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Abstract
Bayesian Neural Networks consider a distribution over the network’s weights, which provides a tool to estimate
the uncertainty of a neural network by sampling different models for each input. Variational Neural Networks
(VNNs) consider a probability distribution over each layer’s outputs and generate parameters for it with the
corresponding sub-layers. We provide two Python implementations of VNNs with PyTorch and JAX machine
learning libraries that ensure reproducibility of the experimental results and allow implementing uncertainty
estimation methods easily in other projects.
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https://github.com/iliiliiliili/vnn-pytorch-jax

C3 Permanent link to Reproducible Cap-
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https://codeocean.com/capsule/2963476/tree

C4 Legal Code License Apache-2.0 license
C5 Code versioning system used Git
C6 Software code languages, tools, and

services used
Python, R, LATEX

C7 Compilation requirements, operating
environments & dependencies

Pytorch/JAX (Tensorflow), plotnine, pandas, numpy,
neural-tangents, scipy, scikit-learn, dm-haiku, dm-acme,
chex, optax, fire, tqdm, tensorboard, tensorboardX,
torchvision, absl-py, tensorflow

C8 If available Link to developer documen-
tation/manual

C9 Support email for questions io@ece.au.dk

1. Introduction

Uncertainty estimation in neural networks provides an ability to detect possible errors in predictions that can be
caused by the lack of training data or out-of-distribution samples. These failures may occur silently in regular
neural networks and cause danger in critical tasks, such as medical image analysis or autonomous driving. To
estimate the network’s uncertainty in its predictions, several approaches have been proposed which are mostly
following the Bayesian Neural Network (BNN) framework [1, 2, 3]. BNNs introduce a probability distribution
over the neural network’s weights. For each input, they sample a set of different models from the weights
distribution which describe it from different points of view. The deviation in the prediction of these different
models is an estimate of the uncertainty of the network for the specific input.

BNNs usually come with increased computational cost and memory requirements compared to neural net-
works providing point estimations for their inputs. The choice of the weights probability distribution results in
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Figure 1: Structure of the PyTorch implementation of VNNs (R1).

different computational costs, but it also affects the statistical quality of the network. This is due to that more
complex and parameterized distributions allow for greater freedom, but require more computations to train and
execute the network, while simplified distributions may not represent the problem at hand. Existing methods
explore a variet of distributions, including the Gaussian [4, 5], Bernoulli [6], and Categorical [7] distributions.

Variational Neural Networks (VNNs) [8] introduce a new type of uncertainty estimation for neural networks
by considering a distribution over each layer’s outputs and generate the distribution’s parameters by processing
inputs with corresponding sub-layers. To keep a low computational cost and memory requirements of VNNs, we
consider the Gaussian distribution with its parameters, i.e., mean and variance, generated by the corresponding
sub-layers. As shown in [8], VNNs achieve better uncertainty quality compared to Monte Carlo Dropout (MCD)
[6] and Bayes By Backprop (BBB) [4], while having similar properties to those methods from the Bayesian Model
Averaging perspective.

2. Impact Overview

The codebase of VNNs is split into two implementations with different purposes. The PyTorch implementation
(R1) provides a general-purpose implementation of VNNs using Python 3 [9] and a machine learning framework
PyTorch [10] together with code for image classification experiments on MNIST [11] and CIFAR-10 [12] datasets.
The JAX implementation (R2) is built upon JAX [13] implementation [14] of Epistemic Neural Networks [15]
and provides a JAX version of VNNs together with the uncertainty quality estimation experiments.

The software provides full reproducibility of the research results in [8] and includes code for generating plots
and tables therein, which means that validating results and creating new experiments based on VNNs should be
an easy task. The structure of the software is modular and allows for fast implementation of additional methods
or usage of already existing methods in an existing project by replacing layers of a regular neural network with
those provided by the software.

3. Functionalities and key features

The PyTorch implementation (R1) of VNNs is programmed in a modular manner, where each of the
tested uncertainty estimation methods, including VNNs, Bayes By Backpropagation (BBB) [4], Monte Carlo
Dropout (MCD) [6], Deep Ensembles [7] and Hypermodels [5], is implemented using a common training interface
and isolated from the actual network architecture. The file structure of R1 is represented in Fig. 1 and consists
of
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• main.py is an entry point that implements train and evaluate functions to train and test models of interest.

• network.py implements a Network class that encapsulates all the functions need to train, run, load and
save the model.

• architectures folder contains a set of scripts that implement model architecture classes, such as ResNet,
DenseNet, and simpler architectures. These classes derive from the Network class and have convolutional
and linear layers as generic parameters allowing the creation of models with different uncertainty methods
for the same network architecture.

• classic.py, dropout.py, ensemble.py, hypermodel.py, variational.py implement the corresponding uncer-
tainty methods by creating convolutional and linear layers of the method of interest or a full network
generator. By providing these implementations into an architecture creator, a network for the selected
uncertainty method and architecture will be generated.

• params.py contains data generators for MNIST and CIFAR-10 datasets, string-indexed dictionaries of all
network creators, loss functions, activation functions and optimizers.

• modeling.py is an alternative entry point and is used to generate sets of experiments for each of the
uncertainty methods and run them in parallel.

• tools/create-grouped-tex-report.py collects results from the trained models and generates a LATEXtable with
two best entries for each network type.

The presented repository structure allows for an easy expansion of the project:

• Adding a new network type requires implementing either convolutional and linear layers (as shown in
classic.py, dropout.py, variational.py), or a network creator that takes an architecture as an input (as
shown in ensemble.py, hypermodel.py).

• Adding a new architecture requires implementing it with convolutional and linear layer classes given as
parameters.

• Adding a new layer type requires implementing versions of it for each of the network types, which is
usually straightforward, following the already implemented ones.

• Using these methods for other projects can be achieved by copying layer implementations to the existing
project with classical neural networks and replacing regular layers in the network with the desired ones.

The JAX implementation (R2) is based on the Epistemic Neural Networks repository [14] and provides
a code to reproduce uncertainty quality experiments. All main files of R2 are located at enn/experiments/
neurips 2021 with the following file structure:

• run testbed.py is an entry point that generates a problem for the selected experiment parameters and
trains a set of models for the selected method.

• agent factories.py contains model creators for each of the uncertainty methods and functions to create
networks with different parameters to be trained.

• enn/networks folder contains implementations of the different uncertainty methods.

• tools/create enn plots.py is used to generate plots for each method, groups of experiments and a summary.
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