
k (12b)

A graphical representation of this is shown in Fig. 3.

B. Delayed Residual

The temporal convolutions of regular Spatio-Temporal
Graph Convolution blocks usually employ zero-padding to
ensure equal temporal shape for input and output feature maps.
This zero-padding is discarded for Continual Convolutions to



5

Fig. 4: Temporal stride in a Continual Convolution layer
l1 with temporal stride larger than one (right) reduces the
prediction rate compared to a layer with stride one (left). The
rate reduction is inherited by subsequent layers.

avoid continual redundancies [34]. To retain weight compati-
bility between the regular and continual networks, a delay to
the residual connection is necessary. This delay amounts to

kT + (kT − 1)(dT − 1)− pT − 1 (13)

steps, where kT , dT , and pT are respectively the temporal
kernel size, dilation, and zero-padding of the corresponding
regular convolution.

C. Temporal Stride

In Section III-A, it is assumed that one output is produced
for each input received. However, many spatio-temporal net-
works including ST-GCN [15], AGCN [16], and S-TR [32],
use temporal stride > 1 in their temporal convolutions. For
offline computation, this has the beneficial effect of reducing
the computational and memory complexity, but in the online
computational setting, it also reduces the prediction rate. This
is illustrated in Fig. 4. For a neural network with L layers,
each with a temporal stride s, the effective network stride is
given by

sNN =

L∏
l=1

sl (14)

and the corresponding network prediction rate is

rNN = 1/sNN . (15)

Since a ST-GCN network has two layers with stride two,
the corresponding Continual ST-GCN (CoST-GCN) has a
prediction rate one fourth the input rate.

IV. CONTINUAL SPATIO-TEMPORAL GRAPH
CONVOLUTIONAL NETWORKS

Many well-performing methods for skeleton-based action
recognition, including the ST-GCN [15], AGCN [16], and
S-TR [32], share a common block structure, which can be
described by Eq. (4). Here, the main difference between
methods lies in how the graph information is processed, i.e.
in their definition of GC(·).

The regular skeleton-based methods successively extract
complete spatio-temporal skeleton features from the whole
sequence with each block before classifying an action. Con-
sidering one block in isolation, the spatio-temporal feature

extraction is given by a spatial (graph) convolution followed
by a regular temporal convolution. Here, graph convolutions
operate locally within a time-step1, whereas the temporal
convolution does not. Since the next block l takes as input
H(l−1), the output of the prior block and thereby its temporal
convolution, the output of the next spatial (graph) convolu-
tion becomes a function of multiple prior time-steps. With
regular temporal convolutions, features produced by multiple
blocks cannot be trivially disentangled and cached in time.
Accordingly online operation with per-skeleton predictions can
be attained by caching T − 1 prior skeletons, concatenating
these with the newest skeleton, and performing regular spatio-
temporal inference. However, this comes with significant com-
putational redundancy, where the complexity of online frame-
wise inference is the same as for clip-based inference.

To alleviate this issue, we propose to employ Continual
Convolutions in the temporal modeling of Spatio-temporal
Graph Convolutional Networks. By restricting the GC(·) func-
tion to only operate locally within a time-step, we can define
a Continual Spatio-Temporal block by replacing the original
temporal 2D convolution with a continual one. To retain
weight-compatibility with regular (non-continual) networks
we moreover need to delay the residual to keep temporal
alignment. Given H

(t)
l−1, i.e. the features of layer l − 1 in a

time-step t, the feature in layer l at time t is given by

H
(t)
l = σ

(
Delay(Res(H(t)

l−1)) + BN(CoTC(GC(H
(t)
l−1)))

)
.

(16)
Here, Delay(Res(H(t)

l−1)) outputs the delayed residual in a
first-in-first-out manner corresponding to the delay of the
Continual Temporal Convolutional as computed by Eq. (13). A
graphical illustration of such a block is seen in Fig. 5. It should
be noted that the restriction of temporal locality does influence
the computations of some skeleton-based action recognition
methods. For example, the AGCN originally computes one
vertex attention weighting based on the whole spatio-temporal
feature-map, whereas a Continual AGCN (CoAGCN) com-
putes separate vertex attentions for each time-step.

The resulting Continual Spatio-temporal Graph Convolu-
tional Network is defined by stacking multiple such blocks2

followed by Continual Global Average Pooling [34] and a
fully connected layer. The Continual Inference Networks retain
the same computational complexity as regular networks during
clip-based inference, but can perform online frame-by-frame
predictions much more efficiently, as detailed in Section IV-A.
We should note that all methods, which share the the same
structure as ST-GCN, i.e. a decoupled temporal and spatial
convolution to perform feature transformation and aggregation
over the time domain can be transformed to continual version
using the approach outlined above.

A. Computational Complexity

Denote the time complexity of passing a single skeleton
frame through the convolutional blocks with stride 1 by O(B)

1AGCN is an exception to this, since the additive attention considers a
node’s features over all time-steps.

2Following the original ST-GCN, AGCN, and S-TR architectures, ten
blocks were used for the networks in this paper.



6

Fig. 5: Continual Spatio-temporal Graph Convolution
Blocks consist of an in-time Graph Convolution followed by
an across-time Continual Convolution (here a kernel size of
three is depicted). The residual connection is delayed to ensure
temporal alignment with the continual temporal convolution
that is weight-compatible with non-continual networks.

and time complexity of utilizing the prediction head by O(H).
Given an effective clip-size T , the complexity of producing a
prediction with a regular CNN is approximately O(CNN) ≈
T · O(B) +O(H). For a Continual CNN, the corresponding
complexity is O(CoCNN) ≈ O(B) + O(H). Computational
savings thus scale linearly with the effective clip-size T and
are more prominent the larger O(B) is compared to O(H).

V. EXPERIMENTS

A. Datasets
a) NTU RGB+D 60 [29]: A large indoor-captured

dataset which is widely used for evaluating skeleton-based ac-
tion recognition methods. This dataset contains 56,880 action
clips and their corresponding 3D skeleton sequences captured
by three Microsoft Kinect-v2 cameras from three different
views. The clips are performed by 40 different subjects and
constitute 60 action classes. The NTU RGB+D 60 dataset
comes with two benchmarks, Cross-View (X-View) and Cross-
Subject (X-Sub). The X-View benchmark provides 37,920
skeleton sequences coming from the camera views #2 and #3
as training data, and 18,960 skeleton sequences coming from
the first camera view as test set. The X-Sub benchmark pro-
vides 40,320 skeleton sequences from 20 subjects as training
data and 16,560 skeleton sequences from the other 20 subjects
as test data. In this dataset, each skeleton has 25 body joints
with three different channels each, and each action clip comes
with a sequence of 300 skeletons.

b) NTU RGB+D 120 [30]: An extension of the NTU
RGB+D 60 dataset containing an additional 57,600 skele-
ton sequences from extra 60 classes. NTU RGB+D 120 is
currently the largest dataset providing 3D body joint coordi-
nates for skeletons and in total, it contains 114,480 skeleton

Conversion Strategy Acc. (%) FLOPs (G)

Regp=eq
s=4 (baseline) 93.4 16.73

Regp=eq
s=4

FT−−→ Regp=0
s=1 93.8 (+0.4) 36.90 (↑ 2.2×)

Regp=eq
s=4 → Cop=0

s=4 93.1 (−0.3) 0.27 (↓ 63.2×)
Regp=eq

s=4 → Cop=0
s=1 24.0 (−69.4) 0.16 (↓ 107.7×)

Regp=eq
s=4 → Cop=0

s=1
FT−−→ Co∗ 93.2 (−0.2) 0.16 (↓ 107.7×)

Regp=eq
s=4

FT−−→ Regp=0
s=1 → Co∗ 93.8 (+0.4) 0.16 (↓ 107.7×)

TABLE I: Conversion Strategies from regular (Reg) to Con-
tinual (Co) ST-GCN. Noted is the top-1 X-View validation
accuracy on NTU RGB+D 60 and the FLOPs per prediction.
The superscript p and subscript s indicate network padding
and stride respectively. The arrows → and FT−−→ denote direct
conversion and conversion with subsequent fine-tuning. Paren-
theses show the change relative to the baseline with colours
indicating improvement / deterioration.

sequences from 120 action classes. The action clips in this
dataset are performed by 106 subjects and 32 different camera
setups are used for capturing the videos. This dataset comes
with two benchmarks: Cross-Subject (X-Sub) and Cross-
Setup (X-Set). The X-Sub benchmark provides the skeleton
sequences of 53 subjects as training data and the remaining
skeleton sequences from the other 53 subjects as test data. In
the X-Set benchmark, the skeleton sequences with even camera
setup IDs are provided as training data and test data contains
the remaining skeleton sequences with odd camera setup IDs.

c) Kinetics Skeleton 400 [31]: A widely used dataset
for action recognition containing 300,000 video action clips
of 400 different classes which are collected from YouTube.
Skeletons were extracted from each frame of these video clips
using the OpenPose toolbox [2]. Each skeleton is represented
by 18 body joints and each body joint contains spatial 2D
coordinates and the estimation confidence score as its three
features. We use the dataset version provided by [15], which
contains 240,000 skeleton sequences as training data and
20,000 skeleton sequences as test data, in our experiments.

B. Experimental Settings

All models were implemented within the PyTorch frame-
work [36] using the Ride library [37]. Models were trained
using a SGD optimizer with learning rate 0.1 at batch size 64,
momentum of 0.9, and a one-cycle learning rate policy [38]
using a cosine annealing strategy. For models which could not
fit a batch size of 64 on a Nvidia RTX 2080 Ti, the learning
rate was adjusted following the linear scaling rule [39]. Our
source code is available at www.github.com/lukashedegaard/
continual-skeletons.

C. Conversion and Fine-tuning Strategies

Though regular and Continual CNNs are weight-compatible,
the direct transfer of weights is imperfect if the regular
CNN was trained with zero-padding [34]. As in most CNNs,
it is common practice to utilize padding in skeleton-based
spatio-temporal networks to retain the temporal feature size in

www.github.com/lukashedegaard/continual-skeletons
www.github.com/lukashedegaard/continual-skeletons


7

Model Frames Accuracy (%) Params Max mem. FLOPs per pred Throughput (preds/s)
per pred X-Sub X-View (M) (MB) (G) CPU GPU

ST-GCN 300 86.0 93.4 3.14 45.3 16.73 2.3 180.8
ST-GCN∗ 300 86.3 (+0.3) 93.8 (+0.4) 3.14 72.6 (160%) 36.90 (↑ 2.2×) 1.1 (↓ 2.1×) 90.4 (↓ 2.0×)
CoST-GCN 4 85.3 (−0.7) 93.1 (−0.3) 3.14 36.0 (79%) 0.27 (↓ 63.2×) 32.3 (↑ 14.0×) 2375.2 (↑ 13.1×)
CoST-GCN∗ 1 86.3 (+0.3) 93.8 (+0.4) 3.14 36.1 (80%) 0.16 (↓ 107.7×) 46.1 (↑ 20.0×) 4202.2 (↑ 23.2×)

AGCN 300 86.4 94.3 3.47 48.4 18.69 2.1 146.2
AGCN∗ 300 84.1 (−2.3) 92.6 (−1.7) 3.47 76.4 (158%) 40.87 (↑ 2.2×) 1.0 (↓ 2.1×) 71.2 (↓ 2.0×)
CoAGCN 4 86.0 (−0.4) 93.9 (−0.4) 3.47 37.3 (77%) 0.30 (↓ 63.2×) 25.0 (↑ 11.9×) 2248.4 (↑ 15.4×)
CoAGCN∗ 1 84.1 (−2.3) 92.6 (−1.7) 3.47 37.4 (77%) 0.17 (↓ 108.8×) 30.4 (↑ 14.5×) 3817.2 (↑ 26.1×)

S-TR 300 86.8 93.8 3.09 74.2 16.14 1.7 156.3
S-TR∗ 300 86.3 (−0.5) 92.4 (−1.4) 3.09 111.5 (150%) 35.65 (↑ 2.2×) 0.8 (↓ 2.1×) 85.1 (↓ 1.8×)
CoS-TR 4 86.5 (−0.3) 93.3 (−0.5) 3.09 35.9 (48%) 0.22 (↓ 63.2×) 30.3 (↑ 17.8×) 2189.5 (↑ 14.0×)
CoS-TR∗ 1 86.3 (−0.3) 92.4 (−1.4) 3.09 36.1 (49%) 0.15 (↓ 107.6×) 43.8 (↑ 25.8×) 3775.3 (↑ 24.2×)

TABLE II: NTU RGB+D 60 transfer accuracy and performance benchmarks. Noted is the top-1 validation accuracy using
joints as the only modality. Max mem. is the maximum allocated memory on GPU during inference noted in megabytes. Max.
mem, FLOPs, and throughput on CPU account for one new prediction with batch size one while throughput on GPU uses the
largest fitting power of two as batch size. Parentheses indicate the improvement / deterioration relative to the original model.

consecutive layers (though temporal shrinkage is not a concern
given the long input clips).

Another common design choice, which has a significant im-
pact in on the performance of Continual Inference Networks,
is the utilization of temporal stride larger than one. For regular
networks, this has the benefit of reducing the computational
complexity per clip prediction. In Continual Inference Net-
works, however, it reduces the prediction rate, and actually
increases the complexity per prediction (see Section III-C). In
the continual case, it would thus be computationally beneficial
to reduce the stride of all layers to one. However, this results
in a stride-inflicted model-shift.

Thus far, the model-shift inflicted by padding removal and
stride reduction, as well as how to best perform the conversion
from a regular CNN to a Continual CNN in such cases has not
been studied. In this set of experiments, we explore strategies
on how to best convert and fine-tune regular networks to
achieve good frame-by-frame performance. We use a standard
ST-GCN [15] trained on joints only as our starting-point, and
explore the accuracy achieved by:

1) Converting to from regular network with equal padding
and stride four (Regp=eq

s=4 ) to a Continual Inference Net-
work, where zero-padding is omitted (Cop=0

s=4).
2) Reducing the network stride to one without fine-tuning

(Cop=0
s=1).

3) Fine-tuning the Cop=0
s=1 network (= Co∗).

4) Fine-tuning a conversion-optimal regular network which
has no zero-padding and a stride of one (Regp=0

s=1).
5) Converting from Regp=0

s=1 to Continual (= Co∗).
As seen in Table I, the direct transfer of weights was found to
have a modest negative impact on the accuracy (by −0.3%)
due the removal of zero-padding. This is considerably less than
was found in [34]. Our conjecture is that the smaller amount
of zeros relative to clip size used in skeleton-based recognition
(8 zeros per 300 frames or 2.67%) compared to video-based
recognition (e.g., 2 zeros per 16 frames or or 12.5%) makes
the removal of zero-padding less detrimental since zeros
contribute relatively less to the downstream features. Lowering

the stride to one and removing zero-padding reduced accuracy
by a substantial amount but allowed the Continual Inference
Network to operate at much lower FLOPs. This accuracy drop
is alleviated equally effectively by either (a) initializing the
Cop=0

s=1 with standard weights and fine-tuning in the continual
regime or (b) first fine-tuning the conversion-optimal regular
network (Regp=0

s=1) and subsequently converting to a Continual
Inference Network, though the latter had lower training times
in practice. We fine-tuned the networks using the settings
described in Section V-B. As visualised in Fig. 6, we found
20 epochs of fine-tuning using the settings described in Sec-
tion V-B recover accuracy on NTU RGB+D 60 with additional
training yielding only marginal differences. Following this
approach the (padding zero, stride one) optimized Continual
ST-GCN (CoST-GCN∗) achieves a similar prediction accuracy
while reducing the computational complexity by a factor
107.7× relative to original ST-GCN!

D. Conversion of Attention Architectures

As we explored in Section V-C, the ST-GCN network
architecture can easily be modified and fine-tuned to achieve
high accuracy for frame-by-frame predictions with excep-
tionally low computational complexity. A natural follow-up
question is whether this conversion is equally successful for
more complicated spatio-temporal architectures that employ
attention mechanisms. To investigate this, we conduct a sim-
ilar transfer for two recent ST-GCN variants, the Adaptive
GCN (AGCN) [16] and the Spatial Transformer Network (S-
TR) [32]. While S-TR is easily converted to a Continual
Inference Network (CoS-TR) by replacing convolutions, resid-
uals and pooling operators with Continual ones, the AGCN
requires additional care. In the original version of AGCN, the
vertex attention matrix Cp (see Eq. (7)) is computed from the
global representations in the layer over all time-steps. Since
this operation would be acausal in the context of a Continual
Inference Network, we restrict it to utilize only the frame-
specific subset of features. As a fine-tuning strategy, we first
make the conversion from regular network to a conversion-



8

0 5 10 15 20 25 30
90

91

92

93

94
To
p
-1

a
c
c
u
ra
c
y
(%

)

Fig. 6: Fine-tuning epochs and associated top-1 accuracy on
NTU RGB+D 60 X-View for a transfer from a pre-trained
ST-GCN with zero-padding and accumulated stride of four to
an equivalent (Co)ST-GCN∗ with no zero-padding and stride
one.

optimal network, and subsequently convert and evaluate the
continual version.

Our results are presented in Table II. Here we see that all
three architectures can be successfully converted to continual
versions. The fine-tuned conversion-optimal models (marked
by ∗) generally exhibit a higher computational complexity
than their source models due to their stride decrease. While
the ST-GCN∗ attained increased performance by lowering
stride, AGCN∗ and S-TR∗ suffer slight accuracy deterioration.
This may be due to smaller receptive fields of their attention
mechanisms, which likely benefit from observing a larger
context. Unlike the transfer from the original models with
padding and stride four to continual models, the continual
models with weights from ST-GCN∗, AGCN∗, and S-TR∗, i.e.
CoST-GCN∗, CoAGCN∗, and CoS-TR∗ attain the exact same
accuracy as their source models on both the X-Sub and X-
View benchmarks, with two orders of magnitude less FLOPs
per prediction during online inference.

E. Speed and Memory

Diving deeper into the differences between regular and
continual networks, we conduct throughput benchmarks on a
MacBook Pro 16” with a 2.6 GHz 6-Core Intel Core i7 CPU
and a NVIDIA RTX 2080 Ti GPU. Here, we measure the
prediction-time as the time it takes to transfer an input of batch
size one from CPU to GPU (if applicable), perform inference,
and transfer the results back to CPU again. On CPU, a batch
size of one is used, while for GPU, the largest fitting power of
two is employed (i.e. {128, 64, 256, 256} for the {Reg, Reg∗,
Co, and Co∗} models). We measure the maximum allocated
memory during inference on GPU for batch size one.

As seen in Table II, the change in speed relative to the
original models follow a similar trend to those seen for FLOPs.
The non-continual stride one variants (denoted by ∗) exhibit
roughly half the speed of the original models, while the
continual models enjoy more than a magnitude speed up on
both CPU and GPU. As expected, the continual stride one
models (Co∗) attain the largest inference throughput. These
relative speed-ups are lower than the relative FLOPs reductions
due to the read/writes of internal intermediary features in
the Continual Convolutions since these are not accounted for
by the FLOPs metric while still adding to the runtime. This

Model S. Accuracy (%) FLOPs
X-Sub X-View (G)

Clip SGN [27] 1 89.4 94.5 -
MS-G3D [21] 1 89.4 95.0 -

2 91.5 96.2 -
ST-TR [32] 1 89.2 95.8 -

2 90.3 96.3 -
MS-AAGCN [17] 4 90.0 96.2 -
Hyper-GNN [19] 3 89.5 95.7 -
FGCN [20] 4 90.2 96.3 -
DGNN [18] 4 89.9 96.1 126.80
AS-GCN [40] 1 86.8 94.2 27.00
AGC-LSTM [41] 2 89.2 95.0 54.40
ShiftGCN [24] 1 87.8 95.1 2.50

2 89.7 96.0 5.00
4 90.7 96.5 10.00

ShiftGCN++ [26] 1 87.9 94.8 0.40
2 89.7 95.7 0.80
4 90.5 96.3 1.70

ST-GCN† 1 86.0 93.4 16.73
2 88.1 94.9 33.46

AGCN† 1 86.4 94.3 18.69
2 88.3 95.3 37.38

S-TR† 1 86.8 93.8 16.20
2 89.1 95.3 32.40

Frame Deep-LSTM [29] 1 60.7 67.3 -
VA-LSTM [13] 1 79.2 87.7 -

CoST-GCN (ours) 1 86.0 93.4 0.27
2 88.1 94.8 0.54

CoST-GCN∗ (ours) 1 86.3 93.8 0.16
2 88.3 95.0 0.32

CoAGCN (ours) 1 86.4 94.2 0.30
2 88.2 95.3 0.60

CoAGCN∗ (ours) 1 84.1 92.6 0.22
2 86.0 93.1 0.44

CoS-TR (ours) 1 86.5 93.5 0.17
2 88.8 95.3 0.34

CoS-TR∗ (ours) 1 86.3 92.4 0.15
2 88.9 94.8 0.30

TABLE III: NTU RGB+D 60 comparison with recent meth-
ods, grouped by clip- and frame-based inference. Noted are the
number of streams (S.), top-1 validation accuracy, and FLOPs
per prediction. †Results for our implementation. Highlights
indicate best, next-best and pareto-optimal results.

gap could be reduced on hardware with in- or near-memory
computing.

Considering the maximum allocated memory at inference,
we find that the continual models reduce memory by 20-52%.
While the Continual Convolution and -Pooling layers do add
some internal state that adds to the memory consumption, the
intermediary features that are passed between network layers
are much smaller, i.e. one frame instead of 75 to 300 frames.

F. Comparison with Prior Works

Most current state-of-the-art methods for skeleton-based
action recognition are not able to efficiently perform frame-
by-frame predictions in the online setting, since they are con-
strained to operate on whole skeleton-sequences. Some RNN-
based methods, e.g. Deep-LSTM [29] and VA-LSTM [13],
can be used for redundancy-free frame-wise predictions, but



9

Model S. Accuracy (%) FLOPs
X-Sub X-Set (G)

Clip Part-Aware LSTM [42] 1 25.5 26.3 -
ST-LSTM [10] 1 55.7 57.9 -
TSRJI [43] 1 67.9 62.8 -
SGN [27] 1 79.2 81.5 -
MS-G3D [21] 2 86.9 88.4 -
FGCN [20] 4 85.4 87.4 -
ShiftGCN [24] 1 80.9 83.2 2.50

2 85.3 86.6 5.00
4 85.9 87.6 10.00

ShiftGCN++ [26] 1 80.5 83.0 0.40
2 84.9 86.2 0.80
4 85.6 87.2 1.70

ST-GCN† 1 79.0 80.7 16.73
2 83.7 85.1 33.46

AGCN† 1 79.7 80.7 18.69
2 84.0 85.4 37.38

S-TR† 1 80.2 81.8 16.20
2 84.8 86.2 32.40

Frame CoST-GCN (ours) 1 78.9 80.7 0.27
2 83.7 85.1 0.54

CoST-GCN∗ (ours) 1 79.4 81.6 0.16
2 84.0 85.5 0.32

CoAGCN (ours) 1 79.6 80.7 0.30
2 84.0 85.3 0.60

CoAGCN∗ (ours) 1 77.3 79.1 0.22
2 80.4 82.0 0.44

CoS-TR (ours) 1 80.1 81.7 0.17
2 84.8 86.1 0.34

CoS-TR∗ (ours) 1 79.7 81.7 0.15
2 84.8 86.1 0.30

TABLE IV: NTU RGB+D 120 comparison with recent meth-
ods, grouped by clip- and frame-based inference. Noted are the
number of streams (S.), top-1 validation accuracy, and FLOPs
per prediction. †Results for our implementation. Highlights
indicate best, next-best and pareto-optimal results.

their reported accuracy has been sub-par relative to newer
methods that sprung from ST-GCN. The recently proposed
AGC-LSTM [41] does report results on-par with CNN-based
methods, and might also be able to provide redundancy-free
frame-wise results, but we cannot validate this due to the lack
of publicly available source code and details in the published
paper. While ShiftGCN and ShiftGCN++ offer impressively
low FLOPs, it should be noted that the shift operation, which
is a significant part of their operational load, is not accounted
for by the FLOPs metric. Due to the non-causal nature of the
temporal shift operation in ShiftGCN and ShiftGCN++, they
cannot be transformed into Continual Inference Networks in
their current form, though a Continual Shift operation could
plausibly be devised.

Many works have shown that the inclusion of multiple
modalities leads to increased accuracy [15, 16, 18, 21, 24].
In our context, these modalities amount to joints, which
are the original coordinates of the body joints, and bones,
which are the differences between connected joints. Additional
joint motion and bone motion modalities can be retrieved by
computing the differences between adjacent frames in time for
the joint and bone streams respectively. Models are trained
individually on each stream and combined by adding their

Model S. Accuracy (%) FLOPs
Top-1 Top-5 (G)

Clip Feature Enc. [15, 44] 1 14.9 25.8 -
Deep LSTM [11, 15] 1 16.4 35.3 -
TCN [4, 15] 1 20.3 40.0 -
AS-GCN [40] 1 34.8 56.5 -
ST-GR [45] 1 33.6 56.1 -
DGNN [18] 4 36.9 59.6 -
MS-G3D [21] 2 38.0 60.9 -
MS-AAGCN [17] 4 37.8 61.0 -
Hyper-GNN [19] 3 37.1 60.0 -

ST-GCN† 1 33.4 56.1 12.04
2 34.4 57.5 24.09

AGCN† 1 35.0 57.5 13.45
2 36.9 59.6 26.91

S-TR† 1 32.0 54.9 11.62
2 34.7 57.9 23.24

Frame CoST-GCN (ours) 1 31.8 54.6 0.16
2 33.1 56.1 0.32

CoST-GCN∗ (ours) 1 30.2 52.4 0.11
2 32.2 54.5 0.22

CoAGCN (ours) 1 33.0 55.5 0.18
2 35.0 57.3 0.36

CoAGCN∗ (ours) 1 23.3 44.3 0.12
2 27.5 49.1 0.25

CoS-TR (ours) 1 29.7 52.6 0.16
2 32.7 55.6 0.31

CoS-TR∗ (ours) 1 27.4 49.7 0.11
2 29.9 52.7 0.22

TABLE V: Kinetics Skeleton 400 comparison with recent
methods, grouped by clip- and frame-based inference. Noted
are the number of streams (S.), top-1 and top-5 validation ac-
curacy, and FLOPs per prediction. †Results for our implemen-
tation. Highlights indicate best, next-best and pareto-optimal
results.

softmax outputs prior to prediction.
We evaluate and compare our proposed continual models,

CoST-GCN, CoAGCN, CoS-TR, with prior works on the NTU
RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400
datasets as presented in Table III, Table IV, and Table V.

The CoST-GCN and CoS-TR models transfer well across
all datasets both with (∗) and without padding and stride
modifications. For CoAGCN, we find that the change to stride
one deteriorates accuracy. We surmise that the attention matrix
in Eq. (7) may need a larger receptive field (basing the
attention on more nodes as in AGCN) to provide beneficial
adaptations; a per-step change in attention might provide more
noise than clarity in middle and late network layers. As
found in prior works, the multi-stream approach with ensemble
predictions gives a meaningful boost in accuracy across all
experiment.

The Continual Skeleton models provide competitive accu-
racy at multiple orders of magnitude reduction of FLOPs
per prediction in the online setting compared to the original
non-continual models. While none of our results beat prior
state-of-the-art accuracy in absolute terms, this was never the
intent with the method. Rather, we have successfully shown
that online inference can be greatly accelerated for models in
the ST-GCN family with state-of-the-art accuracy/complexity
trade-offs to follow. For instance, our one and two-stream CoS-



10

TR∗ achieve pareto optimal results on all subsets of the NTU
RGB+D 60 and NTU RGB+D 120 datasets meaning that no
other model improves on either accuracy and FLOPs without
reducing the other. Pareto-optimal models have been high-
lighted in Tables III, IV, and V accordingly. Our approach may
be used similarly to accelerate other architectures for skeleton-
based human action recognition with temporal convolutions.

VI. CONCLUSION

In this paper, we proposed Continual Spatio-Temporal
Graph Convolutional Networks, an architectural enhancement
for skeleton-based human action recognition methods, which
augments prior methods with the ability to perform predic-
tions frame-by-frame during online inference while attaining
weight compatibility for batch inference. We re-implement and
benchmark three prominent methods, the ST-GCN, AGCN,
and S-TR, as novel Continual Inference Networks, CoST-
GCN, CoAGCN, and CoS-TR, and propose architectural mod-
ifications to maximize their frame-by-frame inference speed.
Through experiments on three widely used human skeleton
datasets, NTU RGB+D 60, NTU RGB+D 120, and Kinetics
Skeleton 400, we show up to 26× on-hardware speedups,
109× reduction in FLOPs per prediction, and 52% reduction in
maximum memory allocated memory during online inference
with similar accuracy to those of the original networks. Our
proposed architectural modifications are generic in nature and
can be used for many methods in skeleton-based action recog-
nition. It is our hope, that this innovation will make skeleton-
based action recognition a viable option for online recognition
systems on recourse-constrained devices and systems with
real-time requirements.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871449 (OpenDR). This publication reflects
the authors’ views only. The European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] F. Han, B. Reily, W. Hoff, and H. Zhang, “Space-time represen-
tation of people based on 3D skeletal data: A review,” Computer
Vision and Image Understanding, vol. 158, pp. 85–105, 2017.

[2] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh, “Openpose: Realtime multi-person 2d pose estimation
using part affinity fields,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2019.

[3] H. Liu, J. Tu, and M. Liu, “Two-stream 3D convolutional neural
network for skeleton-based action recognition,” arXiv preprint
arXiv:1705.08106, 2017.

[4] T. S. Kim and A. Reiter, “Interpretable 3D human action analy-
sis with temporal convolutional networks,” in IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017,
pp. 1623–1631.

[5] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid,
“A new representation of skeleton sequences for 3D action
recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3288–3297.

[6] M. Liu, H. Liu, and C. Chen, “Enhanced skeleton visualization
for view invariant human action recognition,” Pattern Recogni-
tion, vol. 68, pp. 346–362, 2017.

[7] B. Li, Y. Dai, X. Cheng, H. Chen, Y. Lin, and M. He, “Skeleton
based action recognition using translation-scale invariant image
mapping and multi-scale deep CNN,” in IEEE International
Conference on Multimedia & Expo Workshops, 2017, pp. 601–
604.

[8] C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based action
recognition with convolutional neural networks,” in IEEE Inter-
national Conference on Multimedia & Expo Workshops, 2017,
pp. 597–600.

[9] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural
network for skeleton based action recognition,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015, pp.
1110–1118.

[10] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal
LSTM with trust gates for 3D human action recognition,” in
European Conference on Computer Vision. Springer, 2016,
pp. 816–833.

[11] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D:
A large scale dataset for 3D human activity analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1010–1019.

[12] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end
spatio-temporal attention model for human action recognition
from skeleton data,” in AAAI Conference on Artificial Intelli-
gence, 2017, pp. 4263–4270.

[13] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng,
“View adaptive recurrent neural networks for high performance
human action recognition from skeleton data,” in IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 2117–2126.

[14] L. Li, W. Zheng, Z. Zhang, Y. Huang, and L. Wang, “Skeleton-
based relational modeling for action recognition,” arXiv preprint
arXiv:1805.02556, vol. 1, no. 2, p. 3, 2018.

[15] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolu-
tional networks for skeleton-based action recognition,” in AAAI
Conference on Artificial Intelligence, 2018, pp. 7444–7452.

[16] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive
graph convolutional networks for skeleton-based action recog-
nition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 026–12 035.

[17] ——, “Skeleton-based action recognition with multi-stream
adaptive graph convolutional networks,” IEEE Transactions on
Image Processing, vol. 29, pp. 9532–9545, 2020.

[18] ——, “Skeleton-based action recognition with directed graph
neural networks,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7912–7921.

[19] X. Hao, J. Li, Y. Guo, T. Jiang, and M. Yu, “Hypergraph
neural network for skeleton-based action recognition,” IEEE
Transactions on Image Processing, vol. 30, pp. 2263–2275,
2021.

[20] H. Yang, D. Yan, L. Zhang, Y. Sun, D. Li, and S. J. Maybank,
“Feedback graph convolutional network for skeleton-based ac-
tion recognition,” IEEE Transactions on Image Processing,
vol. 31, pp. 164–175, 2021.

[21] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, “Dis-
entangling and unifying graph convolutions for skeleton-based
action recognition,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 140–149, 2020.

[22] W. Peng, X. Hong, H. Chen, and G. Zhao, “Learning graph
convolutional network for skeleton-based human action recog-
nition by neural searching.” in AAAI Conference on Artificial
Intelligence, 2020, pp. 2669–2676.

[23] N. Heidari and A. Iosifidis, “Progressive spatio-temporal graph
convolutional network for skeleton-based human action recog-
nition,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2021, pp. 3220–3224.

[24] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu,



11

“Skeleton-based action recognition with shift graph convolu-
tional network,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” International Conference
on Learning Representations, 2017.

[26] K. Cheng, Y. Zhang, X. He, J. Cheng, and H. Lu, “Extremely
lightweight skeleton-based action recognition with shiftgcn++,”
IEEE Transactions on Image Processing, vol. 30, pp. 7333–
7348, 2021.

[27] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng,
“Semantics-guided neural networks for efficient skeleton-based
human action recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[28] N. Heidari and A. Iosifidis, “Temporal Attention-Augmented
Graph Convolutional Network for Efficient Skeleton-Based
Human Action Recognition,” in International Conference on
Pattern Recognition, 2020.

[29] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+d: A
large scale dataset for 3d human activity analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition, June
2016.

[30] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C.
Kot, “Ntu rgb+d 120: A large-scale benchmark for 3d human
activity understanding,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2019.

[31] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,
S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev,
M. Suleyman, and A. Zisserman, “The kinetics human action
video dataset,” preprint, arXiv:1705.06950, 2017.

[32] C. Plizzari, M. Cannici, and M. Matteucci, “Skeleton-based
action recognition via spatial and temporal transformer net-
works,” Computer Vision and Image Understanding, vol. 208,
p. 103219, 2021.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems
(NeurIPS), vol. 30, 2017, pp. 5998–6008.

[34] L. Hedegaard and A. Iosifidis, “Continual 3d convolutional
neural networks for real-time processing of videos,” preprint,
arXiv:2106.00050, pp. 1–12, 2021.

[35] L. Hedegaard, A. Bakhtiarnia, and A. Iosifidis, “Continual
Transformers: Redundancy-Free Attention for Online Infer-
ence,” preprint, arXiv:2201.06268, 2022.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” in NeurIPS Workshop, 2017.

[37] L. Hedegaard, “Ride the lightning,” GitHub. Note:
https://github.com/LukasHedegaard/ride, 2021.

[38] L. N. Smith and N. Topin, “Super-convergence: very fast
training of neural networks using large learning rates,” in
Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications, vol. 11006, International Society for
Optics and Photonics. SPIE, 2019, pp. 369 – 386.

[39] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,”
preprint, arXiv:1706.02677, 2017.

[40] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian,
“Actional-structural graph convolutional networks for skeleton-
based action recognition,” 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3590–3598,
2019.

[41] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention
enhanced graph convolutional lstm network for skeleton-based
action recognition,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1227–1236, 2019.

[42] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C.
Kot, “Ntu rgb+ d 120: A large-scale benchmark for 3d human

activity understanding,” IEEE transactions on pattern analysis
and machine intelligence, vol. 42, no. 10, pp. 2684–2701, 2019.

[43] C. Caetano, F. Brémond, and W. R. Schwartz, “Skeleton image
representation for 3d action recognition based on tree structure
and reference joints,” in 2019 32nd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), 2019, pp. 16–23.

[44] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and
T. Tuytelaars, “Modeling video evolution for action recogni-
tion,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5378–5387.

[45] B. Li, X. Li, Z. Zhang, and F. Wu, “Spatio-temporal graph
routing for skeleton-based action recognition,” in AAAI, 2019.

Lukas Hedegaard is a PhD candidate at Aarhus
University, Denmark. He received his M.Sc. degree
in Computer Engineering in 2019 and B.Eng. degree
in Electronics in 2017 at Aarhus University, spe-
cialising in signal processing and machine learning.
With a common theme of efficient deep learning, his
research endeavours span from online inference ac-
celeration and human activity recognition to transfer
learning and domain adaptation.

Negar Heidari is a Postdoctoral researcher at
Aarhus University, Denmark. She completed her
PhD in Signal Processing and Machine Learning
at the Department of Electrical and Computer En-
gineering, Aarhus University in 2022. Her current
research interests include machine learning, deep
learning and computer vision with a focus on com-
putational efficiency.

Alexandros Iosifidis (SM’16) is a Professor at
Aarhus University, Denmark. He serves as Associate
Editor in Chief for Neurocomputing (for Neural
Networks research area), as an Area Editor for
Signal Processing: Image Communication, and as an
Associate Editor for IEEE Transactions on Neural
Networks and Learning Systems. He was an Area
Chair for IEEE ICIP 2018-2022 and EUSIPCO
2019,2021, and Publicity co-Chair of IEEE ICME
2021. He was the recipient of the EURASIP Early
Career Award 2021 for contributions to statistical

machine learning and artificial neural networks. His research interests focus
on neural networks and statistical machine learning finding applications in
computer vision, financial modelling and graph analysis problems.


	I Introduction
	II Related Works
	II-A Spatio-Temporal Graph Convolutional Network
	II-B Adaptive Graph Convolutional Neural Networks
	II-C Skeleton-based Spatial Transformer Networks

	III Continual Inference Networks
	III-A Continual Convolution
	III-B Delayed Residual
	III-C Temporal Stride

	IV Continual Spatio-Temporal Graph Convolutional Networks
	IV-A Computational Complexity

	V Experiments
	V-A Datasets
	V-B Experimental Settings
	V-C Conversion and Fine-tuning Strategies
	V-D Conversion of Attention Architectures
	V-E Speed and Memory
	V-F Comparison with Prior Works

	VI Conclusion
	Biographies
	Lukas Hedegaard
	Negar Heidari
	Alexandros Iosifidis


