
OpenDR —
Open Deep Learning Toolkit for Robotics

Project Start Date: 01.01.2020
Duration: 48 months
Lead contractor: Aristotle University of Thessaloniki

Deliverable D3.3: Third report on deep human
centric active perception and cognition

Date of delivery: 31 December 2022

Contributing Partners: TAU, AUTH, AU

Version: v3.0

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
871449.

D3.3: Third report on deep human centric active perception and cognition 2/223

Title D3.3: Third report on deep human centric active perception
and cognition

Project OpenDR (ICT-10-2019-2020 RIA)
Nature Report
Dissemination Level: PUblic
Authors Moncef Gabbouj (TAU), Kateryna Chumachenko (TAU), An-

ton Muravev (TAU), Efstratios Kakaletsis (AUTH), Charalam-
pos Symeonidis (AUTH), Pavlos Tosidis (AUTH), Theodoros
Manousis (AUTH), Anastasios Tefas (AUTH), Nikolaos Niko-
laidis (AUTH), Paraskevi Nousi (AUTH), Maria Tzelepi (AUTH),
Nikolaos Passalis (AUTH), Lukas Hedegaard Morsing (AU), Ne-
gar Heidari (AU), Alexandros Iosifidis (AU)

Lead Beneficiary TAU (Tampere University)
WP 3
Doc ID: OPENDR D3.3.pdf

Document History

Version Date Reason of change
v1.0 1/9/2022 Deliverable structure template ready
v2.0 25/11/2022 Contributions from partners finalized
v3.0 23/12/2022 Final version ready

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 3/223

Contents
1 Introduction 6

1.1 Deep person/face/body part active detection/recognition and pose estimation
(T3.1) . 6

1.2 Deep person/face/body part tracking, human activity recognition (T3.2) 6
1.3 Social signal (facial expression, gesture, posture, etc.) analysis and recognition

(T3.3) . 7
1.4 Deep speech and biosignals analysis and recognition (T3.4) 7
1.5 Multi-modal human centric perception and cognition (T3.5) 8
1.6 Connection to Project Objectives . 8

2 Deep person/face/body part active detection/recognition and pose estimation 10
2.1 Using Synthesized Facial Views for Active Face Recognition 10

2.1.1 Introduction, state of the art and work performed so far 10
2.1.2 Performance evaluation . 10

2.2 Active Vision Control Policies for Face Recognition using Deep Reinforcement
Learning . 11
2.2.1 Introduction, objectives and summary 11

2.3 Active Perception for Occlusion Removal in Face Recognition 12
2.3.1 Introduction, objectives and summary 12

2.4 Active Perception for enabling Efficient High Resolution Pose Estimation . . . 14
2.4.1 Introduction, objectives and summary of state of the art 14
2.4.2 Summary of state of the art . 14
2.4.3 Description of work performed so far 15
2.4.4 Performance evaluation . 16
2.4.5 Conclusions and Future Work . 18

2.5 Feature Selection for Attention-based Non-Maximum Suppression 19
2.5.1 Introduction objectives and summary of state of the art 19
2.5.2 Description of work performed so far and performance evaluation . . . 20

2.6 Real-time synthetic-to-real human detection for robotics applications 21
2.6.1 Introduction, objectives and summary of state of the art 21

3 Deep person/face/body part tracking, human activity recognition 22
3.1 Continual Transformers . 22

3.1.1 Introduction and objectives . 22
3.1.2 Summary of state of the art . 22
3.1.3 Description of work performed so far 22
3.1.4 Performance evaluation . 23

3.2 Continual 3D Convolutional Neural Networks 25
3.2.1 Introduction and objectives . 25

3.3 Continual Spatio-Temporal Graph Convolutional Networks for Online Skeleton-
based Human Action Recognition . 25
3.3.1 Introduction and objectives . 25
3.3.2 Summary of state of the art . 26
3.3.3 Description of work performed so far 26
3.3.4 Performance evaluation . 26

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 4/223

3.4 Structured Pruning Adapters . 31
3.4.1 Introduction and objectives . 31
3.4.2 Summary of state of the art . 31
3.4.3 Description of work performed so far 31
3.4.4 Performance evaluation . 32

4 Social signal (facial expression, gesture, posture, etc.) analysis and recognition 34
4.1 Facial Expression Recognition with Learning Diversified Feature Representations 34

4.1.1 Introduction and objectives . 34
4.1.2 Summary of state of the art . 35
4.1.3 Description of work performed so far 35
4.1.4 Performance evaluation . 36

5 Deep speech and biosignals analysis and recognition 38
5.1 Self-Attention Neural Bag-of-Features . 38

5.1.1 Prior work and work performed so far 38
5.1.2 Performance evaluation . 39

6 Multi-modal human centric perception and cognition 41
6.1 Self-attention fusion for audiovisual emotion recognition 41

6.1.1 Introduction and objectives . 41
6.1.2 Summary of state of the art . 41
6.1.3 Description of work performed so far 42
6.1.4 Performance evaluation . 43

7 Conclusions 45

8 Appendix 57
8.1 Continual 3D Convolutional Neural Networks for Real-time Processing of Videos 57
8.2 Continual Inference: A Library for Efficient Online Inference with Deep Neural

Networks in PyTorch . 82
8.3 Continual Transformers: Redundancy-Free Attention for Online Inference . . . 98
8.4 Continual Spatio-Temporal Graph Convolutional Networks for Online Skeleton-

based Human Action Recognition . 115
8.5 Structured Pruning Adapters . 127
8.6 Facial Expression Recognition with Learning Diversified Feature Representations140
8.7 Self-Attention Neural Bag-of-Features . 146
8.8 Self-Attention Fusion for Audiovisual Emotion Recognition with Incomplete

Data . 153
8.9 Using Synthesized Facial Views for Active Face Recognition 161
8.10 Active Face Recognition through View Synthesis 182
8.11 Active Vision Control Policies for Face Recognition using Deep Reinforcement

Learning . 188
8.12 Active Perception for Occlusion Removal in Face Recognition 194
8.13 AUTH-Persons: A Dataset for Detecting Humans in Crowds from Aerial Views 206
8.14 Efficient Feature Extraction for Non-Maximum Suppression in Visual Person

Detection . 212
8.15 Real-time synthetic-to-real human detection for robotics applications 218

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 5/223

Executive Summary
This document presents the status of the work performed for WP3–Deep human centric active
perception and cognition. This work package contains five main tasks. These are Task 3.1–
Deep person/face/body part active detection/recognition and pose estimation, Task 3.2–Deep
person/face/body part tracking, human activity recognition, Task 3.3–Social signal (facial ex-
pression, gesture, posture, etc.) analysis and recognition, Task 3.4–Deep speech and biosignals
analysis and recognition, and Task 3.5–Multi-modal human centric perception and cognition.
The document starts with a general introduction, providing an overview of the individual chap-
ters and linking them to the main objectives of the project. The introduction is followed by
chapters dedicated to each of the tasks. Each chapter provides (i) an overview on the state of
the art for the individual topics, (ii) details of the partners’ current work as well as initial perfor-
mance results (where available), and (iii) a description of the planned future steps. Finally, the
conclusion section provides a closing overview of the work and the total progress of the work
package.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 6/223

1 Introduction
This document describes the work done during the third year of the project in the five major
research areas of WP3, namely:

• Deep person/face/body part active detection/recognition and pose estimation;

• Deep person/face/body part tracking, human activity recognition;

• Social signal (facial expression, gesture, posture, etc.) analysis and recognition;

• Deep speech and biosignals analysis and recognition;

• Multi-modal human centric perception and cognition.

1.1 Deep person/face/body part active detection/recognition and pose es-
timation (T3.1)

AUTH worked towards developing active perception models using a multitude of methods,
including active perception for face recognition (Sections 2.1 and 2.2, Section 2.3), high reso-
lution pose estimation (Section 2.4), as well non-maximum suppression suitable for person de-
tection methods (Section 2.5). To this end, AUTH finalized its active face recognition approach
that utilizes synthesized facial views (Section 2.1). Moreover, AUTH developed a DRL-based
control approach for training agents that are able to identify and focus on task-relevant objects,
i.e., humans, as well as issue appropriate control commands accordingly to acquire better re-
sults (Section 2.2). It also designed a two-step pipeline that initially predicts the direction of
movement and then regresses towards the full object removal from robot’s point of view, en-
abling efficient active perception (Section 2.3). Finally, AUTH proposed two variants of its
novel non-maximum suppression method for person detection (Section 2.5). The first variant
was demonstrated to be more robust to visual data distribution-shifts, while the second was able
to utilize existing feature maps of DL-based object detectors in an efficient manner, for comput-
ing appearance-based RoI representations, achieving top results while providing short inference
times.

1.2 Deep person/face/body part tracking, human activity recognition (T3.2)
AU has contributed novel methods for accelerating the online inference of both video- and
skeleton-based human activity recognition networks, as well proposed and implemented Con-
tinual Inference Networks (CINs), which perform efficient step-by-step online processing. A
brief of this work is given below.

In online tasks demanding frame-wise predictions, a considerable computational redun-
dancy is observed in state-of-the-art 3D-CNN, ST-GCN, and Transformer architectures which
receive as input a spatio-temporal clip/skeleton and perform predictions by processing overlap-
ping clips/skeletons. To alleviate this redundancy, AU researchers have proposed a new class
of 3D convolution, the continual 3D convolution, which can perform identical computations
to those in a regular 3D convolution while considering only one time-step at a time. Existing
3D convolutional neural network architectures and weights can thus be reused and accelerated
through a continual inference mode. This principle was also used to reduce the per-prediction

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 7/223

floating point operations of Spatio-Temporal Graph Convolutional Neural Networks (ST-GCNs)
for skeleton-based action recognition by two orders of magnitude (Section 3.3). Due to a local
caching mechanism within each continual convolution (an operation, which common computa-
tional devices are not optimised for), the throughput was increased by approx 18× for ST-GCNs.

Furthermore, a continual formulation of the Transformer Encoder has been proposed, which
enables redundancy-free sequential processing of tokens (Section 3.1). Similarly to contin-
ual 3D-CNNs and continual ST-GCNs, continual Transformer Encoders achieve remarkable
speedups compared to similar non-continual models, while retaining their predictive perfor-
mance. It is our hope that the contribution of AU will lead to the utilisation of higher accuracy
models and/or enable the use of computationally constrained hardware in embedded applica-
tions and robotics.

The class of Continual Inference Networks (CINs), which includes the Co3D CNNs, the
CoTrans, and the CoST-GCNs, was formally described and accompanied with an efficient im-
plementation (Section 3.2).

Finally, AU proposed Structured Pruning Adapters (SPAs) (Section 3.4), an alternative to
fine-tuning with pruning, which adapts pre-trained weights with an extremely compressed pa-
rameter set and no modification to the source weights, while utilizing structured pruning to re-
duce computational complexity. Compared to fine-tuning with structured pruning, our proposed
channel-SPA improves accuracy by an average of 6.9% under 90% pruning while learning half
the parameters. At 70% pruning, it can learn adaptations with 17× fewer parameters with only
1.6% lower accuracy. Similarly, the proposed block-based SPA requires far fewer parameters
than fine-tuning.

1.3 Social signal (facial expression, gesture, posture, etc.) analysis and
recognition (T3.3)

Facial expression as a fundamental natural signal for human social communication plays an
important role in different applications of artificial intelligence, such as Human Computer In-
teraction (HCI), and healthcare. AU developed a novel methodology and its corresponding tool
for image-based facial expression recognition. The work conducted by AU is briefly summa-
rized below.

Deep Convolutional Neural Networks (CNNs) have led to considerable progress in auto-
matic Facial Expression Recognition (FER) on laboratory-controlled datasets. However, these
methods confront challenges for in-the-wild datasets where facial images come with illumina-
tion, occlusion and pose variations causing considerable change in facial appearance. AU re-
searchers proposed a mechanism for improving the generalization ability of the state-of-the-art
models on unseen samples by learning diversified facial feature representations and encourag-
ing the learner to extract diverse spatial and channel-wise features Section 4.1. The proposed
optimization mechanism is incorporated into two state-of-the-art models and improved their
classification performance on three benchmark in-the-wild datasets.

1.4 Deep speech and biosignals analysis and recognition (T3.4)
TAU contributed a tool for heart anomaly detection (specifically, classification of atrial fibri-
lation from electrocardiograms) by developing a self-attention based attention mechanism for
Neural Bag-of-Features formulation allowing to learn joint attention maps for over codeword

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 8/223

and temporal dimensions, hence improving the performance of the underlying NBoF model.
The details are provided in Section 5.1.

1.5 Multi-modal human centric perception and cognition (T3.5)
Emotion recognition is one of the important tasks in human-robot interaction and multi-modal
methods can be employed in this task to make use of largely available data of different types.
Most of existing methods rely on pre-extracted features and assume idealistic inference envi-
ronment, while such conditions are not necessarily guaranteed at inference time. To this end,
TAU has contributed a tool for robust audiovisual emotion recognition, described in Section 6.1.
As part of the method, a new modality fusion approach based on self-attention is proposed, re-
sulting in improved performance compared to competing methods. Additionally, a training
approach, referred to as modality dropout, is introduced, leading to significantly increased ro-
bustness of the model to incomplete or noisy data of one of the modalities.

1.6 Connection to Project Objectives
The work performed within WP3, as summarized in the previous subsections, perfectly aligns
with the project objectives. More specifically, the conducted work progressed the state-of-the-
art towards meeting following objectives of the project:

O1 To provide a modular, open and non-proprietary toolkit for core robotic functionalities
enabled by lightweight deep learning

O1a To enhance the robotic autonomy exploiting lightweight deep learning for on-board de-
ployment

AU proposed and developed two methodologies for efficient continual human action
recognition based on ST-GCNs (Section 3.3) and Transformer networks Section 3.1),
which allow to reduce the number of computations compared to the standard approach of
sliding window-based classification. Besides, AU formally described the class of Contin-
ual Inference Networks (CINs) for efficient online inference, and made available public
implementation (Section 3.2). AU also proposed and developed an efficient image-based
facial expression recognition method (Section 4.1) which uses a mechanism to diversify
the features extracted by CNN layers of state-of-the-art facial expression recognition ar-
chitectures for encouraging the model to learn discriminative features. The proposed
method improves the model performance on in-the-wild facial expression recognition
datasets. Finally, AU proposed Structured Pruning Adapters (Section 3.4), which can
learn new tasks (given available pre-trained source weights) with an order of magnitude
fewer parameters than fine-tuning with pruning while achieving similar predictive and
computational performance.

AUTH proposed two variants of Seq2Seq-NMS (Section 2.5), a DNN-based Non-Maximum
Suppression method capable of improving the performance of person detection methods.
The first variant is able to operate using only geometric properties of candidate detections,
while the second is able to utilize the information-rich intermediate feature maps of DL-
based object detectors, for extracting appearance-based representations of the candidate
detections.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 9/223

TAU proposed and developed a methodology for audiovisual emotion recognition that
focuses on improving the robustness of the model towards incomplete data (Section 6.1).
The proposed model does not require separate feature extraction unlike the majority of
the existing methods in the field, and instead relies on an end-to-end architecture that
is based on lightweight video and audio branches. The proposed method outperforms
competing multimodal emotion recognition methods. TAU also proposed an extension
to its previously introduced Neural Bag-of-Features framework, adding a number of self-
attention mechanisms, which have shown improvements in analyzing the ECG biosignal
data (Section 5.1).

O1b To provide real-time deep learning tools for robotics visual perception on high-resolution
data AUTH worked for developing high resolution pose estimation models (Section 2.4).

O2 To leverage AI and Cognition in robotics: from perception to action

O2a To propose, design, train and deploy models that go beyond static computer perception,
towards active robot perception
AUTH worked towards developing active perception models for face recognition (Sec-
tions 2.1 and 2.2, Section 2.3).

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 10/223

2 Deep person/face/body part active detection/recognition and
pose estimation

2.1 Using Synthesized Facial Views for Active Face Recognition
2.1.1 Introduction, state of the art and work performed so far

Active vision exploits the ability of robots to interact with their environment, towards increasing
the quantity / quality of information obtained through their sensors and, therefore, improving
their performance in perception tasks. Active face recognition is largely understudied in recent
literature. Examples of the very few active recognition methods include the simple method de-
scribed in [83] that comprises of a neural network-based face recognizer along with a rather
naive decision making controller that decides for the viewpoint changes and the deep learning-
based active perception method for embedding-based face recognition described in [89]. During
the 3rd year of the project, AUTH continued and finalized its work on active face recognition
which was described in D3.2 (M24). The proposed active approach utilizes facial views pro-
duced by photorealistic facial image rendering. Essentially, the robot that performs the recog-
nition selects the best among a number of candidate movements around the person of interest
by simulating their results through view synthesis. This is accomplished by feeding the robot’s
face recognizer with a real world facial image acquired in the current position, generating syn-
thesized views that differ by ±θ ◦ from the current view and deciding, based on the confidence
of the recognizer, whether to stay in place or move to the position that corresponds to one of
the two synthesized views, in order to acquire a new real image with its sensor. During the
current reporting period thorough experimentation and testing led to a number of improvements
and fine-tuning of the method that resulted in enhanced performance. For example, a new face
recognizer was utilized and the algorithm was extended to operate for a number of steps, if the
obtained confidence is not acceptable. Also, instead of having the algorithm decide on the per-
son’s identity based on the last robot location, it was modified so as to decide using the position
and the corresponding acquired image that provided the largest confidence among all positions
that have been visited.

2.1.2 Performance evaluation

Extensive experimental performance evaluation was conducted in three facial image datasets
namely the HPID dataset [30], the Queen Mary University of London Multi-view Face Dataset
(QMUL)[104] and a Synthetic Dataset (SD) it has created (Section 2.3 of D6.3). These datasets
consist of cropped face images of different numbers persons (15, 48 and 33 respectively) cap-
tured from various camera positions. For example, in the QMUL dataset the images cover a
viewsphere of −90◦...+90◦ in pan and −30◦...+30◦ in tilt in 10◦ increments. The images of
all subjects were divided into two non-overlapping subsets: a database subset G that the face
recognizer uses to decide upon the ID of the query image through the nearest neighbor classifier
and a query (test) subset T (these are meant to be the images captured by the robot camera in
its initial position). This was done by choosing images with different pan ranges for G and
T . With this setup we simulated active recognition where the robot is moving only in the pan
direction. Experimental results in all three datasets verified the superior performance of the pro-
posed method compared to the respective ”static” approach, i.e. the approach where the same
face recogniser is fed only with the initial image captured by the ”robot”. For the HPID and SD

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 11/223

datasets the best performance is obtained for 4 steps of the algorithm and the absolute increase
of accuracy with respect to the static version is 15.61% and 13.05% respectively, whereas for
the QMUL dataset the best performance is obtained for 2 steps (increase of 15.69% compared
to the static approach). Moreover, comparisons were conducted with approaches that involve
face frontalization. In more detail, the view synthesis algorithm was applied on the input facial
image in order to synthesize a frontal view of the subject. This synthetic frontal image was then
given as input to the same face recogniser. Experiments showed that the results of the proposed
approach correspond to an absolute increase in accuracy (with respect to the frontalization ap-
proach) of 7.35%, 9.62% and 13.9% for the HPID, QMUL and SD datasets respectively. In
addition, the proposed approach was compared to a method that uses only synthesized views
generated for pan values around that of the input image. However this approach provided re-
sults inferior even to those of the static case. Finally the method was compared to the state of
the art active method in [89]. The proposed approach provides (in the 4 steps setup) results that
are better than that of [89] by (absolute increase in accuracy) 26.48%, 16.48% and 18.40% for
the HPID, QMUL and SD datasets respectively.

Two papers describing this work were recently submitted to Springer Machine Vision and
Applications Journal and the 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2023). Both can be found in Appendices 8.9 and 8.10 respectively.

• E. Kakaletsis and N. Nikolaidis, ”Using Synthesized Facial Views for Active Face Recog-
nition”, submitted to Machine Vision and Applications, Springer, 2022, Preprint Available
at SSRN: http://dx.doi.org/10.2139/ssrn.4241482

• E. Kakaletsis and N. Nikolaidis, “Active Face Recognition through View Synthesis”, sub-
mitted to 2023 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2023)

2.2 Active Vision Control Policies for Face Recognition using Deep Rein-
forcement Learning

2.2.1 Introduction, objectives and summary

Recent advances in Deep Learning (DL) led to a number of spectacular applications, rang-
ing from self-driving cars and robots that outperform humans in various tasks [57]. Despite
the enormous success in these areas, DL methods operate in a static fashion, i.e., they do
not typically provide means for interacting with the environment in order to better perceive
it. There have been several recent attempts to integrate active perception principles into DL
models [83, 89]. Most of them focused on robotics tasks, where they attempt to appropriately
manipulate a camera and/or a robot in order to improve the accuracy of the models. However,
training DL models for such tasks is not trivial, since most datasets used for training DL models
do not provide the appropriate data and/or annotations that can be exploited in active perception
scenarios. Indeed, active perception requires an agent that can interact with its environment
and acquire an improved view of the world. To overcome this limitation, existing methods ei-
ther employ simple handcrafted rules for implementing active perception feedback [83], or use
multi-view datasets to simulate some of the effects of active perception feedback [89]. How-
ever, due to the lack of appropriate datasets, such methods are still usually trained with simplis-
tic rules, e.g., to predict if moving left/right will increase/decrease the confidence on correctly
recognizing a person [89]. Another closely related line of work employs Deep Reinforcement

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 12/223

Learning (DRL) algorithms to perform a specific control task [78, 100, 79], e.g., acquire a
frontal view of a person [119]. Despite the effectiveness of DRL approaches in these robotics
tasks, applying them on challenging computer vision tasks typically require realistic simulation
environments and/or appropriate training methods, e.g., sim2real approaches [98]. At the same
time, the lengthy training time of DRL methods further limits their applications in robotics.
As a result, despite their enormous potential for developing active perception approaches their
application faces significant obstacles.

The main contribution of this work is to propose a DRL-based active perception approach
integrated with state-of-the-art DL-based face recognition models. More specifically, our goal
is to investigate whether active perception approaches can be employed and integrated into
robotic systems, in order to improve face recognition results, as well as, study the effect of such
an approach on the computational requirements. To this end, we propose a DRL-based control
approach for training agents that are able to identify and focus on task-relevant objects, i.e.,
humans, as well as issue appropriate control commands accordingly to acquire better results.
To train and evaluate the proposed method, we developed a simulation environment using the
Webots simulator [77] and generated several 3D human models using the MakeHuman soft-
ware [9]. The proposed method aims to control a drone, equipped with a camera, in order
to improve face recognition results over existing baseline and rule-based active perception ap-
proaches. Indeed, as the experimental results demonstrate, the proposed method managed to
lead to significant improvements in face recognition over the rest of the evaluated approaches
by issuing the appropriate control commands. Indeed, the trained agents showed an emergent
behavior that can resemble those of humans, e.g., move closer or around a person in order to
more confidently identify it. At the same time, it is demonstrated that the proposed method can
also lead to computational savings under certain conditions.

The full paper, along with the full results can be found in Appendix 8.11:

• [114] P. Tosidis, N. Passalis, and A. Tefas. “Active Vision Control Policies for Face
Recognition using Deep Reinforcement Learning”, European Signal Processing Confer-
ence 2022.

2.3 Active Perception for Occlusion Removal in Face Recognition
2.3.1 Introduction, objectives and summary

Face recognition challenges can be split into four main categories, the natural process of aging,
which is uncontrollable in the sense that each person passes through different aging patterns;
pose invariance, which can be potentially tackled with advanced alignment methods; severe
illumination changes; and partial occlusions [1]. Further analyzing, partial occlusions refer
to obstacles in the query image that block the face area by an occlusion less than 50%. The
occluder object can be sunglasses, scarf, hair, masks, another person/object or even severe
shadows. Partial FR is an active research topic that often uses face patches. More specifically,
dynamic feature matching uses face patches and face images of a subject for reducing the intra-
class variation [35]. On the other hand, newer approaches modify the network architecture
using attention modules [43] that drive the model to focus on relevant parts of the occludee
face. All the aforementioned solutions try to tackle the partial FR problem using a single static
image representation. However, a robot agent acts in dynamic environments and has the ability
to further explore its surroundings to get a better understanding.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 13/223

”We do not only see, we look”, is written in an early active perception and exploratory
robots work [5]. More recent works argue that one of the main reasons to use active control is
to see a portion of the visual field otherwise hidden due to occlusion [6]. While object detection
has undergone tremendous advancements, it is still rational that problems considered ill-posed
for a passive observer can be simplified when managed by an active agent [3]. Applications
on active perception that enforce deep learning often use reinforcement learning [[82], [103],
[8]] and are being applied to various tasks, such as image classification or adversarial scenarios
detection.

Enforcing the ability of robot agents to move around, we aim to tackle the occluded face
recognition problem as an active perception vision task. We propose an active perception
pipeline that intents on simultaneously moving towards a direction that gives a clear face view
for the robot and performing face recognition. Our proposed pipeline is two-step, initially the
robot captures the face image and decides the direction of the movement towards removing the
object in the most efficient way. Later, given a new face view, the agent decides how much
further it should move to fully clear out the occlusion, as a ratio of the initial movement. Both
the direction decision network and the regression module are implemented using efficient deep
learning networks.

One could easily question why two different networks are needed, when it is fairly easy to
train a feature extraction network with two heads, one predicting the movement direction and
the other the movement distance. This is a rational pipeline if the problem we aimed to solve
would stay in the 2D image world or we had a 3D view of the environment as an extra input.
However, we consider an agent that can only acquire color information of its surroundings, as
a two dimensional image. Thus, given only an RGB image as input, there is no out-of-the-box
way of knowing the actual distance between the agent and the object that causes the occlusion.
We aim to solve this issue by first performing a pre-defined movement towards the direction that
is picked by our network. This pre-defined movement will result in different image views based
on three dimensional factors such as the robot’s positioning with regards to the object and the
human. Our second network is trained so that it recognizes the impact of the initial movement
and regresses a factor showing how much more the network should move.

A second aspect of our work that needs to be noted is that our simulation modules operate in
pixel values and not three-dimensional ones. We pick this formulation as we want to make full
usage of the plethora of image datasets that exist and not restrict ourselves in three dimensional
models and slow simulation modules. However, our pipeline is exactly constructed for this
reason, the network’s output is never expected to be in pixel or distance metrics. On the contrary,
we force the network to predict the remaining movement as a ratio of the first pre-defined
movement. We also conduct a detailed mathematical analysis on why the ratio that is predicted
is analogous to distance metric values in the world. Our contributions can be summed up as
follows:

• We consider a real-world problem, formally describe it, and construct an active perception
pipeline to solve it.

• We design a two-step pipeline that initially predicts the direction of movement and then
regresses towards the full object removal from robot’s point of view. We manage to use
the image data after the first pre-define movement, in order to understand objects that are
placed in various positions from the agent, without the need of any depth sensor.

• We follow a classic deep learning training procedure with two dimensional data, but

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 14/223

specifically target into a pixel agnostic solution.

• We propose a pipeline which is currently applied in face recognition, but all the modules
included can be plugged in a plethora of object identification/recognition problems.

The technical report, along with the full results can be found in Appendix 8.12:

• V. Dimaridou, N. Passalis, and A. Tefas. “Active Perception for Occlusion Removal in
Face Recognition”, Technical Report (AUTH), 2022.

2.4 Active Perception for enabling Efficient High Resolution Pose Estima-
tion

2.4.1 Introduction, objectives and summary of state of the art

Human Pose Estimation is the method of recognizing and locating the joints of humans inside a
picture or a video frame. It is a computer vision problem that over the years has been challeng-
ing the science community in different ways e.g. Multi-person Pose estimation, Lightweight
methods, Pose estimation in high resolution images [13],[48], [62], [86], [109]. In this section,
we propose a methodology for high resolution pose estimation that allows a pose estimator to
run on a high resolution image without slowing down the procedure and keeping the accuracy
of poses in high levels. More specific, it works in an analogy with the human vision, where
humans first take a quick look from their environment and then focus on the object that they
want to. The proposed methodology (Fig. 1) is approaching pose estimation problem using an
active technique where the algorithm takes advantage of a rough heatmap of the humans in the
image and finds an optimal bounding box which is going to be used for further pose estimation.
More specific, the proposed methodology resizes the initial image in a desired resolution by
reducing the details that the image contains, and with a quick view it creates a rough heatmap
with the approximate locations of humans. On the next step the method uses only the part of the
image that is useful for pose estimation by using the details that provided from high resolution
images without using anything extra from the environment.

Figure 1: Proposed method pipeline

2.4.2 Summary of state of the art

In recent years there has been a significant increase in research for human pose estimation meth-
ods especially in bottom-up approaches. In the Multi-person pose estimation problem, it had
been shown that bottom-up approaches are more efficient and faster than top-down techniques
leading a big part of research community on this way. These methods are trying to estimate
each human’s pose by grouping the keypoints per person with a variety of techniques. For ex-
ample, in OpenPose pose estimator [13] the research team, except for the human body’s joints
they also try to estimate the Part Affinity Fields (PAFs) of humans. PAFs are a set of 2D vector

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 15/223

fields that encode the location and orientation of limbs over the image domain. Using PAFs and
keypoints for the corresponding joints it manages to makes an association for the keypoints and
tries to connect them when the association metric is maximizing. Moreover, in order to make it
run faster there has been implemented a lightweight version of OpenPose [86] which uses more
lightweight backbones and dilated convolution and manages to reach 28 FPS running in CPU.

2.4.3 Description of work performed so far

In this section we describe the proposed method pipeline that had been done so far. Our method-
ology is a bottom-up approach for pose estimation and it aims to improve the results of pose
estimation algorithms either in accuracy or in inference time running when it comes to high
resolution images.

According to the two approaches (top-down, bottom-up), in bottom-up algorithms the whole
image is passing through the algorithm in order to estimate all the joints that exist inside the
image and then to append them to each person separately. However, in high resolution data
each image contains a great amount of pixels and information that may not be valuable for
human pose estimation. This problem could be fixed by using a top-down technique where
the algorithm detects the humans, separates them and applies pose estimation on the detected
bounding boxes. Following this procedure the problem of the multi-person pose estimation is
still existing and the inference time is increasing as the number of humans is growing since
the pose estimation is applied in each detected bounding box. Our proposed methodology is
using a bottom-up approach where the pose estimation algorithm applies in a downscaled lower
resolution version of the input image and creates a draft heatmap about the possible locations of
the humans in the frame. Taking into account the information about humans from the generated
heatmap we crop the image in the original resolution and keep only the region of interest that
the estimator will be applied. At this point, we have separated the important parts of the input
image, the pose estimation algorithm is applied on the new image and after finding the poses
they should be a backwards projection with mathematical functions in order to fit in the original
size image.

To evaluate our method we need some high resolution image datasets. Since our method
is using as pose estimator the Lightweight OpenPose, which is using the COCO2017 dataset,
we created three high resolution datasets from COCO2017 in 720p, 1080p and 1440p. The im-
ages from COCO2017 were patched on a new empty frame in the appropriate dimensions, this
procedure created images in the desired resolution without upscale the original image and lose
information from the quality decrease through upscaling. For the COCO2017 data there is an
annotation file provided in which there is the ground truth keypoint coordinates for each human
and each image. As it is described before after the extract of the actual poses the keypoints
are projected back to the original image resolution respectively and we also provide a transfor-
mation that allows the evaluation of our predicted keypoints with the ground truth inside the
annotations file provided.

This proposed method is focusing on managing the high resolution images for pose esti-
mation and is divided in 5 steps. The first part of the methodology is the resizing of the input
image. At the beginning it was used a downscale on the input image that was reducing the
image size by a specific factor (0.9,0.8,0.7,0.6, etc.). From the results it is shown that there was
a specific value (0.7) that the method was working more efficient both in increasing the accu-
racy and working in higher FPS. Following the results, it was obvious that there was a standard
resolution in which the estimator was working properly. Thus, the proposed methodology is

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 16/223

passing the input image from an average pooling layer in order to reduce the size of the image.
The kernel of the pooling layer varies according to the size of the input image, and it transforms
the image into a fixed size -base height 1. The experiments that took place set this variable to
180, 360, 540, 720 pixel. During the resizing procedure the aspect ratio of the image is being
preserved the same as the original image.

In the second part of the procedure the method is using the part of the Lightweght OpenPose
algorithm that creates the confidence map with the joints and the part affinity fields of all the
humans detected inside the low resolution image. In this way the proposed method is taking
a rough look on the image about where humans are located without spending resources for a
detailed examination and it produces the corresponding heatmap.

Continuing in the third part of the proposed method’s procedure, in this step it is extracted
the region of interest of the image. As it is shown in Fig. 2, the heatmap has highlighted the
human figures and they are easily distinguishable from the background. Using the OpenCV’s
library for creating contours we crop the image, using a simple but efficient method, by keep-
ing the coordinates of the top-left and bottom-right corners of the contours created. Since the
previous procedure has applied on the low resolution resized image, the coordinates for the area
of interest are transformed into teh original coordinate system and then the image is cropped.
It should be mentioned that there might be cases that the cropped and the original image have
similar size e.g., people scattered inside the frame, but besides these exceptions the method
seems to outperform the Lightweight OpenPose (LwOP).

In the fourth part of the proposed method we try to extract the human poses. In this step
there is an additional resizing on the image that comes as an input (cropped image) before the
pose estimation takes place. The resizing step is implemented as the previous one and it is tested
in the same height values (180, 360, 540, 720) as before for all the possible combinations. To
complete the experiments, there was also tested one more case, in which the cropped image
didn’t resized and passed through the pose estimator on its fixed resolution.

The last step of the procedure is the backwards projection of the predicted keypoints to the
original coordinates. Since the pose estimation was applied on a cropped and resized image, the
keypoints that were predicted should projected on the original image. This procedure contains
a mathematical transformation going back step by step on the changes we made on the original
image.

2.4.4 Performance evaluation

For the evaluation of the proposed High Resolution Pose Estimation, all the experiments con-
ducted on the COCO2017 dataset or in some variations of COCO2017 in 720p,1080p,1440p
as it explained before. The dataset contains 5000 images and around 54% (2693) of them are
including at least one human. The experiments that took place were a combination of the resiz-
ing scale in first and in second inference. Moreover, since our proposed method is based in the
preparation of the high resolution images in order to be used from the pose estimator, there is
no need of further training. At first it was needed to have some baseline results to compare this
high resolution method. We used the Lightweight OpenPose on each dataset and gathered the
results for the average precision 0.5:0.95 and the FPS as it can be seen in Table 1.

From the previous results it is shown that the pose estimator can maintain its average preci-
sion while dropping dramatically the inference time if it is not using any resizing on the input
images and on the other hand it can maintain its inference time close to real-time but with a big
cost in average precision.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 17/223

Figure 2: Generated heatmaps from input images

Table 1: Lightweight OpenPose on various datasets with and without resizing input image in
base height 368 pxl

Average Precision 0.5:0.95

Dataset LwOP
with resizing

LwOP
without resizing

COCO 0.4 0.425
720p 0.288 0.422

1080p 0.172 0.424
1440p 0.111 cuda memory error

FPS

Dataset LwOP
with resizing

LwOP
with resizing

COCO 35 24.51
720p 27 6.601

1080p 23 2.76
1440p 20 cuda memory error

The experiments that conducted to evaluate this method were using the same datasets and
we were tracking the same metrics (average precision and FPS). The results of the experimental
process are shown in Table 2.

From the Table 2, we keep only the best combinations of downscaling resolutions that com-
bine high average precision scores and FPS. The best results are shown in the Table 3

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 18/223

Table 2: Evaluation of the proposed method on different resolutions. During the experiments
different combinations of image height have been applied for the first and the second part of the
procedure.

Avg precision 0.5:0.95 FPS
COCO COCO

base height 2 base height 2
180 360 540 720 180 360 540 720

base
height 1

180 0.253 0.387 0.368 0.311
base

height 1

180 68 49 30 18
360 0.268 0.415 0.399 0.33 360 50 35 20 11
540 0.215 0.395 0.431 0.393 540 44 28 16 9
720 0.203 0.393 0.439 0.413 720 41 27 15 8

Avg precision 0.5:0.95 FPS
720p 720p

base height 2 base height 2
180 360 540 720 180 360 540 720

base
height 1

180 0.175 0.313 0.34 0.31
base

height 1

180 89 65 43 26
360 0.164 0.359 0.425 0.428 360 47 31 17 9.7
540 0.16 0.352 0.426 0.427 540 23 18 12 7
720 0.16 0.352 0.426 0.427 720 23 18 12 7

Avg precision 0.5:0.95 FPS
1080p 1080p

base height 2 base height 2
180 360 540 720 180 360 540 720

base
height 1

180 0.102 0.186 0.204 0.195
base

height 1

180 97 78 61 40
360 0.127 0.312 0.393 0.408 360 54 40 25 14
540 0.148 0.348 0.434 0.441 540 31 23 14 8
720 0.099 0.275 0.386 0.43 720 12 11 8 6

Avg precision 0.5:0.95 FPS
1440p 1440p

base height 2 base height 2
180 360 540 720 180 360 540 720

base
height 1

180 0.067 0.106 0.113 0.105
base

height 1

180 124 106 82 57
360 0.114 0.274 0.334 0.342 360 67 54 38 24
540 0.117 0.311 0.407 0.445 540 23 18 13 8
720 0.117 0.311 0.407 0.445 720 23 18 13 8

2.4.5 Conclusions and Future Work

To summarize, the proposed high resolution pose estimation method seems to manage to in-
crease the average precision and the FPS when input images are in high resolutions. A detail
that needs to be explained, is that it can be seen that images in 1440p run faster than 1080p.
This anomaly is due to the bigger difference in size between the original and the resized one.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 19/223

Table 3: Comparing the proposed method to different baselines

Average Precision 0.5:0.95

Dataset LwOP
Proposed method

base height 1,2
360,360

Proposed method
base height 1,2

360,540

Proposed method
base height 1,2

360,720
COCO 0.4 0.415 0.399 0.33
720p 0.288 0.359 0.425 0.428
1080p 0.172 0.312 0.393 0.408
1440p 0.111 0.274 0.334 0.342

FPS

Dataset LwOP
Proposed method

base height 1,2
360,360

Proposed method
base height 1,2

360,540

Proposed method
base height 1,2

360,720
COCO 35 35 20 11
720p 27 31 17 9.7
1080p 23 40 25 14
1440p 20 54 38 24

When larger images are down-scaled the objects in the frame become smaller and the algorithm
can not detect the human figures, so the image is over-passed without any further processing
and this is increasing the speed of the algorithm. As future work, we plan to develop more
efficient approaches for processing high resolution images for generating the initial heatmap
generator, e.g., by using models that can handle high resolution images in real time [118], as
well as develop approaches to more precisely localize the area of interest.

2.5 Feature Selection for Attention-based Non-Maximum Suppression
2.5.1 Introduction objectives and summary of state of the art

Non-Maximum Suppression (NMS) is a post-processing step incorporated in almost every vi-
sual object detector, tasked with rapidly pruning the number of overlapping detected candidate
rectangular Regions-of-Interest (RoIs) and replacing them with a single, more spatially accu-
rate detection (in pixel coordinates). The problem it attempts to solve arises from the tendency
of many detectors to output multiple, neighbouring candidate object RoIs for a single given
visible object, due to their implicit sliding-window nature. NMS methods typically rescore
the raw candidate detections/RoIs outputted by the detector, before thresholding these modified
scores so that, ideally, only a single RoI is finally retained for each visible object. A typical
case where most NMS methods struggle to perform is when they operate on images depicting
objects in complex scenes, where several in-between occlusions appear. This occurs frequently
when detecting persons in crowded scenes. This is a very important scenario for security- or
safety-critical applications. The vast majority of existing methods only exploit geometric prop-
erties/interrelations between the candidate RoIs, in the form of geometric features.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 20/223

2.5.2 Description of work performed so far and performance evaluation

In Section 2.3 of D6.2 (M24), AUTH presented a deep neural architecture which approached
NMS as a sequence-to-sequence problem. The presented method, called Seq2Seq-NMS, ex-
tracts RoI representations based on geometric and visual appearance properties of the input
candidate RoIs. An efficient implementation of FMoD [73] was employed for visual RoI de-
scription. These RoI representations are then refined by the Seq2Seq-NMS, by capturing rela-
tions of neighboring RoIs and aiming to ideally assign precisely one detection per person. In
[111], Seq2Seq-NMS was able to achieve top precision results on three separate person detec-
tion datasets.

In this reporting period, AUTH examined whether Seq2Seq-NMS is susceptible to visual
data distribution shifts, due to the fact that the method extracts RoI representations based on
their visual appearances, in contrast to other NMS methods which incorporate only geometry-
based RoI representations. A visual data distribution shift scenario was simulated, in which the
depicted environments of the test set were visually dissimilar from those on the training set.
As expected, this distribution shift had a major negative effect to the performance of Seq2Seq-
NMS, compared to the performance of the methods that incorporate only geometry-based fea-
tures that are affected to a lesser extent. A new variant of Seq2Seq-NMS was proposed for
such cases, exploiting only the geometric properties of the candidate RoIs. This variant, named
Seq2Seq-NMSgeom, was implemented by feeding the DNN a zero vector for each ROI, as a
dummy appearance-based representation vector. In the aforementioned visual data distribu-
tion shift scenario, Seq2Seq-NMSgeom attained improvements of +0.3% and + 1.1% against the
original Seq2Seq-NMS in AP0.5 and AP0.95

0.5 respectively.
A conference paper describing this work was presented at IEEE ICIP 2022 and can be found

in Appendix 8.13:

• [112] C. Symeonidis, I. Mademlis, I. Pitas and N. Nikolaidis, “AUTH-PERSONS: A
Dataset for Detecting Humans in Crowds from Aerial Views”, IEEE International Con-
ference on Image Processing (ICIP), 2022

In addition AUTH also proposed a new variant of Seq2Seq-NMS, which was named FSeq2-
NMS. The proposed variant is able to harness the information-rich intermediate feature maps
of DL-based object detectors. These intermediate feature maps are used to derive learned,
high-level, semantically meaningful RoI representations, which are then exploited instead of
handcrafted visual descriptors (such as [73]). The efficacy achieved by the internal/latent image
representations of state-of-the-art detectors allows the method to discriminate duplicate RoIs
from a set of densely sampled and heavily occluded candidate detections, a problem commonly
encountered when detecting humans in crowded scenes. FSeq2-NMS can be easily plugged on
top of any DL-based detector, and trained as a separate sub-module. The structure of the overall
object detection framework, in which FSeq2-NMS is employed, is depicted in Figure 3a. An
appearance-based ROI representations extraction module was implemented for processing the
detector’s feature maps. An illustration of this module is depicted on Figure 3b. As input, the
module receives B = [b0,b1, ..,bN] ∈ RN×4, i.e., the coordinates of N candidate RoIs, as well
as M ∈ R64×64×Cm , namely a set of features maps, extracted from an in-between layer of the
deployed detector and resized to a fixed 64× 64 resolution (Cm is the number of channels of
the corresponding feature maps). Using the RoIAlign operator [34], initial RoI maps can be
in-parallel extracted in a fixed 20× 20 spatial resolution. Then two convolutional layers, with
the Rectified Linear Unit (ReLU) as activation function, followed by a max-pooling layer are

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 21/223

(a) (b)

Figure 3: a) The pipeline of the overall object detection framework in which FSeq2-NMS is
employed. b) The appearance-based RoI representations extraction module.

applied on the extracted RoI maps. The final RoI representations A = [a1,a2, ..,aN] ∈ RN×da

are computed by flattening the RoI maps and applying a fully connected layer using ReLU as
activation function (da corresponds to the dimension of the final appearance-based RoI repre-
sentations).

Experiments were conducted on two public person detection datasets, widely used in the
task of detecting humans in crowded scenes. In the testing set of PETS dataset, FSeq2-NMS
surpassed all competitive NMS methods by +0.5% and +0.1% in AP0.5 and AP0.95

0.5 respectively.
In the more challenging CrowhHuman dataset, the proposed method surpassed all competitive
NMS methods by +2.9% and +1.9% in AP0.5 and AP0.95

0.5 respectively. In both datasets, the
proposed implementation achieved faster than real-time inference times (>120fps). This work
has been submitted to ICASSP 2023 and can be found in Appendix 8.14

• C. Symeonidis, I. Mademlis, I. Pitas and N. Nikolaidis, “Efficient Feature Extraction for
Non-Maximum Suppression in Visual Person Detection”, submitted to IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2023)

2.6 Real-time synthetic-to-real human detection for robotics applications
2.6.1 Introduction, objectives and summary of state of the art

During the 3rd year of OpenDR’s project research, AUTH also worked on synthetic-to-real-
human detection focusing on robotics applications. Generally, the use of synthetic data is ac-
companied by various benefits linked with their low-cost nature and ability to meet specific
requirements imposed by the application, which may not be feasible in real data. Therefore,
synthetic data have been utilized in a wide spectrum of robotics applications, e.g., [139]. A key
issue associated with the successful use of synthetic data in robotics is the gap between the gen-
erated data and their deployment considering real data, that is, the so-called synthetic-real gap.
The need for bridging this gap has fueled a new research area [129]. In this work, AUTH first
created a synthetic dataset for discriminating between humans and non humans, and then uti-
lized it to train a lightweight fully convolutional model, capable of operating in real-time (about
25 frames per second) on a low-power GPU for high resolution input [118]. The target was to
use the model to provide semantic heatmaps of human presence on real data. That is, AUTH
trained the real-time model on the synthetic data, and tested the model on unseen images that

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 22/223

contain real humans, producing semantic heatmaps, as explained in [118]. A main objective of
this work was to assess the generalization of the model to real data, and investigate the effect
of using real images in the training phase. As it was demonstrated in the experimental evalu-
ation the use of even few real training examples can considerably ameliorate the performance
of training merely with synthetic data, while this was also reflected in the qualitative evaluation
through the produced heatmaps.

This work has been presented to IISA 2022 and can be found in Appendix 8.15:

• M. Tzelepi, C. Symeonidis, N. Nikolaidis and A. Tefas. “Real-time synthetic-to-real hu-
man detection for robotics applications”, IEEE International Conference on Information,
Intelligence, Systems and Applications (IISA) , 2022.

3 Deep person/face/body part tracking, human activity recog-
nition

3.1 Continual Transformers
3.1.1 Introduction and objectives

Originally proposed for Natural Language Processing tasks, Transformers [120] have emerged
as powerful architectures for computer vision [24, 88, 84, 4] and time-series processing [124,
23]. Due to the mutual information exchange between input tokens as they are processed in
the network, their application to online processing of time-series has been limited to the pro-
cessing of a sliding window with significant computation cost. In our work, we have identified
the computational redundancies of Transformer Encoders in the online setting, and rectified
the shortcomings with our proposed Continual Transformer Encoders. For one- and two-block
architectures, our method produces identical results to the original Transformer Encoder formu-
lation, and greatly accelerate inference through novel formulations of the Scaled Dot-product
Attention (SDA), which reduce the per time-step computational complexity from O(n2d) to
O(nd) and memory complexity O(n2) to O(nd).

3.1.2 Summary of state of the art

The improvement of Transformer efficiency has been explored by many prior works [113]: Prior
approaches include chunking methods [88, 24]; sliding windows, dilation and pooling [10];
intra-attention groupings [53]; and approximations to the self-attention [123, 126, 17]. Unlike
the above-refenced works, our approach produces the exact same results for temporal sequences
as the original Transformer Encoder [120] while providing computational speedups.

3.1.3 Description of work performed so far

At the basis of Transformer Encoders lies the Scaled Dot-product Attention. In order to ac-
commodate step-wise updated attention outputs, we propose two SDA variants: The Continual
Retro-active SDA, which updates prior attention outputs retroactively when a new token arriv-
ies; and Continual Single-output SDA, which only computes an attention results for the latest
token. For further details, we refer the reader to Section 3 in our paper found in Appendix

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 23/223

+

++

+

+

+

Continual Transformer Encoder

t0

α

β

γ

γ

δt-1

t-n

…

Retroactive
outputs

Optional
Input
token

OutputRecycling
Positional
Encoding

×(b - 2)×1 ×1

CLS

C
on

tin
ua

l R
et

ro
ac

tiv
e

T
ra

ns
En

c
bl

oc
k

T
ra

ns
En

c
bl

oc
k

 S
in

gl
e-

O
ut

pu
t

T
ra

ns
En

c
bl

oc
k

Figure 4: Multi-block Continual Transformer Encoder with Recycling Positional Encoding. For
b > 2 blocks, regular Transformer Encoder blocks can be added between an initial Continual
Retroactive block and a final Single-Output block. A class-token may be used after the initial
block.

8.3. Corresponding to the regular SDA, our proposed Continual SDA’s can be used in a Con-
tinual Multi-head Attention (MHA), as well as full Transformer Encoder blocks and sequences
thereof. The multi-block Continual Transformer Encoder, however, is limited to use a Continual
Retro-active MHA withing the first block, and Continual Single-output MHA in the last, with
regular MHA utilised in the remaining blocks. This is illustrated in Fig. 4. Moreover, positional
encodings must follow a token as time progresses. We propose a Recycling Positional Encoding
to accommodate this.

The principles, properties and limitations of Continual Transformers are described in more
detail in the associated paper, which can be found in Appendix 8.3:

• [39] L. Hedegaard, A. Bakhtiarnia and A. Iosifidis, “Continual Transformers: Redundancy-
Free Attention for Online Inference”, Advances in Neural Information Systems (NeurIPS)
Workshop on Vision Transformers: Theory and Applications, 2022.

3.1.4 Performance evaluation

In the evaluation of the Continual Transformer Encoders, we perform experiments THUMOS14 [47]
and TVSeries [22] datasets for Online Action Detection [22] as well as on the Music Genre
Classification dataset GTZAN [117]. In our evaluation, we train Continual versions of prior
state-of-the-art Transformer architectures (e.g. OadTR [124] for Online Action Detection) and
evaluate their task performance alongside the Floating Point Operations (FLOPs) per prediction.
The results of this are shown in Tables 4 an 5.

For THUMOS14 and TVSeries (Table 4), our proposed (Co)OadTR-b# architecture exhibit
similar precision while achieving significantly reduced FLOPs per prediction. More specifi-
cally, CoOadTR-b1 and CoOadTR-b2 reduce FLOPs by 255× and 6.1×, respectively, com-
pared to OadTR. On GTZAN, Continual Transformers achieve similar accuracy as their regular
counterparts while using 1.76× less FLOPs with two blocks and 51.5× less FLOPs when using
one Transformer Encoder block.

For further details on the experimental setup and ablation studies, we refer the reader to the
full paper in Appendix 8.3.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 24/223

Table 4: Online Action Detection results. FLOPs per prediction are noted for inference on
THUMOS14. The best and next-best metrics are highlighted. †Using official source code or
modifications there-off.

Model Feat. THUMOS14 TVSeries FLOPs
mAP (%) mcAP (%) (M)

RED [29]

A.Net

45.3 79.2 -
TRN [127] 47.2 83.7 1387.5
FATS [51] 51.6 81.7 -
IDN [26] 50.0 84.7 -
TFN [27] 55.7 85.0 -
LSTR [128] 65.3 88.1 -
OadTR [124] 58.3 85.4 2445.6
OadTR† 57.0±0.5 88.6±0.1 2445.6
OadTR-b2† 56.6±0.3 88.3±0.2 1008.1
OadTR-b1† 56.3±0.2 88.1±0.1 605.5
CoOadTR-b2 (ours) 56.8±0.4 87.7±0.6 410.9
CoOadTR-b1 (ours) 56.1±0.7 87.6±0.7 9.6

TRN [127] 62.1 86.2 1462.0
FATS [51]

Kin.

59.0 84.6 -
IDN [26] 60.3 86.1 -
PKD [138] 64.5 86.4 -
LSTR [128] 69.5 89.1 -
OadTR [124] 65.2 87.2 2513.5
OadTR† 64.2±0.3 88.6±0.1 2513.5
OadTR-b2† 64.5±0.5 88.3±0.2 1075.7
OadTR-b1† 63.9±0.5 88.1±0.1 673.0
CoOadTR-b2 (ours) 64.4±0.1 87.6±0.7 411.9
CoOadTR-b1 (ours) 64.2±0.4 87.7±0.4 10.6

Table 5: Audio Classification results for GTZAN.

Method Pos. Enc. Acc. FLOPs Par.
(%) (M) (K)

Maj. Voting - 92.0 - 0
Trans-b2 learned 95.0±0.6 47.4 509
Trans-b1 learned 93.8±0.8 15.2 286
CoTrans-b2 fixed 94.4±1.0 27.0 509
CoTrans-b1 learned 93.2±1.1 0.3 286

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 25/223

3.2 Continual 3D Convolutional Neural Networks
3.2.1 Introduction and objectives

Continual 3D Convolutional Neural Networks (Co3D CNNs) are a novel computational formu-
lation of spatio-temporal 3D CNNs, in which videos are processed frame-by-frame rather than
by clip. In online tasks demanding frame-wise predictions, Co3D CNNs omit the computa-
tional redundancies of regular 3D CNNs, namely the repeated convolutions over frames, which
appear in overlapping clips.

Continual 3D CNNs can reuse preexisting 3D-CNN weights to reduce the per-prediction
floating point operations (FLOPs) in proportion to the temporal receptive field while retaining
similar accuracy. This was validated with multiple models on Kinetics-400 and Charades with
good results: CoX3D models attain state-of-the-art complexity/accuracy trade-offs on Kinetics-
400 with 12.1-15.3x reductions of FLOPs and 2.3-3.8% improvements in accuracy compared
to regular X3D models while reducing peak memory consumption by up to 48%. The full
paper describing this work [38] was recently accepted at the European Conference on Computer
Vision and can be found in Appendix 8.1.

Continual Inference is a Python library for implementing Continual Inference Networks
(CINs), a class of Neural Networks designed for redundancy-free online inference. The library
is drop-in replacement for PyTorch, which augments modules with the ability of efficient online
inference. Moreover, it contains a functional-API, which let’s it’s users create complex neural
networks that poses the CIN capabilities of efficient step-by-step processing, which can and has
been used to reduce the floating point operations of prior networks by more than an order of
magnitude.

The full paper describing this library in more detail can be found in Appendix 8.2:

• [39] L. Hedegaard and A. Iosifidis, “Continual Inference: A Library for Efficient Online
Inference with Deep Neural Networks in PyTorch”, International Workshop on Computa-
tional Aspects of Deep Learning (ECCV Workshop), 2022.

3.3 Continual Spatio-Temporal Graph Convolutional Networks for On-
line Skeleton-based Human Action Recognition

3.3.1 Introduction and objectives

Skeleton-based action recognition methods process a sequence of skeletons, representing a se-
quence of body poses encoding the action in a video, to recognize the performed action. Graph
Convolutional Networks (GCNs) have shown significant progress in processing skeleton data
for human action recognition. ST-GCN [130] was the first GCN-based method proposed for
skeleton-based action recognition, which uses spatial and temporal graph convolutions to extract
the per time-step features and also time-varying dynamics of skeletons. Recently, many meth-
ods have been extending ST-GCN to enhance its efficiency and performance. Unfortunately, the
high computational complexity of these GCN-based methods makes them inapplicable in real-
time scenarios and resource-constrained online inference settings, where the input is a continual
stream of skeletons and step-by-step predictions are required. We proposed CoSTGCN method
to reduce such redundant computations by reformulating the ST-GCN and its derived methods
as a Continual Inference Network using Continual Convolutions in place of regular ones for
aggregating temporal information. In this setting, the skeletons are processed one by one and

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 26/223

the model produces updated predictions for each time-step. Our continual models achieve up
to 108× FLOPs reduction, 26× throughut increase, and 52% reduction in max allocated GPU
memory compared to the corresponding non-continual models.

3.3.2 Summary of state of the art

GCN-NAS [91] and PST-GCN [40] are neural architecture search based methods which try
to find an optimized ST-GCN architecture to increase the efficiency of the classification task;
ShiftGCN [15] replaces graph and temporal convolutions with a zero-FLOPs shift graph op-
eration and point-wise convolutions as an efficient alternative to the feature-propagation rule
for GCNs [52]; ShiftGCN++[16] boost the efficiency of ShiftGCN further via progressive ar-
chitecture search, knowledge-distillation, explicit spatial positional encodings, and a Dynamic
Shift Graph Convolution. However, all the above-mentioned methods would need to rely on
sliding window-based processing for online inference, and then performing their prediction on
the whole sequence.

3.3.3 Description of work performed so far

With regular temporal convolutions, features produced by multiple blocks cannot be trivially
disentangled and cached in time. Accordingly online operation with per-skeleton predictions
can be attained by caching T − 1 prior skeletons, concatenating these with the newest skele-
ton, and performing regular spatio-temporal inference. However, this comes with significant
computational redundancy, where the complexity of online frame-wise inference is the same as
for clip-based inference. To alleviate this issue, we propose to employ Continual Convolutions,
Figure 5, in the temporal modeling of Spatio-temporal Graph Convolutional Networks. By re-
stricting the graph convolution function to only operate locally within a time-step, we defined a
Continual Spatio-Temporal block by replacing the original temporal 2D convolution with a con-
tinual one, To retain weight-compatibility with regular (non-continual) networks we moreover
need to delay the residual to keep temporal alignment, Figure 6. For more details on the model
architecture and training process, we refer the reader to the preprint appended in Appendix 8.4:

• [37] L. Hedegaard, N. Heidari and A. Iosifidis, “Online Skeleton-based Action Recogni-
tion with Continual Spatio-Temporal Graph Convolutional Networks”, arXiv:2203.11009,
2022.

3.3.4 Performance evaluation

We conducted experiments on three benchmark datasets, NTU-RGBD-60 [101], NTU-RGBD-
120 [66], Kinetics-Skeleton-400 [49], to evaluate our method. We compared the performance
of our method with state-of-the-arts in Tables 6, 7, 8. The experimental results show up to
26× on-hardware speedups, 109× reduction in FLOPs per prediction, and 52% reduction in
maximum memory allocated memory during online inference with similar accuracy to those of
the original networks. Our proposed architectural modifications are generic in nature and can
be used for many methods in skeleton-based action recognition.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 27/223

Figure 5: Continual Convolutions are performed in two stages: First, the input is zero-padded
and convolved with the convolutional kernel (K = 3 in illustration) to produce intermediary
results. Subsequently, these are cached and summed up to produce the final output.

D
elayed R

esidual

Figure 6: Continual Spatio-temporal Graph Convolution Blocks consist of an in-time Graph
Convolution followed by an across-time Continual Convolution (here a kernel size of three is
depicted). The residual connection is delayed to ensure temporal alignment with the continual
temporal convolution that is weight-compatible with non-continual networks.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 28/223

Table 6: NTU RGB+D 60 comparison with recent methods, grouped by clip- and frame-based
inference. Noted are the number of streams (S.), top-1 validation accuracy, and FLOPs per
prediction. †Results for our implementation. Highlights indicate best, next-best results.

Model S. Accuracy (%) FLOPs
X-Sub X-View (G)

Clip SGN [137] 1 89.4 94.5 -
MS-G3D [69] 1 89.4 95.0 -

2 91.5 96.2 -
ST-TR [93] 1 89.2 95.8 -

2 90.3 96.3 -
MS-AAGCN [106] 4 90.0 96.2 -
Hyper-GNN [32] 3 89.5 95.7 -
FGCN [131] 4 90.2 96.3 -
DGNN [105] 4 89.9 96.1 126.80
AS-GCN [60] 1 86.8 94.2 27.00
AGC-LSTM [107] 2 89.2 95.0 54.40
ShiftGCN [15] 1 87.8 95.1 2.50

2 89.7 96.0 5.00
4 90.7 96.5 10.00

ShiftGCN++ [16] 1 87.9 94.8 0.40
2 89.7 95.7 0.80
4 90.5 96.3 1.70

ST-GCN† 1 86.0 93.4 16.73
2 88.1 94.9 33.46

AGCN† 1 86.4 94.3 18.69
2 88.3 95.3 37.38

S-TR† 1 86.8 93.8 16.20
2 89.1 95.3 32.40

Frame Deep-LSTM [101] 1 60.7 67.3 -
VA-LSTM [136] 1 79.2 87.7 -

CoST-GCN (ours) 1 86.0 93.4 0.27
2 88.1 94.8 0.54

CoST-GCN∗ (ours) 1 86.3 93.8 0.16
2 88.3 95.0 0.32

CoAGCN (ours) 1 86.4 94.2 0.30
2 88.2 95.3 0.60

CoAGCN∗ (ours) 1 84.1 92.6 0.22
2 86.0 93.1 0.44

CoS-TR (ours) 1 86.5 93.5 0.17
2 88.8 95.3 0.34

CoS-TR∗ (ours) 1 86.3 92.4 0.15
2 88.9 94.8 0.30

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 29/223

Table 7: NTU RGB+D 120 comparison with recent methods, grouped by clip- and frame-
based inference. Noted are the number of streams (S.), top-1 validation accuracy, and FLOPs
per prediction. †Results for our implementation. Highlights indicate best, next-best results.

Model S. Accuracy (%) FLOPs
X-Sub X-Set (G)

Clip Part-Aware LSTM [67] 1 25.5 26.3 -
ST-LSTM [68] 1 55.7 57.9 -
TSRJI [11] 1 67.9 62.8 -
SGN [137] 1 79.2 81.5 -
MS-G3D [69] 2 86.9 88.4 -
FGCN [131] 4 85.4 87.4 -
ShiftGCN [15] 1 80.9 83.2 2.50

2 85.3 86.6 5.00
4 85.9 87.6 10.00

ShiftGCN++ [16] 1 80.5 83.0 0.40
2 84.9 86.2 0.80
4 85.6 87.2 1.70

ST-GCN† 1 79.0 80.7 16.73
2 83.7 85.1 33.46

AGCN† 1 79.7 80.7 18.69
2 84.0 85.4 37.38

S-TR† 1 80.2 81.8 16.20
2 84.8 86.2 32.40

Frame CoST-GCN (ours) 1 78.9 80.7 0.27
2 83.7 85.1 0.54

CoST-GCN∗ (ours) 1 79.4 81.6 0.16
2 84.0 85.5 0.32

CoAGCN (ours) 1 79.6 80.7 0.30
2 84.0 85.3 0.60

CoAGCN∗ (ours) 1 77.3 79.1 0.22
2 80.4 82.0 0.44

CoS-TR (ours) 1 80.1 81.7 0.17
2 84.8 86.1 0.34

CoS-TR∗ (ours) 1 79.7 81.7 0.15
2 84.8 86.1 0.30

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 30/223

Table 8: Kinetics Skeleton 400 comparison with recent methods, grouped by clip- and frame-
based inference. Noted are the number of streams (S.), top-1 and top-5 validation accuracy,
and FLOPs per prediction. †Results for our implementation. Highlights indicate best, next-best
results.

Model S. Accuracy (%) FLOPs
Top-1 Top-5 (G)

Clip Feature Enc. [28, 130] 1 14.9 25.8 -
Deep LSTM [102, 130] 1 16.4 35.3 -
TCN [50, 130] 1 20.3 40.0 -
AS-GCN [60] 1 34.8 56.5 -
ST-GR [58] 1 33.6 56.1 -
DGNN [105] 4 36.9 59.6 -
MS-G3D [69] 2 38.0 60.9 -
MS-AAGCN [106] 4 37.8 61.0 -
Hyper-GNN [32] 3 37.1 60.0 -

ST-GCN† 1 33.4 56.1 12.04
2 34.4 57.5 24.09

AGCN† 1 35.0 57.5 13.45
2 36.9 59.6 26.91

S-TR† 1 32.0 54.9 11.62
2 34.7 57.9 23.24

Frame CoST-GCN (ours) 1 31.8 54.6 0.16
2 33.1 56.1 0.32

CoST-GCN∗ (ours) 1 30.2 52.4 0.11
2 32.2 54.5 0.22

CoAGCN (ours) 1 33.0 55.5 0.18
2 35.0 57.3 0.36

CoAGCN∗ (ours) 1 23.3 44.3 0.12
2 27.5 49.1 0.25

CoS-TR (ours) 1 29.7 52.6 0.16
2 32.7 55.6 0.31

CoS-TR∗ (ours) 1 27.4 49.7 0.11
2 29.9 52.7 0.22

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 31/223

3.4 Structured Pruning Adapters
3.4.1 Introduction and objectives

The reuse of pretrained source weights to improve performance on related target tasks has been
utilized ubiquiously in Deep Learning for visual data analysis. Commonly, this is done by
continuing training (fine-tuning) of source weights on the new data. Despite target tasks of
simpler nature, the resulting models always have the same parameter count and computational
complexity as the source model. Considering the (often simpler) nature of the target task, it
is reasonable to assume, that a derived parameter set and network structure could be learned,
which reduces both the computational complexity and parameter count while achieving similar
predictive performance on the target task.

3.4.2 Summary of state of the art

Adapter-based methods [95, 96, 33, 142, 64, 44, 92, 74] propose an alternative means of adapta-
tion compared to fine-tuning: instead of modifying the source weights, they define light-weight
add-on modules, which are trained. Assuming that the source model weights are available at
deployment, adapters can store the additional knowledge needed for a new task with an order
of magnitude fewer parameters.

However, just like the fine-tuning approach, the computational complexity of the specialized
models remains as high (or higher) than that of the source model. Pruning methods can be
used to both the reduce the parameter count and computational complexity of models. While
unstructured pruning approaches produce sparse weights, which may need specialized hardware
to achieve accelerated inference in practice, structured pruning of either channels [59, 80, 110,
132] or blocks of weights [99, 56] accelerate networks on commodity hardware as well.

3.4.3 Description of work performed so far

We propose Structured Pruning Adapters (SPAs), the combination of tailor-made adapters with
structured pruning. Our learned adapters can be fused with the frozen source weights to avoid
run-time overhead and are affected by the same pruning masks as the source weights. This
stands in contrast to prior adapter methods, where custom logic must be configured to prune
adapters.

We propose a channel-based SPA and a block-based SPA. Our channel-SPA augments the
Low-rank Adapter [45] with structured pruning of input- and output-channels. In channel-
pruning, the weight mask M ∈ {0,1}n×m is decomposed as row and column masks mrow ∈
{0,1}n×1 and mcol ∈ {0,1}m×1, respectively. The adapter target weights Mt can then be adapter
from the source weights Ms via the Structured Pruning Low-rank Adapter (SPLoRA):

Wt = Ws ⊙mrowm⊤
col +(Wdown ⊙mrow1⊤)(Wup ⊙1m⊤

col), (1)

where Wdown ∈ Rn×r and Wup ∈ Rr×m are adapter weights and r is the rank hyper-parameter.
This is illustrated in Fig. 7

Similarly, we propose the Structured Pruning Low-rank PHM Adapter (SPLoPA) for block-
based pruning with adaptation:

Wt = (Ws ⊙ [Mb ⊗J])+
R

∑
i=1

(Mb ⊙Bi)⊗piq⊤
i . (2)

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 32/223

W ⊙m 1

x y

⊕

down row

row

col

col

W ⊙1m up

W⊙(m m) s

⊤

⊤

⊤

Figure 7: Structured Pruning Low-rank Adapter (SPLoRA). Pruning of in/out channels affects
the adapter as well as source weights.

MW Block-sparse weights

Adapted
block-sparse
weights

(Shared)
 adapter
 prototypes

Element-wise
addition

Parameters:Kronecker
product

Independent
block
weights

⊗

⊕
(n/p) ×(m/q)

p ×q

n × m
R

p q v(n/p)×(m/q)

n × m

n × m

n × m

(n/p) ×(m/q)

b

B

pq⊤

s

Figure 8: Structured Pruning Low-rank PHM Adapter (SPLoPA) visualized for n = m = 32,
p = q = 4, and 50% density.

Here, we find inspiration in Parameterized Hypercomplex Multiplication (PHM) layers [135]
and define the adaptation of each weight block with a weighted summation low-rank p×q block
weights, which are shared across all blocks. For an n×m matrix, both this adaptation and the
block masking with Mb ∈ {0,1}n/p×m/q are expressed with the Kronecker product (⊗). In the
above, we denote the low-rank weights as p ∈ Rp×r and q ∈ Rq×r, the block position weights
by B ∈ Rn/p×m/q, and a matrix of ones as J ∈ {1}p×q. Fig. 8 depicts the approach visually.

3.4.4 Performance evaluation

We evaluated our proposed methods, SPLoRA and SPLoPA, with a battery of channel- and
block-based pruning methods on transfer-learning tasks for respectively image-classification
(from ResNet-50 weights trained on ILSVRC 2012 [97] to CIFAR-10 [55], Oxford Flowers
102 [85], and Cats and Dogs [25]) and question-answering (BERT-base weights to the Stan-
ford Question Answering Dataset 1.1 (SQuAD) [94]). We use fine-tuning with pruning (“fine-
pruning”) as a baseline in all cases. The channel-based pruning and adaptation results are

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 33/223

Table 9: Channel-based transfer-pruning from ResNet-50 pre-trained on ImageNet to Cats and
Dogs, Oxford Flowers 102, and CIFAR-10. ∆Params and floating point operations (FLOPs) are
shown for CIFAR-10. Mean ± standard deviation is shown for each metric. Changes specified
relative to closest fine-pruning density with same pruning method. Best metric per pruning-
method is highlighted with bold.

Pruning Learning Density ∆Params FLOPs CIFAR-10 Oxford Flowers 102 Cats & Dogs
method method (K) (M) Acc. (%) Acc. (%) Acc. (%)

Fine-tuning 100% 23,520.8±0.0 1,304.7±0.0 97.10±0.12 92.20±0.00 99.30±0.02

Unpruned LoRA-r32 100% 1,644.5±0.0 (↓ 14.3×) 1,304.7±0.0 95.32±0.13 (−1.8) 78.57±5.93 (−13.6) 98.60±0.43 (−0.5)

LoRA-r8 100% 466.3±0.0 (↓ 50.4×) 1,304.7±0.0 95.35±0.10 (−1.8) 80.96±5.83 (−11.2) 98.84±0.52 (−0.46)

Fine-pruning
30% 4,427.1±72.5 785.4±5.4 96.38±0.12 93.64±2.15 98.64±0.04

10% 599.1±20.1 352.1±3.9 87.23±2.00 72.83±0.93 95.42±0.31

Weight [59] SPLoRA-r32
30% 618.3±2.5 (↓ 7.2×) 778.6±2.9 95.59±0.22 (−0.8) 94.57±0.58 (+0.9) 98.43±0.13 (−0.2)
10% 294.8±0.4 (↓ 2.0×) 335.4±7.3 93.04±0.37 (+5.8) 89.36±1.09 (+16.5) 96.25±0.99 (+0.8)

SPLoRA-r8
30% 210.0±1.9 (↓ 21.1×) 773.4±2.1 94.91±0.24 (−1.5) 92.13±0.15 (−1.5) 98.40±0.12 (−0.2)
10% 128.9±0.1 (↓ 4.6×) 338.9±7.0 91.24±0.51 (+4.0) 86.49±0.74 (+13.7) 96.07±0.69 (+0.6)

Fine-pruning
30% 3,719.8±59.2 571.9±6.5 95.95±0.09 94.21±0.74 98.22±0.00

10% 615.7±4.3 244.7±3.3 91.83±1.17 73.06±0.70 95.84±0.20

Gradient [110] SPLoRA-r32
30% 601.0±0.4 (↓ 6.2×) 564.6±1.5 94.91±0.09 (−1.0) 93.58±0.43 (−0.6) 98.17±0.08 (−0.0)
10% 293.1±0.4 (↓ 2.1×) 244.0±1.9 93.65±0.36 (+1.8) 91.35±0.47 (+18.3) 97.54±0.17 (+1.7)

SPLoRA-r8
30% 205.2±0.2 (↓ 18.1×) 565.2±4.1 94.09±0.28 (−1.9) 91.60±0.30 (−2.6) 98.15±0.07 (−0.1)
10% 128.3±0.0 (↓ 4.8×) 245.4±4.0 91.25±0.20 (−0.6) 87.46±0.71 (+14.4) 97.19±0.28 (+1.4)

Fine-pruning
30% 3,392.8±81.1 559.9±0.7 95.71±0.02 92.91±0.56 98.22±0.18

10% 576.8±9.9 236.9±3.3 88.07±0.66 65.67±4.12 95.30±0.21

Taylor [80] SPLoRA-r32
30% 599.7±0.9 (↓ 5.7×) 555.5±6.7 94.88±0.21 (−0.8) 93.41±0.06 (+0.5) 97.84±0.48 (−0.4)
10% 292.6±0.5 (↓ 2.0×) 242.0±1.5 93.27±0.12 (+5.2) 91.30±0.10 (+25.6) 97.21±0.10 (+1.9)

SPLoRA-r8
30% 205.3±0.1 (↓ 16.5×) 566.2±10.9 93.98±0.24 (−1.7) 91.51±0.49 (−1.4) 97.90±0.13 (−0.3)
10% 128.4±0.1 (↓ 4.5×) 243.2±9.8 91.22±0.32 (+3.2) 86.76±0.42 (+21.1) 96.83±0.30 (+1.5)

Fine-pruning
30% 4,428.1±20.6 719.9±0.7 96.54±0.14 95.37±0.08 98.65±0.07

10% 599.0±− 302.1±− 93.39±− 87.56±2.75 −

LRP [132] SPLoRA-r32
30% 592.6±0.9 (↓ 7.5×) 585.5±6.7 94.85±0.13 (−1.7) 93.62±0.38 (−1.8) 98.09±0.11 (−0.6)
10% 290.9±0.2 (↓ 2.1×) 270.4±6.4 93.47±0.36 (+0.1) 91.22±0.46 (+3.7) 97.01±0.27

SPLoRA-r8
30% 203.3±0.5 (↓ 21.8×) 591.1±12.4 93.53±0.18 (−3.0) 91.26±0.19 (−4.1) 97.80±0.20 (−0.8)
10% 128.0±0.1 (↓ 4.7×) 281.6±1.7 90.94±0.39 (−2.5) 85.69±1.39 (−1.9) 96.88±0.52

presented in Table 9 and the block-based results are found in 10.
For channel-based pruning, SPLoRA achieved competitive accuracies to fine-pruning. While

fine-pruning performed better at higher model density (on average 0.6% and 1.6% higher than
SPLoRA ranks 32 and 16 at 30% density), SPLoRA required substantially fewer learned param-
eters (on average 6.2× and 17.0×). At lower-model density (i.e., higher pruning rates) SPLoRA
retained accuracy more successfully and both outperformed fine-pruning (achieving 6.9% and
4.7% higher average accuracy than fine-pruning for ranks 32 and 16), and reduced the learned
parameter count (by 2.0× and 4.2× on average). For block-based pruning, SPLoPA was able
to learn adaptations with significantly fewer parameters than fine-pruning (between 2.0× and
11.6× fewer) while achieving a slightly lower F1-score (on average 0.8% and 2.5% for R = 128
and R = 64).

Structured Pruning Adapters are described in more detail in the associated paper, which can
be found in Appendix 8.5:

• [36] L. Hedegaard, A. Alok, J. Jose, and A. Iosifidis, “Structured Pruning Adapters”,
arXiv:2211.10155, 2022.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 34/223

Table 10: Block-based transfer-pruning of BERT-base to the SQuAD dataset under block-
based, L0 Regularization pruning [71], Movement Pruning [99], and Soft Movement Pruning
(SMvP) [99]. Changes specified relative to closest fine-pruning density with same pruning
method. Best metric per pruning-method is highlighted with bold.

Pruning Learning Density ∆Params (M) SQuAD F1 (%)method method

L0 Reg. [71]
Fine-pruning

29.6% 25.21 81.49
10.1% 9.28 74.92

SPLoPA-R128
r2

29.5% 4.30 (↓ 5.9×) 80.75 (−0.7%)
10.7% 2.30 (↓ 4.0×) 76.22 (+1.3%)

SPLoPA-R64
r2 30.3% 2.19 (↓ 11.5×) 80.56 (−0.9%)

MvP [99]
Fine-pruning

30.1% 25.56 82.97
10.1% 8.57 73.77

SPLoPA-R128
r2

31.7% 6.49 (↓ 3.9×) 79.98 (−3.0%)
14.1% 4.36 (↓ 2.0×) 74.29 (+0.5%)

SPLoPA-R64
r2 10.1% 2.20 (↓ 3.9×) 71.00 (−2.8%)

SMvP [99]
Fine-pruning

28.8% 24.48 84.18
6.8% 5.84 75.61

SPLoPA-R128
r2

26.8% 4.02 (↓ 6.1×) 82.90 (−1.3%)
6.0% 1.80 (↓ 3.2×) 73.79 (−1.8%)

SPLoPA-R64
r2

28.6% 2.10 (↓ 11.6×) 82.51 (−1.7%)
6.9% 0.95 (↓ 6.2×) 70.75 (−4.9%)

4 Social signal (facial expression, gesture, posture, etc.) anal-
ysis and recognition

4.1 Facial Expression Recognition with Learning Diversified Feature Rep-
resentations

4.1.1 Introduction and objectives

Facial expression is a fundamental natural signal for human beings to communicate. Facial
Expression Recognition (FER) has received a great research interest in recent years due to
its applications in different artificial intelligence area such as Human Computer Interaction
(HCI), and healthcare. FER methods aim to solve a visual perception problem by learning
feature representations from facial images/videos to be classified as an emotional category, i.e.
happiness, sadness, fear, anger, surprise, disgust, neutral, and contempt. Deep Convolutional
Neural Networks (CNNs) have achieved remarkable progress on laboratory-controlled datasets,
like CK+ [72], in which the facial images are in fixed frontal pose without any occlusion.
However, FER methods still have challenges for recognizing emotions on in-the-wild datasets,
like AffectNet [81], in which illumination, occlusion and pose variations make considerable

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 35/223

change in facial appearance. Many recent methods have been proposed to address this issue by
extracting multi-scale facial features from global and local perspectives and employing region-
based attention mechanisms [140, 122], and employing ensemble learning to independently
train de-correlated models to achieve robust and accurate classification. Increasing the diversity
of features learned by different network layers/neurons has been recognized as an effective way
to improve model generalization [125]. We proposed a mechanism for learning diversified facial
feature representations by encouraging the learner(s) to extract diverse spatial and channel-wise
features and accordingly achieve better performance in real-world scenarios.

4.1.2 Summary of state of the art

MA-Net [140] is a state-of-the-art method which comprises of a backbone for preliminary fea-
ture extraction and a two-branch network with global multi-scale and local attention modules
receiving the extracted features by the backbone as input and perform high-level feature extrac-
tion. The first branch applies several multi-scale convolutions on the input feature maps and the
second branch divides the input feature maps into four local spatial regions without overlap, and
applies several parallel local attention networks on them to extract key regional features. This
model with 50.54 M parameters needs to be trained on a large dataset for another perception
task, like MS-Celeb-1M [31], and then finetuned on in-the-wild facial datasets like AffectNet.
ESR [108] is an efficient ensemble-based method for facial expression recognition and emotion
estimation which reduces the residual generalization error on in-the-wild datasets. ESR consists
of two building blocks: 1) the base network which is composed of a stack of convolutional layers
and is responsible for extracting low/middle-level features, 2) the ensemble network composed
of several network branches which are supposed to learn distinctive features. All branches in
this ensemble module receive the same feature maps extracted by the base network as input and
perform the classification independently.

4.1.3 Description of work performed so far

We proposed to increase spatial and channel-wise feature diversity in CNN architectures and
ensemble-based models for facial expression recognition. The diversity between different fea-
ture maps obtained by different learners or different layers of a CNN model can be obtained
in channel and spatial dimensions as illustrated in Figure 9 by first applying pooling on spatial
and channel dimensions and then computing the average similarity between every two pooled
feature maps l, k using radial basis function as follows:

Slk =
1
N

N

∑
i=1

exp(−γ ∥φl(xi)−φk(xi)∥2), (3)

where N denotes the number of samples, γ is a hyperparameter, φl(·) and φk(·) denote the
pooled feature maps two learners/layers. Considering the pairwise similarities between feature
maps, the model diversity is obtained by computing the determinant of the matrix S indicating
pairwise similarities of learners as Slk, i.e.,:

D = det(S). (4)

The model can be optimized in an end-to-end manner by minimizing the combined loss function
comprising of classification loss and diversity:

Loss = L − (Dch +Dsp), (5)

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 36/223

Feature maps

Channel pool

Spatial pool

Channel pool

Spatial pool

Diversity

Optimize

Diversity

Figure 9: Illustration of diversity mechanism over the channel and spatial dimensions of feature
maps.

Feature
pre-extractor

Multi-scale
Module

Patch
Diversity

Local
Attention

Module

Spatial
Diversity

Diversity

Pa
tc

h
di

ve
rs

ity
 lo

ss

Concatenate

GAP

Branch
Diversity

Diversity

Channel

Branch diversity loss

GAP

FC

FC

CE
Loss

Optimize

C
lassification loss

Summation

FC Fully Connected layer

GAP Global Average Pooling

Channel pool

Spatial pool

Pa
tc

hi
ng

Modification of Resnet-18
Conv1-Conv3

Figure 10: Illustration of the modified MA-Net structure by adding patch diversity and branch
diversity blocks to diversify local region-based features in each feature map and also increase
diversity of the extracted global and local features before passing them to the classification
layers.

where L denotes the cross-entropy classification loss, and Dch, Dsp denote the feature diversity
computed through channel and spatial dimensions, respectively.

We employed our proposed mechanism in two of the state-of-the-art methods, MA-Net and
ESR, to increase diversity between regional feature maps and between the features extracted
by ensemble branches, respectively. The modified structure of MA-Net and ESR are illustrated
in Figure 10, 11, respectively. For more details about these new structures and their training
mechanism, we refer the reader to the preprint appended in Appendix 8.6:

• [41] N. Heidari and A. Iosifidis, “Learning Diversified Feature Representations for Facial
Expression Recognition in the Wild”, arXiv:2210.09381, 2022.

4.1.4 Performance evaluation

We evaluated our proposed method by conducting experiments on three widely used in-the-wild
datasets, AffectNet [81], FER+ [7], RAF-DB [63], and compared the classification accuracy of
the modified version of MA-Net and ESR methods, indicated as ESR∗, MA-Net∗, with state-
of-the-arts in Tables 11, 12, 13, respectively. ESR-9 and ESR-15 indicate ESR with 9 and 15
ensemble branches. Experimental results show that diversifying features extracted by different

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 37/223

Ensemble

Base

CE
Loss

Ensemble
Diversity

Optimize

Diversity

Diversity

Input
Conv2D

BN
MaxPool
CBAM
GAP
FC

Summation

Spatial attention

Channel attention

Classification loss

Diversity loss

Figure 11: Illustration of the modified ESR structure with ensemble diversity block which di-
versifies the channel and spatial attention maps of the ensemble branches.

Table 11: Comparisons of the classification accuracy of the state-of-the-arts with our proposed
version of ESR and MA-Net methods on AffectNet dataset with 8 classes. ∗ indicates our
proposed version of the method.

Methods Pretrained Acc.(%)
MobileNet [42] - 56.00
VGGNet [42] - 58.00
AlexNet-WL [81] - 58.00
RAN [122] MS-Celeb-1M 59.50
SCN [121] MS-Celeb-1M 60.23
ESR-9 [108] AffectNet 59.30
ESR-9∗ AffectNet 59.30
ESR-15∗ AffectNet 60.00
MA-Net [140] MS-Celeb-1M 60.29
MA-Net∗ MS-Celeb-1M 60.02

ensemble learners can enhance the overall ensemble classification performance while increasing
the model capacity to include more learners for feature extraction. Furthermore, diversifying lo-
cal regional features extracted by a CNN learner improves the model performance in exploiting
local features and classifying facial images.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 38/223

Table 12: Comparisons of the classification accuracy of the state-of-the-arts with our proposed
version of ESR and MA-Net methods on FER+ dataset with 8 classes. ∗ indicates our proposed
version of the method.

Methods Pretrained Acc.(%)
TFE-JL [61] - 84.30
PLD [7] - 85.10
SHCNN [76] - 86.54
SeNet50 [2] VGG-Face2 [12] 88.80
RAN [122] MS-Celeb-1M 88.55

VGG-Face [87] 89.16
SCN [121] MS-Celeb-1M 88.01
ESR-9 [108] AffectNet 87.17
ESR-9∗ AffectNet 89.15
ESR-15∗ AffectNet 89.34
MAN-Net [140] MS-Celeb-1M -
MAN-Net∗ MS-Celeb-1M 88.34

Table 13: Comparisons of the classification accuracy of the state-of-the-arts with our proposed
version of ESR and MA-Net methods on RAF-DB dataset with 7 classes. ∗ indicates our pro-
posed version of the method.

Methods Pretrained Acc.(%)
DLP-CNN [63] - 84.22
IPA2LT [134] AffectNet 86.77
gACNN [65] AffectNet 85.07
LDL-ALSG [14] AffectNet 85.53
RAN [122] MS-Celeb-1M 86.90
SCN [121] MS-Celeb-1M 87.03
ESR-9 [108] AffectNet -
ESR-9∗ AffectNet 82.95
ESR-15∗ AffectNet 83.00
MA-Net [140] MS-Celeb-1M 88.40
MA-Net∗ MS-Celeb-1M 89.99

5 Deep speech and biosignals analysis and recognition

5.1 Self-Attention Neural Bag-of-Features
5.1.1 Prior work and work performed so far

Detection of abnormal biosignals is important in many healthcare applications, with large focus
being made on detection of heart abnormalities from ECG and PCG signals. During first years
of OpenDR, a methodology to tackle this task by means of Neural Bag-of-Features has been
proposed, introducing an attention mechanism referred to as 2DA [115]. The work extending
this approach to a more generic self-attention based formulation has started in year 2, with

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 39/223

main approach mentioned in D3.2 along with some preliminary results, and has continued in
year 3. To this end, we have proposed a self-attention based formulation of Neural Bag-of-
Features framework that allows to learn attention over codebook, timestamps, and importantly
joint attention maps over two dimensions. Additionally, the tool has been integrated in the
toolkit and a corresponding publication can be found in [19] or Appendix 8.7.

Overall, we develop an attention mechanism for time-series classification and reformulate
the existing Neural Bag-of-Features attention learning methodology by quantifying the rele-
vance of feature/temporal dimensions through latent spaces based on self-attention rather than
learning them directly. In addition, we propose a joint feature-temporal attention mechanism
that learns a joint 2D attention mask highlighting relevant information without treating feature
and temporal representations independently.

The full paper with more details can be found in Appendix 8.7:

• [19] K. Chumachenko, A. Iosifidis, and M. Gabbouj. “Self-attention neural bag-of-
features”, IEEE International Workshop on Machine Learning for Signal Processing,
2022.

5.1.2 Performance evaluation

For performance evaluation on biosignal datasets we consider two tasks: detection of atrial
fibrilation from ECG (specifically, the task is formulated as a classification problem with 4
classes: normal sinus rhythm, atrial fibrillation, alternative rhythm, and noise) [20], and detec-
tion of abnormal phonocardiograms based on Physionet Computing in Cardiology Challenge
dataset (PCG) [21]. In the latter scenario, we also consider the task of quality evaluation of
phonocardiograms (PCG-2). We report the average results over 5 and 3 folds, respectively.

All the experiments are conducted with the logistic formulation of Neural Bag of Features
[90] that uses hyperbolic kernel as a quantization layer and we use 256 codewords. We denote
by 2DA-CA and 2DA-TA the conventional 2DA attention in its codebook and temporal formu-
lations, respectively, and by 2DA-CTSAd , 2DA-TSAd , and 2DA-CSAd - the proposed variants
of codebook-temporal self-attention, temporal self-attention, and codebook self-attention with
the dimensionality of the latent space denoted by d. Note that d is a hyperparameter which can
be tuned, but we instead report the results across multiple values.

The results of the experimental evaluation are shown in Table 14. The best result is high-
lighted in bold, and the result is underlined if it outperforms the corresponding 2DA formula-
tion. As can be seen, in all three cases the best result is achieved by one of the proposed variants.
In PCG dataset, codeword-temporal variant in high dimensions outperforms both codeword and
temporal 2DA, and codeword self-attention significantly outperforms the codeword 2-DA. At
the same time, in temporal representations the proposed approach outperform the 2DA approach
in quality evaluation task on PCG dataset. Similar results are observed in AF dataset, where
proposed self-attention approaches outperform codeword and temporal 2DA. We additionally
perform experiments with multi-head formulation, outlined in Table 15, where the outcomes are
similar. Additionally, to evaluate the generalization of the propsoed approach, we evaluate it in
the task of acoustic scene classification on TUT-UAS2018 dataset [75]. The results are outlined
in Table 16. More experimental evaluation can be found in Appendix 8.7.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 40/223

Table 14: F1 scores on biosignal datasets

Attention models PCG PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.75 + 0.78 73.75 + 1.81 77.56 + 1.75
2DA-CTSA256 87.46 + 1.30 73.50 + 0.77 77.55 + 2.42
2DA-CTSA128 87.74 + 0.65 73.62 + 1.80 76.96 + 1.24
2DA-CTSA64 87.07 + 1.02 73.38 + 1.36 77.87 + 1.71
2DA-TSA512 88.06 + 0.61 73.46 + 1.45 76.86 + 2.34
2DA-TSA256 87.26 + 0.52 74.14 + 1.77 76.87 + 1.86
2DA-TSA128 87.08 + 1.00 74.47 + 1.03 77.27 + 2.13
2DA-TSA64 87.77 + 0.61 73.31 + 1.58 76.99 + 1.74
2DA-CSA512 88.36 + 0.22 73.35 + 1.15 77.28 + 1.60
2DA-CSA256 88.38 + 0.55 73.95 + 0.90 77.70 + 1.90
2DA-CSA128 87.19 + 0.98 73.02 + 2.14 78.70 + 1.50
2DA-CSA64 87.71 + 0.44 72.79 + 0.67 77.96 + 1.88

Table 15: F1 scores on biosignal datasets with 2 heads

Models PCG-1 PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.80 + 0.73 74.57 + 1.14 76.43 + 2.78
2DA-CTSA256 87.84 + 0.12 73.14 + 0.70 76.60 + 1.70
2DA-CTSA128 87.24 + 0.74 73.77 + 1.02 77.06 + 1.39
2DA-CTSA64 88.04 + 0.52 73.73 + 1.16 76.98 + 1.92
2DA-CTSA32 87.63 + 0.83 73.69 + 0.98 77.79 + 2.00
2DA-TSA512 86.98 + 0.76 73.66 + 0.78 76.77 + 2.26
2DA-TSA256 87.61 + 0.70 73.32 + 1.15 76.31 + 1.59
2DA-TSA128 87.69 + 1.11 72.64 + 2.19 77.23 + 1.48
2DA-TSA64 87.09 + 0.60 73.55 + 0.80 77.21 + 1.95
2DA-TSA32 87.03 + 0.44 74.38 + 1.81 77.41 + 2.18
2DA-CSA512 87.47 + 0.78 72.97 + 0.72 77.88 + 1.43
2DA-CSA256 88.31 + 0.60 74.94 + 1.77 77.70 + 1.69
2DA-CSA128 87.33 + 0.68 74.46 + 0.62 77.47 + 0.96
2DA-CSA64 87.49 + 0.84 73.41 + 1.13 76.91 + 1.11
2DA-CSA32 87.72 + 0.57 73.08 + 0.60 76.69 + 1.22

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 41/223

Table 16: Accuracies on TUT-UAS2018 dataset with 2 and 4 heads

Attention models TUT-UAS, h=2 TUT-UAS, h=4
2DA-CA 56.15 + 0.21 56.15 + 0.21
2DA-TA 56.09 + 0.51 56.09 + 0.51
2DA-CTSA512 57.23 + 1.00 57.04 + 0.80
2DA-CTSA256 56.15 + 1.17 58.52 + 0.70
2DA-CTSA128 57.48 + 0.64 58.02 + 0.45
2DA-CTSA64 54.91 + 1.22 58.07 + 1.92
2DA-CTSA32 57.21 + 0.29 56.31 + 0.74
2DA-TSA512 56.61 + 0.91 55.82 + 1.18
2DA-TSA256 55.80 + 0.98 56.07 + 0.48
2DA-TSA128 55.84 + 0.51 57.62 + 1.71
2DA-TSA64 57.83 + 0.16 56.71 + 0.81
2DA-TSA32 56.31 + 1.10 57.83 + 0.23
2DA-CSA512 57.40 + 0.23 57.13 + 1.20
2DA-CSA256 56.37 + 1.24 55.45 + 0.71
2DA-CSA128 55.62 + 1.18 56.91 + 1.31
2DA-CSA64 56.99 + 1.21 56.54 + 1.45
2DA-CSA32 56.04 + 1.06 56.26 + 1.53

6 Multi-modal human centric perception and cognition

6.1 Self-attention fusion for audiovisual emotion recognition
6.1.1 Introduction and objectives

An important problem in the field of machine learning is the recognition of human emotional
states, which enables a better comprehension of social cues in a variety of applications from
robotics to human-computer interaction. To this end, a number of strategies and emotion mod-
els have been put forth. These range from the problem of identifying discrete emotional states,
such as ”happy,” ”angry,” or ”sad,” to the estimation of emotional properties, such as arousal and
valence on a continuous scale. A variety of multi-modal techniques are emerging within this
field, attempting to improve emotion recognition performance by utilizing multiple data sources
simultaneously. These methods are ranging from simple decision-level fusion approaches to
more sophisticated joint feature learning approaches. Nevertheless, the majority of multi-modal
approaches created to date assume an idealistic environment with full presence of data of all
modalities at all times, which generally does not hold for real-world unconstrained scenarios,
where data of one modality can be absent, incomplete or noisy at times. Additionally, usage
of pre-extracted features that are subsequently fused with a learned model, rather than develop-
ment of end-to-end trainable models, still remains popular in the task of multi-modal emotion
recognition. This limits the applicability of such methods in real-world scenarios, as necessary
feature extraction is often challenging in unconstrained settings and introduces another point of
uncertainty to the overall processing pipeline.

6.1.2 Summary of state of the art

In the field of multi-modal machine learning, three classes of multi-modal fusion approaches
are typically recognized: early fusion, where the input data of various modalities are simply

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 42/223

combined via concatenation, addition, or any other operation and further processed together;
late fusion, where modalities are treated independently and their features or softmax classifi-
cation scores are only combined in the very last layers; and intermediate feature fusion, where
different modalities are treated independently but their features or scores are combined through-
out the entire process. Notable examples of multi-modal methods within the field of audiovisual
emotion recognition include [116, 46, 54]. It can be noted that these models focus on building
multi-modal fusion methods rather than end-to-end emotion recognition systems, and often em-
ploy features that require separate extraction, such as facial action units estimated from images
or text transcribed from speech. Additionally, it should be noted that all three of the afore-
mentioned approaches perform fusion in the beginning or middle of the pipeline, forcing the
learning of joint representations. While joint feature learning has advantages, such fusion can
also become a curse if the learned fused representations are overly dependent on one another
and one of the modalities is noisy, lacking, or nonexistent at the time of inference. Indeed,
the conventional approach has been to only assess the models’ performance in the ideal circum-
stance of both modalities being present and complete at all times, despite the fact that real-world
applications don’t often correspond to such scenarios.

6.1.3 Description of work performed so far

We propose a model for emotion recognition from audio (speech) and visual data that is train-
able into end-to-end manner [18]. On a general level, the model consists of two branches, that
is, the audio and the vision branch, and three fusion approaches are proposed. We addition-
ally propose a training approach aimed at improving robustness of the model to missing or
noisy data. Here, we provide a brief description of each of the components of the architec-
ture. More detailed description of the approach can be found in the following paper, attached in
Appendix 8.8:

• [18]. K. Chumachenko, A. Iosifidis, and M. Gabbouj. “Self-attention fusion for au-
diovisual emotion recognition with incomplete data”, arXiv preprint arXiv:2201.11095,
2022.

The vision branch consists of two branches, with the first one being the visual feature ex-
traction from individual video frames, followed by learning of joint representation for the whole
video sequence. To achieve an end-to-end trainable model capable of learning from raw video,
we employ feature extraction as part of our pipeline and optimize it jointly with the multi-
modal fusion module. We choose one of the recently proposed facial expression recognition
architectures, namely, EfficientFace [141] and incorporate it for feature extraction from indi-
vidual frames prior to introducing them to subsequent 1D convolutional blocks. Specifically,
the 1D convolutional blocks are added after average-pooled output of the last convolutional
block of EfficientFace. Note that visual feature extraction can be decoupled from the model and
any other features can be used instead as input to the second part of the vision branch.

Similarly to the vision branch, the audio branch operates on a feature representation, whether
pre-computed or optimized jointly, and applies four blocks of 1D convolutional layers. For au-
dio, we primarily use mel-frequency cepstral coefficients as features.

Further, one of the three fusion approaches are utilized. In the first approach, referred to as
late transformer fusion, features learnt from two branches are fused with a transformer block.
Specifically, we employ two transformers at the outputs of each branch, where fusion of one
modality is performed into the other one via self-attention. This is achieved by learning queries

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 43/223

from data corresponding to one modality and attending them to keys and values learnt from
the other modality. The fusion is followed by a standard transformer block processing and the
outputs of these transformer blocks are further concatenated and passed to the final prediction
layer. The second approach, referred to as intermediate transformer fusion is similar to the
first one, while fusion is performed with a transformer block in each branch at an intermediate
feature level, that is, after the first stage of feature extraction. The fused feature representation
is added to the corresponding branch. Since data from complementary modality is introduced
already at the earlier stage of the architecture, this allows to learn the features that are jointly
meaningful for the task at hand between modalities during later convolutional layers.

Further, we propose a third fusion approach that is based merely on dot-product similar-
ity that constitutes the attention in the transformer block. Formally, this is defined as follows.
Given the two feature representations of different modalities Φa and Φb, we compute queries
and keys with learnt weights, similarly to conventional attention. The scaled dot-product sim-

ilarity is subsequently calculated as A = so f tmax
(

ΦaWqWT
k ΦT

v√
d

)
. Softmax activation promotes

competition in the attention matrix, hence highlighting more important attributes/timestamps of
each modality, and as a result providing the importance score of each key with respect to each
query, i.e., each representation of modality a with respect to modality b. This allows to calculate
the relative importance of each attribute of modality a by aggregating the scores corresponding
to all the attributes of modality b for each attribute of modality a. As a result, we obtain an
attention vector that can be used to highlight more relevant attributes of the modality a. Consid-
ering the dot-product attention between features of audio and vision modalities shown, attention
vector of vision modality is given by vv = ∑i=Nv A[:, i].

In order to improve the robustness of the model in unconstrained environments, we further
propose a simple approach to account for the potential cases of missing or noisy data. Namely,
we propose the modality dropout, which randomly masks out or attenuates data of one of the
modalities during training. During training, data of one modality in each sample is randomly
replaced with zeros, while the representation of the other modality for a given sample is kept
intact. This approach imitates missing data and can also act as a regularizer similarly to Dropout
layer utilized in neural networks. Alternatively, for each pair of data samples we generate a
random scaling factor α in the range [0,1] and scale one of the modalities by α , while the
other with 1−α . The goal of this approach is to attenuate signals from different modalities at
different training steps, and hence prevent the model from learning from strictly one modality.
The third variant is aimed at the problem of noisy data, where the input signal of one modality
is corrupted. Here, the data is randomly sampled from a normal distribution with zero mean
and unit variance in one of the modalities for each pair.

6.1.4 Performance evaluation

For evaluating the performance of the proposed method, experiments are performed on two
speech and vision based emotion recognition datasets, namely, RAVDESS [70] and CMU-
MOSEI [133]. We compare our proposed approach with the methods proposed in [116, 46, 54].
RAVDESS dataset consists of video recordings of 24 people speaking with different emotions
and poses a task of classification of emotional states into 7 classes: calm, happy, sad, angry,
fearful, surprise, and disgust. 60 video sequences were recorded for each actor, and we crop or
zero-pad them to 3.6 seconds, which is the average sequence length. CMU-MOSEI consists of
23,454 movie review video clips taken from YouTube and labeled by human annotators with a
sentiment score in the range [-3..3].

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 44/223

We perform comparison in the standard setting as well as with one of the modalities miss-
ing or corrupted with noise. More details on experimental setup can be found in [18]. Table
17 shows the results of the proposed approaches on the RAVDESS and MOSEI datasets. Here,
‘LT1’ and ‘LT4’ denote late transformer fusion with one and four heads, respectively, and sim-
ilarly ‘IT’ denotes intermediate transformer fusion, ‘IA’ denotes intermediate attention fusion,
‘TAV’ and ‘TVA’ refers to the fusion approaches described in [46], and ‘MULT’ refers to [116].
We report categorical accuracy on RAVDESS dataset, and binary accuracy (positive vs negative
sentiment) on MOSEI dataset, as well as Mean Average Error between the true and predicted
sentiment scores.

As can be seen, in the setting without any type of dropout, late transformer fusion achieves
the best result on RAVDESS dataset, while intermediate attention fusion achieves the best result
on MOSEI dataset on both the accuracy and MAE metrics. Note that intermediate attention
fusion is also the most lightweight fusion approach compared to any of the methods using full
transformer blocks. Further, it can be seen that utilization of modality dropout improves the
performance drastically under incomplete data of one modality. This is the case for most fusion
methods, while intermediate attention fusion benefits from it the most. Besides, the performance
under the presence of both modalities is improved as well, with the best result on RAVDESS
achieved by intermediate attention fusion. This is also the best result on this dataset among all
methods and dropout settings.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 45/223

Table 17: Performance of different fusion methods on RAVDESS and MOSEI.

RAVDESS. ACC MOSEI. ACC MOSEI. MAE
AV A V M AV A V M AV A V M

LT1 79.33 19.83 36.41 45.19 63.89 48.70 62.85 58.48 0.806 0.840 1.063 0.903
LT4 76.42 27.92 30.00 44.78 66.56 62.63 53.16 60.78 0.806 0.839 0.831 0.825
IT1 76.41 21.16 18.33 38.63 67.72 37.14 62.87 55.91 0.792 0.843 0.809 0.815
IT4 78.50 20.33 17.33 38.72 64.91 62.60 62.85 63.45 0.817 0.840 0.832 0.830
IA1 76.00 18.58 22.83 39.13 64.94 62.08 62.86 63.29 0.802 0.837 0.806 0.815
IA4 77.41 20.66 29.83 42.63 67.72 63.07 65.77 65.52 0.794 0.837 0.803 0.811
TAV 77.75 24.25 13.33 38.44 64.94 62.08 62.86 62.18 0.814 0.841 1.093 0.916
TVA 76.00 15.16 42.67 44.61 66.48 37.15 56.96 53.53 0.809 0.852 0.838 0.833
MLT 74.16 22.33 35.42 43.97 62.90 62.85 64.44 63.40 0.804 0.838 0.804 0.815

MODALITY DROPOUT
LT1 79.08 59.16 72.66 70.30 67.11 63.62 62.90 64.54 0.802 0.829 0.801 0.811
LT4 79.25 53.00 70.92 67.72 64.47 53.71 64.91 61.03 0.814 0.837 0.819 0.824
IT1 77.33 48.41 73.75 66.50 62.80 62.85 63.09 62.91 0.804 0.831 0.803 0.813
IT4 78.91 44.33 74.92 66.05 67.01 64.30 63.12 64.81 0.796 0.826 0.797 0.806
IA1 81.58 58.08 72.83 70.83 67.19 64.52 64.91 65.54 0.795 0.816 0.798 0.803
IA4 79.58 57.16 71.83 69.52 63.48 62.74 63.18 63.13 0.807 0.820 0.808 0.812
TAV 76.58 54.83 13.33 48.24 65.32 63.84 62.85 64.01 0.811 0.832 0.839 0.828
TVA 74.42 44.91 69.58 62.97 67.61 63.98 60.95 64.18 0.793 0.819 0.798 0.803
MLT 78.50 53.58 70.66 67.58 63.87 62.85 63.37 63.36 0.806 0.836 0.835 0.826

MODALITY DROPOUT with NOISE
LT1 77.08 53.16 68.50 66.246 65.57 64.03 64.94 64.94 0.809 0.826 0.806 0.813
LT4 80.33 54.33 73.00 69.22 64.08 63.31 62.85 62.85 0.813 0.827 0.813 0.818
IT1 76.75 53.75 71.58 67.36 68.16 65.98 63.53 63.53 0.799 0.821 0.804 0.808
IT4 76.08 54.50 71.00 67.19 67.83 63.56 64.22 64.22 0.801 0.826 0.802 0.809
IA1 78.25 58.25 71.66 69.38 62.76 63.89 63.18 63.27 0.804 0.819 0.805 0.809
IA4 78.41 55.75 68.58 67.58 63.51 64.08 62.54 63.37 0.805 0.820 0.808 0.811
TAV 75.83 56.25 12.83 48.30 66.81 65.68 65.60 66.03 0.810 0.820 0.811 0.813
TVA 73.66 41.25 71.41 62.10 66.23 63.18 64.58 64.66 0.804 0.831 0.806 0.813
MLT 77.41 54.16 66.33 65.96 64.52 62.74 63.51 63.59 0.805 0.830 0.805 0.811

7 Conclusions
AU worked towards objective O1 by developing two methodologies for efficient continual hu-
man activity recognition based on video data (Section 3.1) and skeletal data (Section 3.3), which
reduce the per-prediction floating point operations by an order of magnitude. AU formally de-
scribed the class of Continual Inference Networks for neural architectures which remove the
computational redundancies to efficient frame-wise predictions, and made available a public
implementation (Section 3.2). AU also proposed an efficient methodology for image-based fa-
cial expression recognition (Section 4.1) which has improved the state-of-the-art performance
on in-the-wild benchmark datasets by learning diversified feature representations to improve
the model generalization. Moreover AU proposed Structured Pruning Adapters (Section 3.4), a
weight-based transfer learning method, which can learn additional tasks with an order of mag-
nitude fewer parameters than pruning with fine-tuning.

TAU worked towards objective O1 by developing an end-to-end multimodal emotion recog-
nition model described in Section 6.1 based on speech and face video that is robust towards
incomplete data, which improved the state-of-the-art performance on two emotion recognition
datasets in both standard and unconstrained inference scenarios. Within the scope of the same

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 46/223

objective TAU has also improved upon the capabilities of its Neural Bag-of-Features framework
(Section 5.1), further boosting the effectiveness of biosignal (i.e.) analysis.

AUTH worked towards objective O1 by developing two variants of its novel non-maximum
suppression method for person detection (Section 2.5). While the first variant was demonstrated
to be more robust to visual data distribution-shifts, the second was able to utilize existing fea-
ture maps of DL-based object detectors in an efficient manner, for computing appearance-based
RoI representations, achieving top results and shorter inference times. Moreover, attempting to
tackle the situation that active face recognition is largely understudied in recent literature, Fur-
thermore, AUTH worked towards O1a by developing active perception models for face recog-
nition (Sections 2.1 and 2.2, Section 2.3). Finally, AUTH developed a high resolution pose
estimation methodology (Section 2.4), working towards O1b.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 47/223

References
[1] Face recognition techniques: A survey. CoRR, abs/1803.07288, 2018. Withdrawn.

[2] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman. Emotion recognition in speech
using cross-modal transfer in the wild. In ACM International Conference on Multimedia,
2018.

[3] A. Andreopoulos and J. K. Tsotsos. 50 years of object recognition: Directions forward.
Computer vision and image understanding, 117(8):827–891, 2013.

[4] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid. Vivit: A video
vision transformer. In IEEE/CVF International Conference on Computer Vision (ICCV),
pages 6836–6846, 2021.

[5] R. Bajcsy. Active perception and exploratory robotics. 1989.

[6] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos. Revisiting active perception. Autonomous
Robots, 42(2):177–196, 2018.

[7] E. Barsoum, C. Zhang, C. C. Ferrer, and Z. Zhang. Training deep networks for facial ex-
pression recognition with crowd-sourced label distribution. In International Conference
on Multimodal Interaction, 2016.

[8] L. Bartolomei, L. Teixeira, and M. Chli. Semantic-aware active perception for uavs using
deep reinforcement learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3101–3108. IEEE, 2021.

[9] M. Bastioni, S. Re, and S. Misra. Ideas and methods for modeling 3d human figures: the
principal algorithms used by makehuman and their implementation in a new approach
to parametric modeling. In Proceedings of the Bangalore Annual Compute Conference,
pages 1–6, 2008.

[10] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

[11] C. Caetano, F. Brémond, and W. R. Schwartz. Skeleton image representation for 3d
action recognition based on tree structure and reference joints. In 2019 32nd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pages 16–23, 2019.

[12] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. VGGFace2: A dataset for
recognising faces across pose and age. In Proc. IEEE Intl. Conf. on Automatic Face &
Gesture Recognition, pages 67–74, 2018.

[13] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose estimation
using part affinity fields, 2016.

[14] S. Chen, J. Wang, Y. Chen, Z. Shi, X. Geng, and Y. Rui. Label distribution learning on
auxiliary label space graphs for facial expression recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 48/223

[15] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu. Skeleton-based action
recognition with shift graph convolutional network. In IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[16] K. Cheng, Y. Zhang, X. He, J. Cheng, and H. Lu. Extremely lightweight skeleton-based
action recognition with shiftgcn++. IEEE Transactions on Image Processing, 30:7333–
7348, 2021.

[17] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos,
P. Hawkins, J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and
A. Weller. Rethinking attention with performers. In International Conference on Learn-
ing Representations (ICLR), 2021.

[18] K. Chumachenko, A. Iosifidis, and M. Gabbouj. Self-attention fusion for audiovisual
emotion recognition with incomplete data. arXiv preprint arXiv:2201.11095, 2022.

[19] K. Chumachenko, A. Iosifidis, and M. Gabbouj. Self-attention neural bag-of-features.
IEEE International Workshop on Machine Learning for Signal Processing, 2022.

[20] G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li, A. Johnson, and R. G.
Mark. Af classification from a short single lead ecg recording: The physionet/computing
in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC), pages 1–4.
IEEE, 2017.

[21] G. D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R. G. Mark. Classifica-
tion of normal/abnormal heart sound recordings: The physionet/computing in cardiology
challenge 2016. In 2016 Computing in cardiology conference (CinC), pages 609–612.
IEEE, 2016.

[22] R. De Geest, E. Gavves, A. Ghodrati, Z. Li, C. Snoek, and T. Tuytelaars. Online action
detection. In European Conference on Computer Vision (ECCV), pages 269–284, 2016.

[23] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, T. Darrell,
and K. Saenko. Long-term recurrent convolutional networks for visual recognition and
description. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2625–2634, 2015.

[24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2021.

[25] J. Elson, J. J. Douceur, J. Howell, and J. Saul. Asirra: A captcha that exploits interest-
aligned manual image categorization. In Proceedings of 14th ACM Conference on Com-
puter and Communications Security (CCS). Association for Computing Machinery, Inc.,
2007.

[26] H. Eun, J. Moon, J. Park, C. Jung, and C. Kim. Learning to discriminate information for
online action detection. IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 806–815, 2020.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 49/223

[27] H. Eun, J. Moon, J. Park, C. Jung, and C. Kim. Temporal filtering networks for online
action detection. Pattern Recognition, 111:107695, 2021.

[28] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and T. Tuytelaars. Modeling
video evolution for action recognition. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5378–5387, 2015.

[29] J. Gao, Z. Yang, and R. Nevatia. RED: reinforced encoder-decoder networks for action
anticipation. In British Machine Vision Conference (BMVC), 2017.

[30] N. Gourier, D. Hall, and J. L. Crowley. Estimating face orientation from robust detection
of salient facial structures. In FG Net workshop on visual observation of deictic gestures,
volume 6, page 7. FGnet (IST–2000–26434) Cambridge, UK, 2004.

[31] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-CELEB-1m: A dataset and benchmark
for large-scale face recognition. In European Conference on Computer Vision, pages
87–102, 2016.

[32] X. Hao, J. Li, Y. Guo, T. Jiang, and M. Yu. Hypergraph neural network for skeleton-based
action recognition. IEEE Transactions on Image Processing, 30:2263–2275, 2021.

[33] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Conference on Learning Represen-
tations, 2022.

[34] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2017.

[35] L. He, H. Li, Q. Zhang, and Z. Sun. Dynamic feature learning for partial face recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7054–7063, 2018.

[36] L. Hedegaard, A. Alok, J. Jose, and A. Iosifidis. Structured pruning adapters. preprint,
arXiv:2211.10155, 2022.

[37] L. Hedegaard, N. Heidari, and A. Iosifidis. Online skeleton-based action recognition with
continual spatio-temporal graph convolutional networks. preprint, arXiv:2203.11009,
2022.

[38] L. Hedegaard and A. Iosifidis. Continual 3d convolutional neural networks for real-time
processing of videos. In European Conference on Computer Vision (ECCV), 2022.

[39] L. Hedegaard and A. Iosifidis. Continual transformers: Redundancy-free attention for
online inference. preprint, arXiv:2201.06268, 2022.

[40] N. Heidari and A. Iosifidis. Progressive spatio-temporal graph convolutional network for
skeleton-based human action recognition. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 3220–3224, 2021.

[41] N. Heidari and A. Iosifidis. Learning diversified feature representations for facial expres-
sion recognition in the wild. preprint, arXiv:2210.09381, 2022.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 50/223

[42] C. Hewitt and H. Gunes. Cnn-based facial affect analysis on mobile devices. arXiv
preprint arXiv:1807.08775, 2018.

[43] S. Hörmann, Z. Zhang, M. Knoche, T. Teepe, and G. Rigoll. Attention-based partial face
recognition. In 2021 IEEE International Conference on Image Processing (ICIP), pages
2978–2982. IEEE, 2021.

[44] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo,
M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for NLP. In Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 2790–2799, 2019.

[45] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

[46] J. Huang, J. Tao, B. Liu, Z. Lian, and M. Niu. Multimodal transformer fusion for con-
tinuous emotion recognition. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3507–3511. IEEE, 2020.

[47] H. Idrees, A. R. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev, R. Sukthankar, and M. Shah.
The thumos challenge on action recognition for videos “in the wild”. Computer Vision
and Image Understanding, 155:1–23, 2017.

[48] U. Iqbal and J. Gall. Multi-person pose estimation with local joint-to-person associations.

[49] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The kinetics human action
video dataset. preprint, arXiv:1705.06950, 2017.

[50] T. S. Kim and A. Reiter. Interpretable 3D human action analysis with temporal con-
volutional networks. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 1623–1631, 2017.

[51] Y. H. Kim, S. Nam, and S. J. Kim. Temporally smooth online action detection using
cycle-consistent future anticipation. Pattern Recognition, 116:107954, 2021.

[52] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations, 2017.

[53] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient transformer. In Interna-
tional Conference on Learning Representations (ICLR), 2020.

[54] D. Krishna and A. Patil. Multimodal emotion recognition using cross-modal attention
and 1d convolutional neural networks. In Interspeech, pages 4243–4247, 2020.

[55] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[56] F. Lagunas, E. Charlaix, V. Sanh, and A. Rush. Block pruning for faster transformers.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 10619–10629, Online and Punta Cana, Dominican Republic, Nov. 2021.
Association for Computational Linguistics.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 51/223

[57] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

[58] B. Li, X. Li, Z. Zhang, and F. Wu. Spatio-temporal graph routing for skeleton-based
action recognition. In AAAI, 2019.

[59] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
convnets. In International Conference on Learning Representations (ICLR), 2017.

[60] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian. Actional-structural graph con-
volutional networks for skeleton-based action recognition. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3590–3598, 2019.

[61] M. Li, H. Xu, X. Huang, Z. Song, X. Liu, and X. Li. Facial expression recognition
with identity and emotion joint learning. IEEE Transactions on Affective Computing,
12(2):544–550, 2018.

[62] M. Li, Z. Zhou, J. Li, and X. Liu. Bottom-up pose estimation of multiple person with
bounding box constraint. In 2018 24th International Conference on Pattern Recognition
(ICPR), pages 115–120, 2018.

[63] S. Li, W. Deng, and J. Du. Reliable crowdsourcing and deep locality-preserving learning
for expression recognition in the wild. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[64] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 4582–4597, 2021.

[65] Y. Li, J. Zeng, S. Shan, and X. Chen. Occlusion aware facial expression recognition using
cnn with attention mechanism. IEEE Transactions on Image Processing, 28(5):2439–
2450, 2018.

[66] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot. Ntu rgb+d 120:
A large-scale benchmark for 3d human activity understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2019.

[67] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot. Ntu rgb+d 120:
A large-scale benchmark for 3d human activity understanding. IEEE transactions on
pattern analysis and machine intelligence, 42(10):2684–2701, 2019.

[68] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal LSTM with trust gates
for 3D human action recognition. In European Conference on Computer Vision, pages
816–833. Springer, 2016.

[69] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang. Disentangling and unifying
graph convolutions for skeleton-based action recognition. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 140–149, 2020.

[70] S. R. Livingstone and F. A. Russo. The ryerson audio-visual database of emotional
speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in
north american english. PloS one, 13(5):e0196391, 2018.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 52/223

[71] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l0
regularization. In International Conference on Learning Representations (ICLR), 2018.

[72] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended
cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified ex-
pression. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2010.

[73] I. Mademlis, N. Nikolaidis, and I. Pitas. Stereoscopic video description for key-frame
extraction in movie summarization. In Proceedings of the EURASIP European Signal
Processing Conference (EUSIPCO). IEEE, 2015.

[74] R. K. Mahabadi, J. Henderson, and S. Ruder. Compacter: Efficient low-rank hypercom-
plex adapter layers. In Advances in Neural Information Processing Systems, 2021.

[75] A. Mesaros, T. Heittola, and T. Virtanen. Tut acoustic scenes 2017, evaluation dataset,
Nov. 2017.

[76] S. Miao, H. Xu, Z. Han, and Y. Zhu. Recognizing facial expressions using a shallow
convolutional neural network. IEEE Access, 7:78000–78011, 2019.

[77] O. Michel. Cyberbotics ltd. webots™: professional mobile robot simulation. Interna-
tional Journal of Advanced Robotic Systems, 1(1):5, 2004.

[78] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning, 2013.

[79] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518:529–533, 2015.

[80] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neu-
ral networks for resource efficient inference. In International Conference on Learning
Representations (ICLR), 2017.

[81] A. Mollahosseini, B. Hasani, and M. H. Mahoor. Affectnet: A database for facial ex-
pression, valence, and arousal computing in the wild. IEEE Transactions on Affective
Computing, 10(1):18–31, 2017.

[82] H. K. Mousavi, G. Liu, W. Yuan, M. Takáč, H. Muñoz-Avila, and N. Motee. A layered ar-
chitecture for active perception: Image classification using deep reinforcement learning.
arXiv preprint arXiv:1909.09705, 2019.

[83] M. Nakada, H. Wang, and D. Terzopoulos. AcFR: Active face recognition using convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 35–40, 2017.

[84] D. Neimark, O. Bar, M. Zohar, and D. Asselmann. Video transformer network. arXiv
preprint arXiv:2102.00719, 2021.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 53/223

[85] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, pages 722–729, 2008.

[86] D. Osokin. Real-time 2d multi-person pose estimation on cpu: Lightweight openpose,
2018.

[87] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. 2015.

[88] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. S. A. Ku, and D. Tran. Image trans-
former. In Proceedings of the International Conference on Machine Learning (ICML),
2018.

[89] N. Passalis and A. Tefas. Leveraging active perception for improving embedding-based
deep face recognition. In 2020 IEEE 22nd International Workshop on Multimedia Signal
Processing (MMSP), pages 1–6. IEEE, 2020.

[90] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis. Temporal logistic
neural bag-of-features for financial time series forecasting leveraging limit order book
data. Pattern Recognition Letters, 136:183–189, 2020.

[91] W. Peng, X. Hong, H. Chen, and G. Zhao. Learning graph convolutional network for
skeleton-based human action recognition by neural searching. In AAAI conference on
artificial intelligence, pages 2669–2676, 2020.

[92] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. AdapterFusion: Non-
destructive task composition for transfer learning. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: Main Volume,
pages 487–503, 2021.

[93] C. Plizzari, M. Cannici, and M. Matteucci. Skeleton-based action recognition via spa-
tial and temporal transformer networks. Computer Vision and Image Understanding,
208:103219, 2021.

[94] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, Nov. 2016.
Association for Computational Linguistics.

[95] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual
adapters. In Advances in Neural Information Processing Systems, volume 30, 2017.

[96] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Efficient parametrization of multi-domain deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[97] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, Dec
2015.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 54/223

[98] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real
robot learning from pixels with progressive nets. In Proceedings of the Conference on
Robot Learning, pages 262–270, 2017.

[99] V. Sanh, T. Wolf, and A. M. Rush. Movement pruning: Adaptive sparsity by fine-tuning.
In NeurIPS, 2020.

[100] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy opti-
mization algorithms, 2017.

[101] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. Ntu rgb+d: A large scale dataset for 3d hu-
man activity analysis. In IEEE Conference on Computer Vision and Pattern Recognition,
June 2016.

[102] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D: A large scale dataset
for 3D human activity analysis. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1010–1019, 2016.

[103] M. Shen and J. P. How. Active perception in adversarial scenarios using maximum en-
tropy deep reinforcement learning. In 2019 International Conference on Robotics and
Automation (ICRA), pages 3384–3390. IEEE, 2019.

[104] J. Sherrah and S. Gong. Fusion of perceptual cues for robust tracking of head pose and
position. Pattern Recognition, 34(8):1565–1572, 2001.

[105] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Skeleton-based action recognition with directed
graph neural networks. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 7912–7921, 2019.

[106] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Skeleton-based action recognition with multi-
stream adaptive graph convolutional networks. IEEE Transactions on Image Processing,
29:9532–9545, 2020.

[107] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan. An attention enhanced graph convolu-
tional lstm network for skeleton-based action recognition. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1227–1236, 2019.

[108] H. Siqueira, S. Magg, and S. Wermter. Efficient facial feature learning with wide
ensemble-based convolutional neural networks. In AAAI Conference on Artificial In-
telligence, volume 34, pages 5800–5809, 2020.

[109] K. Sun, B. Xiao, D. Liu, and J. Wang. Deep high-resolution representation learning for
human pose estimation, 2019.

[110] X. Sun, X. Ren, S. Ma, and H. Wang. meProp: Sparsified back propagation for accel-
erated deep learning with reduced overfitting. In Proceedings of the 34th International
Conference on Machine Learning (ICLR), volume 70 of Proceedings of Machine Learn-
ing Research, pages 3299–3308, International Convention Centre, Sydney, Australia,
2017.

[111] C. Symeonidis, I. Mademlis, I. Pitas, and N. Nikolaidis. Neural Attention-driven Non-
Maximum Suppression for Person Detection. 11 2021.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 55/223

[112] C. Symeonidis, I. Mademlis, I. Pitas, and N. Nikolaidis. AUTH-persons: A dataset for
detecting humans in crowds from aerial views. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), pages 596–600, 2022.

[113] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey.
arXiv:2009.06732, 2020.

[114] P. Tosidis, N. Passalis, and A. Tefas. Active vision control policies for face recognition
using deep reinforcement learning. In 2022 30th European Signal Processing Conference
(EUSIPCO), pages 1087–1091, 2022.

[115] D. T. Tran, N. Passalis, A. Tefas, M. Gabbouj, and A. Iosifidis. Attention-based neural
bag-of-features learning for sequence data. arXiv preprint arXiv:2005.12250, 2020.

[116] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and R. Salakhutdinov.
Multimodal transformer for unaligned multimodal language sequences. In Proceedings
of the conference. Association for Computational Linguistics. Meeting, volume 2019,
page 6558. NIH Public Access, 2019.

[117] G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre classification of audio
signals, 2001.

[118] M. Tzelepi and A. Tefas. Improving the performance of lightweight cnns for binary
classification using quadratic mutual information regularization. Pattern Recognition,
106:107407, 2020.

[119] A. Tzimas, N. Passalis, and A. Tefas. Leveraging deep reinforcement learning for active
shooting under open-world setting. In Proceedings of the IEEE International Conference
on Multimedia and Expo, pages 1–6, 2020.

[120] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Proceedings of the International Conference
on Neural Information Processing Systems (NIPS), 2017.

[121] K. Wang, X. Peng, J. Yang, S. Lu, and Y. Qiao. Suppressing uncertainties for large-scale
facial expression recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6897–6906, 2020.

[122] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao. Region attention networks for pose
and occlusion robust facial expression recognition. IEEE Transactions on Image Pro-
cessing, 29:4057–4069, 2020.

[123] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear
complexity. arXiv:2006.04768, 2020.

[124] X. Wang, S. Zhang, Z. Qing, Y. Shao, Z. Zuo, C. Gao, and N. Sang. Oadtr: Online action
detection with transformers. International Conference on Computer Vision (ICCV), 2021.

[125] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. In
Artificial Intelligence and Statistics, pages 1216–1224, 2017.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 56/223

[126] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung, Y. Li, and V. Singh.
Nyströmformer: A nyström-based algorithm for approximating self-attention. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2021.

[127] M. Xu, M. Gao, Y.-T. Chen, L. Davis, and D. Crandall. Temporal recurrent networks
for online action detection. In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 5531–5540, 2019.

[128] M. Xu, Y. Xiong, H. Chen, X. Li, W. Xia, Z. Tu, and S. Soatto. Long short-term trans-
former for online action detection. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[129] M. Yan, Q. Sun, I. Frosio, S. Tyree, and J. Kautz. How to close sim-real gap? transfer
with segmentation! arXiv preprint arXiv:2005.07695, 2020.

[130] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In AAAI Conference on Artificial Intelligence, 2018.

[131] H. Yang, D. Yan, L. Zhang, Y. Sun, D. Li, and S. J. Maybank. Feedback graph con-
volutional network for skeleton-based action recognition. IEEE Transactions on Image
Processing, 31:164–175, 2021.

[132] S.-K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.-R. Müller, and
W. Samek. Pruning by explaining: A novel criterion for deep neural network pruning.
Pattern Recognition, 115, 2021.

[133] A. Zadeh, P. P. Liang, S. Poria, P. Vij, E. Cambria, and L.-P. Morency. Multi-attention
recurrent network for human communication comprehension. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[134] J. Zeng, S. Shan, and X. Chen. Facial expression recognition with inconsistently anno-
tated datasets. In European Conference on Computer Vision, 2018.

[135] A. Zhang, Y. Tay, S. Zhang, A. Chan, A. T. Luu, S. Hui, and J. Fu. Beyond fully-
connected layers with quaternions: Parameterization of hypercomplex multiplications
with $1/n$ parameters. In International Conference on Learning Representations
(ICLR), 2021.

[136] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng. View adaptive recurrent neural
networks for high performance human action recognition from skeleton data. In IEEE
International Conference on Computer Vision, pages 2117–2126, 2017.

[137] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng. Semantics-guided neural
networks for efficient skeleton-based human action recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020.

[138] P. Zhao, J. Wang, L. Xie, Y. Zhang, Y. Wang, and Q. Tian. Privileged knowledge distil-
lation for online action detection. preprint, arXiv:2011.09158, abs/2011.09158, 2020.

[139] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 737–744. IEEE, 2020.

OpenDR No. 871449

D3.3: Third report on deep human centric active perception and cognition 57/223

[140] Z. Zhao, Q. Liu, and S. Wang. Learning deep global multi-scale and local attention
features for facial expression recognition in the wild. IEEE Transactions on Image Pro-
cessing, 30:6544–6556, 2021.

[141] Z. Zhao, Q. Liu, and F. Zhou. Robust lightweight facial expression recognition network
with label distribution training. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 3510–3519, 2021.

[142] Y. Zhu, J. Feng, C. Zhao, M. Wang, and L. Li. Counter-interference adapter for multilin-
gual machine translation. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 2812–2823, 2021.

8 Appendix

8.1 Continual 3D Convolutional Neural Networks for Real-time Process-
ing of Videos

Publication place: European Conference on Computer Vision 2022.
The appended paper follows.

OpenDR No. 871449

Continual 3D Convolutional Neural Networks for
Real-time Processing of Videos

Lukas Hedegaard and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm,ai}@ece.au.dk

Abstract. We introduce Continual 3D Convolutional Neural Networks
(Co3D CNNs), a new computational formulation of spatio-temporal 3D
CNNs, in which videos are processed frame-by-frame rather than by clip.
In online tasks demanding frame-wise predictions, Co3D CNNs dispense
with the computational redundancies of regular 3D CNNs, namely the
repeated convolutions over frames, which appear in overlapping clips. We
show that Continual 3D CNNs can reuse preexisting 3D-CNN weights
to reduce the per-prediction floating point operations (FLOPs) in pro-
portion to the temporal receptive field while retaining similar memory
requirements and accuracy. bgithuThis is validated with multiple mod-
els on Kinetics-400 and Charades with remarkable results: CoX3D mod-
els attain state-of-the-art complexity/accuracy trade-offs on Kinetics-400
with 12.1−15.3× reductions of FLOPs and 2.3−3.8% improvements in
accuracy compared to regular X3D models while reducing peak memory
consumption by up to 48%. Moreover, we investigate the transient re-
sponse of Co3D CNNs at start-up and perform extensive benchmarks of
on-hardware processing characteristics for publicly available 3D CNNs.

Keywords: 3D CNN, Human Activity Recognition, Efficient, Stream
Processing, Online Inference, Continual Inference Network.

1 Introduction

Through the availability of large-scale open-source datasets such as ImageNet [37]
and Kinetics [25], [4], deep, over-parameterized Convolutional Neural Networks
(CNNs) have achieved impressive results in the field of computer vision. In video
recognition specifically, 3D CNNs have lead to multiple breakthroughs in the
state-of-the-art [3], [43], [11], [10]. Despite their success in competitions and
benchmarks where only prediction quality is evaluated, computational cost and
processing time remains a challenge to the deployment in many real-life use-
cases with energy constraints and/or real-time needs. To combat this general
issue, multiple approaches have been explored. These include computationally
efficient architectures for image [17], [48], [42] and video recognition [28], [10],
[49], pruning of network weights [6], [13], [14], knowledge distillation [16], [47],
[36], and network quantisation [19], [2], [12].

2 L. Hedegaard and A. Iosifidis

The contribution in this paper is complementary to all of the above. It
exploits the computational redundancies in the application of regular spatio-
temporal 3D CNNs to a continual video stream in a sliding window fashion
(Fig. 2). This redundancy was also explored recently [26], [39] using specialised
architectures. However, these are not weight-compatible with regular 3D CNNs.
We present a weight-compatible reformulation of the 3D CNN and its compo-
nents as a Continual 3D Convolutional Neural Network (Co3D CNN). Co3D
CNNs process input videos frame-by-frame rather than clip-wise and can reuse
the weights of regular 3D CNNs, producing identical outputs for networks with-
out temporal zero-padding. Contrary to most deep learning papers, the work pre-
sented here needed no training; our goal was to validate the efficacy of converting
regular 3D CNNs to Continual CNNs directly, and to explore their characteris-
tics in the online recognition domain. Accordingly, we perform conversions from
five 3D CNNs, each at different points on the accuracy/speed pareto-frontier,
and evaluate their frame-wise performance. While there is a slight reduction in
accuracy after conversion due to zero-padding in the regular 3D CNNs, a simple
network modification of extending the temporal receptive field recovers and im-
proves the accuracy significantly without any fine-tuning at a negligible increase
in computational cost. Furthermore, we measure the transient network response
at start-up, and perform extensive benchmarking on common hardware and em-
bedded devices to gauge the expected inference speeds for real-life scenarios. Full
source code is available at https://github.com/lukashedegaard/co3d.

108 109 1010 1011 1012 1013
FLOPs per frame

108 109 1010 1011 1012 1013

FLOPs per clip

55

60

65

70

75

80

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16
16

13

64

16

64

16

64

8

64

8

8

4
8

8

8

8

16

128

250
250

250

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS

RCU
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18
ViViT-L/16x2 FE
VTN-R50
VTN-R101
VTN-ViT-B

Fig. 1: Accuracy/complexity trade-off for Continual 3D CNNs and recent
state-of-the-art methods on Kinetics-400 using 1-clip/frame testing. ■ FLOPs
per clip are noted for regular networks, while • FLOPs per frame are shown for
the Continual 3D CNNs. Frames per clip / global average pool size is noted in
the representative points. Diagonal and vertical arrows indicate a direct weight
transfer from regular to Continual 3D CNN and an extension of receptive field.

Continual 3D Convolutional Neural Networks 3

2 Related Works

2.1 3D CNNs for video recognition

Convolutional Neural Networks with spatio-temporal 3D kernels may be con-
sidered the natural extension of 2D CNNs for image recognition to CNNs for
video recognition. Although they did not surpass their 2D CNN + RNN com-
petitors [7], [21] initially [20], [23], [44], arguably due to a high parameter count
and insufficient dataset size, 3D CNNs have achieved state-of-the-art results on
Human Action Recognition tasks [3], [43], [11] since the Kinetics dataset [25]
was introduced. While recent large-scale Transformer-based methods [1], [32]
have become leaders in terms of accuracy, 3D CNNs still achieve state-of-the-art
accuracy/complexity trade-offs. Nevertheless, competitive accuracy comes with
high computational cost, which is prohibitive to many real-life use cases.

In image recognition, efficient architectures such as MobileNet [17], Shuf-
fleNet [48], and EfficientNet [42] attained improved accuracy-complexity trade-
offs. These architectures were extended to the 3D-convolutional versions 3D-
MobileNet [28], 3D-ShuffleNet [28] and X3D [10] (≈3D-EfficientNet) with sim-
ilarly improved pareto-frontier in video-recognition tasks. While these efficient
3D CNNs work well for offline processing of videos, they are limited in the con-
text of online processing, where we wish to make updates predictions for each
frame; real-time processing rates can only be achieved with the smallest mod-
els at severely reduced accuracy. 3D CNNs suffer from the restriction that they
must process a whole “clip” (spatio-temporal volume) at a time. When pre-
dictions are needed for each frame, this imposes a significant overhead due to
repeated computations. In our work, we overcome this challenge by introducing
an alternative computational scheme for spatio-temporal convolutions, -pooling,
and -residuals, which lets us compute 3D CNN outputs frame-wise (continually)
and dispose of the redundancies produced by regular 3D CNNs.

2.2 Architectures for online video recognition

A well-explored approach to video-recognition [7], [21], [22], [40] is to let each
frame pass through a 2D CNN trained on ImageNet in one stream alongside
a second stream of Optical Flow [9] and integrate these using a recurrent net-
work. Such architectures requires no network modification for deployment in
online-processing scenarios, lends themselves to caching [46], and are free of the
computational redundancies experienced in 3D CNNs. However, the overhead of
Optical Flow and costly feature-extractors pose a substantial disadvantage.

Another approach is to utilise 3D CNNs for feature extraction. In [31], spatio-
temporal features from non-overlaping clips are used to train a recurrent network
for hand gesture recognition. In [27], a 3D CNN processes a sliding window of
the input to perform spatio-temporal action detection. These 3D CNN-based
methods have the disadvantage of either not producing predictions for each input
frame [31] or suffering from redundant computations from overlapping clips [27].

Massively Parallel Video Networks [5] split a DNN into depth-parallel sub-
networks across multiple computational devices to improve online multi-device

4 L. Hedegaard and A. Iosifidis

parallel processing performance. While their approach treats networks layers as
atomic operations and doesn’t tackle the fundamental redundancy of tempo-
ral convolutions, Continual 3D CNNs reformulate the network layers, remove
redundancy, and accelerate inference on single devices as well.

Exploring modifications of the spatio-temporal 3D convolution operating
frame by frame, the Recurrent Convolutional Unit (RCU) [39] replaces the 3D
convolution by aggregating a spatial 2D convolution over the current input with
a 1D convolution over the prior output. Dissected 3D CNNs [26] (D3D) cache
the 1×nH ×nW frame-level features in network residual connections and aggre-
gate them with the current frame features via 2 × 3 × 3 convolutions. Like the
our proposed Continual 3D CNNs, both RCU and D3D are causal and operate
frame-by-frame. However, they are speciality architectures, which are incompati-
ble with pre-trained 3D CNNs, and must be trained from scratch. We reformulate
spatio-temporal convolutions in a one-to-one compatible manner, allowing us to
reuse existing model weights.

3 Continual Convolutional Neural Networks

3.1 Regular 3D-convolutions lead to redundancy

Currently, the best performing architectures (e.g., X3D [10] and SlowFast [11])
employ variations on 3D convolutions as their main building block and perform
predictions for a spatio-temporal input volume (video-clip). These architectures
achieve high accuracy with reasonable computational cost for predictions on clips
in the offline setting. They are, however, ill-suited for online video classification,
where the input is a continual stream of video frames and a class prediction is
needed for each frame. For regular 3D CNNs processing clips of mT frames to
be used in this context, prior mT − 1 input frames need to be stored between
temporal time-steps and assembled to form a new video-clip when the next frame
is sampled. This is illustrated in Fig. 2.

Recall the computational complexity for a 3D convolution:

Θ([kH · kW · kT + b] · cI · cO · nH · nW · nT), (1)

where k denotes the kernel size, T , H, and W are time, height, and width
dimension subscripts, b ∈ {0, 1} indicates whether bias is used, and cI and cO
are the number of input and output channels. The size of the output feature map
is n = (m+ 2p− d · (k − 1)− 1)/s+ 1 for an input of size m and a convolution
with padding p, dilation d, and stride s. During online processing, every frame
in the continual video-stream will be processed nT times (once for each position
in the clip), leading to a redundancy proportional with nT − 1. Moreover, the
memory-overhead of storing prior input frames is

Θ(cI ·mH ·mW · [mT − 1])), (2)

and during inference the network has to transiently store feature-maps of size

Θ(cO · nH · nW · nT). (3)

Continual 3D Convolutional Neural Networks 5

t

t + 1

αa
+βb

αb
+βc

αc
+βd

αb
+βc

αc
+βd

αd
+βe

*
Output

MemoryMemoryMemory
RedundantRedundantRedundant

=

=

Input Kernel
a b c d

b c ed

α β

* α β

Fig. 2: Redundant computations for a temporal convolution during online
processing, as illustrated by the repeated convolution of inputs (green b, c,d)
with a kernel (blue α, β) in the temporal dimension. Moreover, prior inputs
(b, c,d) must be stored between time-steps for online processing tasks.

3.2 Continual Convolutions

We can remedy the issue described in Sec. 3.1 by employing an alternative se-
quence of computational steps. In essence, we reformulate the repeated convo-
lution of a (3D) kernel with a (3D) input-clip that continually shifts along the
temporal dimension as a Continual Convolution (CoConv), where all convolution
computations (bar the final sum) for the (3D) kernel with each (2D) input-frame
are performed in one time-step. Intermediary results are stored as states to be
used in subsequent steps, while previous and current results are summed up to
produce the output. The process for a 1D input and kernel, which corresponds to
the regular convolution in Fig. 2, is illustrated in Fig. 3. In general, this scheme
can be applied for online-processing of any ND input, where one dimension is
a temporal continual stream. Continual Convolutions are causal [34] with no
information leaking from future to past and can be efficiently implemented by
zero-padding the input frame along the temporal dimension with p = floor(k/2).
Python-style pseudo-code of the implementation is shown in Listing 1.1.

t

t + 1

αc
+βd

⊕

Memory

αd βd

αe βe αd
+βe

*
OutputInput Kernel

d α β

* α β =

= ⊕

e

Fig. 3: Continual Convolution. An input (green d or e) is convolved with a
kernel (blue α, β). The intermediary feature-maps corresponding to all but the
last temporal position are stored, while the last feature map and prior memory
are summed to produce the resulting output. For a continual stream of inputs,
Continual Convolutions produce identical outputs to regular convolutions.

6 L. Hedegaard and A. Iosifidis

def coconv3d(frame , prev_state = (mem , i)):

frame = spatial_padding(frame)

frame = temporal_padding(frame)

feat = conv3d(frame , weights)

output , rest_feat = feat[0], feat [1:]

mem , i = prev_state or init_state(output)

M = len(mem)

for m in range(M):

output += mem[(i + m) % M, M - m - 1]

output += bias

mem[i] = rest_feat

i = (i + 1) % M

return output , (mem , i)

Listing 1.1: Pseudo-code for Continual Convolution. Ready-to-
use modules are available in the Continual Inference library [15].

In terms of computational cost, we can now perform frame-by-frame compu-
tations much more efficiently than a regular 3D convolution. The complexity of
processing a frame becomes:

Θ([kH · kW · kT + b] · cI · cO · nH · nW). (4)

This reduction in computational complexity comes at the cost of a memory-
overhead in each layer due to the state that is kept between time-steps. The
overhead of storing the partially computed feature-maps for a frame is:

Θ(dT · [kT − 1] · cO · nH · nW). (5)

However, in the context of inference in a deep neural network, the transient
memory usage within each time-step is reduced by a factor of nT to

Θ(cO · nH · nW). (6)

The benefits of Continual Convolutions thus include the independence of clip
length on the computational complexity, state overhead, and transient memory
consumption. The change from (non-causal) regular convolutions to (causal)
Continual Convolutions has the side-effect of introducing a delay to the output.
This is because some intermediary results of convolving a frame with the kernel
are only added up at a later point in time (see Fig. 3). The delay for a continual
convolution is

Θ(dT · [kT − pT − 1]). (7)

3.3 Continual Residuals

The delay from Continual Convolutions has an adverse side-effect on residual
connections. Despite their simplicity in regular CNNs, we cannot simply add
the input to a Continual Convolution with its output because the CoConv may

Continual 3D Convolutional Neural Networks 7

delay the output. Residual connections to a CoConv must therefore be delayed
by an equivalent amount (see Eq. (7)). This produces a memory overhead of

Θ(dT · [kT − 1] · cO ·mH ·mW). (8)

3.4 Continual Pooling

The associative property of pooling operations allows for pooling to be decom-
posed across dimensions, i.e. poolT,H,W (X) = poolT (poolH,W (X)). For contin-
ual spatio-temporal pooling, the pooling over spatial dimensions is equivalent
to a regular pooling, while the intermediary pooling results must be stored for
prior temporal frames. For a pooling operation with temporal kernel size kT and
spatial output size nH · nW , the memory consumption is

Θ([kT − 1] · nH · nW), (9)

and the delay is
Θ(kT − pT − 1). (10)

Both memory consumption and delay scale linearly with the temporal kernel
size. Fortunately, the memory consumed by temporal pooling layers is relatively
modest for most CNN architectures (1.5% for CoX3D-M, see Appendix A).
Hence, the delay rather than memory consumption may be of primary concern
for real-life applications. For some network modules it may even make sense to
skip the pooling in the conversion to a Continual CNN. One such example is the
3D Squeeze-and-Excitation (SE) block [18] in X3D, where global spatio-temporal
average-pooling is used in the computation of channel-wise self-attention. Dis-
carding the temporal pooling component (making it a 2D SE block) shifts the
attention slightly (assuming the frame contents change slowly relative to the
sampling rate) but avoids a considerable temporal delay.

3.5 The issue with temporal padding

Zero-padding of convolutional layers is a popular strategy for retaining the
spatio-temporal dimension of feature-maps in consecutive CNN layers. For Con-
tinual CNNs, however, temporal zero-padding poses a problem, as illustrated
in Fig. 4. Consider a 2-layer 1D CNN where each layer has a kernel size of 3
and zero padding of 1. For each new frame in a continual stream of inputs, the
first layer l should produce two output feature-maps: One by the convolution of
the two prior frames and the new frame, and another by convolving with one
prior frame, the new frame, and a zero-pad. The next layer l + 1 thus receives
two inputs and produces three outputs which are dependent on the new input
frame of the first layer (one for each input and another from zero-padding). In
effect, each zero padding in a convolution forces the next layer to retrospectively
update its output for a previous time-step in a non-causal manner. Thus, there
is a considerable downside to the use of padding. This questions the necessity of
zero padding along the temporal dimension. In regular CNNs, zero padding has

8 L. Hedegaard and A. Iosifidis

l

l + 1

Input … x

…

…

(a) No padding

l

l + 1

Input … x 0

… 0

… 0

(b) Zero padding

Fig. 4: Issue with temporal padding: The latest frame x is propagated
through a CNN with (purple) temporal kernels of size 3 (a) without or (b)
with zero padding. Highlighted cubes can be produced only in the latest frame,
with yellow boarder indicating independence of padded zero and red boarders
dependence. In the zero-padded case (b), the number of frame features depen-
dent on x following a layer l increases with the number of padded zeros.

two benefits: It helps to avoid spatio-temporal shrinkage of feature-maps when
propagated through a deep CNN, and it prevents information at the boarders
from “washing away” [24]. The use of zero-padding, however, has the downside
that it alters the input-distribution along the boarders significantly [29], [33]. For
input data which is a continual stream of frames, a shrinkage of the feature-size
in the temporal dimension is not a concern, and an input frame (which may be
considered a border frame in a regular 3D CNN) has no risk of “washing away”
because it is a middle frame in subsequent time steps. Temporal padding is thus
omitted in Continual CNNs. As can be seen in the experimental evaluations pre-
sented in the following, this constitutes a “model shift” in the conversion from
regular to Continual 3D CNN if the former was trained with temporal padding.

3.6 Initialisation

Before a Continual CNN reaches a steady state of operation, it must have pro-
cessed rT −pT −1 frames where rT and pT are the aggregated temporal receptive
field and padding of the network. For example, Continual X3D-{S, M, L} models
have receptive fields of size {69, 72, 130}, aggregated padding {28, 28, 57}, and
hence need to process {40, 43, 72} frames prior to normal operation. The initial
response depends on how internal state variables are initialised. In Sec. 4.2, we
explore this further with two initialisation variants: 1) Initialisation with ze-
ros and 2) by repeating a replicate of the features corresponding to the first
input-frame. The latter corresponds to operating in a steady state for a “boring
video” [3] which has one frame repeated in the entire clip.

3.7 Design considerations

Memory consumption is highly dependent on the clip size employed by the re-
spective models. Disregarding the storage requirement of the model weights
(which is identical between for regular and continual 3D CNNs), X3D-M has
a worst-case total memory-consumption of 7,074,816 floats when prior frames

Continual 3D Convolutional Neural Networks 9

and the transient feature-maps are taken into account. Its continual counter-
part, CoX3D-M, has a worst case memory only 5,072,688 floats. How can this
be? Since Continual 3D CNNs do not store prior input frames and has smaller
transient feature maps, the memory savings outweigh the cost of caching fea-
tures in each continual layer. Had the clip size been four instead of sixteen,
X3D-M4 would have had a worst-case memory consumption of 1,655,808 floats
and CoX3D-M4 of 5,067,504 floats, and for clip size of 64, X3D-M64 consumes
28,449,792 floats and CoX3D-M64 uses 5,093,424 floats. The memory consump-
tion of regular 3D CNNs is this thus highly dependent on the clip size, while
Co3D CNNs are not. Continual CNNs utilise longer effective clip sizes much
more efficiently than regular CNNs in online processing scenarios. In networks
intended for embedded systems or online processing, we may thus increase the
clip size to achieve higher accuracy with minimal penalty in computational com-
plexity and worst-case memory consumption.

Another design-consideration, which has a considerable influence on memory
consumption is the temporal kernel size and dilation of CoConv layers. Fortu-
nately, the trend to employ small kernel sizes leaves the memory consumption
reasonable for current state-of-the-art 3D CNNs [3], [43], [11], [10]. A larger tem-
poral kernel size would not only affect the memory growth through the CoConv
filter, but also for co-occuring residual connections, since these consume a sig-
nificant fraction of the total state-memory for real-life networks; in a Continual
X3D-M model (CoX3D-M) the memory of residual constitutes 20.5% of the total
model state memory (see Appendix A).

3.8 Training

Co3D CNNs are trained with back-propagation like other neural networks. How-
ever, special care must be taken in the estimation of data statistics in normali-
sation layers: 1) Momentum should be adjusted to momstep = 2/(1+ timesteps ·
(2/momclip − 1)) to match the exponential moving average dynamics of clip-
based training, where T is the clip size; 2) statistics should not be tracked for the
transient response. Alternatively, they can be trained offline in their “unrolled”
regular 3D-CNN form with no temporal padding. This is similar to utilising
pre-trained weights from a regular 3D CNN, as we do in our experiments.

4 Experiments

The experiments in this section aim to show the characteristics and advantages
of Continual 3D CNNs as compared with regular 3D CNNs. One of the main
benefits of Co3D CNNs is their ability to reuse the network weights of regular 3D
CNNs. As such, all Co3D CNNs in these experiments use publicly available pre-
trained network weights of regular 3D CNNs [11], [10], [8] without further fine-
tuning. Data pre-processing follows the respective procedures associated with
the originating weights unless stated otherwise. The section is laid out as fol-
lows: First, we showcase the network performance following weight transfer from
regular to Continual 3D on multiple datasets for Human Activity Recognition.

10 L. Hedegaard and A. Iosifidis

Model
Acc. Par. Mem. FLOPs Throughput (preds/s)
(%) (M) (MB) (G) CPU TX2 Xavier 2080Ti

C
li
p

I3D-R50 63.98 28.04 191.59 28.61 0.93 2.54 9.20 77.15
R(2+1)D-188 53.52 31.51 168.87 20.35 1.75 3.19 6.82 130.88
R(2+1)D-1816 59.29 31.51 215.44 40.71 0.83 1.82 3.77 75.81
Slow-8×8-R50 67.42 32.45 266.04 54.87 0.38 1.34 4.31 61.92
SlowFast-8×8-R50 68.45 66.25 344.84 66.25 0.34 0.87 2.72 30.72
SlowFast-4×16-R50 67.06 34.48 260.51 36.46 0.55 1.33 3.43 41.28
X3D-L 69.29 6.15 240.66 19.17 0.25 0.19 4.78 36.37
X3D-M 67.24 3.79 126.29 4.97 0.83 1.47 17.47 116.07
X3D-S 64.71 3.79 61.29 2.06 2.23 2.68 42.02 276.45
X3D-XS 59.37 3.79 28.79 0.64 8.26 8.20 135.39 819.87

F
ra
m
e

RCU8 [39]† 53.40 12.80 - 4.71 - - - -
CoI3D8 59.58 28.04 235.87 5.68 3.00 2.41 14.88 125.59
CoI3D64 56.86 28.04 236.08 5.68 3.15 2.41 14.89 126.32
CoSlow8 65.90 32.45 175.98 6.90 2.80 1.60 6.18 113.77
CoSlow64 73.05 32.45 176.41 6.90 2.92 1.60 6.19 102.00
CoX3D-L16 63.03 6.15 184.29 1.25 2.30 0.99 25.17 206.65
CoX3D-L64 71.61 6.15 184.37 1.25 2.30 0.99 27.56 217.53
CoX3D-M16 62.80 3.79 68.88 0.33 7.57 7.26 88.79 844.73
CoX3D-M64 71.03 3.79 68.96 0.33 7.51 7.04 86.42 796.32
CoX3D-S13 60.18 3.79 41.91 0.17 13.16 11.06 219.64 939.72
CoX3D-S64 67.33 3.79 41.99 0.17 13.19 11.13 213.65 942.97

Table 1: Kinetics-400 benchmark. The noted accuracy is the single clip or
frame top-1 score using RGB as the only input-modality. The performance was
evaluated using publicly available pre-trained models without any further fine-
tuning. For speed comparison, predictions per second denote frames per sec-
ond for the CoX3D models and clips per second for the remaining models.
Throughput results are the mean of 100 measurements. Pareto-optimal models
are marked with bold. Mem. is the maximum allocated memory during inference
noted in megabytes. †Approximate FLOPs derived from paper (see Appendix C).

This is followed by a study on the transient response of Co3D CNNs at startup.
Subsequently, we show how the computational advantages of Co3D CNNs can
be exploited to improve accuracy by extending the temporal receptive field. Fi-
nally, we perform an extensive on-hardware benchmark of prior methods and
Continual 3D CNNs, measuring the 1-clip/frame accuracy of publicly available
models, as well as their inference throughput on various computational devices.

4.1 Transfer from regular to Continual CNNs

To gauge direct transferability of 3D CNN weights, we implement continual ver-
sions of various 3D CNNs and initialise them with their publicly available weights
for Kinetics-400 [25] and Charades [38]. While it is common to use an ensemble
prediction from multiple clips to boost video-level accuracy on these benchmarks,
we abstain from this, as it doesn’t apply to online-scenarios. Instead, we report
the single-clip/frame model performance.

Kinetics-400. We evaluate the X3D network variants XS, S, M, and L on the test
set using one temporally centred clip from each video. The XS network is omitted

Continual 3D Convolutional Neural Networks 11

Model FLOPs (G) × views mAP (%)

C
li
p

Slow-8×8 [11] 54.9× 30 39.0

Slow-8×8 [11]† 54.9× 1 21.4
Slow-8×8 (ours) 54.9× 1 24.1

F
r. CoSlow8 6.9× 1 21.5

CoSlow64 6.9× 1 25.2

Table 2: Charades benchmark. Noted are the FLOPs × views and video-level
mean average precision (mAP) on the validation set using pre-trained model
weights. †Results achieved using the publicly available SlowFast code [11].

in the transfer to CoX3D, given that it is architecturally equivalent to S, but
with fewer frames per clip. In evaluation on Kinetics-400, we faced the challenge
that videos were limited to 10 seconds. Due to the longer transient response of
Continual CNNs (see Sec. 4.2) and low frame-rate used for training X3D models
(5.0, 6.0, 6.0 FPS for S, M, and L), the video-length was insufficient to reach
steady-state for some models. As a practical measure to evaluate near steady-
state, we repeated the last video-frame for a padded video length of ≈ 80% of
the network receptive field as a heuristic choice. The Continual CNNs were thus
tested on the last frame of the padded video and initialised with the prior frames.
The results of the X3D transfer are shown in Tab. 1 and Fig. 1.

For all networks, the transfer from regular to Continual 3D CNN results in
significant computational savings. For the S, M, and L networks the reduction in
FLOPs is 12.1×, 15.1×, and 15.3× respectively. The savings do not quite reach
the clip sizes since the final pooling and prediction layers are active for each
frame. As a side-effect of the transfer from zero-padded regular CNN to Continual
CNN without zero-padding, we see a notable reduction in accuracy. This is easily
improved by using an extended pooling size for the network (discussed in Sec. 3.7
and in Sec. 4.2). Using a global average pooling with temporal kernel size 64,
we improve the accuracy of X3D by 2.6%, 3.8%, and 2.3% in the Continual S,
M, and L network variants. As noted, Kinetics dataset did not have sufficient
frames to fill the temporal receptive field of all models in these tests. We explore
this further in Sections 4.2 and 4.2.

Charades. To showcase the generality of the approach, we repeat the above
described procedure with another 3D CNN, the CoSlow network [11]. We report
the video-level mean average precision (mAP) of the validation split alongside the
FLOPs per prediction in Tab. 2. Note the accuracy discrepancy between 30 view
(10 temporal positions with 3 spatial positions each) and 1 view (spatially and
temporally centred) evaluation. As observed on Kinetics, the CoSlow network
reduces the FLOPs per prediction proportionally with the original clip size (8
frames), and can recover accuracy by extending the global average pool size.

4.2 Ablation Experiments

As described in Sec. 3.6, Continual CNNs exhibit a transient response during
their up-start. In order to gauge this response, we perform ablations on the

12 L. Hedegaard and A. Iosifidis

Kinetics-400 validation set, this time sampled at 15 FPS to have a sufficient
number of frames available. This corresponds to a data domain shift [45] relative
to the pre-trained weights, where time advances slower.

Transient response of Continual CNNs. Our expected upper bound is given
by the baseline X3D network 1-clip accuracy at 15 FPS. The transient response
is measured by varying the number of prior frames used for initialisation before
evaluating a frame using the CoX3D model. Note that temporal center-crops
of size Tinit + 1, where Tinit is the number of initialisation frames, are used in
each evaluation to ensure that the frames seen by the network come from the
centre. This precaution counters a data-bias, we noticed in Kinetics-400, namely
that the start and end of a video are less informative and contribute to worse
predictions than the central part. We found results to vary up to 8% for a X3D-S
network evaluated at different video positions. The experiment is repeated for
two initialisation schemes, “zeros” (used in other experiments) and “replicate”,
and two model sizes, S and M. The transient responses are shown in Fig. 5.

For all responses, the first ≈25 frames produce near-random predictions,
before rapidly increasing at 25−30 frames until a steady-state is reached at 49.2%
and 56.2% accuracy for S and M. Relative to the regular X3D, this constitutes
a steady-state error of −1.7% and −5.8%. Comparing initialisation schemes, we
see that the “replicate” scheme results in a slightly earlier rise. The rise sets in
later for the “zeros” scheme, but exhibits a sharper slope, topping with peaks
of 51.6% and 57.6% at 41 and 44 frames seen as discussed in Sec. 3.6. This
makes sense considering that the original network weights were trained with

10 20 30 40 50 60 70
Frames seen

0

20

40

To
p-

1
ac

cu
ra

cy
 (%

) X3D-S

Replicate
Zeros

(a) CoX3D-S

10 20 30 40 50 60 70
Frames seen

0

20

40

60

To
p-

1
ac

cu
ra

cy
 (%

) X3D-M

Replicate
Zeros

(b) CoX3D-M

Fig. 5: Transient response for Continual X3D-{S,M} on the Kinetics-400 val
at 15 FPS. Dotted horizontal lines denote X3D validation accuracy for 1-clip pre-
dictions. Black circles highlight the theoretically required initialisation frames.

Continual 3D Convolutional Neural Networks 13

this exact amount of zero-padding. Adding more frames effectively replaces the
padded zeros and causes a slight drop of accuracy in the steady state, where the
accuracy settles at the same values as for the “replication” scheme.

Extended receptive field. Continual CNNs experience a negligible increase in
computational cost when larger temporal receptive field are used (see Sec. 3.7).
For CoX3D networks, this extension can be trivially implemented by increasing
the temporal kernel size of the last pooling layer. In this set of experiments, we
extend CoX3D-{S,M,L} to have temporal pooling sizes 32, 64, and 96, and eval-
uate them on the Kinetics-400 validation set sampled at 15 FPS. The Continual
CNNs are evaluated at frames corresponding to the steady state.

Tab. 3 shows the measured accuracy and floating point operations per frame
(CoX3D) / clip (X3D) as well as the pool size for the penultimate network
layer (global average pooling) and the total receptive field of the network in the
temporal dimension. As found in Sec. 4.1, each transfer results in significant
computational savings alongside a drop in accuracy. Extending the kernel size of
the global average pooling layer increases the accuracy of the Continual CNNs
by 11.0−13.3% for 96 frames relative the original 13−16 frames, surpassing that
of the regular CNNs. Lying at 0.017−0.009%, the corresponding computational
increases can be considered negligible.

Model Size Pool Acc. FLOPs (K) Rec. Field

X3D
S 13 51.0 2,061,366 13
M 16 62.1 4,970,008 16
L 16 64.1 19,166,052 16

S

13 49.2 166,565 69
16 50.1 166,567 72
32 54.7 166,574 88
64 59.8 166,587 120
96 61.8 166,601 152

CoX3D M

16 56.3 325,456 72
32 60.7 325,463 88
64 64.9 325,477 120
96 67.3 325,491 152

L

16 53.0 1,245,549 130
32 58.5 1,245,556 146
64 64.3 1,245,570 178
96 66.3 1,245,584 210

Table 3: Effect of extending pool size. Note that the model weights were
trained at different sampling rates than evaluated at (15 FPS), resulting in a
lower top-1 val. accuracy. Italic numbers denote measurement taken within the
transient response due to a lack of frames in the video-clip.

14 L. Hedegaard and A. Iosifidis

4.3 Inference benchmarks

Despite their high status in activity recognition leader-boards [35], it is unclear
how recent 3D CNNs methods perform in the online setting, where speed and
accuracy constitute a necessary trade-off. To the best of our knowledge, there has
not yet been a systematic evaluation of throughput for these video-recognition
models on real-life hardware. In this set of experiments, we benchmark the
FLOPs, parameter count, maximum allocated memory and 1-clip/frame accu-
racy of I3D [3], R(2+1)D [43], SlowFast[41], X3D [10], CoI3D, CoSlow, and
CoX3D. To gauge achievable throughputs at different computational budgets,
networks were tested on four hardware platforms as described in Appendix B.

As seen in the benchmark results found in Tab. 1, the limitation to one clip
markedly lowers accuracy compared with the multi-clip evaluation published in
the respective works [3], [43], [11], [10]. Nontheless, the Continual models with
extended receptive fields attain the best accuracy/speed trade-off by a large mar-
gin. For example, CoX3D-L64 on the Nvidia Jetson Xavier achieves an accuracy
of 71.3% at 27.6 predictions per second compared to 67.2% accuracy at 17.5 pre-
dictions per second for X3D-M while reducing maximum allocated memory by
48%! Confirming the observation in [30], we find that the relation between model
FLOPs and throughput varies between models, with better ratios attained for
simpler models (e.g., I3D) than for complicated ones (e.g., X3D). This relates
to different memory access needs and their cost. Tailor-made hardware could
plausibly reduce these differences. Supplementary visualisation of the results in
Tab. 1 are found in Appendix C.

5 Conclusion

We have introduced Continual 3D Convolutional Neural Networks (Co3D CNNs),
a new computational model for spatio-temporal 3D CNNs, which performs com-
putations frame-wise rather than clip-wise while being weight-compatible with
regular 3D CNNs. In doing so, we are able dispose of the computational re-
dundancies faced by 3D CNNs in continual online processing, giving up to a
15.1× reduction of floating point operations, a 9.2× real-life inference speed-up
on CPU, 48% peak memory reduction, and an accuracy improvement of 5.6%
on Kinetics-400 through an extension in the global average pooling kernel size.

While this constitutes a substantial leap in the processing efficiency of energy-
constrained and real-time video recognition systems, there are still unanswered
questions pertaining to the dynamics of Co3D CNNs. Specifically, the impact
of extended receptive fields on the networks ability to change predictions in
response to changing contents in the input video is untested. We leave these as
important directions for future work.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871449 (OpenDR).

Continual 3D Convolutional Neural Networks 15

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A
video vision transformer. In: IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 6836–6846 (2021)

2. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-
wave gaussian quantization. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5406–5414 (2017)

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the ki-
netics dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4724–4733 (2017)

4. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short
note about kinetics-600. preprint, arXiv:1808.01340 (2018)

5. Carreira, J., Pătrăucean, V., Mazare, L., Zisserman, A., Osindero, S.: Massively
parallel video networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Proceedings of the European Conference on Computer Vision (ECCV). pp.
680–697 (2018)

6. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: International Conference on International
Conference on Machine Learning (ICML). p. 2285–2294 (2015)

7. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Darrell, T., Saenko, K.: Long-term recurrent convolutional networks for visual
recognition and description. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2625–2634 (2015)

8. Fan, H., Murrell, T., Wang, H., Alwala, K.V., Li, Y., Li, Y., Xiong, B., Ravi, N.,
Li, M., Yang, H., Malik, J., Girshick, R., Feiszli, M., Adcock, A., Lo, W.Y., Feicht-
enhofer, C.: PyTorchVideo: A deep learning library for video understanding. In:
ACM International Conference on Multimedia (2021), https://pytorchvideo.org/

9. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In:
Image Analysis. pp. 363–370. Springer Berlin Heidelberg (2003)

10. Feichtenhofer, C.: X3D: Expanding architectures for efficient video recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020), https://github.com/facebookresearch/SlowFast. Apache 2.0 Licence.

11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recogni-
tion. In: IEEE/CVF International Conference on Computer Vision (ICCV) (Oc-
tober 2019), https://github.com/facebookresearch/SlowFast. Apache 2.0 Licence.

12. Floropoulos, N., Tefas, A.: Complete vector quantization of feedforward neural
networks. Neurocomputing 367, 55–63 (2019)

13. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 1398–1406 (2017)

15. Hedegaard, L., Iosifidis, A.: Continual inference: A library for efficient online in-
ference with deep neural networks in pytorch. preprint, arXiv:2204.03418 (2022)

16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. preprint, arXiv:1704.04861 abs/1704.04861 (2017)

16 L. Hedegaard and A. Iosifidis

18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 7132–7141 (2018)

19. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 29. Curran Associates,
Inc. (2016)

20. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human ac-
tion recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 35(1), 221–231 (2013)

21. Joe Yue-Hei Ng, Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4694–
4702 (2015)

22. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Action tubelet detector
for spatio-temporal action localization. In: 2017 IEEE International Conference on
Computer Vision (ICCV). pp. 4415–4423 (2017)

23. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.:
Large-scale video classification with convolutional neural networks. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 1725–1732
(2014)

24. Karpathy, A.: CS231n convolutional neural networks for visual recognition,
https://cs231n.github.io/convolutional-networks/. Last visited on 2021/01/26

25. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,
S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., Zisserman, A.: The
kinetics human action video dataset. preprint, arXiv:1705.06950 (2017)

26. Köpüklü, O., Hörmann, S., Herzog, F., Cevikalp, H., Rigoll, G.: Dissected 3d
cnns: Temporal skip connections for efficient online video processing. preprint,
arXiv:2009.14639 (2020)

27. Köpüklü, O., Wei, X., Rigoll, G.: You only watch once: A unified cnn architecture
for real-time spatiotemporal action localization. preprint, arXiv:1911.06644 (2019)

28. Köpüklü, O., Kose, N., Gunduz, A., Rigoll, G.: Resource efficient 3d convolutional
neural networks. In: IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW). pp. 1910–1919 (2019)

29. Liu, G., Shih, K.J., Wang, T.C., Reda, F.A., Sapra, K., Yu, Z., Tao, A., Catanzaro,
B.: Partial convolution based padding. preprint, arXiv:1811.11718 pp. 1–11 (2018)

30. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European Conference on
Computer Vision (ECCV) (September 2018)

31. Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., Kautz, J.: Online detection
and classification of dynamic hand gestures with recurrent 3d convolutional neural
networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 4207–4215 (2016)

32. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In:
2021 IEEE/CVF International Conference on Computer Vision Workshops (IC-
CVW). pp. 3156–3165 (2021)

33. Nguyen, A., Choi, S., Kim, W., Ahn, S., Kim, J., Lee, S.: Distribution padding in
convolutional neural networks. In: International Conference on Image Processing
(ICIP). pp. 4275–4279 (2019)

34. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for
raw audio. preprint, arXiv:1609.03499 (2016)

Continual 3D Convolutional Neural Networks 17

35. Papers with Code: Kinetics-400 leaderboard, https://paperswithcode.com/sota/action-
classification-on-kinetics-400 Last visited on 2021/02/03.

36. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge
transfer. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018)

37. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
(ICCV) 115(3), 211–252 (2015)

38. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hol-
lywood in homes: Crowdsourcing data collection for activity understanding. In:
Proceedings of the European Conference on Computer Vision (ECCV) (2016)

39. Singh, G., Cuzzolin, F.: Recurrent convolutions for causal 3d cnns. In: 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).
pp. 1456–1465 (2019)

40. Singh, G., Saha, S., Sapienza, M., Torr, P., Cuzzolin, F.: Online real-time multi-
ple spatiotemporal action localisation and prediction. In: 2017 IEEE International
Conference on Computer Vision (ICCV). pp. 3657–3666 (2017)

41. Sovrasov, V.: Ptflops, https://github.com/sovrasov/flops-counter.pytorch. MIT Li-
cense. Last visited on 2021/03/02

42. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: Proceedings of Machine Learning Research. vol. 97, pp. 6105–6114
(2019)

43. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6450–6459 (2018)

44. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: IEEE International Conference
on Computer Vision (ICCV). pp. 4489–4497 (2015)

45. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing
312, 135–153 (2018)

46. Xu, M., Zhu, M., Liu, Y., Lin, F., Liu, X.: Deepcache: Principled cache for mobile
deep vision. International Conference on Mobile Computing and Networking (2018)

47. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 7130–7138 (2017)

48. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6848–6856 (2018)

49. Zhu, L., Sevilla-Lara, L., Yang, Y., Feiszli, M., Wang, H.: Faster recurrent networks
for efficient video classification. Proceedings of the AAAI Conference on Artificial
Intelligence 34, 13098–13105 (2020)

18 L. Hedegaard and A. Iosifidis

Appendix

A Worst-case memory for CoX3D-M

In this section, we provide a detailed overview of the memory consumption in-
curred by the internal state in a Continual X3D-M (CoX3D-M) model. For
Continual 3D CNNs, there is no need to store input frames between time steps,
though this is the case for regular 3D CNNs applied in an online processing
scenario. Intermediary computations from prior frames are kept in the continual
layers as state if a layer has a temporal receptive field larger than 1. A continual
kT ×kH×kW = 1×3×3 convolution is equivalent to a regular convolution, while
a 3× 1× 1 is not. The same principle holds for pooling layers. As a design deci-
sion, the temporal component of the average pooling of Squeeze-and-Excitation
(SE) blocks is discarded. Hence, SE blocks do not incur a memory overhead
or delay. Keeping the temporal pooling of the SE block would have increased
memory consumption by a modest 85.050 (+1.4%). We can compute the total
state overhead using Eq. (2), Eq. (8), and Eq. (9) by adding up the state size
of each applicable layer shown in Tab. 5. An overview of the resulting compu-
tations can be found in Tab. 4. The total memory overhead for the network
state is 4,771,632 floating point operations. In addition to the state memory, the
worst-case transient memory must be taken into account. The largest interme-
diary feature-map is produced after the first convolution in conv1 and has a size
of 24 × 112 × 112 = 301,056 floats. The total worst-case memory consumption
for CoX3D-M (excluding models weights) is thus 5,072,688 floats.

If we were to reduce the model clip size from 16 to 4, this would result in a
memory reduction of 5,184 floats (only pool5 is affected) for a total worst-case
memory of 5,067,504 floats (−0.1%). Increasing the clip size to 64 would yield
an increased state memory of 20,736 floats giving a total worst-case memory of
5,093,424 floats (+0.4%).

Continual 3D Convolutional Neural Networks 19

Stage Layer Mem. (floats)

conv1 convT (5− 1)× 24× 112× 112 = 1,204,224

res2 residual1 (3− 1− 1)× 24× 112× 112 = 301,056
residual2−3 [(3− 1− 1)× 24× 56× 56]× 2 = 150,528
conv1−3 [(3− 1− 1)× 54× 56× 56]× 3 = 508,032

res3 residual1 (3− 1− 1)× 24× 56× 56 = 75,264
residual2−5 [(3− 1− 1)× 48× 28× 28]× 4 = 150,528
conv1−5 [(3− 1)× 108× 28× 28]× 5 = 846,720

res4 residual1 (3− 1− 1)× 48× 28× 28 = 37,632
residual2−11 [(3− 1− 1)× 96× 14× 14]× 10 = 188,160
conv1−11 [(3− 1)× 216× 14× 14]× 11 = 931,392

res5 residual1 (3− 1− 1)× 96× 14× 14 = 18,816
residual2−3 [(3− 1− 1)× 192× 7× 7]× 6 = 56,448
conv1−3 [(3− 1)× 432× 7× 7]× 7 = 296,352

pool5 - (16− 1)× 432 = 6,480

Total 4,771,632

Table 4: CoX3D-M state memory consumption by layer.

20 L. Hedegaard and A. Iosifidis

Stage Filters
Output size
(T ×H ×W)

input - 16× 224× 224

conv1

1× 32, 24

5∗ × 12, 24
16× 112× 112

res2 res

1× 12, 54

3× 32, 54

SE
1× 12, 24

× 3 16× 56× 56

res3 res

1× 12, 108

3× 32, 108

SE
1× 12, 48

× 5 16× 28× 28

res4 res

1× 12, 216

3× 32, 216

SE
1× 12, 96

× 11 16× 14× 14

res5 res

1× 12, 432

3× 32, 432

SE
1× 12, 192

× 7 16× 7× 7

conv5 1× 12, 432 16× 7× 7

pool5 16× 72 1× 1× 1

fc1 1× 12, 2048 1× 1× 1
fc2 1× 12,#classes 1× 1× 1

Table 5: X3D-M model architecture. When converted to a continual CNN,
the highlighted components carry an internal state which results in a memory
overhead. *Temporal kernel size in conv1 is set to 5 as found in the official X3D
source code [10].

Continual 3D Convolutional Neural Networks 21

B Benchmarking details

This section should be read in conjunction with Sec. 4.3 of the main paper. To
gauge the achievable on-hardware speeds of clip and frame predictions, a bench-
mark was performed on the following four system: A CPU core of a MacBook Pro
(16-inch 2019 2.6 GHz Intel Core i7); Nvidia Jetson TX2; Nvidia Jetson Xavier;
and a Nvidia RTX 2080 Ti GPU (on server with Intel XEON Gold processors).
A batch size of 1 was used for testing on CPU, while the largest fitting multiple
of 2N up to 64 was used for the other hardware platforms which have GPUs
and lend themselves better to parallelisation. Thus, the speeds noted for GPU
platforms in Tab. 1 of the main paper should not be interpreted as the number
of processed clips/frames from a single (high-speed) video stream, but rather as
the aggregated number of clips/frames from multiple streams using the available
hardware. The exact batch size and input resolutions can be found in Tab. 6. In
conducting the measurements, we assume the input data is readily available on
the CPU and measure the time it takes for it to transfer from the CPU to GPU
(if applicable), process, and transfer back to the CPU. A precision of 16 bits
was used for the embedded platforms TX2 and Xavier, while a 32 bit precision
was employed for CPU and RTX 2080 Ti. All networks were implemented and
tested using PyTorch, and neither Nvidia TensorRT nor ONNX Runtime were
used to speed up inference.

Model Input shape Batch size
(T × S2) CPU TX2 Xavier RTX

I3D-R50 8× 2242 1 16 16 32
R(2+1)D-188 8× 1122 1 16 16 32
R(2+1)D-1816 16× 1122 1 8 16 32
Slow-8×8-R50 8× 2562 1 8 8 8
SlowFast-8×8-R50 8× 2562 1 8 32 32
SlowFast-4×16-R50 16× 2562 1 16 32 32
X3D-L 16× 3122 1 16 32 32
X3D-M 16× 2242 1 32 64 64
X3D-S 13× 1602 1 64 64 64
X3D-XS 4× 1602 1 64 64 64
CoI3D 1× 2242 1 8 8 8
CoSlow 1× 2242 1 8 8 8
CoX3D-L 1× 3122 1 8 16 32
CoX3D-M 1× 2242 1 32 64 64
CoX3D-S 1× 1602 1 32 64 64

Table 6: Benchmark model configurations. For each model, the input shape
is noted as T × S2, where T and S are the temporal and spatial input shape.

22 L. Hedegaard and A. Iosifidis

Model FLOPs
Throughput (evaluations/s)
CPU TX2 Xavier RTX

(Co)I3D 5.04× 3.39× 0.95× 1.62× 1.64×
(Co)Slow 7.95× 7.68× 1.19× 1.44× 1.65×
(Co)X3D-L 15.34× 9.20× 5.21× 5.77× 5.98×
(Co)X3D-M 15.06× 9.05× 4.79× 4.95× 6.86×
(Co)X3D-S 12.11× 5.91× 4.15× 4.98× 3.41×

Table 7: Relative improvements in frame-by-frame inference in Continual 3D
CNN relative to regular 3D CNN counterparts. The improvements (× lower for
FLOPs and × higher for throughput) correspond to the results in Tab. 1 of the
main paper.

C A note on RCU FLOPs

In Tab. 1 of the main paper, we have approximated the FLOPs for RCU [39] as
follows: We use a different measure of FLOPs (the one from the ptflops [41])
than the RCU authors and therefore employ a translation factor of 28.6/41.0,
which is our measured FLOPs for I3D (28.6) divided by theirs (41.0), multiplied
with their reported 54.0 for RCU. Considering that their method used 8 frames
and can be applied per frame, we also divide by 8. Note that the this approxi-
mation lacks the repeat classification layer and may thus be considered on the
low side. The resulting computation becomes 28.6/41.0 · 54.0/8 = 4.71.

D Supplemental visualisations of benchmark

As a supplement to the results presented in the main paper, this appendix
supplies additional views of the benchmarking results in Tab. 1. Accordingly,
graphical representations of the accuracy versus speed trade-offs from Tab. 1
are shown in Figures 6-9. As in Fig. 1 of the main paper, the noted accuracies
on Kinetics-400 were achieved using 1-clip/frame testing on publicly available
pretrained models, the CoX3D models utilised X3D weights without further
fine-tuning, and the numbers noted in each point represent the size of the global
average pooling layer. Likewise, Tab. 7 shows the improvements in continual in-
ference relative to the regular models. In general, the FLOPs improvements are
higher than on-hardware speed evaluations, with relatively lower improvements
on hardware platforms with GPUs. We attribute these differences to a memory
operations overhead, which does not enjoy the same computational improvement
as multiply-accumulate operations do on massively parallel hardware.

From Figures 6-9 we likewise observe, that the I3D, R(2+1)D and SlowFast
models perform relatively better on hardware compared to the X3D and CoX3D
models, which utilise computation-saving approaches such as 1D-convolutions
and grouped 3D-convolutions at the price of increasing memory access cost.

Continual 3D Convolutional Neural Networks 23

100 101
Frames per second

100 101

Clips per second

45

50

55

60

65

70

75

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4
8

8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 6: CPU inference throughput versus top-1 accuracy on Kinetics-400.

100 101
Frames per second

100 101

Clips per second

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4

8
8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 7: TX2 inference throughput versus top-1 accuracy on Kinetics-400.

24 L. Hedegaard and A. Iosifidis

100 101 102
Frames per second

100 101 102

Clips per second

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4

8
8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 8: Xavier inference throughput versus top-1 accuracy on Kinetics-400.

102 103
Frames per second

102 103

Clips per second

45

50

55

60

65

70

75

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4
8

8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 9: RTX2080Ti inference throughput versus top-1 acc. on Kinetics-400.

D3.3: Third report on deep human centric active perception and cognition 82/223

8.2 Continual Inference: A Library for Efficient Online Inference with
Deep Neural Networks in PyTorch

Publication place: European Conference on Computer Vision Workshop 2022 (Computational
Aspects of Deep Learning). The appended paper follows.

OpenDR No. 871449

Continual Inference: A Library for
Efficient Online Inference with Deep Neural

Networks in PyTorch

Lukas Hedegaard and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm,ai}@ece.au.dk

Abstract. We present Continual Inference, a Python library for imple-
menting Continual Inference Networks (CINs), a class of Neural Net-
works designed for redundancy-free online inference. This paper offers a
comprehensive introduction and guide to CINs and their implementation,
as well as best-practices and code examples for composing basic modules
into complex neural network architectures that perform online inference
with an order of magnitude less floating-point operations than their non-
CIN counterparts. Continual Inference provides drop-in replacements of
PyTorch modules and is readily downloadable via the Python Package
Index and at www.github.com/lukashedegaard/continual-inference.

Keywords: Online Inference, Continual Inference Network, Deep Neu-
ral Network, Python, PyTorch, Library.

1 Introduction

Designing and implementing Deep Neural Networks, which offer good perfor-
mance in online inference scenarios, is an important but overlooked discipline
in Deep Learning and Computer Vision. Research in areas such as Human Ac-
tivity Recognition focuses heavily on improving accuracy on select benchmark
datasets with limited focus on computational complexity and still less on efficient
online inference capabilities. Yet, important real-life applications such as human
monitoring [13], [18], driver assistance [3], and autonomous vehicles depend on
performing predictions on a continual input stream with low latency and low
energy consumption.

Continual Inference Networks (CINs) [9], [8], [7], are a recent family of Deep
Neural Networks, which can accelerate a wide range of architectures for time-
series processing (e.g., CNNs and Transformers) during online inference, even
though source networks may have been trained exclusively for offline processing.

This paper provides comprehensive introduction to CINs (Sec. 2), the guid-
ing principles of their design and implementation via the Continual Inference
library (Sec. 4), and summarizes and compares achieved reductions in stepwise
computational complexity and memory-usage using the library (Sec. 4).

2 L. Hedegaard and A. Iosifidis

2 Continual Inference Networks

Originally introduced in [9] and subsequently elaborated in [7], [8], Continual
Inference Networks denote a variety of Neural Network, which can operate with-
out redundancy during online inference on a continual input stream, as well as
offline during batch inference. Specifically, CINs comply with Def. 1 [7]:

Definition 1 (Continual Inference Network). A Continual Inference Net-
work is a Deep Neural Network, which
– is capable of continual step inference without computational redundancy,
– is capable of batch inference corresponding to a non-continual Neural Net-

work,
– produces identical outputs for batch inference and step inference given iden-

tical receptive fields,
– uses one set of trainable parameters for both batch and step inference.

Many prior networks can be viewed as CINs. This includes networks, which
perform their task within a single time-step (e.g., object detection and image
recognition models), or which inherently process temporal data step-by-step
(e.g., Recurrent Neural Networks such as LSTMs [10] and GRUs [2]). Some net-
work types, however, are limited to batch inference exclusively. These include
Convolutional Neural Networks (CNNs) with temporal convolutional compo-
nents (e.g., 3D CNNs), as well as Transformers with tokens spanning the tem-
poral dimension. While they can in principle be used for online inference, it is
an inefficient process, where input steps are assembled to full (spatio-)temporal
batches and fed to the network in a sliding window fashion, with many redundant
intermediary computations as a result.

While some specialty architectures have been devised to let 3D convolutional
network variants make predictions step by step [16], [11], and accordingly also
qualify as CINs, these were not weight-compatible with regular 3D CNNs. Re-
cently, Continual 3D Convolutions [9] changed this. Through a reformulation of
the 3D convolution to compute outputs for each time-step individually rather
than for the whole spatio-temporal input at once, well-performing 3D CNNs
such as X3D [4], Slow [5], and I3D [1] trained for Trimmed Activity Recogni-
tion were re-implemented to execute step by step without any re-training. Like-
wise, Spatio-temporal Graph Convolutional Networks for Skeleton-based Action
Recognition [20], [15], [14], which originally operated only on complete sequences
of skeleton graphs, were transformed to perform stepwise inference as well though
a continual formulation of their Spatio-temporal Graph Convolution blocks [8].
Temporal Transformer networks had also been restricted to operate on batches
until a Continual Multi-head Attention (CoMHA) [7] was introduced, which
is weight-compatible with the original MHA [19], while being able to compute
updated outputs for each time step.

With these innovations, many existing DNNs can be converted to operate
efficiently during online inference. In general, non-continual networks, which are
transformed to continual ones attain reductions in per-step computational com-
plexity in proportion to the temporal receptive field of the network. In some

Continual Inference 3

cases, these savings can amount to multiple orders of magnitude [8]. Still, the
implementation of Continual Inference Networks with temporal convolutions and
Multi-head Attention in frameworks such as PyTorch [12] requires deep knowl-
edge and practical experience with CINs. With the Continual Inference library
described in the next section, we hope to change this.

3 Library Design

3.1 Principles

The fundamental feature of CINs, that networks are flexible and perform well on
both online inference and batch inference, is a guiding principle in the design of
the Continual Inference library as well: Refactoring of existing implementations
in pure PyTorch should be straightforward. In the following, we will adopt the
Python import abbreviations import continual as co and from torch import

nn. The library follows Principle 1 to ensure that co modules can be used as
drop-in replacements for nn modules without behavior change:

Principle 1 (Compatibility with PyTorch) co modules with identical names
to nn modules also have:
1. identical forward,
2. identical model weights,
3. identical or extended constructors,
4. identical or extended supporting functions.

Before proceeding to the enhanced functionality of co modules, let us state our
assumption to the input format:

Assumption 1 (Order of input dimensions) Inputs to co modules use the
order (B,C, T, S1, S2, ...) for multi-step inputs and (B,C, S1, S2, ...) for single-
step inputs, where B is the batch size, C is the input channel size, T is the
temporal size, and Sn are additional optional dimensions.

The core difference between Continual Inference Networks and regular net-
works is their ability to efficiently compute results for each time-step. Besides
the regular forward function found in nn modules, co modules add multiple call
modes that allow for continual inference with a simple interface:

Principle 2 (Call modes) co modules provide three forward operations:
1. forward: takes a (spatio-) temporal input and operates identically to the

forward of an nn module,
2. forward_step: takes a single time-step as input without a time-dimension

and produces an output corresponding to forward, had it’s input been shifted
by one time-step, given identical prior inputs.

3. forward_steps: takes multiple time-steps as input and produces outputs
identical to applying forward_step the number of times corresponding to
the temporal size of the input.

4 L. Hedegaard and A. Iosifidis

Furthermore, the __call__ method of co modules can be changed to use any of
the three by either setting the call_mode attribute of the module or applying the
co.call_mode() context with a string spelling out the wanted forward type.

Let us exemplify Principle 2 in practice. Example 1.1 shows how the differ-
ent forward functions introduced in Principle 2.1 can be used. Principle 2.2 is
illustrated in Example 1.2.

import torch

import continual as co

con = co.Conv3d(in_channels=4,

out_channels=8,

kernel_size=3)

assert con.delay == 2

assert con.receptive_field == 3

reg = torch.nn.Conv3d(in_channels=4,

out_channels=8,

kernel_size=3)

Reuse weights

con.load_state_dict(reg.state_dict ())

x = torch.randn((2, 3, 5, 6, 7)) # B,C,T,H,W

y = con.forward(x)

assert torch.equal(y, reg.forward(x))

Multiple steps

firsts = con.forward_steps(x[:, :, :4])

assert torch.allclose(firsts , y[:, :, : con.delay])

Single step

last = con.forward_step(x[:, :, 4])

assert torch.allclose(last , y[:, :, con.delay])

Example 1.1: Definition and usage of co.Conv3d and its forward modes.

net(x) # Invokes ‘forward ‘ by default

net.call_mode = "forward_step"

net(x[:, :, 0]) # Invokes ‘forward_step ‘

with co.call_mode("forward_steps"):

net(x) # Invokes ‘forward_steps ‘

net(x[:, :, 0]) # Invokes ‘forward_step ‘ again

Example 1.2: Changing the call mode for a continual module net.

Continual Inference 5

Continual modules, which use information from multiple time-steps, are in-
herently stateful. Whenever forward_step or forward_steps is invoked, inter-
mediary results needed for future step results are optimistically computed and
stored. Principle 3 states the rules for state-manipulation and updates.

Principle 3 (State) Module state is updated according to the following rules:

– forward_step and forward_steps use and update state by default.
– Step results may be computed without updating internal state by passing

update_state=False to either forward_step or forward_steps.
– forward neither uses nor updates state.
– Module state can be wiped by invoking the clean_state() method.
– A module produces non-empty outputs after its has conducted a number of

stateful forwards steps corresponding to its delay.

Regular nn modules predominantly operate on input batches in an offline set-
ting and do not have a built-in concept of delay. co modules on the other hand
are designed to operate on time-series. Since co modules often integrate infor-
mation over multiple time-steps and online operation is causal by nature, some
modules produce the output corresponding to a given input only after observ-
ing additional steps. For instance, a co.Conv1d module with kernel_size = 3

produces an output from the third input step as illustrated in Fig. 1. The delay
of a module is calculated according to Principle 4:

Principle 4 (Delay) co modules produce step outputs that are delayed by

d = f − p− 1 (1)

steps relative to the earliest input step used in the computation, where f is the
receptive field and p is the temporal padding.

While padding is used in regular networks to retain the size of feature-maps
in consecutive layers, this interpretation of temporal padding does not make
sense in the context of an infinite, continual input, as handled by CINs. Instead,
we may interpret padding as a reduction in delay. For instance, a co.Conv1d

module with kernel_size = 3 and padding = 2 has a delay of zero, because
the padded zeros already “saturated” the state before-hand. This is illustrated
in Fig. 2. Considering, that co modules expect an infinite and continual input
stream, end-padding padding is omitted by default. If an end-padding is required,
the library supports its use by either passing manually defined zeros as steps or
by setting pad_end = True for an invocation of the forward_steps function.

Similar to padding, the stride of a co module impacts the timing of the out-
puts. Specifically, stride results in empty outputs every (s − 1)/s outputs, as
well as larger delays for downstream network modules through increased recep-
tive fields. This is stated in Principles 5 and 6.

6 L. Hedegaard and A. Iosifidis

step 1

x

net(x)

2 3 4 5 …

Fig. 1: Sketch of delay and receptive field. Here, the stepwise operation of a
co module net with receptive_field = 3 is illustrated. ■ are non-zero step-
features and ⊠ are empty outputs.

step 1 2 3 4 5 …
x

net(x)

Fig. 2: Sketch of how padding reduces delay. Here, the stepwise operation of a
co module net with receptive_field = 3, padding = 2 is illustrated. � are
padded zeros and ■ are non-zero step-features.

Principle 5 (Stride and prediction rate) For neural network of N modules
with strides s(i), i ∈ {1..N}, the accumulated stride at any given layer is

s(i)acc = s(i) · s(i−1)
acc i ∈ 1..N (2)

s(0)acc = s(0). (3)

Equivalently, the resulting network stride is

sNN =
N∏

i=1

s(i), (4)

and the network prediction rate is

rNN = 1/sNN . (5)

Accordingly, the outputs of a co network are empty every (sNN − 1)/sNN steps.

Principle 6 (Accumulated delay) The accumulated receptive field of a down-
stream module i in a network of N modules is given by:

f (i)
acc = f (i) + (f (i−1)

acc − 1)s(i), i ∈ 1..N (6)

f (0)
acc = f (0). (7)

Continual Inference 7

The accumulated delay of layer i in a network is

d(i) = f (i)
acc − p(i)acc − 1, (8)

where the accumulated padding pacc is given by

p(i)acc = p(i) · s(i−1)
acc , i ∈ 1..N, (9)

p(0)acc = p(0). (10)

Fig. 3 illustrates a mixed example, where the first layer of a two-layer network
has padding = 2 and stride = 2. Noting layer attributes in consecutive order,
and using Equations 2 to 10, the example has the following network attributes:

s = {2, 1}
p = {2, 0}

sacc = {2, 2 · 1 = 2}
pacc = {2, 2 + 2 · 0 = 2}
facc = {3, 3 + (3− 1) · 2 = 7}
dacc = {3− 2− 1 = 0, 7− 2− 1 = 4}
sNN = s(1)acc = 2

rNN = 1/sNN = 1/2

dNN = d(1)acc = 4.

Before continuing onto the specific modules, we have to discuss a final prin-
ciple of CINs, namely that of parallel modules.

Rate

1/1

1/2

1/2

step 1 2 4 5 6 7 …3

x

1l (x)

2 1l (l (x))

Fig. 3: A mixed example of delay and outputs under padding and stride.
Here, we illustrate the stepwise operation of two co module layers, l1
with with receptive_field = 3, padding = 2, and stride = 2 and l2 with
receptive_field = 3, no padding and stride = 1. � denotes a padded zero,
■ is a non-zero step-feature, and ⊠ is an empty output.

8 L. Hedegaard and A. Iosifidis

Principle 7 (Parallel modules) Modules can be arranged in parallel to exe-
cute on each their separate stream of data under the following rules:
– Parallel modules follow the same global clock.
– The delay of a collection of parallel modules is the maximum delay of any

module in the collection.
– If the merger of parallel step values includes an empty value, then the result-

ing step output of the merger is also empty.

A discussion of residual connections provides a practical example for Principle 7.

Residual connections The residual connection is a simple but crucial tool for
avoiding vanishing and exploding gradients; by adding the input of a module
to its output, gradients can flow freely through models with hundreds of layers.
Without exaggeration, we can state that almost all recent deep architectures at
the time of writing use some form of residual connection [6], [19], [20], [5]. Yet,
their implementation in Continual Inference Networks may not follow common
intuition in all cases. Let us first consider the residual connection during regular
forward operation as found in a non-continual residual shown in Fig. 4a. Here,
the wrapped module will almost always use padding to ensure equal input and
output shapes (known as “equal padding”). For a module with receptive field
three, we would thus have a padding of one. In this case, the forward computa-
tion of the residual amounts to adding the input to the output of the convolution.
However, the implementation of forward_step illustrated in Fig. 4b is different.
Since the first output uses information from the second step, the module has a
delay of one. Accordingly, the residual connection requires a delay of one as well.

Now consider the same scenario but without padding. This will be quite
foreign to many Deep Learning practitioners, and it is not clear how exactly
to align residuals. We will use a separate module to shrink the residual by an
equivalent amount as the wrapped module. Of the possible alignment choices,
a sensible approach is to discard the border values to align the feature maps
on center. Contrary to other alignment forms, this has the benefit of weight-
compatibility between the no-padding case and the case with equal padding
described in the former paragraph. The outputs of step 3 in Figures 4b and 5b
are equal given the same weights and inputs. However, two issues arise:
1. Delay mismatch: While the residual connection has a delay of one, the

wrapped module has a delay of two.
2. Mix of empty and non-empty results: C.f. the differences in delay, the residual

will start producing non-empty outputs before the wrapped module.
Principle 7 helps us navigate this. Despite the internal delay mismatch, the delay
of the whole residual module corresponds to the largest delay, in this case two.
Consequently, the whole residual module produces outputs from the third step,
despite the fact that the delayed input already has non-empty outputs from the
second step. Both of these issues can also be avoided if we force residuals to
employ the same delay as the wrapped module. This corresponds to a lagging
alignment. However, using such a strategy breaks weight compatibility between
the same residual modules with and without padding.

Continual Inference 9

x

res(net(x))

(a) forward

step 1 2 3 4 …
x

res(net(x))

(b) forward_step

Fig. 4: Residual connections ↑ over a module with receptive field of size ▲ and
padding one (“equal padding”) �. ⊠ are empty outputs.

x

res(net(x))

(a) forward

step 1 2 3 4 …
x

res(net(x))

(b) forward_step

Fig. 5: Centered residual connections ↑ over a module with receptive field of size
▲ and no padding. ⊠ are empty outputs.

3.2 Core modules

Designed as an augmentation of PyTorch, the Continual Inference library pro-
vides a collection of basic building blocks for composing neural networks. Fol-
lowing Principle 1, we use the same public interfaces as PyTorch , i.e. class con-
structor, function names and arguments, and attribute names, to ensure that co
modules can be used as drop-in replacements for nn modules. The basic modules
can be categorized as follows:
• Convolutions [9]: co.Conv1d, co.Conv2d, . . .
• Pooling: co.AvgPool1d, co.MaxPool1d, . . .
• Linear: co.Linear.
• Transformer [7]: co.TransformerEncoder, . . .
• Shape: co.Delay, co.Reshape.
• Arithmetic: co.Lambda, co.Add, . . .

Here, the MultiheadAttention implementation is a special case, which features
two distinct versions of continual operation: 1) ”single-output”, where only the
attention output corresponding to the latest input is produced, and 2) ”ret-
rospective”, where updates to prior outputs are also produced retrospectively.
The details of this are explained in greater detail in [7]. Linear co modules
follow the nn modules closely, but ensure compatibility of dimension c.f. As-
sumption 1. co.Delay adds a specified delay to the input stream. This is handy

10 L. Hedegaard and A. Iosifidis

Module Description

Sequential Arrange modules sequentially.
Broadcast Broadcast one stream to multiple parallel streams.
Parallel Apply modules in parallel, each on a separate stream.
Reduce Reduce multiple input streams into one.
Residual Add a residual connection for a wrapped module.
Conditional Conditionally invoke a module (or another) at runtime.

Table 1: Composition modules.

for aligning the delay of multiple streams as required by residual connections
(see Sec. 3.1). co.Lambda allows a user to pass in functions and functors that
are applied stepwise to the inputs. Besides the above list of tailor-made mod-
ules, the Continual Inference library has interoperability with most activation
functions (nn.ReLU, nn.Softmax, etc.), normalisation layers (nn.BatchNorm1d,
nn.LayerNorm, etc.), and nn.DropOut when used within the composition mod-
ules as presented in Sec. 3.3. The full list of compatible modules can be found
at www.github.com/lukashedegaard/continual-inference.

3.3 Composition modules

In PyTorch, modules are composed by either by using the nn.Sequential con-
tainer or by creating a new class which inherits from nn.Module and manually
controls data flow within the forward function. While the latter is commonly
used to handle complex modules in a simple and easily debuggable manner, it
is not necessarily the simplest approach for implementing complex Continual
Inference Networks. In addition to defining the basic forward flow, a CIN imple-
mentation also needs to handle stepwise computations, which require meticulous
alignment of delays if Principle 2 is to be kept.

Instead, we expand the container interface of PyTorch to include modules for
parallel and conditional processing. While each module is simple in nature, they
can be used to compose complex neural network architectures, which retain all
the principles in Sec. 3.1 without explicitly needing to consider them. A brief
overview and description of each co container module is given in Sec. 3.3. To
get a practical understanding of these, we will give implementation examples of
two common architecture blocks, the residual connection as discussed in Sec. 3.1
and an Inception module [17].

Example 1.3 shows three equivalent implementations of a residual 3D con-
volution block. res1 is the verbose version, in which co.Broadcast is used to
split a single input into two parallel stream, co.Parallel specifies that conv

handles the first stream, while a delay is used on the second. co.Reduce merges
the streams via an add reduce operation. Due to the commonality of broadcast-
apply-reduce operations, the library features a co.BroadcastReduce shorthand

Continual Inference 11

conv = co.Conv3d(1, 1, kernel_size=3, padding=1)

res1 = co.Sequential(co.Broadcast (2),

co.Parallel(conv , co.Delay (1)),

co.Reduce("sum"))

res2 = co.BroadcastReduce(conv , co.Delay (1))

res3 = co.Residual(conv)

Example 1.3: Equivalent implementations of a residual block.

to specify such composition more succinctly. Even shorter, co.Residual can au-
tomatically infer the needed delay from the module it wraps. Other reduction
functions can be specified in co.BroadcastReduce and co.Residual using the
reduce argument, which is "sum" by default. The code in Example 1.3 corre-
spond to Fig. 4. The centered residual module in Fig. 5 is easily specified as
co.Residual(conv, residual_shrink=True) where conv has padding = 0.

def norm_relu(conv):

return co.Sequential(conv ,

nn.BatchNorm3d(conv.out_channels),

nn.ReLU())

inception_module = co.BroadcastReduce(

co.Conv3d (192, 64, 1),

co.Sequential(

norm_relu(co.Conv3d (192, 96, 1)),

norm_relu(co.Conv3d (96, 128, 3, padding=1)),

),

co.Sequential(

norm_relu(co.Conv3d (192, 16, 1)),

norm_relu(co.Conv3d (16, 32, 5, padding=2))

),

co.Sequential(

co.MaxPool3d(kernel_size=(1, 3, 3),

padding=(0, 1, 1),

stride=1),

norm_relu(co.Conv3d (192, 32, 1)),

),

reduce="concat",

)

Example 1.4: Continual Inception module using a mix of co and nn modules.

12 L. Hedegaard and A. Iosifidis

We can showcase a more advanced application of parallel streams by consider-
ing an Inception module [17]. An Inception module broadcasts the input into four
streams and applies convolution of varying kernel sizes in parallel before concate-
nating the channels to produce one output. Without the co container modules, it
would be complicated to keep track of and align delays of the different branches
to create valid forward, forward_step, and forward_steps methods. Using
co.Sequential, which automatically sums up delays, and co.BroadcastReduce,
which automatically adds delays to match the branch with highest inherent de-
lay, the implementation becomes simple as shown in Example 1.4.

Model Dataset performace Params Max mem. FLOPs
(%) (M) (MB) (G)

Kinetics-400 (Acc.)
X3D-L 69.3 6.2 240.7 19.17
CoX3D-L64 71.6 (+2.3) 6.2 184.4 (75%) 1.25 (↓ 15.34×)
X3D-M 67.2 3.8 126.3 4.97
CoX3D-M64 71.0 (+3.8) 3.8 69.0 (55%) 0.33 (↓ 15.06×)
X3D-S 64.7 3.8 61.3 2.06
CoX3D-S64 67.3 (+2.6) 3.8 42.0 (69%) 0.17 (↓ 12.12×)
Slow-8×8 67.4 32.5 266.0 54.87
CoSlow64 73.1 (+5.7) 32.5 176.4 (66%) 6.90 (↓ 7.95×)
I3D 64.0 28.0 191.6 28.61
CoI3D8 59.6 (−4.4) 28.0 235.9 (123%) 5.68 (↓ 5.04×)

THUMOS14 TVSeries
(mAP) (mcAP)

OadTR-b2 64.2 89.0 15.9 67.6 1.08
CoOadTR-b2 64.4 (+0.2) 88.2 (−0.8) 15.9 71.7 (106%) 0.41 (↓ 2.61×)
OadTR-b1 64.4 89.1 9.6 43.3 0.67
CoOadTR-b1 64.5 (+0.1) 88.0 (−1.1) 9.6 45.1 (104%) 0.01 (↓ 63.49×)

NTU RGB+D 60 (Acc.)
X-Sub X-View

ST-GCN 86.0 93.4 3.1 45.3 16.73
CoST-GCN∗ 86.3 (+0.3) 93.8 (+0.4) 3.1 36.1 (80%) 0.16 (↓ 107.7×)
AGCN 86.4 94.3 3.5 48.4 18.69
CoAGCN∗ 84.1 (−2.3) 92.6 (−1.7) 3.5 37.4 (77%) 0.17 (↓ 108.8×)
S-TR 86.8 93.8 3.1 74.2 16.14
CoS-TR∗ 86.3 (−0.3) 92.4 (−1.4) 3.1 36.1 (49%) 0.15 (↓ 107.6×)

Table 2: Dataset performance, parameter count, maximum allocated memory
(Max mem.), and floating-point operations (FLOPs) of continual and non-
continual models on video and spatio-temporal graph classification datasets.
Subscriptxx denotes expanded temporal average pooling, b1 and b2 denote one
and two block transformer decoders, and superscript∗ indicates architectures
where network stride was reduced to one. Parentheses show the improvement /
deterioration of the continual model relative to the corresponding non-continual
model. The noted metrics were originally presented in [9], [7], [8].

Continual Inference 13

4 Performance comparisons

Using the basic co modules and composition building blocks, continual ver-
sions of advanced neural networks have been implemented in multiple recent
works with manyfold speedups and significant reductions in memory consump-
tion during online inference [9], [7], [8]. Specifically, the 3D-CNNs CoX3D,
CoI3D, and CoSlow for video-based Human Activity Recognition were proposed
in [9]; the Transformer CoOadTR for Online Action Detection in [7]; and Spatio-
temporal Graph Convolutional Networks CoST-GCN, CoAGCN, and CoS-TR
for Skeleton-based Action Recognition in [8]. While direct conversion from reg-
ular to continual versions of the above noted architectures works well in accel-
erating inference in itself, further improvements can be achieved by exploiting
some core characteristics of CINs: in [9], accuracy was improved by increasing
model receptive fields through expansions of temporal global average pooling to
64 steps, and in [8], the stride of temporal convolutions was reduced to one to
increase prediction rates. Tab. 2 presents a summary of benchmark performance,
computational complexity, and maximum allocated memory on GPU for each of
these networks alongside with their non-continual counterparts [9], [7], [8].

5 Conclusion

We presented Continual Inference, an easy-to-use library for implementing Con-
tinual Inference Networks in Python. Following interfaces closely, the compo-
nents provided in the library are backwards-compatible drop-in replacements for
PyTorch modules, which add the capability of redundancy-free online inference
without the need for intimate knowledge of CINs nor their meticulous low-level
implementation. Having shown the vast computational advantages of CINs over
regular neural networks in multiple settings of video and spatio-temporal graph
classification, we hope that this library will contribute to the adoption of CINs
and the advancement of use-cases requiring low-latency online inference under
recourse constraints in general.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871449 (OpenDR).

14 L. Hedegaard and A. Iosifidis

References

1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the ki-
netics dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4724–4733 (2017)

2. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: Encoder–decoder approaches. In: Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation.
pp. 103–111 (2014)

3. Enkelmann, W.: Video-based driver assistance–from basic functions to applica-
tions. International Journal of Computer Vision (IJCV) 45(3), 201–221 (2001)

4. Feichtenhofer, C.: X3D: Expanding architectures for efficient video recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

5. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recog-
nition. In: IEEE/CVF International Conference on Computer Vision (ICCV). pp.
6201–6210 (2019)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
770–778 (2016)

7. Hedegaard, L., Bakhtiarnia, A., Iosifidis, A.: Continual Transformers: Redundancy-
Free Attention for Online Inference. preprint, arXiv:2201.06268 (2022)

8. Hedegaard, L., Heidari, N., Iosifidis, A.: Online skeleton-based action recogni-
tion with continual spatio-temporal graph convolutional networks. preprint, arXiv:
2203.11009 (2022)

9. Hedegaard, L., Iosifidis, A.: Continual 3d convolutional neural networks for real-
time processing of videos. In: European Conference on Computer Vision (ECCV).
pp. 1–12 (2022)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9,
1735–80 (12 1997)

11. Köpüklü, O., Hörmann, S., Herzog, F., Cevikalp, H., Rigoll, G.: Dissected 3D
CNNs: Temporal skip connections for efficient online video processing. preprint,
arXiv:2009.14639 (2020)

12. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates,
Inc. (2019)

13. Pigou, L., van den Oord, A., Dieleman, S., Van Herreweghe, M., Dambre, J.: Be-
yond temporal pooling: Recurrence and temporal convolutions for gesture recogni-
tion in video. International Journal of Computer Vision (IJCV) 126(2), 430–439
(2018)

14. Plizzari, C., Cannici, M., Matteucci, M.: Skeleton-based action recognition via
spatial and temporal transformer networks. Computer Vision and Image Under-
standing 208, 103219 (2021)

15. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional
networks for skeleton-based action recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition. pp. 12026–12035 (2019)

Continual Inference 15

16. Singh, G., Cuzzolin, F.: Recurrent convolutions for causal 3d cnns. In: IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). pp. 1456–1465
(2019)

17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (2015)

18. Tavakolian, M., Hadid, A.: A spatiotemporal convolutional neural network for au-
tomatic pain intensity estimation from facial dynamics. International Journal of
Computer Vision (IJCV) 127(10), 1413–1425 (2019)

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS). vol. 30, pp. 5998–6008 (2017)

20. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: AAAI Conference on Artificial Intelligence.
pp. 7444–7452 (2018)

D3.3: Third report on deep human centric active perception and cognition 98/223

8.3 Continual Transformers: Redundancy-Free Attention for Online In-
ference

The appended paper follows.

OpenDR No. 871449

Continual Transformers:
Redundancy-Free Attention for Online Inference

Lukas Hedegaard Arian Bakhtiarnia Alexandros Iosifidis
DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark

{lhm, arianbakh, ai}@ece.au.dk

Abstract

Transformers in their common form are inherently limited to operate on whole
token sequences rather than on one token at a time. Consequently, their use
during online inference on time-series data entails considerable redundancy due
to the overlap in successive token sequences. In this work, we propose novel
formulations of the Scaled Dot-Product Attention, which enable Transformers
to perform efficient online token-by-token inference on a continual input stream.
Importantly, our modifications are purely to the order of computations, while the
outputs and learned weights are identical to those of the original Transformer
Encoder. We validate our Continual Transformer Encoder with experiments on
the THUMOS14, TVSeries and GTZAN datasets with remarkable results: Our
Continual one- and two-block architectures reduce the floating point operations
per prediction by up to 63× and 2.6×, respectively, while retaining predictive
performance.

1 Introduction

Many real-life usage scenarios such as the perception in self-driving cars and live monitoring of
critical resources process a continual stream of inputs and require near-instantaneous predictions per
time-step. This stands in contrast to what many common benchmarks for deep learning evaluate,
namely the operation on distinct batches of data with no inter-batch relationships. Consequently, a
plethora of methods have been developed [1, 2, 3, 4, 5, 6, 7, 8], which focus on batch-wise processing,
but fail to optimise for online operation, where new information (e.g., a video frame / token) arrives
at each step from a continual input stream, and future information is not available at the current
time-step. We need a class of networks, which operate efficiently on both batches of data and on
continual streams.

Accordingly, we propose a reformulation of the Transformer Encoder as a Continual Inference
Network (CIN, Section 2.1) which accelerates the stream processing on time-series data, while
retaining weight-compatibility. Specifically, we derive two variants of Continual Scaled Dot-Product
Attention (SDA) for the cases where prior output tokes should and should not be updated after
observing a new input token. Notably, our attention formulations reduce the per-step cost of SDA [6]
from time complexity O(n2d) to O(nd) and memory complexity O(n2) to O(nd) and are readily
embedded into Continual Multi-Head Attention (MHA) and Continual Transformer Encoder blocks.
Finally, we propose the use of Recycling Positional Encoding to accommodate progressive caching
of partial attention results for continual data streams.

Due to the interdependence of SDA outputs, Continual Transformers are most efficient for shallow
architectures. Shallow Transformers have many applications such as augmentations of CNNs [9],
light-weight Natural Language Processing [10], fusion operations in multi-modal (e.g. audio-visual)

Preprint. Under review.

+

++

+

+

+

Continual Transformer Encoder

t0

α

β

γ

γ

δt-1

t-n

…

Retroactive
outputs

Optional
Input
token

OutputRecycling
Positional
Encoding

×(b - 2)×1 ×1

CLS

C
on

tin
ua

l R
et

ro
ac

tiv
e

T
ra

ns
En

c
bl

oc
k

T
ra

ns
En

c
bl

oc
k

 S
in

gl
e-

O
ut

pu
t

T
ra

ns
En

c
bl

oc
k

Figure 1: Multi-block Continual Transformer Encoder with Recycling Positional Encoding.
For b > 2 blocks, regular Transformer Encoder blocks can be added between an initial Continual
Retroactive block and a final Single-Output block. A class-token may be used after the initial block.

settings [11] and early exit branches in multi-exit architectures [12, 8]. In our experiments1, we
validate their exceptional efficiency improvements on common benchmarks in Online Action Detec-
tion [13] and Online Audio Classification [14].

2 Related Work

2.1 Continual Inference Networks

Definition (Continual Inference Network). A Deep Neural Network, which
• is capable of continual step inference without computational redundancy,
• is capable of batch inference corresponding to a non-continual Neural Network,
• produces identical outputs for batch- and step inference given identical receptive fields,
• uses one set of trainable parameters for both batch and step inference.

These requirements ensure that a Neural Network has broad applicability for both (offline) batch-wise
inference (i.e., most research benchmarks) and online stream processing. While non-CINs can
operate on streams of data by caching prior steps in a first-in first-out (FIFO) queue and aggregating
them to a full (spatio-)temporal input, which is processed similarly to an offline batch, this entails
computational redundancy in proportion with the sequence length. CINs perform step-wise inference
without such caching and repeat computation. Uni-directional Recurrent Neural Networks are an
example of Continual Inference Networks. Their default mode of operation is by time-step and
they are easily applied to spatio-temporal batches of data by concatenation of the step-wise outputs.
Recently, a modification to the spatio-temporal 3D convolution was proposed [15], which enables
existing 3D CNNs to operate efficiently during continual inference. A similar principle was used to
enhance Spatio-temporal Graph Convolutions as well [16]. In Section 3, we derive a CIN formulation
for Transformer Encoders.

2.2 Transformer architectures

Initially proposed for sequence-to-sequence modelling in Natural Language Processing, the Trans-
former [6] has become a canonical building block in many applications of Deep Learning, including
Computer Vision [17, 7, 18, 19] and Audio Classification [20]. Their success can be partly attributed
to reduced inductive bias compared with CNNs and RNNs, which allows better adaptations when
sufficiently large datasets are available; the Scaled Dot-Product Attention (SDA) maps a set of input
tokens to a set of outputs without inherent preconceptions. However, this many-to-many attention
exhibits quadratic growth in time and space complexity with the token count n in the set.

A great deal of research has sought to improve the efficiency of Transformers [21]. Block-wise or
Chunking methods such as Image Transformer [22] and Vision Transformer [17] group up entities of a

1Source is code provided in supplementary material. Link will be made available upon acceptance.

2

local receptive field into a single block, reducing the O(n2) complexity to O(n2
b), where nb < n is the

number of blocks. Techniques such as sliding windows, dilation and pooling can be used to achieve a
similar effect [23]. The Reformer [24] reduces the complexity to O(n log n) by learning groupings
in a data-driven manner via Locality-Sensitive Hashing (LSH). A different paradigm aims to derive
approximations of the self-attention matrix. Methods such as Linformer [25], Nyströmformer [26]
and Performer [27] reduce the complexity from O(n2) to O(n). Unlike these efforts, our approach
produces the exact same computational outputs for temporal sequences as the original Multi-Head
Attention.

3 Continual Transformers

The Scaled Dot-Product Attention (SDA) is central to the Transformer. Consider the case, where the
query, key and value inputs to the SDA constitute a continual stream of d-dimensional tokens and
we wish to compute the outputs for each step immediately considering n− 1 prior tokens. Let us
examine three SDA implementations and derive the complexity of each.

3.1 Regular Scaled Dot-Product Attention

Denoting query, key, and value sequence matrices by Q,K,V ∈ R
n×d, the regular Scaled Dot-

Product Attention first defined by Vaswani et al. [6] can be written as:

Att(Q,K,V) = D−1AV A = exp
(
QK⊤/

√
d
)

D = diag
(
A1⊤n

)
, (1)

where A,D ∈ Rn×n and 1n is a row-vector of n ones. In each time-step, we can update Q, K, and
V by discarding their oldest token and prepending a new one in a FIFO manner. This is a common
implementation for step-wise inference, e.g. found in the FAIRSEQ library [28].

Each time-step results in 2n2d+2nd multiplications, 2n2d−nd−n additions, and n2 exponentiations
as accounted for in Appendix A.1, which amounts to a time complexity of O(n2d) and a O(n2)
memory complexity originating from the transient feature-map A. Furthermore, a constant-sized
cache of size 3(n− 1)d is needed to store the n− 1 latest tokens in Q, K and V. We could avoid
considerable redundancy by caching QK⊤ directly. However, this comes with a memory penalty of
(n− 1)2. Fortunately, another computational scheme can be devised.

3.2 Continual Retroactive Scaled Dot-Product Attention

We can compute D−1AV in a step-wise manner using the latest query, key, and value steps,
qnew,knew,vnew ∈ R

1×d, alongside appropriately cached partial results. The softmax normali-
sation with D−1 can be efficiently implemented via column-aligned element-wise multiplications
(denoted by ⊙ hereafter) of a column-vector d = A1⊤n . If we cache the n− 1 values for the prior
step tokens, i.e. dmem = A

(−n+1:−1)
prev 1

⊤
n−1, alongside Q and K, we can define the step update as:

d(−n+1:−1) = d(−n+2:0)
mem − exp

(
Qmemk

⊤
old

)
+ exp

(
Qmemk

⊤
new

)
(2)

d(0) = exp
(
qnew√

d
(Kmem ∥ knew)

⊤
)
1
⊤
n , (3)

where Qmem (Kmem) are the n− 1 prior query (key) tokens, kold is the key from n steps ago, and ∥
denotes concatenation of matrices along the first dimension. Negative indices indicate prior time-steps.
An update for AV can likewise be defined as a function of the n− 1 prior values AVmem:

AV(−n+1:−1) = AV(−n+2:0)
mem − exp

(
Qmemk

⊤
old

)
vold + exp

(
Qmemk

⊤
new

)
vnew (4)

AV(0) = exp
(
qnew√

d
(Kmem ∥ knew)

⊤
)
(Vmem ∥ vnew) . (5)

Finally, we compute the Continual Retroactive Attention output in the usual manner:
CoReAtt(qnew,knew,vnew) = d−1 ⊙AV. (6)

An visual depiction of these update steps is provided in Appendix A.2. A time-step can now be
computed with 7nd+2n−3d multiplications, 6nd+3n−6d−3 additions, and 3n−2 exponentials.
This time complexity of O(nd) per step and a O(nd) memory complexity is a significant improvement
over the prior O(n2d) and O(n2) complexities in Section 3.1.

3

3.3 Continual Single-Output Scaled Dot-Product Attention

Both the Regular and Continual Retroactive Dot-Product Attentions produce attention outputs for
the current step, as well as n− 1 retroactively updated steps. In cases where retroactive updates are
not needed, we can simplify the computation greatly via a Continual Single-Output Dot-Product
Attention (CoSiAtt). In essence, the regular SDA is reused, but prior values of k and v are cached
between steps (as in [28]), and only the attention corresponding to a single query token q is computed:

CoSiAtt(q,knew,vnew) = a (Vmem ∥ vnew) /a1
⊤
n , a = exp

(
q√
d
(Kmem ∥ knew)

⊤
)
. (7)

A step output is computed with 2nd+ 2d multiplications, 2nd− d− 1 additions, and n exponentials.
The time- and memory complexities remain O(nd) per step. Using the (leading) query qnew as input,
the attention is purely causal. Alternatively, prior (lagging) query vectors could be cached and used
as query input, though this would introduce a network delay.

3.4 Comparison of Scaled Dot-Product Attentions

Assuming n− 1 prior q, k and v steps have been calculated by the Continual SDA modules, and that
Q = (Qmem ∥ qnew), K = (Kmem ∥ knew), and V = (Vmem ∥ vnew), we have the correspondence:

Att(Q,K,V)(t) = CoReAtt(qnew,knew,vnew)
(t) = CoSiAtt(qt,knew,vnew) (8)

Here, qt is the tth row of Q, i.e. Q(t). During stream processing, the complexity of the Continual
Retroactive SDA scales significantly more favourably that the regular SDA. For example, the floating
point operations (FLOPs) are reduced by 31× when n = d = 100 and 308× when n = d = 1000.
If retroactive output updates are not needed, the Continual Single-Output SDA reduces FLOPs by
respectively 100× and 1000×. The scaling properties are detailed in Appendix A.1.

3.5 Continual Multi-Head Attention

Continual Scaled Dot-Product Attentions can replace regular SDA’s directly in a Multi-Head Attention
(MHA). Given a new query, key, and value, q,k,v, the Continual MHA is defined as

CoMHA(q,k,v) =

(
h−1

∥
i=0

CoAtt(qWi
Q,kW

i
K ,vWi

V)

)
WO, (9)

where ∥ denotes concatenation of h heads and Wi
Q,W

i
K ∈ R

d×dK/h, Wi
V ∈ R

d×dV /h, and
WO ∈ RdV ×dO are projection matrices of head i. CoAtt can be either CoReAtt or CoSiAtt.

3.6 Continual Transformer Encoder

A Continual MHA block can be integrated in a Continual Transformer Encoder block as follows:

z = LayerNorm (y + FF(y)) , y = LayerNorm (Sel(x) + CoMHA(x,x,x)) , (10)

where x corresponds to the newest step input and Sel(·) selects a single (last) token of x if CoSiMHA
is used, or selects all tokens otherwise. FF(·) is a two-layer feed-forward network with weights
W1,W2, biases w1, w2, and a activation function σ(·), i.e. FF(x) = σ(xW1+w1)W2+w2. Aside
from the residual selection, this is identical to common Transformer Encoder implementations [6,
17].

3.7 Recycling Positional Encoding

Since a Transformer Encoder does not provide positional bias, it is common to augment a token xi

with a positional encoding p, i.e. x̃i = xi ◦pi, where ◦ could be addition or concatenation. In regular
Transformers, the index i denotes a position in a sequence rather than a position in time. However, this
static positional assignment is problematic in the context of continual inference; the last token at time
t = 0 will be the next-to-last token at time t = 1, and thus in need of a different positional encoding
than in the prior time-step. Instead, CINs require dynamic positions. There have been multiple prior

4

works [29, 30, 31] which create relative encodings by augmenting the SDA with positional offsets
between query and keys. While such a modification to the continual attentions is possible, it hinders
compatibility with the regular SDA. Instead, we use a Recycling Positional Encoding (RPE), which
lets the positional encoding follow each token in time and recycles old encodings:

x̃t = xt + pτt , τt = (τt−1 + 1) mod T, (11)

where T is the number of encodings. While RPE does not specify relative encodings explicitly, the
absolute positional interpretation of each token changes dynamically when a new token arrives. In
practice, the network learns relative, shift-invariant positional information by training with random τ0
for each batch. Random shifts during training were recently explored in [32, 33, 34] as well. RPE
can use either learned or predefined encodings. In the latter case, Cyclic Positional Encoding [35], a
sinusoidal encoding inspired by Gray code, is a good fit. If we reuse the encoding immediately after
an old token has “slided out”, i.e. T = n, a token will have the same positional encoding relative
to another whether it was m steps older or n − m steps newer. The positional ambiguity can be
avoided by extending the number of positional tokens to T = 2n− 1. We explore both options in
Section 4.1.2.

3.8 Architectural considerations

Block count In Section 3.4, we observed an exact correspondence between the results of the
continual and regular SDA layers. However, the correspondence does not necessarily hold for stacked
layers. Consider the result of stacking two Continual Single-Output Transformer Encoder blocks.
While the first block outputs a step t that is identical to that in a corresponding regular block, the
second block would have been initialised with prior step-wise inputs, which were the result of
prior input windows instead of the current one; the correspondence would not hold. Though it
is not convertible to/from a regular Transformer Encoder, the stacked Single-Output Transformer
Encoder architecture has the merit of efficiency. This was exploited in Transformer-XL [31]. Given
a single step input, the Continual Retroactive Transformer Encoder block produces output tokens
corresponding to the entire observed sequence inside the window. Due to this one-to-many input-
output mapping, it is not possible to stack multiple such layers. Nevertheless, it can be used in
conjunction with a Continual Single-Output Transformer Encoder with optional regular Transformer
Encoder blocks in between as illustrated in Fig. 1. The Regular Transformer Encoder blocks in
the resulting architecture have a significantly larger computational complexity than the Continual
Retroactive and Single-Output blocks. Consequently, we recommend that Continual Transformer
Encoders be used primarily in lightweight architectures with one or two blocks unless compatibility
with non-continual Transformers is not required and only Single-output blocks are used.

Class token It is common to add a class token as input to transformers [36, 17], which accumulates
information from other tokens prior to classification. However, it cannot be used naïvely with CINs, as
this would effectively double the number of input steps. In practice, it can be employed in Continual
multi-block Transformer Encoders as input to the second block (see Fig. 1), but this placement
limits class token interaction with downstream layers. It can also be used for one-block Transformer
Encoders if the value token is omitted as input.

Peak memory reduction trick The FLOPs for Att(Q,K,V) are exactly n times those of
CoSiAtt(q,knew,vnew). Comparing their memory complexity, the regular SDA is O(n2), while the
Single-output SDA is O(nd). In practical applications where system memory is limited, we may thus
reduce the maximum memory requirement of the computational device at inference by up to d/n
(assuming n ≫ d) by computing each row of the attention individually. However, this may reduce
throughput due to reduced parallelism.

4 Experiments

We provide case studies within two perception disciplines, namely Online Action Detection (Sec-
tion 4.1) and Audio Classification (Section 4.2). In each case, we will start with a brief overview of
the field, followed by experiments and results.

5

4.1 Online Action Detection

Online Action Detection (OAD) [37] entails the per-frame classification of human actions in a video
stream as they happen without the ability to change prior predictions nor to use future information.
This is fundamentally more restrictive than Temporal Action Localisation, where the whole video
clip is processed before start and end frames of an action are determined [38, 39, 40, 41].

The dominant design in OAD works at the time of writing is to employ a two-stream Convolutional
Neural Network as backbone for frame-wise feature extraction with RGB images as inputs in one
stream and Optical Flow fields in the other [42, 43, 44, 18, 45]2. On top of these, OAD methods
encode temporal information and perform predictions per time-step, e.g. by means of RNNs [42,
43, 44] or Transformers [18, 45]. Alongside the action detection for the current frame, an action
anticipation task may be learned in parallel by means of decoder structures, as this has been found to
improve the primary OAD task.

Unlike RNNs, an output update for the regular SDA in a Transformer block cannot be naïvely
computed for a single step by feeding successive video frames. Instead, prior step features must be
cached, re-loaded and re-processed by the Transformer in each step in correspondence with a prede-
fined window-size of prior steps. As laid out in Section 3.8, Continual Transformers are especially
efficient when either one or two Continual Transformer Encoder blocks are used. Accordingly, we
start our experiments with a set ablation studies to simplify a recent transformer-based architecture,
the OadTR [18]. We further investigate the impact of ablating class token position and the use of
Recycling Positional Encoding and compare different RPE schemes for Continual Transformers.
Finally, we evaluate our configurations on two widely used OAD datasets, THUMOS14 [13] and
TVSeries [37].

4.1.1 Experimental setup

The THUMOS14 dataset [13] for OAD has 200 and 213 validation and test videos, respectively,
with frame-level class annotations across 20 classes. As in prior OAD works, the model is trained
on the validation set and evaluated on the test set. Similar to [18] we use pre-extracted features
from a two-stream Temporal Segment Network (TSN) [46] trained on ActivityNet v1.3 [47] or
Kinetics-400 [2].

For TVSeries [37], the network learns on the train and validations sets (20 videos) and evaluates on the
test set (7 videos) as in [18]. RGB and Optical Flow features were extraced using an MMAction2 [48]
pipeline with ActivityNet v1.3 [47] and Kinetics-400 [2] pretrained TSN ResNet-50 [49] backbones.
This is similar to the feature extraction process used by LSTR [45].

Following Wang et al. [18], we use a batch size of 128, sequence length 64, initial learning rate 10−4

with a factor ten reduction each epoch, alongside weight decay 10−4, and dropout with probability
0.1. We report results using two epochs of training on a Nvidia RTX2080 Ti GPU. We track mean
Average Precision (mAP) for THUMOS14 and calibrated mean Average Precision (cmAP) [37] for
TVSeries, alongside FLOPs per prediction and parameters of the OAD module (feature extraction
excluded). We report the mean ± standard deviation over five runs.

4.1.2 Ablation studies

Removing the Decoder As a first step to make an efficient Continual OadTR, we remove the
decoder blocks used for action anticipation, which has a large impact on computational efficiency and
the ease of transformation to a Continual Inference Network. The first two lines of Table 1a present
the results of the removal. Contrary to the observations of Wang et al., we did not find any drop in
accuracy when excluding the decoder. We do, however, gain a large reduction in FLOPs and model
size; they were reduced to 58% and 30%, respectively. Given these computational improvements, we
exclude the decoder in subsequent experiments.

(Re)moving the Class token Class tokens should not be input naively to the first Transformer
Encoder layer of a CIN (see Section 3.8). Accordingly, we ablate its use and position. In cases where

2The feature extraction commonly used in Online Action Detection (OAD) works is in itself quite compu-
tationally costly. We consider the optimisation of the backbone as orthogonal future work and will follow the
same feature extraction procedure as other OAD works at this time.

6

Table 1: Ablation experiments on THUMOS14 with TSN-Anet features. Best metrics are high-
lighted. ‘-’ indicates that a particular feature was not used.

(a) Class token variations with OadTR. CLS pos.
is the encoder block into which CLS is input.

Enc. Dec. CLS mAP FLOPs Params
blocks pos. (%) (M) (M)

3 ✓ 1 57.0±0.5 2445.6 74.7
3 - 1 57.0±0.4 1430.6 22.2
3 - 2 57.3±0.7 1423.5 22.2
3 - 3 56.7±0.6 1417.2 22.2
3 - - 56.8±0.3 1410.9 22.2

2 - 1 56.5±0.5 1020.7 15.9
2 - 2 56.7±0.3 1014.5 15.9
2 - - 56.6±0.3 1008.1 15.9

1 - 1 57.1±0.6 611.7 9.6
1 - - 56.3±0.2 605.5 9.6

(b) Positional encodings variations for CoOadTr.

Enc. Re- Learn Pos. mAP FLOPs Params
blocks cycling tokens (%) (M) (K)

2 - ✓ n 45.3±0.9 410.9 15832
2 ✓ ✓ n 56.4±0.3 410.9 15832
2 ✓ ✓ 2n−1 56.0±0.5 410.9 15897
2 ✓ - n 55.8±1.0 410.9 15767
2 ✓ - 2n−1 56.8±0.4 410.9 15767
1 - ✓ n 44.0±0.8 9.6 9535
1 ✓ ✓ n 55.6±0.3 9.6 9535
1 ✓ ✓ 2n−1 55.6±0.3 9.6 9599
1 ✓ - n 54.4±1.8 9.6 9469
1 ✓ - 2n−1 56.1±0.7 9.6 9469

it is removed, we predict on the token corresponding to the last input token. The results of varying
CLS pos are noted in Table 1a. For the one-block architecture, the removal came with noticeable drop
in mAP, while the two-block architecture saw small improvements when removing or introducing the
class token later. For the three block model, the use of class tokens in block two achieved the highest
mAP. Though it is commonly accepted, that class tokens should be introduced alongside other inputs
in the first block, our results indicate that they can accumulate sufficient information with only one or
two blocks, and that later stage introduction may work better in some applications. In general, the
achieved mAP when varying CLS pos. and number of blocks are very similar to one another, while
(re)moving the class token and reducing the block size both reduce computational complexity. This
encourages the use of shallow Transformer Encoders over deeper ones as well as the removal of class
tokens, as we do in the following experiments.

Positional Encodings We can transfer parameters from the simplified one- and two block OadTR
to the corresponding Continual architecture, CoOadTR. Here, the one block version (CoOadTR-b1)
uses CoSiMHA, and the two block model (CoOadTR-b2) uses CoReMHA in the first block and
Single-output MHA in the second. However, a regular positional encoding is not suited for continual
inference (see Section 3.7). We evaluate the performance of using non-continual encodings for
continual inference, as well as of our proposed Recycling Positional Encodings with fixed or learned
parameters. In addition, we explore the impact of extending the number of tokens from n to 2n− 1
to avoid positional ambiguity. As seen in Table 1b), non-continual encoding used in the continual
setting result in severe mAP drop. Recycling Positional Encodings alleviate this. Comparing learned
and fixed encodings, we find the learned encodings to work better when the number of encoding
tokens corresponds to the sequence length n and the fixed encoding to work best when positional
ambiguity is alleviated by extending the number of tokens to 2n− 1. Fixed encoding with 2n− 1
tokens works best overall and is employed in subsequent experiments unless stated otherwise. There
is no difference in FLOPs for either strategy, and the difference in parameter count is negligible.

4.1.3 Comparison with prior works

We evaluate the (Co)OadTR architectures on THUMOS14 and TVSeries with two sets of features
as described in Section 4.1.1. Since no prior OAD works have reported complexity metrics, we
measured the FLOPs for TRN [43] based on the publicly available source code to serve as a point
of reference. The results of this benchmark are presented in Table 2 and Fig. 2. OadTR and
our simplified (continual) one-block (b1) and two-block (b2) versions without decoder and class
tokens generally achieve competitive precision in comparison with prior works, surpassing all but
OadTR and LSTR. On THUMOS14, our reproduced OadTR results are slightly lower than originally
reported [18]3, whereas achieved TVSeries results are higher4. The (Co)OadTR-b# architecture
largely retain precision and allow significantly reduced FLOPs per prediction. Our proposed continual
variants CoOadTR-b1 and CoOadTR-b2 reduce FLOPs by 255× and 6.1×, respectively, compared

3The reported 58.3% on THUMOS14 could not be reproduced using their publicly available code.
4We attribute our higher mcAP to differences in the feature extraction pipeline.

7

Table 2: Online Action Detection results. FLOPs per pre-
diction are noted for inference on THUMOS14. The best
and next-best metrics are highlighted.

Model Feat. THUMOS14 TVSeries FLOPs
mAP (%) mcAP (%) (M)

RED [42]

A.Net

45.3 79.2 -
TRN [43] 47.2 83.7 1387.5
FATS [50] 51.6 81.7 -
IDN [44] 50.0 84.7 -
TFN [51] 55.7 85.0 -
LSTR [45] 65.3 88.1 -
OadTR [18] 58.3 85.4 2445.6
OadTR† 57.0±0.5 88.6±0.1 2445.6
OadTR-b2† 56.6±0.3 88.3±0.2 1008.1
OadTR-b1† 56.3±0.2 88.1±0.1 605.5
CoOadTR-b2 (ours) 56.8±0.4 87.7±0.6 410.9
CoOadTR-b1 (ours) 56.1±0.7 87.6±0.7 9.6
TRN [43] 62.1 86.2 1462.0
FATS [50]

Kin.

59.0 84.6 -
IDN [44] 60.3 86.1 -
PKD [52] 64.5 86.4 -
LSTR [45] 69.5 89.1 -
OadTR [18] 65.2 87.2 2513.5
OadTR† 64.2±0.3 88.6±0.1 2513.5
OadTR-b2† 64.5±0.5 88.3±0.2 1075.7
OadTR-b1† 63.9±0.5 88.1±0.1 673.0
CoOadTR-b2 (ours) 64.4±0.1 87.6±0.7 411.9
CoOadTR-b1 (ours) 64.2±0.4 87.7±0.4 10.6

†Using official source code or modifications there-off.

84

86

88

90

m
cA

P
(%

)

107 108 109

FLOPs

45

50

55

60

65

70

m
AP

 (%
)

TVSeries Kin.
TVSeries A.Net
THUMOS14 Kin.
THUMOS14 A.Net

TRN
OadTR
OadTR-b2
OadTR-b1
CoOadTR-b2
CoOadTR-b1

Figure 2: Visual comparison of
OAD methods on THUMOS14 and
TVSeries for backbones trained on
ActivityNet 1.3 and Kinetics-400.

to OadTR. On average, continual and non-continual (Co)OadTR-b# models achieve similar mAP
on THUMOS14, while OadTR-b# have slightly higher mcAP on TVSeries. We attribute these
discrepancies to differences in positional encoding.

4.1.4 Audio-Visual Online Action Detection

To showcase the validity of our method in audio-visual settings as well, we explore the addition of
audio-features to the Online Action Detection task on THUMOS14. As described in Section 4.2,
audio-features are extracted using Mel spectrograms and an AudioSet pre-trained VGGish net-
work [53] (output of the penultimate layer) on 1.0 second windows with a step size of 0.2 seconds to
match the 5.0 FPS sampling rate of the video features.

The audio-features by themselves do not provide enough signal to reach good Online Action Detection
performance (yielding only 6.7% mAP with an OadTR network). When concatenated with RGB and
Flow they do provide a modest improvement as seen in Table 3. On average, this amounts to +0.6%
mAP when combined with ActivityNet features and +0.5% mAP when used with Kinetics-400
features with shallower models enjoying the largest improvements.

4.2 Audio Classification

4.2.1 Background

Audio Classification is the categorisation of audio waveforms. Though waveform sequences can be
used directly [54], it is common to first convert them to spectrograms. Mel spectrograms are obtained
by a nonlinear transformation of a frequency scale [55], which is designed based on empirical
knowledge about the human auditory system [56]. By employing spectrograms, audio classification
can be approached in the same way as image classification [57].

4.2.2 Experiments

We conduct experiments on the Music Genre Classification dataset GTZAN [58]. It consists of 100
30-second clips for each of ten music genres. Each audio clip is sampled at 22,050 Hz. Since there

8

Table 3: Audio-Visual result, THUMOS14.

Model Feat. mAP (%) FLOPs (M)
OadTR 57.6±0.6 2714.9
OadTR-b2 A.Net 57.5±0.5 1277.0
OadTR-b1 + 57.4±0.4 874.1
CoOadTR-b2 AudioSet 56.5±1.1 415.0
CoOadTR-b1 56.8±0.5 13.8
OadTR 64.4±0.4 2781.9
OadTR-b2 Kin. 65.0±0.4 1344.1
OadTR-b1 + 64.5±0.4 941.2
CoOadTR-b2 AudioSet 64.7±0.8 416.0
CoOadTR-b1 64.8±0.3 14.8

Table 4: Audio Classification results for
GTZAN.

Method Pos. Enc. Acc. FLOPs Par.
(%) (M) (K)

Maj. Voting - 92.0 - 0
Trans-b2 learned 95.0±0.6 47.4 509
Trans-b1 learned 93.8±0.8 15.2 286
CoTrans-b2 fixed 94.4±1.0 27.0 509
CoTrans-b1 learned 93.2±1.1 0.3 286

are no predefined splits for GTZAN, we randomly select 10% of the data for validation and 10%
for testing. The input is transformed to a temporal sequence by sliding a one-second window over
each 30-second clip with a slide step size of 250ms, leading to 120 one-second clips. These are
subsequently converted to Mel spectrograms. We then fine-tune a VGGish network, pre-trained
on AudioSet [53] and use the penultimate layer for feature extraction. A batch size of 64 and the
Adam optimizer [59] are used with an initial learning rate of 10−4. The learning rate is reduced by
a factor of 0.6 on plateau with a tolerance of two epochs, and an early stopping mechanism, where
a maximum of 100 epochs are allowed. The VGGIsh base-network attains an accuracy of 86.1%
on the dataset of one-second clips with 72.1M parameters and 864.7M FLOPs. Subsequently, the
audio features are passed to a (Continual) Transformer Encoder which has 16 attention heads, an
embedding dimension of 192 and an MLP dimension of 384. The Transformer Encoder is trained on
the whole temporal sequence using a batch size of 32 and the AdamW optimizer [60] with a learning
rate of 10−5 and a weight decay of 10−4 for 50 epochs. Since the Transformer Encoder is trained on
entire 30-second clips, there are less data points available for this training. Accordingly, the size of
the validation set is increased to 18%. All audio classification training procedures were carried out
on a single Nvidia RTX 2080 Ti GPU. Table 4 presents the accuracy and efficiency of regular and
Continual Transformers during online inference. As a baseline, we also include the result of majority
voting among the clips to classify the entire sequence. The Continual Transformers obtain similar
accuracy as regular a Transformers while consuming 1.76× less FLOPS when using two blocks and
51.5× less FLOPS when using one Transformer Encoder block.

5 Conclusion

In this work, we presented Continual Transformers, a redundancy-free reformulation of Transformers
tailored for online inference. Central to the Continual Transformer are the Continual Retroactive
and Single-Output Attention operations, which produce outputs identical to the original Scaled
Dot-Product Attention for continual input sequences, while greatly reducing the time and memory
complexity per prediction. The applicability of Continual Transformer architectures was experi-
mentally validated in Online Action Detection and Online Audio Classification settings, observing
upwards of multiple orders of magnitude reduction in time complexity for lightweight architectures
at modest accuracy concessions. Continual Transformers constitute an algorithmic innovation, which
could make possible hitherto unseen precision, speed, and power efficiency in online inference
use-cases. With applications spanning enhanced perception and reactivity of robots and autonomous
vehicles, weather forecasting, price prediction and surveillance, we hope it will be used for the
common good.

Acknowledgments and Disclosure of Funding

This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871449 (OpenDR).

9

References
[1] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. “3D Convolutional Neural Networks for Human

Action Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
35.1 (2013), pp. 221–231. DOI: 10.1109/TPAMI.2012.59.

[2] J. Carreira and A. Zisserman. “Quo Vadis, Action Recognition? A New Model and the Kinetics
Dataset”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 4724–4733.

[3] Gül Varol, Ivan Laptev, and Cordelia Schmid. “Long-Term Temporal Convolutions for Action
Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.6 (2018),
pp. 1510–1517. DOI: 10.1109/TPAMI.2017.2712608.

[4] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial temporal graph convolutional networks
for skeleton-based action recognition”. In: AAAI Conference on Artificial Intelligence. 2018,
pp. 7444–7452.

[5] Negar Heidari and Alexandras Iosifidis. “Progressive Spatio-Temporal Graph Convolutional
Network for Skeleton-Based Human Action Recognition”. In: IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2021, pp. 3220–3224.

[6] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 30. 2017, pp. 5998–6008.

[7] Anurag Arnab et al. “ViViT: A Video Vision Transformer”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2021.

[8] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. “Multi-Exit Vision Transformer for
Dynamic Inference”. In: British Machine Vision Conference (BMVC) (2021).

[9] Hugo Touvron et al. “Augmenting Convolutional networks with attention-based aggregation”.
In: preprint, arXiv:2112.13692 abs/2112.13692 (2021).

[10] Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. “SMArT: Training Shallow Memory-
aware Transformers for Robotic Explainability”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2020, pp. 1128–1134. DOI: 10.1109/ICRA40945.2020.
9196653.

[11] Kateryna Chumachenko, Alexandros Iosifidis, and Moncef Gabbouj. “Self-attention fusion for
audiovisual emotion recognition with incomplete data”. In: arXiv preprint arXiv:2201.11095
(2022).

[12] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. “Single-Layer Vision Transformers for
More Accurate Early Exits with Less Overhead”. In: preprint, arXiv:2105.09121 (2021).

[13] Haroon Idrees et al. “The THUMOS challenge on action recognition for videos “in the wild””.
In: Computer Vision and Image Understanding 155 (2017), pp. 1–23. ISSN: 1077-3142.

[14] George Tzanetakis, Georg Essl, and Perry Cook. Automatic Musical Genre Classification Of
Audio Signals. 2001. URL: http://ismir2001.ismir.net/pdf/tzanetakis.pdf.

[15] Lukas Hedegaard and Alexandros Iosifidis. “Continual 3D Convolutional Neural Networks for
Real-time Processing of Videos”. In: preprint, arXiv:2106.00050 (2021). Apache 2.0 Licence.

[16] Lukas Hedegaard, Negar Heidari, and Alexandros Iosifidis. “Online Skeleton-based Action
Recognition with Continual Spatio-Temporal Graph Convolutional Networks”. In: preprint,
arXiv: 2203.11009 (2022). Apache 2.0 Licence.

[17] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recogni-
tion at Scale”. In: International Conference on Learning Representations (ICLR). 2021.

[18] Xiang Wang et al. “OadTR: Online Action Detection with Transformers”. In: International
Journal of Computer Vision (ICCV) (2021). MIT License. URL: https://github.com/
wangxiang1230/OadTR.

[19] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In: European Confer-
ence on Computer Vision (ECCV). Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm. 2020, pp. 213–229.

[20] Yuan Gong, Yu-An Chung, and James Glass. “AST: Audio Spectrogram Transformer”. In:
Proc. Interspeech 2021. 2021, pp. 571–575. DOI: 10.21437/Interspeech.2021-698.

[21] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. “Efficient Transformers: A
Survey”. In: arXiv:2009.06732 (2020).

10

[22] Niki Parmar et al. “Image Transformer”. In: International Conference on Machine Learning
(ICML). Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, July 2018, pp. 4055–4064.

[23] Iz Beltagy, Matthew E. Peters, and Arman Cohan. “Longformer: The Long-Document Trans-
former”. In: arXiv:2004.05150 (2020).

[24] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. “Reformer: The Efficient Transformer”.
In: International Conference on Learning Representations (ICLR). 2020.

[25] Sinong Wang et al. “Linformer: Self-Attention with Linear Complexity”. In: arXiv:2006.04768
(2020).

[26] Yunyang Xiong et al. “Nyströmformer: A Nyström-based Algorithm for Approximating
Self-Attention”. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021).

[27] Krzysztof Marcin Choromanski et al. “Rethinking Attention with Performers”. In: International
Conference on Learning Representations (ICLR). 2021.

[28] Myle Ott et al. “fairseq: A Fast, Extensible Toolkit for Sequence Modeling”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics (Demonstrations). Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 48–53. DOI: 10.18653/v1/N19-4009.

[29] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention with Relative Position Rep-
resentations”. In: North American Chapter of the Association for Computational Linguistics
(NAACL). 2018.

[30] Cheng-Zhi Anna Huang et al. “Music Transformer: Generating Music with Long-Term Struc-
ture”. In: International Conference on Learning Representations (ICLR). 2019.

[31] Zihang Dai et al. “Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context”. In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, July 2019, pp. 2978–2988. DOI: 10.
18653/v1/P19-1285.

[32] Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Kentaro Inui. “SHAPE: Shifted Absolute
Position Embedding for Transformers”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, Nov. 2021, pp. 3309–3321. DOI: 10.18653/v1/
2021.emnlp-main.266.

[33] Tatiana Likhomanenko et al. “CAPE: Encoding Relative Positions with Continuous Augmented
Positional Embeddings”. In: Advances in Neural Information Processing Systems. Ed. by M.
Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 16079–16092.

[34] Mostafa Dehghani et al. “Universal Transformers”. In: International Conference on Learning
Representations. 2019. URL: https://openreview.net/forum?id=HyzdRiR9Y7.

[35] Yining Ma et al. “Learning to Iteratively Solve Routing Problems with Dual-Aspect Col-
laborative Transformer”. In: Advances in Neural Information Processing Systems. Ed. by A.
Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, June 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423.

[37] Roeland De Geest et al. “Online Action Detection”. In: European Conference on Computer
Vision (ECCV). 2016, pp. 269–284.

[38] Zheng Shou, Dongang Wang, and Shih-Fu Chang. “Temporal Action Localization in
Untrimmed Videos via Multi-stage CNNs”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 1049–1058. DOI: 10.1109/CVPR.2016.119.

[39] Huijuan Xu, Abir Das, and Kate Saenko. “R-C3D: Region Convolutional 3D Network for
Temporal Activity Detection”. In: IEEE International Conference on Computer Vision (ICCV).
2017, pp. 5794–5803. DOI: 10.1109/ICCV.2017.617.

[40] Zheng Shou et al. “CDC: Convolutional-De-Convolutional Networks for Precise Temporal
Action Localization in Untrimmed Videos”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017, pp. 1417–1426. DOI: 10.1109/CVPR.2017.155.

11

[41] Chao-Yuan Wu et al. “Long-Term Feature Banks for Detailed Video Understanding”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 284–
293. DOI: 10.1109/CVPR.2019.00037.

[42] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. “RED: Reinforced Encoder-Decoder Networks
for Action Anticipation”. In: British Machine Vision Conference (BMVC). 2017.

[43] Mingze Xu et al. “Temporal Recurrent Networks for Online Action Detection”. In: IEEE/CVF
International Conference on Computer Vision (ICCV). MIT Licence. 2019, pp. 5531–5540.
DOI: 10.1109/ICCV.2019.00563. URL: https://github.com/xumingze0308/TRN.
pytorch.

[44] H. Eun et al. “Learning to Discriminate Information for Online Action Detection”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 806–
815.

[45] Mingze Xu et al. “Long Short-Term Transformer for Online Action Detection”. In: Conference
on Neural Information Processing Systems (NeurIPS). 2021.

[46] Limin Wang et al. “Temporal Segment Networks for Action Recognition in Videos”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 41.11 (2019), pp. 2740–2755. DOI:
10.1109/TPAMI.2018.2868668.

[47] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. “Activ-
ityNet: A large-scale video benchmark for human activity understanding”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 961–970. DOI:
10.1109/CVPR.2015.7298698.

[48] MMAction2 Contributors. OpenMMLab’s Next Generation Video Understanding Toolbox and
Benchmark. https://github.com/open-mmlab/mmaction2. Apache 2.0 License. 2020.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for
Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2016. DOI: 10.1109/cvpr.2016.90.

[50] Young Hwi Kim, Seonghyeon Nam, and Seon Joo Kim. “Temporally smooth online action
detection using cycle-consistent future anticipation”. In: Pattern Recognition 116 (2021),
p. 107954. ISSN: 0031-3203.

[51] Hyunjun Eun et al. “Temporal filtering networks for online action detection”. In: Pattern
Recognition 111 (2021), p. 107695.

[52] Peisen Zhao et al. “Privileged Knowledge Distillation for Online Action Detection”. In:
preprint, arXiv:2011.09158 abs/2011.09158 (2020).

[53] Shawn Hershey et al. “CNN architectures for large-scale audio classification”. In: IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Mar.
2017. DOI: 10.1109/icassp.2017.7952132.

[54] Jongpil Lee, Taejun Kim, Jiyoung Park, and Juhan Nam. “Raw Waveform-based Audio
Classification Using Sample-level CNN Architectures”. In: NIPS, Machine Learning for Audio
Signal Processing Workshop (ML4Audio) (2017).

[55] S. S. Stevens, J. Volkmann, and E. B. Newman. “A Scale for the Measurement of the Psycho-
logical Magnitude Pitch”. In: The Journal of the Acoustical Society of America 8.3 (1937),
pp. 185–190. DOI: 10.1121/1.1915893.

[56] Keunwoo Choi, George Fazekas, and Mark Sandler. “Automatic tagging using deep convolu-
tional neural networks”. In: International Society of Music Information Retrieval Conference
(ISMIR) (2016).

[57] Kamalesh Palanisamy, Dipika Singhania, and Angela Yao. “Rethinking CNN Models for
Audio Classification”. In: arXiv:2007.11154 (2020).

[58] G. Tzanetakis and P. Cook. “Musical genre classification of audio signals”. In: IEEE Transac-
tions on Speech and Audio Processing 10.5 (July 2002), pp. 293–302. DOI: 10.1109/tsa.
2002.800560.

[59] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (ICLR). Ed. by Yoshua Bengio and
Yann LeCun. 2015.

[60] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: International
Conference on Learning Representations (ICLR). 2019.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Limitations are described in the

problem setting, intro, and when relevant throughout the paper.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Some use

cases with societal risks noted in conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] Details supplied in appendix.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Licences were added in appropriate

reference for code or data used.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

A URL to the experiment code will be provided in the final version. During review, the
code was submitted as supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [No] Usage of 3rd party code and data follows relevant licence
guidelines.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Not relevant.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Not relevant.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Not relevant.

13

A Appendix

A.1 Scaling properties of Continual and regular Multi-head Attention

A detailed account for the floating point operations involved in computing Regular-, Continual
Retroactive-, and Single-output Scaled Product Attentions is given in Tables 5, 6, and 7.

Table 5: Floating Point Operations for the Scaled Dot-Product Attention in Eq. (1). D−1(·) can be
efficiently computed as element-wise multiplication with AV.

Mul. Add Exp

Eq. (1.1) n2d+ nd nd(n− 1) 0
Eq. (1.2) n2d+ nd n2(d− 1) n2

Eq. (1.3) 0 n(n− 1) 0

Table 6: Floating Point Operations for the Continual Retroactive Dot-Product Attention in Eqs. (2)
to (6). The outputs of the exponentials in Eq. (2) and Eq. (3) can be reused in Eq. (4) and Eq. (5)
respectively, and are omitted in the count.

Mul. Add Exp

Eq. (2) 2(n− 1)d 2(n− 2)d+ 2(n− 1) 2(n− 1)
Eq. (3) nd+ n+ d nd+ (n− 1) + d n
Eq. (4) 2(n− 1)d 2(n− 1)d 0
Eq. (5) nd (n− 1)d 0
Eq. (6) nd+ n 0 0

Table 7: Floating Point Operations for the Continual Single-Output SDA in Eq. (7).

Mul. Add Exp

Eq. (7.1) nd+ d (n− 1)d+ n− 1 0
Eq. (7.2) nd+ d n(d− 1) n

Fig. 3 illustrates the scaling of FLOPs and memory footprint with increasing sequence length n and
embedding dimension d. Here, the Continual Retroactive and Single-Output SDAs spend significantly
less FLOPs than the Regular SDA, which scales O(n2) as opposed to O(nd) the continual variants.
The Continual Single-Output SDA reduces memory footprint for all value combinations, and the
Continual Retroactive SDA does so when n ⪆ d.

A.2 Supplemental visualisations

For the visually inclined, we supply a complementary graphical depictions of the Continual Retroac-
tive SDA corresponding to Eqs. (2) to (6) in Fig. 4 and the Single-Output SDA in Eq. (7) in Fig. 5.

A schematic illustration of the Audio Classification experiments architecture is depicted in Fig. 6.

14

0 200 400
0

100M

200M

FL
O

Ps
 /

 s
te

p

0 200 400
0

50M

100M

0 200 400
0

200k

400k

600k

800k

n

M
em

or
y

(f
lo

at
s)

(a) d = 256

0 200 400
0

200k

400k

600k

d

(b) n = 256

Figure 3: FLOPs/step and memory footprint for Regular, Continual Retroactive, andContinual
.Single-Output Scaled Dot-Product Attention at varying sequence length n and embedding dimension
d. Column (a) has d fixed to 256; Column (b) has n fixed to 256.

d = A n

⊥

memd

-
-
-
-
-
-
-

A = exp(QK)

⊥

-
-
-
- ⊥

memK
⊥

knew

⊥

kold

Memory flow

memQ

dnewq

memV

newv

oldv
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -

memVA

VA VDA

d

M
em

or
y

flo
w

M
em

or
y

flo
w

-1

Σ

Σ

Figure 4: Continual Retroactive Dot-Product Attention. The query (Q), key (K), and value (V)
matrices are aggregated over time by caching the step vectors qnew, knew, and vnew in each their FIFO
queue (denoted by □mem). During each step, only the entries of A associated with qnew, knew and
the oldest K step, kold are computed. The diagonal entries of the row-normalisation matrix D as
well as the AV can be updated retroactively by subtracting features corresponding to kold and adding
features related to knew to the cached outputs of the previous step, Dmem and AVmem, respectively.

15

⊥

memK

⊥

k new
Memory flow

q-1/2d

memV

newv

aV a n

⊥

 a = exp(d qK)1/2- ⊥

d

M
em

or
y

flo
w

Figure 5: Continual Single-Output Dot-Product Attention. The key (K) and value (V) matrices
are aggregated over time by caching the step vectors knew and vnew in a FIFO queue. During each
step, only the attention output associated with q is computed.

VGGIsh VGGIsh VGGIsh

Waveform

Spectrogram

+++

Recycling
Positional
Encoding

Genre

…

…

Continual Transformer Encoder

MLP

α
α

β
β

γ

γ

δ

Figure 6: Audio Classification Architecture.

16

D3.3: Third report on deep human centric active perception and cognition 115/223

8.4 Continual Spatio-Temporal Graph Convolutional Networks for On-
line Skeleton-based Human Action Recognition

The appended paper follows.

OpenDR No. 871449

1

Online Skeleton-based Action Recognition
with Continual Spatio-Temporal Graph

Convolutional Networks
Lukas Hedegaard, Negar Heidari, and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm, negar.heidari, ai}@ece.au.dk

Abstract—Graph-based reasoning over skeleton data has
emerged as a promising approach for human action recogni-
tion. However, the application of prior graph-based methods,
which predominantly employ whole temporal sequences as their
input, to the setting of online inference entails considerable
computational redundancy. In this paper, we tackle this issue by
reformulating the Spatio-Temporal Graph Convolutional Neural
Network as a Continual Inference Network, which can perform
step-by-step predictions in time without repeat frame processing.
To evaluate our method, we create a continual version of ST-
GCN, CoST-GCN, alongside two derived methods with different
self-attention mechanisms, CoAGCN and CoS-TR. We investigate
weight transfer strategies and architectural modifications for
inference acceleration, and perform experiments on the NTU
RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400
datasets. Retaining similar predictive accuracy, we observe up
to 109× reduction in time complexity, on-hardware accelerations
of 26×, and reductions in maximum allocated memory of 52%
during online inference.

Index Terms—Continual Inference Networks, Graph-
Convolution, Attention, Convolutional Neural Network,
Skeleton-based Action Recognition, Human Activity Recognition,
Online Inference

I. INTRODUCTION

A human action can be described by a temporal sequence
of human body poses, each of which is represented by a set of
spatial joint coordinates forming a body skeleton. Accordingly,
skeleton-based action recognition methods process a sequence
of skeletons (instead of an image sequence) to recognize
the performed action. Compared with predicting actions from
videos, a sequence of skeleton data not only gives the spatial
and temporal features of the body poses, but also provides
robustness against different background variations and context
noise [1]. The estimation of such skeletal data has become
a staple in the human action recognition toolkit thanks to
publicly available toolboxes such as OpenPose [2].

Early deep learning methods for skeleton-based action
recognition either rearrange the body joint coordinates of each
skeleton to make a pseudo-image which is used to train a
CNN model [3, 4, 5, 6, 7, 8], or concatenate the human
body joints as a sequence of feature vectors and train a RNN
model [9, 10, 11, 12, 13, 14]. However, these methods cannot
take advantage of the non-Euclidean structure of the skeletons.
Recently, Graph Convolutional Networks (GCNs) have shown
prowess in the modeling of skeleton data. ST-GCN [15]

109 1010 1011

FLOPs / prediction

80

82

84

86

88

90

92

To
p-

1
ac

cu
ra

cy
 (%

)

4
2

1

4

2

1

4
2

1

2

1

2

1

2

1

2

1
2

1

2

1
2

1

2

1

2

1

2

1

2

1

2

1

CoST-GCN
CoST-GCN*
ST-GCN
ST-GCN*

CoAGCN
CoAGCN*
AGCN
AGCN*

CoS-TR
CoS-TR*
S-TR
S-TR*

Shift-GCN++
Shift-GCN
AS-GCN
AGC-LSTM
DGNN

Fig. 1: Accuracy/complexity trade-off on NTU RGB+D
60 X-Sub for � Continual and � prior methods during
online inference. Numbers denote streams for each method.
∗Architecture modification with stride one and no padding.

was the first GCN-based method proposed for skeleton-based
action recognition. It uses spatial graph convolutions to extract
the per time-step features of each skeleton and employs tempo-
ral convolutions to capture time-varying dynamics throughout
the skeleton sequence. Since its publication, several methods
have sprung from ST-GCN, which enhance feature extraction
or optimize the structure of the model.

2s-AGCN [16] proposed to learn the graph structure in each
GCN layer adaptively based on input graph node similarity and
also utilized an attention method which highlights both the
existing spatial connections in the graph (bones) and new po-
tential connections between them. MS-AAGCN [17] extended
2s-AGCN by proposing a multi-stream framework which uses
four different data streams for training the model. Moreover
it enhanced the adaptive graph convolution in 2s-AGCN with
a spatio-temporal channel attention module to highlight the
most important skeletons, nodes in each skeleton, and features
of each node. DGNN [18] modeled the spatial connections
between the graph nodes with a directed graph and utilized
both node features and edge features simultaneously. Hyper-
GNN [19] captured the non-physical connections between the
nodes by constructing hyperedges which help to extract both

ar
X

iv
:2

20
3.

11
00

9v
1

 [
cs

.C
V

]
 2

1
M

ar
 2

02
2

2

local and global features in each graph. FGCN [20] proposed
to extract coarse to fine spatio-temporal features by a multi-
stage temporal sampling strategy and introduced a feedback
mechanism in graph convolution to transfer the high-level
features to the shallower layers of the network. Similarly, MS-
G3D [21] has proposed multi-scale graph convolutions for
long-range feature extraction.

Unfortunately, the high computational complexity of these
GCN-based methods makes them infeasible in real-time ap-
plications and resource-constrained online inference settings.
Multiple approaches have been explored to increase the ef-
ficiency of skeleton-based action recognition recently: GCN-
NAS [22] and PST-GCN [23] are neural architecture search
based methods which try to find an optimized ST-GCN
architecture to increase the efficiency of the classification
task; ShiftGCN [24] replaces graph and temporal convolu-
tions with a zero-FLOPs shift graph operation and point-
wise convolutions as an efficient alternative to the feature-
propagation rule for GCNs [25]; ShiftGCN++[26] boost the
efficiency of ShiftGCN further via progressive architecture
search, knowledge-distillation, explicit spatial positional en-
codings, and a Dynamic Shift Graph Convolution; SGN [27]
utilizes semantic information such as joint type and frame
index as side information to design a compact semantics-
guided neural network (SGN) for capturing both spatial and
temporal correlations in joint and frame level; TA-GCN [28]
tries to make inference more efficient by selecting a subset
of key skeletons, which hold the most important features for
action recognition, from a sequence to be processed by the
spatio-temporal convolutions.

Yet, none of the above-described GCN-based methods are
tailored to online inference, were the input is a continual
stream of skeletons and step-by-step predictions are required.
During online inference, these methods would need to rely on
sliding window-based processing, i.e., storing the T − 1 prior
skeletons, appending the newest skeleton to get a sequence
of length T , and then performing their prediction on the
whole sequence. In this paper, we reduce such redundant
computations by reformulating the ST-GCN and its derived
methods as a Continual Inference Network, which processes
skeletons one by one and produces updated predictions for
each time-step without the need to include past skeletons in
every input as is the case for the prior GCN-based methods.
This is achieved by using Continual Convolutions in place
of regular ones for aggregating temporal information. In
particular, we propose the Continual Spatio-Temporal Graph
Convolutional Network (CoST-GCN), CoAGCN, and CoTR-
S and evaluate them on the skeleton-based action recognition
datasets NTU RGB+D 60 [29], NTU RGB+D 120 [30], and
Kinetics Skeleton 400 [31] with striking results: Our continual
models achieve up to 108× FLOPs reduction, 26× speedup,
and 52% reduction in max allocated GPU memory compared
to the corresponding non-continual models.

The remainder of the paper is structured as follows: Sec-
tion II provides an introduction to skeleton-based action recog-
nition and of the related methods, from which we derive a con-
tinual counterpart, Section III describes Continual Inference
Networks, and Section IV presents our proposed Continual

3
1

2

3

COG

Tim
e

Fig. 2: Graph illustration for a spatially partitioned skeleton
(left) and spatio-temporal graph (right).

Spatio-temporal Graph Convolutional Networks. Experiments
on weight transfer strategies, performance benchmarks, and
comparisons with prior works are offered in Section V, and a
conclusion is given in Section VI.

II. RELATED WORKS

A. Spatio-Temporal Graph Convolutional Network

GCN-based models for skeleton-based action recogni-
tion [15, 16, 18, 22, 23, 27, 28] operate on sequences
of skeleton graphs. The spatio-temporal graph of skeletons
G = (V, E) has the human body joint coordinates as nodes
V and the spatial and temporal connections between them as
edges E . Figure 2 (right) illustrates such a spatio-temporal
graph where the spatial graph edges encode the human bones
and the temporal edges connect the same joints in subsequent
time-steps. We model this graph as a tensor X ∈ RC(0)×T×V ,
where C(0) is the number of input-channels of each joint,
T denotes the number of skeletons in a sequence, and V is
the number of joints in each skeleton. A binary adjacency
matrix A ∈ RV×V encodes the skeleton-structure with ones
in positions connecting two vertices in a skeleton and zeros
elsewhere.

The ST-GCN [15] and AGCN [16] methods refine the
spatial structure of each skeleton by employing a partitioning
method which categorizes neighboring nodes of each body
joint into three subsets: (1) the root node itself, (2) the root’s
neighboring nodes which are closer to the skeleton’s center
of gravity (COG) than the root itself, and (3) the remaining
neighboring nodes of the root node. An example of this subset
partitioning is shown in Figure 2 (left). Accordingly, the graph-
structure of each skeleton is represented by three normalized
binary adjacency matrices

{
Ap ∈ RV×V | p = 1, 2, 3

}
, each

of which is defined as

Âp = D
− 1

2
p ApD

− 1
2

p , (1)

where Dp denotes the degree matrix of the neighboring subset
p. Inspired by the GCN aggregation rule [25], the spatial graph
convolution receives the hidden representation of the previous

3

layer H(l−1) as input, where H(0) = X, and performs the
following graph convolution (GC) transformation:

GC
(
H(l−1)

)
=

σ

(
Res(H(l−1)) + BN

(∑

p

(Âp ⊗M(l)
p)H(l−1)W(l)

p

))

(2)

where σ(·) denotes a ReLU non-linearity, W
(l)
p ∈

RC(l)×C(l−1)

is the weight matrix which transforms the fea-
tures of the neighboring subset p and BN(·) denotes batch
normalization. Moreover, a learnable matrix M

(l)
p ∈ RV×V

is multiplied element-wise with its corresponding adjacency
matrix Âp as an attention mechanism that highlights the
most important connections in each spatial graph. In order
to retain the model’s stability, the input to a layer is added
to the transformed features through a residual connection
Res(H(l−1)) which is defined as:

Res(H(l−1)) =

{
H(l−1), C(l) = C(l−1),

H(l−1)W(l)
res, otherwise,

(3)

where W
(l)
res ∈ RC(l)×C(l−1)

is a learnable mapping matrix
which transforms the layer’s input to have the same channel
dimension as the layer’s output.

The graph convolution block is followed by a temporal
convolution, TC(·), which propagates the features of the graph
nodes through different time steps to capture the motions
taking place in an action. In the temporal graph, each node
only has two fixed neighbors which are its corresponding
nodes in the previous and next skeletons. The adjacency
matrices and partitioning process are not involved in temporal
feature propagation. In practice, the temporal convolution is a
standard 2D convolution which receives the output of the graph
convolution obtained in Eq. 2 and performs a transformation
with a kernel of size C(l) ×K × 1 to keep the node feature
dimension unchanged and aggregate the features through K
consecutive time steps.

The whole spatio-temporal convolution block has the form

H(l) = σ
(

Res(H(l−1)) + BN(TC(GC(H(l−1))))
)
. (4)

The ST-GCN model is composed of multiple such spatio-
temporal convolutional blocks. A global average pool and fully
connected layer perform the final classification.

B. Adaptive Graph Convolutional Neural Networks

The fixed graph structure used in Eq. (2) is defined based
on natural connections in the human body skeleton which
restricts the model’s capacity and flexibility in representing
different action classes. However, for some action classes such
as “touching head” it makes sense to model a connection
between hand and head even though such a connection is not
naturally present in the skeleton. AGCN [16] allows for such

possibilities by adopting an adaptive graph convolution which
utilizes a data-dependent graph structure as follows:

AGC
(
H(l−1)

)
=

σ

(
Res(H(l−1)) + BN

(∑

p

(Âp + M(l)
p)H(l−1)W(l)

p

))
,

(5)

where M
(l)
p is defined as:

M(l)
p = B(l)

p + C(l)
p (6)

The attention matrix in this definition is composed of two
learnable matrices which are optimized along with other model
parameters in an end-to-end manner. B

(l)
p ∈ RN×N is a

squared matrix that can be unique for each layer and each
sample, and C

(l)
p ∈ RN×N is a similarity matrix whose

elements determine the strength of the pair-wise connections
between nodes. This matrix is computed by first transforming
the feature matrix H(l−1) ∈ RC(l−1)×T×V with two embed-
ding matrices W

(l)
pθ , W(l)

pφ of size Cde×C(l−1). The obtained
feature maps are then reshaped to CdeT × V and multiplied
to obtain the C

(l)
p ∈ RN×N matrix as follows:

C(l)
p = softmax(H(l−1)>W(l)>

pθ W
(l)
pφH

(l−1)), (7)

where softmax normalizes the matrix values. The additive
attention mechanism in Eq. (5), thus, lets the adaptive graph
convolution in Eq. (7) model the skeleton structure as a fully
connected graph.

C. Skeleton-based Spatial Transformer Networks

S-TR [32] is an attention-based method which models
dependencies between body joints at each time step using the
self-attention operation found in Transformers [33]. In this
method, a Spatial Self-Attention (SSA) module is designed to
adaptively learn data-dependent pairwise body joint correla-
tions using multi-head self-attention.

The SSA module at each layer l applies trainable query,
key, and value transformations W

(l)
q ∈ RC(l−1)×dq , W(l)

k ∈
RC(l−1)×dk, W(l)

v ∈ RC(l−1)×dv on the feature vector hti ∈
RC(l−1)

of node i at time step t to obtain the query, key, and
value vectors qti ∈ Rdq , kti ∈ Rdk, vti ∈ Rdv . The correlation
weight for each pair of i, j nodes at time t is obtained using
a query-key dot product

αtij = qti
>
ktj . (8)

The updated feature vector of node i at time t has size C(l)

and is obtained using a weighted feature aggregation of value
vectors:

h̄ti =
∑

j

softmaxj

(
αtij√
dk

)
vtj . (9)

For each attention head, the feature transformation is per-
formed with a different set of learnable parameters while the
transformation matrices are shared across all the nodes. The
output features of the SSA module are finally computed by

4

applying a learnable linear transformation on the concatenated
features from S attention heads:

h̄ti = (
Sn

s=1

h̄tis)Wo. (10)

SSA has similarities to a graph convolution operation on a
fully connected graph for which the node connection weights
are learned dynamically. The first three layers of the S-TR
model extract features with GC and TC blocks as defined
in Eq. 4 while in the remaining layers of the model SSA
substitutes GC.

III. CONTINUAL INFERENCE NETWORKS

First introduced in [34] and subsequently formalized in [35],
Continual Inference Networks are Deep Neural Networks that
can operate efficiently on both fixed-size (spatio-)temporal
batches of data, where the whole temporal sequence is known
up front, as well as on continual data, where new input steps
are collected continually and inference needs to be performed
efficiently in an online manner for each received frame.

Definition (Continual Inference Network). A Continual
Inference Network is a Deep Neural Network, which
• is capable of continual step inference without computa-

tional redundancy,
• is capable of batch inference corresponding to a non-

continual Neural Network,
• produces identical outputs for batch inference and step

inference given identical receptive fields,
• uses one set of trainable parameters for both batch and

step inference.

Recurrent Neural Networks (RNNs) are a common family
of Deep Neural Networks, which possess the above-described
properties. 3D Convolutional Neural Networks (3D CNNs),
Transformers, and Spatio-Temporal Graph Convolutional Net-
works are not Continual Inference Networks since they cannot
make predictions time-step by time-step without considerable
computational redundancy; they need to cache a sliding win-
dow of prior input frames and assemble them into a fixed-size
sequence that is subsequently passed through the network to
make a new predictions during online inference.

Recently, Continual 3D CNNs were made possible through
the proposal of Continual 3D Convolutions [34]. Likewise,
shallow Continual Transformers based on Continual Dot-
product Attentions were introduced in [35]. We continue this
line of work by extending Spatio-Temporal Graph Convolu-
tional Networks (ST-GCNs) with a Continual formulation as
well. To do so, let us first present and expand on the theory
on Continual Convolutions.

A. Continual Convolution

The Continual Convolution operation produces the exact
same output as the regular convolution does, but performs the
computation in a streaming fashion while caching intermediary
results. Consider a single channel 2D convolution over an input
X ∈ RT×V with temporal dimension T and a dimension
of V vertices. Given a convolutional kernel with weights

Fig. 3: Continual Convolutions are performed in two stages:
First, the input is zero-padded and convolved with the convo-
lutional kernel (K = 3 in illustration) to produce intermediary
results. Subsequently, these are cached and summed up to
produce the final output.

W ∈ RK×V , where K is the temporal kernel size, and a
bias w0, a regular convolution would compute the output y(t)

for time-step t ∈ K..T as

y(t) = w0 +
K∑

k=1

V∑

v=1

Wk,v ·X(t−k−1)
v . (11)

Considering this computation in the context of online process-
ing, where T −→∞ and one input slice X(t) is revealed in each
time step, we find that K − 1 previous slices, i.e. (K − 1) ·V
values, need to be stored between time-steps.

An alternative computational sequence is used in Continual
Convolutions. Here, the input slice X(t) is convolved with
the kernel W in the same time-step it is received. This is
specified in Eq. (12a). The intermediate results are then cached
in memory m (K − 1 values stored between time-steps) and
aggregated according to Eq. (12b).

m(t) =

[
V∑

v=1

Wk,v ·X(t)
v : k ∈ 1..K

]
(12a)

y(t) = w0 +

K∑

k=1

m
(t−k−1)
k (12b)

A graphical representation of this is shown in Fig. 3.

B. Delayed Residual

The temporal convolutions of regular Spatio-Temporal
Graph Convolution blocks usually employ zero-padding to
ensure equal temporal shape for input and output feature maps.
This zero-padding is discarded for Continual Convolutions to

5

Fig. 4: Temporal stride in a Continual Convolution layer
l1 with temporal stride larger than one (right) reduces the
prediction rate compared to a layer with stride one (left). The
rate reduction is inherited by subsequent layers.

avoid continual redundancies [34]. To retain weight compati-
bility between the regular and continual networks, a delay to
the residual connection is necessary. This delay amounts to

kT + (kT − 1)(dT − 1)− pT − 1 (13)

steps, where kT , dT , and pT are respectively the temporal
kernel size, dilation, and zero-padding of the corresponding
regular convolution.

C. Temporal Stride

In Section III-A, it is assumed that one output is produced
for each input received. However, many spatio-temporal net-
works including ST-GCN [15], AGCN [16], and S-TR [32],
use temporal stride > 1 in their temporal convolutions. For
offline computation, this has the beneficial effect of reducing
the computational and memory complexity, but in the online
computational setting, it also reduces the prediction rate. This
is illustrated in Fig. 4. For a neural network with L layers,
each with a temporal stride s, the effective network stride is
given by

sNN =
L∏

l=1

sl (14)

and the corresponding network prediction rate is

rNN = 1/sNN . (15)

Since a ST-GCN network has two layers with stride two,
the corresponding Continual ST-GCN (CoST-GCN) has a
prediction rate one fourth the input rate.

IV. CONTINUAL SPATIO-TEMPORAL GRAPH
CONVOLUTIONAL NETWORKS

Many well-performing methods for skeleton-based action
recognition, including the ST-GCN [15], AGCN [16], and
S-TR [32], share a common block structure, which can be
described by Eq. (4). Here, the main difference between
methods lies in how the graph information is processed, i.e.
in their definition of GC(·).

The regular skeleton-based methods successively extract
complete spatio-temporal skeleton features from the whole
sequence with each block before classifying an action. Con-
sidering one block in isolation, the spatio-temporal feature

extraction is given by a spatial (graph) convolution followed
by a regular temporal convolution. Here, graph convolutions
operate locally within a time-step1, whereas the temporal
convolution does not. Since the next block l takes as input
H(l−1), the output of the prior block and thereby its temporal
convolution, the output of the next spatial (graph) convolu-
tion becomes a function of multiple prior time-steps. With
regular temporal convolutions, features produced by multiple
blocks cannot be trivially disentangled and cached in time.
Accordingly online operation with per-skeleton predictions can
be attained by caching T − 1 prior skeletons, concatenating
these with the newest skeleton, and performing regular spatio-
temporal inference. However, this comes with significant com-
putational redundancy, where the complexity of online frame-
wise inference is the same as for clip-based inference.

To alleviate this issue, we propose to employ Continual
Convolutions in the temporal modeling of Spatio-temporal
Graph Convolutional Networks. By restricting the GC(·) func-
tion to only operate locally within a time-step, we can define
a Continual Spatio-Temporal block by replacing the original
temporal 2D convolution with a continual one. To retain
weight-compatibility with regular (non-continual) networks
we moreover need to delay the residual to keep temporal
alignment. Given H

(t)
l−1, i.e. the features of layer l − 1 in a

time-step t, the feature in layer l at time t is given by

H
(t)
l = σ

(
Delay(Res(H(t)

l−1)) + BN(CoTC(GC(H
(t)
l−1)))

)
.

(16)
Here, Delay(Res(H(t)

l−1)) outputs the delayed residual in a
first-in-first-out manner corresponding to the delay of the
Continual Temporal Convolutional as computed by Eq. (13). A
graphical illustration of such a block is seen in Fig. 5. It should
be noted that the restriction of temporal locality does influence
the computations of some skeleton-based action recognition
methods. For example, the AGCN originally computes one
vertex attention weighting based on the whole spatio-temporal
feature-map, whereas a Continual AGCN (CoAGCN) com-
putes separate vertex attentions for each time-step.

The resulting Continual Spatio-temporal Graph Convolu-
tional Network is defined by stacking multiple such blocks2

followed by Continual Global Average Pooling [34] and a
fully connected layer. The Continual Inference Networks retain
the same computational complexity as regular networks during
clip-based inference, but can perform online frame-by-frame
predictions much more efficiently, as detailed in Section IV-A.
We should note that all methods, which share the the same
structure as ST-GCN, i.e. a decoupled temporal and spatial
convolution to perform feature transformation and aggregation
over the time domain can be transformed to continual version
using the approach outlined above.

A. Computational Complexity

Denote the time complexity of passing a single skeleton
frame through the convolutional blocks with stride 1 by O(B)

1AGCN is an exception to this, since the additive attention considers a
node’s features over all time-steps.

2Following the original ST-GCN, AGCN, and S-TR architectures, ten
blocks were used for the networks in this paper.

6

Fig. 5: Continual Spatio-temporal Graph Convolution
Blocks consist of an in-time Graph Convolution followed by
an across-time Continual Convolution (here a kernel size of
three is depicted). The residual connection is delayed to ensure
temporal alignment with the continual temporal convolution
that is weight-compatible with non-continual networks.

and time complexity of utilizing the prediction head by O(H).
Given an effective clip-size T , the complexity of producing a
prediction with a regular CNN is approximately O(CNN) ≈
T · O(B) +O(H). For a Continual CNN, the corresponding
complexity is O(CoCNN) ≈ O(B) + O(H). Computational
savings thus scale linearly with the effective clip-size T and
are more prominent the larger O(B) is compared to O(H).

V. EXPERIMENTS

A. Datasets
a) NTU RGB+D 60 [29]: A large indoor-captured

dataset which is widely used for evaluating skeleton-based ac-
tion recognition methods. This dataset contains 56,880 action
clips and their corresponding 3D skeleton sequences captured
by three Microsoft Kinect-v2 cameras from three different
views. The clips are performed by 40 different subjects and
constitute 60 action classes. The NTU RGB+D 60 dataset
comes with two benchmarks, Cross-View (X-View) and Cross-
Subject (X-Sub). The X-View benchmark provides 37,920
skeleton sequences coming from the camera views #2 and #3
as training data, and 18,960 skeleton sequences coming from
the first camera view as test set. The X-Sub benchmark pro-
vides 40,320 skeleton sequences from 20 subjects as training
data and 16,560 skeleton sequences from the other 20 subjects
as test data. In this dataset, each skeleton has 25 body joints
with three different channels each, and each action clip comes
with a sequence of 300 skeletons.

b) NTU RGB+D 120 [30]: An extension of the NTU
RGB+D 60 dataset containing an additional 57,600 skele-
ton sequences from extra 60 classes. NTU RGB+D 120 is
currently the largest dataset providing 3D body joint coordi-
nates for skeletons and in total, it contains 114,480 skeleton

Conversion Strategy Acc. (%) FLOPs (G)

Regp=eq
s=4 (baseline) 93.4 16.73

Regp=eq
s=4

FT−−→ Regp=0
s=1 93.8 (+0.4) 36.90 (↑ 2.2×)

Regp=eq
s=4 → Cop=0

s=4 93.1 (−0.3) 0.27 (↓ 63.2×)
Regp=eq

s=4 → Cop=0
s=1 24.0 (−69.4) 0.16 (↓ 107.7×)

Regp=eq
s=4 → Cop=0

s=1
FT−−→ Co∗ 93.2 (−0.2) 0.16 (↓ 107.7×)

Regp=eq
s=4

FT−−→ Regp=0
s=1 → Co∗ 93.8 (+0.4) 0.16 (↓ 107.7×)

TABLE I: Conversion Strategies from regular (Reg) to Con-
tinual (Co) ST-GCN. Noted is the top-1 X-View validation
accuracy on NTU RGB+D 60 and the FLOPs per prediction.
The superscript p and subscript s indicate network padding
and stride respectively. The arrows → and FT−−→ denote direct
conversion and conversion with subsequent fine-tuning. Paren-
theses show the change relative to the baseline with colours
indicating improvement / deterioration.

sequences from 120 action classes. The action clips in this
dataset are performed by 106 subjects and 32 different camera
setups are used for capturing the videos. This dataset comes
with two benchmarks: Cross-Subject (X-Sub) and Cross-
Setup (X-Set). The X-Sub benchmark provides the skeleton
sequences of 53 subjects as training data and the remaining
skeleton sequences from the other 53 subjects as test data. In
the X-Set benchmark, the skeleton sequences with even camera
setup IDs are provided as training data and test data contains
the remaining skeleton sequences with odd camera setup IDs.

c) Kinetics Skeleton 400 [31]: A widely used dataset
for action recognition containing 300,000 video action clips
of 400 different classes which are collected from YouTube.
Skeletons were extracted from each frame of these video clips
using the OpenPose toolbox [2]. Each skeleton is represented
by 18 body joints and each body joint contains spatial 2D
coordinates and the estimation confidence score as its three
features. We use the dataset version provided by [15], which
contains 240,000 skeleton sequences as training data and
20,000 skeleton sequences as test data, in our experiments.

B. Experimental Settings

All models were implemented within the PyTorch frame-
work [36] using the Ride library [37]. Models were trained
using a SGD optimizer with learning rate 0.1 at batch size 64,
momentum of 0.9, and a one-cycle learning rate policy [38]
using a cosine annealing strategy. For models which could not
fit a batch size of 64 on a Nvidia RTX 2080 Ti, the learning
rate was adjusted following the linear scaling rule [39]. Our
source code is available at www.github.com/lukashedegaard/
continual-skeletons.

C. Conversion and Fine-tuning Strategies

Though regular and Continual CNNs are weight-compatible,
the direct transfer of weights is imperfect if the regular
CNN was trained with zero-padding [34]. As in most CNNs,
it is common practice to utilize padding in skeleton-based
spatio-temporal networks to retain the temporal feature size in

7

Model Frames Accuracy (%) Params Max mem. FLOPs per pred Throughput (preds/s)
per pred X-Sub X-View (M) (MB) (G) CPU GPU

ST-GCN 300 86.0 93.4 3.14 45.3 16.73 2.3 180.8
ST-GCN∗ 300 86.3 (+0.3) 93.8 (+0.4) 3.14 72.6 (160%) 36.90 (↑ 2.2×) 1.1 (↓ 2.1×) 90.4 (↓ 2.0×)
CoST-GCN 4 85.3 (−0.7) 93.1 (−0.3) 3.14 36.0 (79%) 0.27 (↓ 63.2×) 32.3 (↑ 14.0×) 2375.2 (↑ 13.1×)
CoST-GCN∗ 1 86.3 (+0.3) 93.8 (+0.4) 3.14 36.1 (80%) 0.16 (↓ 107.7×) 46.1 (↑ 20.0×) 4202.2 (↑ 23.2×)

AGCN 300 86.4 94.3 3.47 48.4 18.69 2.1 146.2
AGCN∗ 300 84.1 (−2.3) 92.6 (−1.7) 3.47 76.4 (158%) 40.87 (↑ 2.2×) 1.0 (↓ 2.1×) 71.2 (↓ 2.0×)
CoAGCN 4 86.0 (−0.4) 93.9 (−0.4) 3.47 37.3 (77%) 0.30 (↓ 63.2×) 25.0 (↑ 11.9×) 2248.4 (↑ 15.4×)
CoAGCN∗ 1 84.1 (−2.3) 92.6 (−1.7) 3.47 37.4 (77%) 0.17 (↓ 108.8×) 30.4 (↑ 14.5×) 3817.2 (↑ 26.1×)

S-TR 300 86.8 93.8 3.09 74.2 16.14 1.7 156.3
S-TR∗ 300 86.3 (−0.5) 92.4 (−1.4) 3.09 111.5 (150%) 35.65 (↑ 2.2×) 0.8 (↓ 2.1×) 85.1 (↓ 1.8×)
CoS-TR 4 86.5 (−0.3) 93.3 (−0.5) 3.09 35.9 (48%) 0.22 (↓ 63.2×) 30.3 (↑ 17.8×) 2189.5 (↑ 14.0×)
CoS-TR∗ 1 86.3 (−0.3) 92.4 (−1.4) 3.09 36.1 (49%) 0.15 (↓ 107.6×) 43.8 (↑ 25.8×) 3775.3 (↑ 24.2×)

TABLE II: NTU RGB+D 60 transfer accuracy and performance benchmarks. Noted is the top-1 validation accuracy using
joints as the only modality. Max mem. is the maximum allocated memory on GPU during inference noted in megabytes. Max.
mem, FLOPs, and throughput on CPU account for one new prediction with batch size one while throughput on GPU uses the
largest fitting power of two as batch size. Parentheses indicate the improvement / deterioration relative to the original model.

consecutive layers (though temporal shrinkage is not a concern
given the long input clips).

Another common design choice, which has a significant im-
pact in on the performance of Continual Inference Networks,
is the utilization of temporal stride larger than one. For regular
networks, this has the benefit of reducing the computational
complexity per clip prediction. In Continual Inference Net-
works, however, it reduces the prediction rate, and actually
increases the complexity per prediction (see Section III-C). In
the continual case, it would thus be computationally beneficial
to reduce the stride of all layers to one. However, this results
in a stride-inflicted model-shift.

Thus far, the model-shift inflicted by padding removal and
stride reduction, as well as how to best perform the conversion
from a regular CNN to a Continual CNN in such cases has not
been studied. In this set of experiments, we explore strategies
on how to best convert and fine-tune regular networks to
achieve good frame-by-frame performance. We use a standard
ST-GCN [15] trained on joints only as our starting-point, and
explore the accuracy achieved by:

1) Converting to from regular network with equal padding
and stride four (Regp=eq

s=4) to a Continual Inference Net-
work, where zero-padding is omitted (Cop=0

s=4).
2) Reducing the network stride to one without fine-tuning

(Cop=0
s=1).

3) Fine-tuning the Cop=0
s=1 network (= Co∗).

4) Fine-tuning a conversion-optimal regular network which
has no zero-padding and a stride of one (Regp=0

s=1).
5) Converting from Regp=0

s=1 to Continual (= Co∗).
As seen in Table I, the direct transfer of weights was found to
have a modest negative impact on the accuracy (by −0.3%)
due the removal of zero-padding. This is considerably less than
was found in [34]. Our conjecture is that the smaller amount
of zeros relative to clip size used in skeleton-based recognition
(8 zeros per 300 frames or 2.67%) compared to video-based
recognition (e.g., 2 zeros per 16 frames or or 12.5%) makes
the removal of zero-padding less detrimental since zeros
contribute relatively less to the downstream features. Lowering

the stride to one and removing zero-padding reduced accuracy
by a substantial amount but allowed the Continual Inference
Network to operate at much lower FLOPs. This accuracy drop
is alleviated equally effectively by either (a) initializing the
Cop=0

s=1 with standard weights and fine-tuning in the continual
regime or (b) first fine-tuning the conversion-optimal regular
network (Regp=0

s=1) and subsequently converting to a Continual
Inference Network, though the latter had lower training times
in practice. We fine-tuned the networks using the settings
described in Section V-B. As visualised in Fig. 6, we found
20 epochs of fine-tuning using the settings described in Sec-
tion V-B recover accuracy on NTU RGB+D 60 with additional
training yielding only marginal differences. Following this
approach the (padding zero, stride one) optimized Continual
ST-GCN (CoST-GCN∗) achieves a similar prediction accuracy
while reducing the computational complexity by a factor
107.7× relative to original ST-GCN!

D. Conversion of Attention Architectures

As we explored in Section V-C, the ST-GCN network
architecture can easily be modified and fine-tuned to achieve
high accuracy for frame-by-frame predictions with excep-
tionally low computational complexity. A natural follow-up
question is whether this conversion is equally successful for
more complicated spatio-temporal architectures that employ
attention mechanisms. To investigate this, we conduct a sim-
ilar transfer for two recent ST-GCN variants, the Adaptive
GCN (AGCN) [16] and the Spatial Transformer Network (S-
TR) [32]. While S-TR is easily converted to a Continual
Inference Network (CoS-TR) by replacing convolutions, resid-
uals and pooling operators with Continual ones, the AGCN
requires additional care. In the original version of AGCN, the
vertex attention matrix Cp (see Eq. (7)) is computed from the
global representations in the layer over all time-steps. Since
this operation would be acausal in the context of a Continual
Inference Network, we restrict it to utilize only the frame-
specific subset of features. As a fine-tuning strategy, we first
make the conversion from regular network to a conversion-

8

0 5 10 15 20 25 30
90

91

92

93

94

To
p
-1

a
c
c
u
ra
c
y
(%

)

Fig. 6: Fine-tuning epochs and associated top-1 accuracy on
NTU RGB+D 60 X-View for a transfer from a pre-trained
ST-GCN with zero-padding and accumulated stride of four to
an equivalent (Co)ST-GCN∗ with no zero-padding and stride
one.

optimal network, and subsequently convert and evaluate the
continual version.

Our results are presented in Table II. Here we see that all
three architectures can be successfully converted to continual
versions. The fine-tuned conversion-optimal models (marked
by ∗) generally exhibit a higher computational complexity
than their source models due to their stride decrease. While
the ST-GCN∗ attained increased performance by lowering
stride, AGCN∗ and S-TR∗ suffer slight accuracy deterioration.
This may be due to smaller receptive fields of their attention
mechanisms, which likely benefit from observing a larger
context. Unlike the transfer from the original models with
padding and stride four to continual models, the continual
models with weights from ST-GCN∗, AGCN∗, and S-TR∗, i.e.
CoST-GCN∗, CoAGCN∗, and CoS-TR∗ attain the exact same
accuracy as their source models on both the X-Sub and X-
View benchmarks, with two orders of magnitude less FLOPs
per prediction during online inference.

E. Speed and Memory

Diving deeper into the differences between regular and
continual networks, we conduct throughput benchmarks on a
MacBook Pro 16” with a 2.6 GHz 6-Core Intel Core i7 CPU
and a NVIDIA RTX 2080 Ti GPU. Here, we measure the
prediction-time as the time it takes to transfer an input of batch
size one from CPU to GPU (if applicable), perform inference,
and transfer the results back to CPU again. On CPU, a batch
size of one is used, while for GPU, the largest fitting power of
two is employed (i.e. {128, 64, 256, 256} for the {Reg, Reg∗,
Co, and Co∗} models). We measure the maximum allocated
memory during inference on GPU for batch size one.

As seen in Table II, the change in speed relative to the
original models follow a similar trend to those seen for FLOPs.
The non-continual stride one variants (denoted by ∗) exhibit
roughly half the speed of the original models, while the
continual models enjoy more than a magnitude speed up on
both CPU and GPU. As expected, the continual stride one
models (Co∗) attain the largest inference throughput. These
relative speed-ups are lower than the relative FLOPs reductions
due to the read/writes of internal intermediary features in
the Continual Convolutions since these are not accounted for
by the FLOPs metric while still adding to the runtime. This

Model S. Accuracy (%) FLOPs
X-Sub X-View (G)

Clip SGN [27] 1 89.4 94.5 -
MS-G3D [21] 1 89.4 95.0 -

2 91.5 96.2 -
ST-TR [32] 1 89.2 95.8 -

2 90.3 96.3 -
MS-AAGCN [17] 4 90.0 96.2 -
Hyper-GNN [19] 3 89.5 95.7 -
FGCN [20] 4 90.2 96.3 -
DGNN [18] 4 89.9 96.1 126.80
AS-GCN [40] 1 86.8 94.2 27.00
AGC-LSTM [41] 2 89.2 95.0 54.40
ShiftGCN [24] 1 87.8 95.1 2.50

2 89.7 96.0 5.00
4 90.7 96.5 10.00

ShiftGCN++ [26] 1 87.9 94.8 0.40
2 89.7 95.7 0.80
4 90.5 96.3 1.70

ST-GCN† 1 86.0 93.4 16.73
2 88.1 94.9 33.46

AGCN† 1 86.4 94.3 18.69
2 88.3 95.3 37.38

S-TR† 1 86.8 93.8 16.20
2 89.1 95.3 32.40

Frame Deep-LSTM [29] 1 60.7 67.3 -
VA-LSTM [13] 1 79.2 87.7 -

CoST-GCN (ours) 1 86.0 93.4 0.27
2 88.1 94.8 0.54

CoST-GCN∗ (ours) 1 86.3 93.8 0.16
2 88.3 95.0 0.32

CoAGCN (ours) 1 86.4 94.2 0.30
2 88.2 95.3 0.60

CoAGCN∗ (ours) 1 84.1 92.6 0.22
2 86.0 93.1 0.44

CoS-TR (ours) 1 86.5 93.5 0.17
2 88.8 95.3 0.34

CoS-TR∗ (ours) 1 86.3 92.4 0.15
2 88.9 94.8 0.30

TABLE III: NTU RGB+D 60 comparison with recent meth-
ods, grouped by clip- and frame-based inference. Noted are the
number of streams (S.), top-1 validation accuracy, and FLOPs
per prediction. †Results for our implementation. Highlights
indicate best, next-best and pareto-optimal results.

gap could be reduced on hardware with in- or near-memory
computing.

Considering the maximum allocated memory at inference,
we find that the continual models reduce memory by 20-52%.
While the Continual Convolution and -Pooling layers do add
some internal state that adds to the memory consumption, the
intermediary features that are passed between network layers
are much smaller, i.e. one frame instead of 75 to 300 frames.

F. Comparison with Prior Works

Most current state-of-the-art methods for skeleton-based
action recognition are not able to efficiently perform frame-
by-frame predictions in the online setting, since they are con-
strained to operate on whole skeleton-sequences. Some RNN-
based methods, e.g. Deep-LSTM [29] and VA-LSTM [13],
can be used for redundancy-free frame-wise predictions, but

9

Model S. Accuracy (%) FLOPs
X-Sub X-Set (G)

Clip Part-Aware LSTM [42] 1 25.5 26.3 -
ST-LSTM [10] 1 55.7 57.9 -
TSRJI [43] 1 67.9 62.8 -
SGN [27] 1 79.2 81.5 -
MS-G3D [21] 2 86.9 88.4 -
FGCN [20] 4 85.4 87.4 -
ShiftGCN [24] 1 80.9 83.2 2.50

2 85.3 86.6 5.00
4 85.9 87.6 10.00

ShiftGCN++ [26] 1 80.5 83.0 0.40
2 84.9 86.2 0.80
4 85.6 87.2 1.70

ST-GCN† 1 79.0 80.7 16.73
2 83.7 85.1 33.46

AGCN† 1 79.7 80.7 18.69
2 84.0 85.4 37.38

S-TR† 1 80.2 81.8 16.20
2 84.8 86.2 32.40

Frame CoST-GCN (ours) 1 78.9 80.7 0.27
2 83.7 85.1 0.54

CoST-GCN∗ (ours) 1 79.4 81.6 0.16
2 84.0 85.5 0.32

CoAGCN (ours) 1 79.6 80.7 0.30
2 84.0 85.3 0.60

CoAGCN∗ (ours) 1 77.3 79.1 0.22
2 80.4 82.0 0.44

CoS-TR (ours) 1 80.1 81.7 0.17
2 84.8 86.1 0.34

CoS-TR∗ (ours) 1 79.7 81.7 0.15
2 84.8 86.1 0.30

TABLE IV: NTU RGB+D 120 comparison with recent meth-
ods, grouped by clip- and frame-based inference. Noted are the
number of streams (S.), top-1 validation accuracy, and FLOPs
per prediction. †Results for our implementation. Highlights
indicate best, next-best and pareto-optimal results.

their reported accuracy has been sub-par relative to newer
methods that sprung from ST-GCN. The recently proposed
AGC-LSTM [41] does report results on-par with CNN-based
methods, and might also be able to provide redundancy-free
frame-wise results, but we cannot validate this due to the lack
of publicly available source code and details in the published
paper. While ShiftGCN and ShiftGCN++ offer impressively
low FLOPs, it should be noted that the shift operation, which
is a significant part of their operational load, is not accounted
for by the FLOPs metric. Due to the non-causal nature of the
temporal shift operation in ShiftGCN and ShiftGCN++, they
cannot be transformed into Continual Inference Networks in
their current form, though a Continual Shift operation could
plausibly be devised.

Many works have shown that the inclusion of multiple
modalities leads to increased accuracy [15, 16, 18, 21, 24].
In our context, these modalities amount to joints, which
are the original coordinates of the body joints, and bones,
which are the differences between connected joints. Additional
joint motion and bone motion modalities can be retrieved by
computing the differences between adjacent frames in time for
the joint and bone streams respectively. Models are trained
individually on each stream and combined by adding their

Model S. Accuracy (%) FLOPs
Top-1 Top-5 (G)

Clip Feature Enc. [15, 44] 1 14.9 25.8 -
Deep LSTM [11, 15] 1 16.4 35.3 -
TCN [4, 15] 1 20.3 40.0 -
AS-GCN [40] 1 34.8 56.5 -
ST-GR [45] 1 33.6 56.1 -
DGNN [18] 4 36.9 59.6 -
MS-G3D [21] 2 38.0 60.9 -
MS-AAGCN [17] 4 37.8 61.0 -
Hyper-GNN [19] 3 37.1 60.0 -

ST-GCN† 1 33.4 56.1 12.04
2 34.4 57.5 24.09

AGCN† 1 35.0 57.5 13.45
2 36.9 59.6 26.91

S-TR† 1 32.0 54.9 11.62
2 34.7 57.9 23.24

Frame CoST-GCN (ours) 1 31.8 54.6 0.16
2 33.1 56.1 0.32

CoST-GCN∗ (ours) 1 30.2 52.4 0.11
2 32.2 54.5 0.22

CoAGCN (ours) 1 33.0 55.5 0.18
2 35.0 57.3 0.36

CoAGCN∗ (ours) 1 23.3 44.3 0.12
2 27.5 49.1 0.25

CoS-TR (ours) 1 29.7 52.6 0.16
2 32.7 55.6 0.31

CoS-TR∗ (ours) 1 27.4 49.7 0.11
2 29.9 52.7 0.22

TABLE V: Kinetics Skeleton 400 comparison with recent
methods, grouped by clip- and frame-based inference. Noted
are the number of streams (S.), top-1 and top-5 validation ac-
curacy, and FLOPs per prediction. †Results for our implemen-
tation. Highlights indicate best, next-best and pareto-optimal
results.

softmax outputs prior to prediction.
We evaluate and compare our proposed continual models,

CoST-GCN, CoAGCN, CoS-TR, with prior works on the NTU
RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400
datasets as presented in Table III, Table IV, and Table V.

The CoST-GCN and CoS-TR models transfer well across
all datasets both with (∗) and without padding and stride
modifications. For CoAGCN, we find that the change to stride
one deteriorates accuracy. We surmise that the attention matrix
in Eq. (7) may need a larger receptive field (basing the
attention on more nodes as in AGCN) to provide beneficial
adaptations; a per-step change in attention might provide more
noise than clarity in middle and late network layers. As
found in prior works, the multi-stream approach with ensemble
predictions gives a meaningful boost in accuracy across all
experiment.

The Continual Skeleton models provide competitive accu-
racy at multiple orders of magnitude reduction of FLOPs
per prediction in the online setting compared to the original
non-continual models. While none of our results beat prior
state-of-the-art accuracy in absolute terms, this was never the
intent with the method. Rather, we have successfully shown
that online inference can be greatly accelerated for models in
the ST-GCN family with state-of-the-art accuracy/complexity
trade-offs to follow. For instance, our one and two-stream CoS-

10

TR∗ achieve pareto optimal results on all subsets of the NTU
RGB+D 60 and NTU RGB+D 120 datasets meaning that no
other model improves on either accuracy and FLOPs without
reducing the other. Pareto-optimal models have been high-
lighted in Tables III, IV, and V accordingly. Our approach may
be used similarly to accelerate other architectures for skeleton-
based human action recognition with temporal convolutions.

VI. CONCLUSION

In this paper, we proposed Continual Spatio-Temporal
Graph Convolutional Networks, an architectural enhancement
for skeleton-based human action recognition methods, which
augments prior methods with the ability to perform predic-
tions frame-by-frame during online inference while attaining
weight compatibility for batch inference. We re-implement and
benchmark three prominent methods, the ST-GCN, AGCN,
and S-TR, as novel Continual Inference Networks, CoST-
GCN, CoAGCN, and CoS-TR, and propose architectural mod-
ifications to maximize their frame-by-frame inference speed.
Through experiments on three widely used human skeleton
datasets, NTU RGB+D 60, NTU RGB+D 120, and Kinetics
Skeleton 400, we show up to 26× on-hardware speedups,
109× reduction in FLOPs per prediction, and 52% reduction in
maximum memory allocated memory during online inference
with similar accuracy to those of the original networks. Our
proposed architectural modifications are generic in nature and
can be used for many methods in skeleton-based action recog-
nition. It is our hope, that this innovation will make skeleton-
based action recognition a viable option for online recognition
systems on recourse-constrained devices and systems with
real-time requirements.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871449 (OpenDR). This publication reflects
the authors’ views only. The European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] F. Han, B. Reily, W. Hoff, and H. Zhang, “Space-time represen-
tation of people based on 3D skeletal data: A review,” Computer
Vision and Image Understanding, vol. 158, pp. 85–105, 2017.

[2] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh, “Openpose: Realtime multi-person 2d pose estimation
using part affinity fields,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2019.

[3] H. Liu, J. Tu, and M. Liu, “Two-stream 3D convolutional neural
network for skeleton-based action recognition,” arXiv preprint
arXiv:1705.08106, 2017.

[4] T. S. Kim and A. Reiter, “Interpretable 3D human action analy-
sis with temporal convolutional networks,” in IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017,
pp. 1623–1631.

[5] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid,
“A new representation of skeleton sequences for 3D action
recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3288–3297.

[6] M. Liu, H. Liu, and C. Chen, “Enhanced skeleton visualization
for view invariant human action recognition,” Pattern Recogni-
tion, vol. 68, pp. 346–362, 2017.

[7] B. Li, Y. Dai, X. Cheng, H. Chen, Y. Lin, and M. He, “Skeleton
based action recognition using translation-scale invariant image
mapping and multi-scale deep CNN,” in IEEE International
Conference on Multimedia & Expo Workshops, 2017, pp. 601–
604.

[8] C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based action
recognition with convolutional neural networks,” in IEEE Inter-
national Conference on Multimedia & Expo Workshops, 2017,
pp. 597–600.

[9] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural
network for skeleton based action recognition,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015, pp.
1110–1118.

[10] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal
LSTM with trust gates for 3D human action recognition,” in
European Conference on Computer Vision. Springer, 2016,
pp. 816–833.

[11] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D:
A large scale dataset for 3D human activity analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1010–1019.

[12] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end
spatio-temporal attention model for human action recognition
from skeleton data,” in AAAI Conference on Artificial Intelli-
gence, 2017, pp. 4263–4270.

[13] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng,
“View adaptive recurrent neural networks for high performance
human action recognition from skeleton data,” in IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 2117–2126.

[14] L. Li, W. Zheng, Z. Zhang, Y. Huang, and L. Wang, “Skeleton-
based relational modeling for action recognition,” arXiv preprint
arXiv:1805.02556, vol. 1, no. 2, p. 3, 2018.

[15] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolu-
tional networks for skeleton-based action recognition,” in AAAI
Conference on Artificial Intelligence, 2018, pp. 7444–7452.

[16] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive
graph convolutional networks for skeleton-based action recog-
nition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 026–12 035.

[17] ——, “Skeleton-based action recognition with multi-stream
adaptive graph convolutional networks,” IEEE Transactions on
Image Processing, vol. 29, pp. 9532–9545, 2020.

[18] ——, “Skeleton-based action recognition with directed graph
neural networks,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7912–7921.

[19] X. Hao, J. Li, Y. Guo, T. Jiang, and M. Yu, “Hypergraph
neural network for skeleton-based action recognition,” IEEE
Transactions on Image Processing, vol. 30, pp. 2263–2275,
2021.

[20] H. Yang, D. Yan, L. Zhang, Y. Sun, D. Li, and S. J. Maybank,
“Feedback graph convolutional network for skeleton-based ac-
tion recognition,” IEEE Transactions on Image Processing,
vol. 31, pp. 164–175, 2021.

[21] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, “Dis-
entangling and unifying graph convolutions for skeleton-based
action recognition,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 140–149, 2020.

[22] W. Peng, X. Hong, H. Chen, and G. Zhao, “Learning graph
convolutional network for skeleton-based human action recog-
nition by neural searching.” in AAAI Conference on Artificial
Intelligence, 2020, pp. 2669–2676.

[23] N. Heidari and A. Iosifidis, “Progressive spatio-temporal graph
convolutional network for skeleton-based human action recog-
nition,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2021, pp. 3220–3224.

[24] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu,

11

“Skeleton-based action recognition with shift graph convolu-
tional network,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” International Conference
on Learning Representations, 2017.

[26] K. Cheng, Y. Zhang, X. He, J. Cheng, and H. Lu, “Extremely
lightweight skeleton-based action recognition with shiftgcn++,”
IEEE Transactions on Image Processing, vol. 30, pp. 7333–
7348, 2021.

[27] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng,
“Semantics-guided neural networks for efficient skeleton-based
human action recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[28] N. Heidari and A. Iosifidis, “Temporal Attention-Augmented
Graph Convolutional Network for Efficient Skeleton-Based
Human Action Recognition,” in International Conference on
Pattern Recognition, 2020.

[29] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+d: A
large scale dataset for 3d human activity analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition, June
2016.

[30] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C.
Kot, “Ntu rgb+d 120: A large-scale benchmark for 3d human
activity understanding,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2019.

[31] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,
S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev,
M. Suleyman, and A. Zisserman, “The kinetics human action
video dataset,” preprint, arXiv:1705.06950, 2017.

[32] C. Plizzari, M. Cannici, and M. Matteucci, “Skeleton-based
action recognition via spatial and temporal transformer net-
works,” Computer Vision and Image Understanding, vol. 208,
p. 103219, 2021.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems
(NeurIPS), vol. 30, 2017, pp. 5998–6008.

[34] L. Hedegaard and A. Iosifidis, “Continual 3d convolutional
neural networks for real-time processing of videos,” preprint,
arXiv:2106.00050, pp. 1–12, 2021.

[35] L. Hedegaard, A. Bakhtiarnia, and A. Iosifidis, “Continual
Transformers: Redundancy-Free Attention for Online Infer-
ence,” preprint, arXiv:2201.06268, 2022.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” in NeurIPS Workshop, 2017.

[37] L. Hedegaard, “Ride the lightning,” GitHub. Note:
https://github.com/LukasHedegaard/ride, 2021.

[38] L. N. Smith and N. Topin, “Super-convergence: very fast
training of neural networks using large learning rates,” in
Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications, vol. 11006, International Society for
Optics and Photonics. SPIE, 2019, pp. 369 – 386.

[39] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,”
preprint, arXiv:1706.02677, 2017.

[40] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian,
“Actional-structural graph convolutional networks for skeleton-
based action recognition,” 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3590–3598,
2019.

[41] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention
enhanced graph convolutional lstm network for skeleton-based
action recognition,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1227–1236, 2019.

[42] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C.
Kot, “Ntu rgb+ d 120: A large-scale benchmark for 3d human

activity understanding,” IEEE transactions on pattern analysis
and machine intelligence, vol. 42, no. 10, pp. 2684–2701, 2019.

[43] C. Caetano, F. Brémond, and W. R. Schwartz, “Skeleton image
representation for 3d action recognition based on tree structure
and reference joints,” in 2019 32nd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), 2019, pp. 16–23.

[44] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and
T. Tuytelaars, “Modeling video evolution for action recogni-
tion,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5378–5387.

[45] B. Li, X. Li, Z. Zhang, and F. Wu, “Spatio-temporal graph
routing for skeleton-based action recognition,” in AAAI, 2019.

Lukas Hedegaard is a PhD candidate at Aarhus
University, Denmark. He received his M.Sc. degree
in Computer Engineering in 2019 and B.Eng. degree
in Electronics in 2017 at Aarhus University, spe-
cialising in signal processing and machine learning.
With a common theme of efficient deep learning, his
research endeavours span from online inference ac-
celeration and human activity recognition to transfer
learning and domain adaptation.

Negar Heidari is a Postdoctoral researcher at
Aarhus University, Denmark. She completed her
PhD in Signal Processing and Machine Learning
at the Department of Electrical and Computer En-
gineering, Aarhus University in 2022. Her current
research interests include machine learning, deep
learning and computer vision with a focus on com-
putational efficiency.

Alexandros Iosifidis (SM’16) is a Professor at
Aarhus University, Denmark. He serves as Associate
Editor in Chief for Neurocomputing (for Neural
Networks research area), as an Area Editor for
Signal Processing: Image Communication, and as an
Associate Editor for IEEE Transactions on Neural
Networks and Learning Systems. He was an Area
Chair for IEEE ICIP 2018-2022 and EUSIPCO
2019,2021, and Publicity co-Chair of IEEE ICME
2021. He was the recipient of the EURASIP Early
Career Award 2021 for contributions to statistical

machine learning and artificial neural networks. His research interests focus
on neural networks and statistical machine learning finding applications in
computer vision, financial modelling and graph analysis problems.

D3.3: Third report on deep human centric active perception and cognition 127/223

8.5 Structured Pruning Adapters
The appended paper follows.

OpenDR No. 871449

Structured Pruning Adapters

Lukas Hedegaard1* Aman Alok2 Juby Jose2 Alexandros Iosifidis1
1Aarhus University 2Cactus Communications

{lhm,ai}@ece.au.dk {aman.alok, juby.jose}@cactusglobal.com

Abstract

We propose Structured Pruning Adapters (SPAs), a fam-
ily of compressing, task-switching network adapters, that
accelerate and specialize networks using tiny parameter
sets. Specifically, we propose a channel- and a block-based
SPA and evaluate them with a suite of pruning methods
on both computer vision and natural language processing
benchmarks. Compared to regular structured pruning with
fine-tuning, our channel-SPA improves accuracy by 6.9%
on average while using half the parameters at 90% pruned
weights. Alternatively, it can learn adaptations with 17×
fewer parameters at 70% pruning with 1.6% lower ac-
curacy. Similarly, our block-SPA requires far fewer pa-
rameters than pruning with fine-tuning. Our experimen-
tal code and Python library of adapters are available at
github.com/lukashedegaard/structured-pruning-adapters.

1. Introduction

Fine-tuning is an established approach to parameter-
based transfer learning from a source model pre-trained on
a large dataset to a target task with limited training data.
However, the resulting model retains the same parame-
ter count and computational characteristics as the source
model, even when solving a considerably simpler task. A
group of fine-pruning methods [21, 23, 30, 40, 42, 45] have
combined pruning with fine-tuning to reduce model size
while learning parameters for the target task. Generally,
this results in compressed models that retain performance
down to at least half the relative weight density and which
may be better suited for resource-constrained deployments,
such as mobile devices, robotics applications, and settings
necessitating low-latency predictions.

Meanwhile, Adapters [36, 37] have emerged as a vi-
able alternative to fine-tuning for multi-domain deep neu-
ral networks (DNNs), where a single source network is
specialized and sequentially used for multiple tasks. In-
stead of continuing training of the source DNN weights

*Work initiated during research visit at Cactus Communications

directly, Adapters introduce parameter-efficient layer add-
ons, which are trained instead. As these add-ons are much
more compact than the source DNN weights, they can be
transmitted and stored at low cost. However, prior work
has largely ignored the computational efficiency aspects of
Adapters, which either increase the computational com-
plexity of the network [11,17,24,28,33,48] or leave it unal-
tered, at best, by utilizing structures that can be fused with
the original weights [18, 36, 37].

In general, a deployed model must strike a balance be-
tween predictive performance, storage requirements, infer-
ence speed, and flexibility. While the combination of prun-
ing and fine-tuning can produce compressed models with
good performance at an order of magnitude fewer param-
eters compared to the source model, Structured Pruning
Adapters (SPAs) can improve upon this by another order of
magnitude for task-switching networks. Here, we present
SPAs for both channel-based [23, 30, 42, 45] and block-
based [21, 40] pruning.

For channel-based pruning, we propose the Structured
Pruning Low-rank Adapter (SPLoRA) and compare its per-
formance and parameter count to pruning with fine-tuning
in weight-based transfer learning from ResNet weights pre-
trained on ILSVRC 2012 [39] to the image classification
benchmarks CIFAR-10 [19], Oxford Flowers 102 [32], and
Cats and Dogs [2]. Considering four different pruning
methods, we find that SPLoRA not only reduces parameter
requirements per task massively, but also retains predictive
accuracy better than fine-tuning under aggressive pruning.
For block-based pruning, we propose the Structured Prun-
ing Low-rank Parameterized Hypercomplex Multiplication
Adapter (SPLoPA) and examine the transfer of BERT-base
weights to SQuAD [34] using four pruning methods. Com-
pared to fine-pruning SPLoPA requires only a fraction of
learned weights at a modest decrease in F1.

In the remainder of this paper, we describe related work
on Adapters (Sec. 2.1) and Pruning (Sec. 2.2), a gen-
eral framework for SPAs (Sec. 3), the SPLoRA (Sec. 3.1)
and SPLoPA (Sec. 3.2) adapters, experimental comparisons
with fine-pruning (Sec. 4), and conclusions (Sec. 5).

1

ar
X

iv
:2

21
1.

10
15

5v
2

 [
cs

.C
V

]
 2

1
N

ov
 2

02
2

2. Related Work

2.1. Adapter methods

When multiple specialized versions of a network are de-
ployed on the same device and storage requirements are
strict, Adapters [36] provide a low-parameter-count alter-
native to fine-tuning. Instead of deploying multiple sets of
full network weights, a single set of full weights can be
deployed alongside multiple adapter weights, which aug-
ment the main network. For Convolutional Neural Net-
works (CNNs), point-wise convolutions can be introduced
in series [36] or parallel [37] with a residual connection to
adapt fixed source weights to new tasks. For Transformer-
based networks, prior work explored bottleneck projections
with [48] and without [18] low-dimensional non-linearity
in parallel with the fixed dense layers of the original net-
work. Prefix-tuning [24], which learns task-specific prompt
tokens to adapt the network, may be considered a paral-
lel adapter as well [11]. Adapter blocks can also be in-
terspersed in series with existing layers [17, 28, 33]. He
at al. [11] proposed a combination of the above. Finally,
several works [33, 38, 41] explored the use of multi-task
adapters.

While the above-described methods succeed in learning
parameter-efficient network add-ons with very small stor-
age requirements, these adapters often incur an additional
computational cost beyond the original network. Consid-
ering that the adapted target tasks are often simpler than
the source task, it is reasonable to assume that a derived
network adaptation can be learned, which reduces compu-
tational complexity as well.

2.2. Pruning methods

Multiple approaches have been proposed to reduce the
compute and memory footprint of neural networks. Knowl-
edge distillation approaches1 [5, 15] utilize a large network
as a teacher for a smaller network, which has more de-
sirable memory and computational characteristics. Effi-
cient architectures [3, 16, 43] define and optimize expres-
sive yet efficient architectural blocks from random initial-
ization under a multi-metric optimization goal. Low-rank
factorizations [7, 44] approximate large tensor weights by
factorizing them into multiple lower-rank weights. Contin-
ual Inference Networks [12, 13] reuse the network weights
of prior DNNs with a temporal component and accelerate
them for online stream processing via optimized computa-
tional sequences and appropriate intra-layer caching. Quan-
tization approaches [6, 25] reduce model size and run-time

1Knowledge distillation [15] using the unpruned model as the teacher
has been found to help pruning methods [21, 40] retain accuracy better
using fine-pruning. We expect this to be true for SPAs as well, but we
leave the validation to future work as none of the considered fine-pruning
baselines employed knowledge distillation.

costs via low-resolution numerical representations of net-
work weights. Finally, Pruning methods [4, 9, 22] entirely
remove unnecessary network weight from a pre-trained
model. While all of these are interesting research avenues
both in isolation and combination, we focus on pruning-
methods hereafter.

DNNs can be pruned at multiple levels: Unstructured
pruning of individual weights results in sparse weight ma-
trices which reduce parameter count but require special-
ized hardware to improve inference characteristics due to
the performance disadvantages of sparse matrix multipli-
cation kernels on graphical processingn units (GPUs). On
the other hand, structured pruning approaches, such as the
pruning of entire channels [45] or blocks [21] of networks
weights, generally provide inference speedup across com-
putational devices.

Many studies have proposed criteria on what to prune.
Early methods [10, 22] proposed the use of second-order
Taylor expansion of the loss Hessian for weight selection.
As computing the inverse of the Hessian may be compu-
tationally intractable, a more recent approach uses a first-
order Taylor approximation of the loss change due to the
pruning of units [30]. Similarly, the gradient of a weight
with respect to the loss can be used for pruning selec-
tion [26,40,42]. We employ Sun et al.’s method [42], which
considers the magnitude of the gradient, as a baseline prun-
ing method in Sec. 4.1. L0 Regularization pruning [27],
Movement pruning [40], and Soft Movement pruning [40]
are employed in Sec. 4.2. Among the simplest approaches
is the use of weight magnitudes in pruning selection. In
our experimental comparisons, we employ Magnitude Prun-
ing [9], which uses a simple average of weight magni-
tudes, and Weight Pruning [23], which uses the Lp-norm
of weights, for channel selection. Yeom et al. [45] pro-
posed an explainability-inspired approach, computing the
relevance of each network component by means of Layer-
wise Relevance Pruning (LRP) [1, 31]. We use this method
in Sec. 4.1.

For all the above methods assigning pruning scores, an-
other consideration is whether to rank and select structural
units locally within a layer (keeping pruning evenly spread
throughout the network) or globally, with a contest among
all network layers. We utilize the latter in Sec. 4.1 and the
former in Sec. 4.2.

Beyond the pruning criterion, multiple studies proposed
when to prune. One popular approach [26, 30, 45] is to
use an iterative pruning and fine-tuning schedule, mask-
ing a predefined fraction of units at a time. Alternatively,
Automated Gradual Pruning [47] allows all weights to be
updated throughout the pruning schedule, enabling prior
masking choices to be altered. We use the former in Sec. 4.1
and the latter in Sec. 4.2, alongside the cubic sparsity sched-
uler as employed in previous studies [40, 47].

2

2.3. Transfer pruning

Pruning is useful not only for compressing a model while
retaining predictive performance, but also for transfer learn-
ing [21, 40, 45]. In fact, a task can be “learned” sim-
ply by selecting the appripriate subset of weights in a net-
work [29, 35].

Consider a large (pre-trained) source model fs and a set
of T target tasks for which we desire specialized target mod-
els ft, t ∈ {1..T}. Under the framework of transfer learn-
ing with pruning (“transfer pruning”), we can concurrently
update and mask weights from a source model to benefit
a target task t. Consider g : Ws × ∆Wt × Mt → Wt,
a function that generates target model weights Wt, given
learned update weights ∆Wt, source weights Ws, and a
learned masking set Mt of retained weight indices. Given
available source weights Ws, every task-specific model ft
can be stored as the parameters Φt = {∆Wt,Mt}.

Under fine-pruning [40], i.e., concurrent pruning and
fine-tuning, the generation function degenerates into a di-
rect assignment of weights, Wt := g(Ws,∆Wt,Mt) =
∆Wt, where update weights are learned based on a pruned
subset, {W (i)

s , i ∈ Mt}. Here, the parameters of the task-
specific model are Φt = {Wt,Mt}, and the size of the tar-
get weights is determined by the weight density d ∈ (0, 1]
and the size of source weights: ‖Wt‖0 = d‖Ws‖0.

3. Structured Pruning Adapters
Although fine-pruning can successfully produce smaller

target weights, i.e., ‖Wt‖0 < ‖Ws‖0, the set of weights
for all tasks {Wt} may still consume an intractable amount
of storage if many tasks T are involved and/or the average
density d̄ is large due to high predictive performance re-
quirements. Instead, we seek to utilize adapters alongside
pruning to produce an extremely compressed parameter set.

Consider the concurrent pruning and adaptation of a
single source projection matrix Ws ∈ Rn×m with an
index mask M ∈ {0, 1}n×m and an adapter function
a. While applicable adapters have been extensively stud-
ied (see Sec. 2.1), we restrict ourselves to fusible par-
allel adapters to minimize the run-time of the resulting
model. Accordingly, pruning adapters take the following
basic form:

Wt = (Ws + a(∆Wt))�M . (1)

3.1. Structured Pruning Low-rank Adapter

Unlike unstructed methods, structured pruning methods
remove groups of weights and increase computational effi-
ciency. Channel pruning, in particular, maps a dense source
matrix to a dense pruned matrix with computational im-
provements proportional to the number of removed parame-
ters. A mask M in this case can be decomposed as row and

W ⊙m 1

x y

⊕

down row

row

col

col

W ⊙1m up

W⊙(m m) s

⊤

⊤

⊤

Figure 1. Structured Pruning Low-rank Adapter (SPLoRA). Prun-
ing of in/out channels affects the adapter as well as source weights.

10 −2 2 5 10 −1 2 5 1

2

5

10 −3
2

5

10 −2
2

5

10 −1
2

5

1 Fine-pruning
Naïve LoRA / Parallel Adapter
SPLoRA

Weight density

Le
ar

ne
d

w
ei

gh
ts

 fr
ac

tio
n

r = 64

r = 32

r = 16

r = 8

r = 4

r = 2

r = 1

Figure 2. Learned weight fraction (‖∆Wt‖0/‖Ws‖0) versus
weight density (‖Wt‖0/‖Ws‖0) for 768× 3072 weights under
channel-pruning.

column masks mrow ∈ {0, 1}n×1 and mcol ∈ {0, 1}m×1,
respectively. Then, Eq. (1) can be expressed as follows:

Wt = (Ws + a(∆Wt))�mrowm
>
col. (2)

A simple realization of a fusible parallel adapter is the
Low-rank Adapter (LoRA) [18]:

Wt = Ws + WdownWup, (3)

where Wdown ∈ Rn×r and Wup ∈ Rr×m are adapter
weights and r is the rank hyper-parameter. Following
the derivation in Appendix A.1, we utilize Eq. (2) and
Eq. (3) to define the Structured Pruning Low Rank Adapter
(SPLoRA):

Wt = Ws�mrowm
>
col+(Wdown�mrow1

>)(Wup�1m>col).
(4)

In this form, we see that channel-pruning affects not only
the source weights Ws, but also the adapter parameters Wup
and Wdown. This effect is illustrated in Fig. 1.

3

MW Block-sparse weights

Adapted
block-sparse
weights

(Shared)
 adapter
 prototypes

Element-wise
addition

Parameters:Kronecker
product

Independent
block
weights

⊗

⊕
(n/p) ×(m/q)

p ×q

n × m
R

p q v(n/p)×(m/q)

n × m

n × m

n × m

(n/p) ×(m/q)

b

B

pq⊤

s

Figure 3. Structured Pruning Low-rank PHM Adapter (SPLoPA) visualized for n = m = 32, p = q = 4, and 50% density.

Adapters should generally be initialized to perform a
near-zero mapping to avoid destabilizing gradients dur-
ing initial training. Accordingly, we use the initialization
W

(i,j)
up ∼ U(−10−4, 10−4), although other near-zero ini-

tialization choices may be equally successful. Experiments
validating this choice are presented in Sec. 4.1.

For a fine-pruned model weight Wt, the updated pa-
rameter count is ‖mrow‖0‖mcol‖0. The corresponding
SPLoRA has r(‖mrow‖0+‖mcol‖0) parameters. Any com-
parison of parameters depends on the weight retention frac-
tion, weight matrix shape, and SPLoRA bottleneck dimen-
sion r. Figure 2 visualizes the parameters achieved by vary-
ing the hyper-parameters for a 768 × 3072 weight matrix.
Here, we have depicted the learned parameter count of fine-
pruning and SPLoRA alongside the naı̈ve application of
LoRA or, equivalently, the Parallel Adapter [11,48] for ref-
erence. While naı̈ve adapter usage requires far-fewer pa-
rameters than fine-tuning at high weight density, the param-
eter reduction achieved by fine-pruning can produce equally
few parameters at low weight densities. SPLoRA combines
the benefits of both approaches to produce parameter sets
far more compact than those produced by either.

3.2. Structured Pruning Low-rank Parameterized
Hypercomplex Multiplication Adapter

Another type of structured pruning is block pruning.
Here, we consider blocks of weights of size p × q, which
are pruned in unison. Instead of masking each weight indi-
vidually, we utilize a block mask Mb of shape n/p×m/q.
In this case, Eq. (1) can be expressed as follows:

Wt = (Ws + a(∆Wt))� (Mb ⊗ J), (5)

where ⊗ denotes the Kronecker product and J ∈ {1}p×q .
Row or column pruning can be viewed as special cases of

block pruning in which block dimensions are n×1 or 1×m,
respectively.

To devise a pruning-sensitive adapter under block prun-
ing, we follow a previous study [28] and draw on Param-
eterized Hypercomplex Multiplication (PHM) layers [46].
Conceptually, we consider the adaptation of each p × q
block of weights separately as a weighted sum of R low-
rank prototypes P = pq> ∈ Rp×q , where p ∈ Rp×r and
q ∈ Rq×r. These prototypes can be shared throughout net-
work, but their block weights B ∈ Rn/p×m/q are unique
for each adapted weight matrix. Our resulting Structured
Pruning Low-rank Parameterized Hypercomplex Multipli-
cation Adapter (SPLoPA) is defined as follows:

Wt = (Ws � [Mb ⊗ J]) +
R∑

i=1

(Mb �Bi)⊗ piq
>
i . (6)

Here, we use the initialization B(i,j) ∼ U(−10−4, 10−4)
to achieve a near-zero behavior initially. Fig. 3 shows an
example adaptation of block-sparse weights with SPLoPA.

For block-structured fine-pruning, the learned parame-
ter count per layer is linear in the block size and num-
ber of retained blocks: pq‖Mb‖0. For SPLoPA, the
hyper-parameter R linearly controls the memory complex-
ity. Moreover, the complexity is reduced when more layers
L share the prototypes among them: N(p+q+‖Mb‖0/L).
Figure 4 visualizes the number of learned parameters con-
sidering different rank choices and model densities.

3.3. Limitations

While each set of SPA weights has significantly fewer
learned parameters than each set of fine-pruning weights,
the superiority of SPAs is dependent on the deployment at
hand. When only a single model is deployed, the two ap-
proaches are equivalent in terms of model size, considering

4

10 −2 2 5 10 −1 2 5 1
2

5

10 −3
2

5

10 −2
2

5

10 −1
2

5

1 Fine-pruning
SPLoPA

Weight density

Le
ar

ne
d

w
ei

gh
ts

 fr
ac

tio
n

R = 8
R = 16
R = 32
R = 64

R = 128R = 256R = 512R = 1024

Figure 4. Learned weight fraction (‖∆Wt‖0/‖Ws‖0) versus
weight density (‖Wt‖0/‖Ws‖0) for 768× 3072 weights under
block-pruning for r = 1. SPLoPA prototype sharing is not ac-
counted for.

that the fused parameter count of adapters is identical to
that of the fine-pruned network. For T models deployed on
one device, the adapter format saves space when T > 1/d,
assuming available source weights Ws. Thus, the feasibil-
ity depends on the average density d, with more aggressive
pruning requiring more deployed models for SPA formats
to consume less storage space.

3.4. Pruning of adapter-specific parameters

The design choices made for SPLoRA (Sec. 3.1) and
SPLoPA (Sec. 3.2) let us utilize prior channel- and block-
based pruning without modification by pruning fused
weights, which are identical in form to the source weights,
and subsequently pruning the adapter-weights with the
same mask. The adapters themselves could also be subject
to pruning [38]. For SPLoRA, the bottleneck contains r
channels that could be pruned per layer to produce a hetero-
geneous set of layer adapters with different ranks per layer.
For SPLoPA, both the number of prototypes (R) and pro-
totype rank (r) could undergo similar pruning. However,
such pruning adds an additional layer of complexity and
hyper-parameters to the already complicated pruning meth-
ods, which may reduce the attractiveness of adapters. More-
over, the pruning of intra-adapter channels only reduces the
parameter count and does not yield computational benefits.
Therefore, we limit the pruning in subsequent experiments
to the approach we believe has the best usability in practice;
we refrain from pruning over internal adapter structures.

4. Experiments
We seek to compare structured pruning with fine-tuning

(fine-pruning) to our proposed Structured Pruning Adapter

1 2 4 8 16 32 64
Rank (r)

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

Init range
1e-6
1e-5
1e-4
1e-3
1e-2

Density
1.0
0.5
0.3
0.2
0.1

Figure 5. ResNet-18 accuracy on CIFAR-10 using SPLoRA of
varying ranks (r) and adapter weight initialization ranges at differ-
ent model densities (d). Point size ∝ d with alpha ∝ −d.

methods. As both have identical acceleration benefits dur-
ing inference, our experimental comparison focuses on pre-
diction performance and the number of learned parame-
ters (∆Params). Our experiments are divided into seper-
ate groups that asses SPAs for channel-based (Sec. 4.1) and
block-based (Sec. 4.2) pruning.

4.1. Channel-based Pruning

Experimental setup In this set of experiments, we reuse
and augment a previously reported setup [45] to perform
transfer-pruning for ResNet models pretrained on ILSVRC
2012 [39] to the image classification benchmarks CIFAR-
10 [19], Oxford Flowers 102 [32], and Cats and Dogs [2].
As no publicly available test split was available for the lat-
ter, we defined train-test splits and preprocessed data using
DatasetOps [14] to match the 8005 training and 2023 test
samples reported previously [45]. For transfer pruning, we
first train the network without pruning for {30, 100, 100}
epochs and then perform incremental pruning at increments
of 5% until 5% of weights remain in total; the incremental
pruning is interspersed with {20, 50, 50} epochs of training
for the {CIFAR-10, Oxford Flowers 102, Cats and Dogs}
datasets. Appendix A.2 presents an overview of training
times. We employ the Strochastic Gradient Descent opti-
mizer with a momentum of 0.9, weight decay of 5 · 10−4,
and learning rate of 0.01 at a batch size 256 or down-
scaled rates following the linear scaling rule [20] when
GPU memory limitations must be accomodated. In each
training block, we use a step learning rate reduction of 5×
after each quarter of epochs. The above setup is used for
either fine-pruning, in which all model weights are updated,
or adaptation and pruning, which freezes the original net-
work weights and only trains the adapter weights, normal-
ization, and prediction head.

SPLoRA initialization and rank choice To gauge the
sensitivity of SPLoRA hyper-parameters and their effect on

5

Table 1. Channel-based transfer-pruning from ResNet-50 pre-trained on ImageNet to Cats and Dogs, Oxford Flowers 102, and CIFAR-10.
∆Params and floating point operations (FLOPs) are shown for CIFAR-10. Mean ± standard deviation is shown for each metric. Changes
specified relative to closest fine-pruning density with same pruning method. Best metric per pruning-method is highlighted with bold.

Pruning Learning Density ∆Params FLOPs CIFAR-10 Oxford Flowers 102 Cats & Dogs
method method (K) (M) Acc. (%) Acc. (%) Acc. (%)

Fine-tuning 100% 23,520.8±0.0 1,304.7±0.0 97.10±0.12 92.20±0.00 99.30±0.02

Unpruned LoRA-r32 100% 1,644.5±0.0 (↓ 14.3×) 1,304.7±0.0 95.32±0.13 (−1.8) 78.57±5.93 (−13.6) 98.60±0.43 (−0.5)

LoRA-r8 100% 466.3±0.0 (↓ 50.4×) 1,304.7±0.0 95.35±0.10 (−1.8) 80.96±5.83 (−11.2) 98.84±0.52 (−0.46)

Fine-pruning 30% 4,427.1±72.5 785.4±5.4 96.38±0.12 93.64±2.15 98.64±0.04

10% 599.1±20.1 352.1±3.9 87.23±2.00 72.83±0.93 95.42±0.31

Weight [23] SPLoRA-r32
30% 618.3±2.5 (↓ 7.2×) 778.6±2.9 95.59±0.22 (−0.8) 94.57±0.58 (+0.9) 98.43±0.13 (−0.2)
10% 294.8±0.4 (↓ 2.0×) 335.4±7.3 93.04±0.37 (+5.8) 89.36±1.09 (+16.5) 96.25±0.99 (+0.8)

SPLoRA-r8
30% 210.0±1.9 (↓ 21.1×) 773.4±2.1 94.91±0.24 (−1.5) 92.13±0.15 (−1.5) 98.40±0.12 (−0.2)
10% 128.9±0.1 (↓ 4.6×) 338.9±7.0 91.24±0.51 (+4.0) 86.49±0.74 (+13.7) 96.07±0.69 (+0.6)

Fine-pruning 30% 3,719.8±59.2 571.9±6.5 95.95±0.09 94.21±0.74 98.22±0.00

10% 615.7±4.3 244.7±3.3 91.83±1.17 73.06±0.70 95.84±0.20

Gradient [42] SPLoRA-r32
30% 601.0±0.4 (↓ 6.2×) 564.6±1.5 94.91±0.09 (−1.0) 93.58±0.43 (−0.6) 98.17±0.08 (−0.0)
10% 293.1±0.4 (↓ 2.1×) 244.0±1.9 93.65±0.36 (+1.8) 91.35±0.47 (+18.3) 97.54±0.17 (+1.7)

SPLoRA-r8
30% 205.2±0.2 (↓ 18.1×) 565.2±4.1 94.09±0.28 (−1.9) 91.60±0.30 (−2.6) 98.15±0.07 (−0.1)
10% 128.3±0.0 (↓ 4.8×) 245.4±4.0 91.25±0.20 (−0.6) 87.46±0.71 (+14.4) 97.19±0.28 (+1.4)

Fine-pruning 30% 3,392.8±81.1 559.9±0.7 95.71±0.02 92.91±0.56 98.22±0.18

10% 576.8±9.9 236.9±3.3 88.07±0.66 65.67±4.12 95.30±0.21

Taylor [30] SPLoRA-r32
30% 599.7±0.9 (↓ 5.7×) 555.5±6.7 94.88±0.21 (−0.8) 93.41±0.06 (+0.5) 97.84±0.48 (−0.4)
10% 292.6±0.5 (↓ 2.0×) 242.0±1.5 93.27±0.12 (+5.2) 91.30±0.10 (+25.6) 97.21±0.10 (+1.9)

SPLoRA-r8
30% 205.3±0.1 (↓ 16.5×) 566.2±10.9 93.98±0.24 (−1.7) 91.51±0.49 (−1.4) 97.90±0.13 (−0.3)
10% 128.4±0.1 (↓ 4.5×) 243.2±9.8 91.22±0.32 (+3.2) 86.76±0.42 (+21.1) 96.83±0.30 (+1.5)

Fine-pruning 30% 4,428.1±20.6 719.9±0.7 96.54±0.14 95.37±0.08 98.65±0.07

10% 599.0±− 302.1±− 93.39±− 87.56±2.75 −

LRP [45] SPLoRA-r32
30% 592.6±0.9 (↓ 7.5×) 585.5±6.7 94.85±0.13 (−1.7) 93.62±0.38 (−1.8) 98.09±0.11 (−0.6)
10% 290.9±0.2 (↓ 2.1×) 270.4±6.4 93.47±0.36 (+0.1) 91.22±0.46 (+3.7) 97.01±0.27

SPLoRA-r8
30% 203.3±0.5 (↓ 21.8×) 591.1±12.4 93.53±0.18 (−3.0) 91.26±0.19 (−4.1) 97.80±0.20 (−0.8)
10% 128.0±0.1 (↓ 4.7×) 281.6±1.7 90.94±0.39 (−2.5) 85.69±1.39 (−1.9) 96.88±0.52

predictive performance, we perform a set of adaptation and
pruning runs using L2-normalized Taylor pruning [30] on
CIFAR-10 with a ResNet-18 network. Here, we vary the
rank r ∈ 2[0,6] and initialization range in 10[−6,−2] and
evaluate along densities {1.0, 0.5, 0.3, 0.2, 0.1}. As illus-
trated in Fig. 5, we observe a clear and expected trend of
increasing accuracy as the rank is increased. The increases
exhibit diminishing returns with limited benefit beyond r =
32 for CIFAR-10. While all tested ranks show similar ac-
curacy at a density of d = 1.0, the lowest-rank adapters
are more severely affected by a lower d than higher-rank
ones. This follows intuition, considering that lower-rank
adapters have fewer parameters that might prove redun-
dant during pruning. In some cases (r ≥ 16) pruning at
d ≈ 0.5 increases accuracy. SPLoRA is generally robust to
the chosen initialization range, showing only random vari-
ations within the tested set of values without clear trends
in favor of particular ranges. We will use the initialization

W
(i,j)
up ∼ U(−10−4, 10−4) in subsequent experiments.

Comparison with fine-pruning In our comparison of
SPLoRA and fine-pruning, we train a ResNet-50 network
for weight-based transfer learning from ILSVRC 2022 to
CIFAR-10, Oxford Flower 102, and Cats and Dogs across
four structured pruning works, namely, the normalized
Weight [23], Taylor [30], Gradient [42], and LRP [23] prun-
ing methods. This comparison is conducted for both fine-
pruning and SPLoRA with the ranks r = 8 and r = 32.
To accommodate the stochastic nature of pruning and neu-
ral network training, we repeat each experiment three times
and report the mean and standard deviation of each metric.
The results of our experiments are presented in Table 1 for
model densities of 100%, 30%, and 10% retained weights
and visualized for CIFAR-10 in Fig. 6 as well as for Oxford
Flowers 102 and Cats and Dogs in Appendix A.3.

While most combinations of pruning and learning meth-

6

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(a) Weight pruning [23]

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(b) Gradient pruning [42]

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(c) Taylor pruning [30]

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(d) LRP pruning [45]

Figure 6. CIFAR-10 accuracy versus total learned parameter count ‖∆Wt‖0 (top row) and FLOPs (bottom row) using fine-pruning and
SPLoRA with ranks 32 and 8 for the (a) Weight [23], (b) Gradient [42], (c) Taylor [30], and (d) LRP [45] channel-pruning methods.

ods were successful, we found LRP with fine-pruning to be
unstable at lower model densities. Despite attempts with
multiple different seeds, only a single model was success-
fully pruned down to 10% density on Oxford Flowers 102
and none succeeded for Cats and Dogs. Unattainable results
in Table 1 are noted with “-”.

Comparing SPLoRA with fine-pruning, we observed
competitive transfer adaptations despite learning a fraction
the weights. While fine-pruning generally resulted in higher
accuracy at 30% model density (on average 0.6% and 1.6%
higher than SPLoRA ranks 32 and 16), SPLoRA had far
fewer learned parameters (on average 6.2× and 17.0×). In
the low-density regimen at 10%, SPLoRA was both more
robust to pruning (achieving 6.9% and 4.7% higher aver-
age accuracy than fine-pruning for ranks 32 and 16), while
reducing the number of learned parameters (by 2.0× and
4.2× on average). The difference in relative parameter re-
duction between the 30% and 10% density targets is ex-
plained partly by the normalization and linear parameters
(73K for ResNet-50), that begin to dominate the learned
weight budget at low densities, and partly by the remaining
weights of adapter bottleneck channels. Even fewer param-
eters would be needed if a lower rank hyper-parameter was
chosen or if, as discussed in Sec. 3.3, pruning of bottleneck
channels was conducted as well. As FLOPs follow model
densities, these are approximately equal for each learning
method given equal densities.

4.2. Block-based Pruning

Experimental setup In our exploration of SPLoPA for
block-based pruning, we use Magnitude Pruning [8] of a
BERT-base model for hyper-parameter investigations con-

sidering 32 × 32 weight blocks per layer. Subsequently,
we compare SPLoPA with fine-pruning on the Stanford
Question Answering Dataset 1.1 (SQuAD) [34] using L0

Regularization-based pruning (L0 Reg.) [27], Movement
Pruning (MvP) and Soft Movement Pruning (SMvP) [40].
We adopt a previously reported training-setup and hyper-
parameters [40] and utilize Automated Gradual Prun-
ing [47], where masked weights are continually updated and
can be recovered according to the pruning criterion.

SPLoPA prototypes, rank, and weight sharing The
SPLoPA method has multiple hyper-parameters, which im-
pact the parameter count. The parameter count scales lin-
early with both the number of prototypes R and the proto-
type rank r. Moreover, memory usage can be decreased
further by sharing prototypes among layers. In the sub-
sequent experiments, we gauge the impact of these hyper-
parameters on the predictive performance by conducting a
sweep over a range of values, one parameter at a time, using
Magnitude Pruning [8] at 60% density.

As shown in the top-left panel of Fig. 7, the F1 score
increases with an increasing prototype count R until R =
128, beyond which the added expressiveness of additional
prototypes does not translate to increased performance. We
suspect this is dependent on the dataset size, with larger
datasets benefiting from higher capacities. As SPLoPA
has parameters in one-to-one proportion with R (6.96M for
R = 128, r = 1), an R lower than 64 may be attractive
if parameter count is of prime concern despite the associ-
ated performance reduction. The prototypes only produce
a minor fraction of the SPLoPA parameters for BERT-base
with 32×32 weight blocks. Accordingly, prototype sharing

7

58.9

62.3
63.0 62.3

32 64 128 256
58

60

62

64

R

F1

63.9

66.0

65.1 65.1

1 2 3 4
63

64

65

66

r
F1

67.263.5

26.8

5 10 −5 2 5 10 −4 2 5 10 −3 2
20

40

60

80

Learning rate

F1

F1: 67.2
P : 7,545 K

F1: 66.0
P : 7,537 K

false true
0

20

40

60

Shared prototypes

F1

Figure 7. Hyper-parameter sweeps for BERT-base with MaP [8]
and SPLoRA at 60% density. The bubble-sizes are proportional to
∆Params. Default parameters: lr = 10−3, R = 128, r = 1 (top),
and r = 2 (bottom).

yields very modest parameter reductions (by approximately
1‰), while reducing the F1 score2. Consequently, the effect
of the prototype rank r in practice is primarily on the pre-
dictive power. As depicted in the top right corner of Fig. 7,
r = 2 was found to produce the highest F1 score. We expect
this to depend tightly on the block size, with larger blocks
requiring higher ranks.

Comparison with fine-pruning In this set of experi-
ments, we parameterize SPLoPA with r = 2 without proto-
type sharing. Table 2 presents the learned parameter count
(∆Params) and F1-score of SPLoPA and fine-pruning on
the SQuAD dataset across various pruning methods and
model densities near 30% and 10%3. For all pruning meth-
ods, SPLoPA learned adaptation weights and masks with
significantly fewer parameters as compared to fine-pruning.
Both fine-pruning and SPLoPA generally suffer F1 losses as
model density is lowered. Comparing the two learning ap-
proaches, fine-pruning achieved slightly higher F1 (on av-
erage 0.8% and 2.5% higher than SPLoPA R128 and R64).
On the other hand, SPLoPA required far fewer parameters
(between 2.0× and 11.6× fewer).

5. Conclusion

We proposed Structured Pruning Adapters (SPAs) as an
alternative to fine-tuning during structured pruning. Instead

2We also explored sharing of block weights as reported in [28], but we
found this to result in severely reduced reduced performance.

3Although we selected hyper-parameters for each pruning method with
a target of 30% and 10% density, multiple methods did not allow for the
exact specification of pruning ratios.

Table 2. Block-based transfer-pruning of BERT-base to the
SQuAD dataset under block-based L0 Regularization prun-
ing [27], Movement Pruning [40], and Soft Movement Pruning
(SMvP) [40]. Changes specified relative to closest fine-pruning
density with same pruning method. Best metric per pruning-
method is highlighted with bold.

Pruning Learning Density ∆Params (M) SQuAD F1 (%)method method

L0 R. [27]
Fine-pruning 29.6% 25.21 81.49

10.1% 9.28 74.92

SPLoPA-R128
r2

29.5% 4.30 (↓ 5.9×) 80.75 (−0.7%)
10.7% 2.30 (↓ 4.0×) 76.22 (+1.3%)

SPLoPA-R64
r2 30.3% 2.19 (↓ 11.5×) 80.56 (−0.9%)

MvP [40]
Fine-pruning 30.1% 25.56 82.97

10.1% 8.57 73.77

SPLoPA-R128
r2

31.7% 6.49 (↓ 3.9×) 79.98 (−3.0%)
14.1% 4.36 (↓ 2.0×) 74.29 (+0.5%)

SPLoPA-R64
r2 10.1% 2.20 (↓ 3.9×) 71.00 (−2.8%)

SMvP [40]
Fine-pruning 28.8% 24.48 84.18

6.8% 5.84 75.61

SPLoPA-R128
r2

26.8% 4.02 (↓ 6.1×) 82.90 (−1.3%)
6.0% 1.80 (↓ 3.2×) 73.79 (−1.8%)

SPLoPA-R64
r2

28.6% 2.10 (↓ 11.6×) 82.51 (−1.7%)
6.9% 0.95 (↓ 6.2×) 70.75 (−4.9%)

of updating all model weights, SPAs consist of prunable
lightweight add-on modules, which are learned in place of
the original weights but can be fused with them at run-time
to obtain the same computational enhancements as regu-
lar structured pruning with fine-tuning. To accommodate a
wide range of strutured pruning approaches, we proposed
SPAs for both channel- and block-based pruning. These
were shown to achieve competitive performance across a
battery of pruning methods on computer vision and natural
language processing benchmarks while requiring a fraction
of the learned parameters per task. Thus, SPAs are ideal for
task-switching storage-constrained and/or network-limited
usage scenarios, where the per-model size should be small.

Acknowledgments

Lukas Hedegaard and Alexandros Iosifidis acknowl-
edge funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
No 871449 (OpenDR).

An acknowledgment also goes to Martin Damgaard
Nielsen and Jens Dalgaard Nielsen for the early-stage con-
versations relating to this project.

References
[1] Sebastian Bach, Alexander Binder, Grégoire Montavon,

Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classifier

8

decisions by layer-wise relevance propagation. PLoS One,
10(7):1–46, 2015. 2

[2] Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared
Saul. Asirra: A captcha that exploits interest-aligned man-
ual image categorization. In Proceedings of 14th ACM Con-
ference on Computer and Communications Security (CCS).
Association for Computing Machinery, Inc., 2007. 1, 5

[3] Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2

[4] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In Inter-
national Conference on Learning Representations, (ICLR),
2019. 2

[5] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Interna-
tional Journal of Computer Vision, 129(6):1789–1819, Jun
2021. 2

[6] R.M. Gray and D.L. Neuhoff. Quantization. IEEE Transac-
tions on Information Theory, 44(6):2325–2383, 1998. 2

[7] Kailing Guo, Xiaona Xie, Xiangmin Xu, and Xiaofen Xing.
Compressing by learning in a low-rank and sparse decompo-
sition form. IEEE Access, 7:150823–150832, 2019. 2

[8] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. 2016. 7, 8

[9] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-
ing both weights and connections for efficient neural net-
works. In Proceedings of the 28th International Conference
on Neural Information Processing Systems (NeurIPS), page
1135–1143. MIT Press, 2015. 2

[10] Babak Hassibi and David G. Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Proceedings
of the 5th International Conference on Neural Information
Processing Systems, NIPS’92, page 164–171, 1992. 2

[11] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Con-
ference on Learning Representations, 2022. 1, 2, 4

[12] Lukas Hedegaard, Arian Bakhtiarnia, and Alexandros Iosi-
fidis. Continual Transformers: Redundancy-free attention
for online inference. In Advances in Neural Information Sys-
tems (NeurIPS) Workshop on Vision Transformers: Theory
and Applications, 2022. 2

[13] Lukas Hedegaard and Alexandros Iosifidis. Continual 3d
convolutional neural networks for real-time processing of
videos. In European Conference on Computer Vision
(ECCV), pages 1–18, 2022. 2

[14] Lukas Hedegaard, Illia Oleksiienko, and Christian Møldrup
Legaard. DatasetOps, 2022. 5

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 2

[16] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan

Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol
Vinyals, and Laurent Sifre. Training compute-optimal large
language models. preprint, arXiv:2203.15556, 2022. 2

[17] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799, 2019. 1,
2

[18] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In In-
ternational Conference on Learning Representations, 2022.
1, 2, 3

[19] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
1, 5

[20] Alex Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. preprint, arXiv:1404.5997, 2014.
5

[21] François Lagunas, Ella Charlaix, Victor Sanh, and Alexan-
der Rush. Block pruning for faster transformers. In Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10619–10629, Online
and Punta Cana, Dominican Republic, Nov. 2021. Associa-
tion for Computational Linguistics. 1, 2, 3

[22] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. In D. Touretzky, editor, Advances in Neural Infor-
mation Processing Systems, volume 2. Morgan-Kaufmann,
1989. 2

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In In-
ternational Conference on Learning Representations (ICLR),
2017. 1, 2, 6, 7, 12

[24] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Pa-
pers), pages 4582–4597, 2021. 1, 2

[25] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and
Xiaotong Zhang. Pruning and quantization for deep neu-
ral network acceleration: A survey. Neurocomputing,
461(C):370–403, oct 2021. 2

[26] Congcong Liu and Huaming Wu. Channel pruning based
on mean gradient for accelerating convolutional neural net-
works. Signal Processing, 156:84–91, 2019. 2

[27] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l0 regularization.
In International Conference on Learning Representations
(ICLR), 2018. 2, 7, 8

[28] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. In Advances in Neural Information Processing Sys-
tems, 2021. 1, 2, 4, 8

9

[29] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), September 2018. 3

[30] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on
Learning Representations (ICLR), 2017. 1, 2, 6, 7, 12

[31] Grégoire Montavon, Alexander Binder, Sebastian La-
puschkin, Wojciech Samek, and Klaus-Robert Müller.
Layer-Wise Relevance Propagation: An Overview, pages
193–209. Springer International Publishing, 2019. 2

[32] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729, 2008. 1, 5

[33] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. AdapterFusion: Non-
destructive task composition for transfer learning. In Pro-
ceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Vol-
ume, pages 487–503, 2021. 1, 2

[34] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine com-
prehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages
2383–2392, Austin, Texas, Nov. 2016. Association for Com-
putational Linguistics. 1, 7

[35] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-
havi, Ali Farhadi, and Mohammad Rastegari. What’s hid-
den in a randomly weighted neural network? In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 3

[36] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
Advances in Neural Information Processing Systems, vol-
ume 30, 2017. 1, 2

[37] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018. 1, 2

[38] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych.
AdapterDrop: On the efficiency of adapters in transformers.
In Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, 2021. 2, 5

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, Dec 2015. 1, 5

[40] Victor Sanh, Thomas Wolf, and Alexander M. Rush. Move-
ment pruning: Adaptive sparsity by fine-tuning. In NeurIPS,
2020. 1, 2, 3, 7, 8

[41] Asa Cooper Stickland and Iain Murray. BERT and PALs:
Projected attention layers for efficient adaptation in multi-

task learning. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 5986–5995, 2019. 2

[42] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang.
meProp: Sparsified back propagation for accelerated deep
learning with reduced overfitting. In Proceedings of the
34th International Conference on Machine Learning (ICLR),
volume 70 of Proceedings of Machine Learning Research,
pages 3299–3308, International Convention Centre, Sydney,
Australia, 2017. 1, 2, 6, 7, 12

[43] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 09–15 Jun 2019. 2

[44] Dat Thanh Tran, Alexandros Iosifidis, and Moncef Gabbouj.
Improving efficiency in convolutional neural network with
multilinear filters. Neural Networks, 105:328–339, 2018. 2

[45] Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin,
Alexander Binder, Simon Wiedemann, Klaus-Robert Müller,
and Wojciech Samek. Pruning by explaining: A novel crite-
rion for deep neural network pruning. Pattern Recognition,
115, 2021. 1, 2, 3, 5, 6, 7, 12

[46] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan, Anh Tuan
Luu, Siu Hui, and Jie Fu. Beyond fully-connected layers with
quaternions: Parameterization of hypercomplex multiplica-
tions with $1/n$ parameters. In International Conference on
Learning Representations (ICLR), 2021. 4

[47] Michael Zhu and Suyog Gupta. To prune, or not to prune:
Exploring the efficacy of pruning for model compression.
In International Conference on Learning Representations
(ICLR) Workshop Track Proceedings, 2018. 2, 7

[48] Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan
Wang, and Lei Li. Counter-interference adapter for multi-
lingual machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages 2812–
2823, 2021. 1, 2, 4

10

A. Appendix
A.1. SPLoRA Derivation

Utilizing Eq. (3) in the context of channel-SPAs of
the form expressed in Eq. (2), we can derive the Struc-
tured Pruning Low-rank Adapter defined in Eq. (4), where
adapter parameters are pruned alongside source weights.
This derivation is straightforward, considering that the ap-
plication of a structured pruning mask M = mrowm

>
col via

Hadamard products is equivalent to a projection with diag-
onalized masking vectors:

W �mrowm
>
col = diag(mrow) W diag(mcol). (7)

Similarly, a single diagonalized mask can be expressed via
Hadamark products:

diag(mrow) W = W �mrow1
>. (8)

Utilizing Eq. (3), Eq. (7), and Eq. (8), we can rewrite Eq. (2)
as follows:

Wt = (Ws + a(∆Wt))�mrowm
>
col

= (Ws + WdownWup)�mrowm
>
col

= diag(mrow) (Ws + WdownWup) diag(mcol)

= diag(mrow) Wsdiag(mcol)

+ (diag(mrow)Wdown)(Wupdiag(mcol))

= Ws �mrowm
>
col

+ (Wdown �mrow1
>)(Wup � 1m>col),

where the final result is equivalent to Eq. (4).

A.2. Training Durations

In this section, we provide a brief overview of approxi-
mate training durations for the methods tested in the present
paper. As training times are comparable among different
pruning methods, we report a single metric approximated
from multiple pruning methods. These are presented in Ta-
ble 3 for our experiments using ResNet-50 in image recog-
nition tasks and Table 4 for BERT-base for question answer-
ing.

For computer vision experiments, the pruning meth-
ods gradually reduce the network density while producing
pruned models at a predefined step reduction in density, cy-
cling the learning rate for each density reduction step. Ac-
cordingly, the noted training times for the pruned learning
methods in Table 3 includes the training of all models with
densities ranging from 100% to 5% at 5% intervals.

For the natural language processing experiments, on the
other hand, one triangular learning rate schedule is em-
ployed when moving from the unpruned state to the desired
model density (i.e., the training durations for pruning down
to 5% and 50% density are equal). Therefore, each result
for SPLoPA is from an individual run.

Table 3. Training durations for the ResNet-50 model on image
recognition transfer tasks using a NVIDIA RTX 2080 Ti GPU.
For each dataset, the batch size (BS) and training duration (T) are
presented.

Pruning Learning CIFAR-10 Oxf. Fl. 102 C. & D.
method method BS T BS T BS T

Unpruned Fine-tuning 64 0:30 64 1:05h 64 2:20h
SPLoRA-r32 64 0:30 32 1:10h 32 2:30h
SPLoRA-r8 64 0:30 32 1:10h 32 2:30h

Pruned Fine-pruning 64 10 4 25h 6 42h
SPLoRA-r32 64 11 4 33h 6 48h
SPLoRA-r8 64 11 4 31h 6 45h

Table 4. Training durations for BERT-base on natural language
processing transfer tasks using a NVIDIA Tesla V100. For each
dataset, the batch size (BS) and training time (T) are presented.

Learning SQuAD
method BS T

Fine-tuning 16 7h
SPLoPA 16 15h

A.3. Supplemental Visualisations of experimental
results with SPLoRA

For completeness, Fig. 8 and Fig. 9 illustrate trade-offs
among accuracy, learned parameters, and FLOPs.

11

105 106 107

Learned parameters || Wt||0

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

105

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(a) Weight pruning [23].

105 106 107

Learned parameters || Wt||0

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

105

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(b) Gradient pruning [42].

105 106 107

Learned parameters || Wt||0

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

105

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(c) Taylor pruning [30].

105 106 107

Learned parameters || Wt||0

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

105

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(d) LRP pruning [45].

Figure 8. Cats and Dogs accuracy versus learned parameter count ‖∆Wt‖0 (top row) and FLOPs (middle row) as well as learned parameter
count versus model density (bottom row) using fine-pruning and SPLoRA with ranks 32 and 8 for various channel-pruning methods.

106 107

Learned parameters || Wt||0

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(a) Weight pruning [23].

106 107

Learned parameters || Wt||0

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(b) Gradient pruning [42].

106 107

Learned parameters || Wt||0

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(c) Taylor pruning [30].

106 107

Learned parameters || Wt||0

60

70

80

90
A

cc
u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0
FLOPs

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

10 1 100

Density

106

107

L
ea

rn
ed

 p
ar

am
et

er
s Fine-pruning

SPLoRA r = 32
SPLoRA r = 8

(d) LRP pruning [45].

Figure 9. Oxford Flowers 102 accuracy versus learned parameter count ‖∆Wt‖0 (top row) and FLOPs (middle row) as well as learned
parameter count versus model density (bottom row) using fine-pruning and SPLoRA with ranks 32 and 8 for various channel-pruning
methods.

12

D3.3: Third report on deep human centric active perception and cognition 140/223

8.6 Facial Expression Recognition with Learning Diversified Feature Rep-
resentations

The appended paper follows.

OpenDR No. 871449

LEARNING DIVERSIFIED FEATURE REPRESENTATIONS
FOR FACIAL EXPRESSION RECOGNITION IN THE WILD

Negar Heidari and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark

ABSTRACT

Diversity of the features extracted by deep neural networks is im-
portant for enhancing the model generalization ability and accord-
ingly its performance in different learning tasks. Facial expression
recognition in the wild has attracted interest in recent years due to
the challenges existing in this area for extracting discriminative and
informative features from occluded images in real-world scenarios.
In this paper, we propose a mechanism to diversify the features ex-
tracted by CNN layers of state-of-the-art facial expression recog-
nition architectures for enhancing the model capacity in learning
discriminative features. To evaluate the effectiveness of the pro-
posed approach, we incorporate this mechanism in two state-of-the-
art models to (i) diversify local/global features in an attention-based
model and (ii) diversify features extracted by different learners in an
ensemble-based model. Experimental results on three well-known
facial expression recognition in-the-wild datasets, AffectNet, FER+
and RAF-DB, show the effectiveness of our method, achieving state-
of-the-art performance of 89.99% on RAF-DB, 89.34% on FER+
and the competitive accuracy of 60.02% on AffectNet dataset.

Index Terms— Facial Expression Recognition, Feature Repre-
sentation, Feature Diversity, Attention Network

1. INTRODUCTION

Facial expression as a fundamental natural signal for human social
communication plays an important role in different applications of
artificial intelligence, such as Human Computer Interaction (HCI),
healthcare, and driver fatigue monitoring. Deep Convolutional Neu-
ral Networks (CNNs) have led to considerable progress in automatic
Facial Expression Recognition (FER) on large-scale datasets in real-
world scenarios. FER methods aim to solve a visual perception prob-
lem by learning feature representations from facial images/videos
to be classified as an emotional category, i.e. happiness, sadness,
fear, anger, surprise, disgust, neutral, and contempt. In laboratory-
controlled datasets, such as CK+ [1] and JAFFE [2], where the facial
images are in fixed frontal pose without any occlusion, FER meth-
ods have achieved excellent performance. However, these methods
confront challenges for in-the-wild datasets, such as AffectNet [3],
FER+ [4], and RAF-DB [5], where facial images come with illumi-
nation, occlusion and pose variations causing considerable change
in facial appearance. To address that, many recent methods rely on
transfer learning to exploit the feature representations learned for
other visual perception tasks, such as object recognition, with well-
designed networks, like ResNet-18 [6], trained on large datasets, like

This work received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 871449
(OpenDR). This publication reflects the authors’ views only. The European
Commission is not responsible for any use that may be made of the informa-
tion it contains.

VGG-Face [7] and MS-Celeb-1M [8], to be transferred for facial
expression recognition in challenging in-the-wild datasets. How-
ever, considering that many face datasets are small and imbalanced,
these deep neural networks are mostly over-parameterized and tend
to overfit on the training data, which can degrade their generalization
ability on unseen data.

Increasing the diversity of features learned by different network
layers/neurons has been recognized as an effective way to improve
model generalization [9]. It is theoretically shown in [10, 11] that the
within-layer activation diversity improves the generalization perfor-
mance of neural networks and lowers the effect of overfitting. In this
paper, we propose a mechanism for learning diversified facial feature
representations by encouraging the learner to extract diverse spatial
and channel-wise features. This mechanism can be used in different
CNN architectures to increase the features diversity between layers
or branches, spatial regions, and/or channels of feature maps. We
incorporate our proposed optimization mechanism into two state-of-
the-art models, i.e., the MA-Net [12] and the ESR [13], and conduct
experiments on three well-known in-the-wild datasets, i.e., Affect-
Net, FER+ and RAF-DB. Experimental results demonstrate the ef-
fectiveness of learning diversified features in improving the accuracy
and generalization of the pretrained state-of-the-art models on new
samples.

The contributions of the paper can be summarized as follows:

• We propose a mechanism for learning diversified features
in spatial and channel dimensions of CNNs to improve the
model’s accuracy in discriminating facial expressions.

• We evaluate our feature extraction mechanism by incorpo-
rating it into two state-of-the-art models which have differ-
ent properties, i.e., one benefits from a region-based attention
mechanism and transfer learning, and the other one is an effi-
cient ensemble-based architecture. In both cases, our diversi-
fied feature learning mechanisms boost the performance.

• Conducted experiments on three benchmark in-the-wild
datasets, including the large-scale dataset AffectNet, indi-
cate the effectiveness and adaptability of our method, which
can be used in different types of models. Our code is publicly
available at https://github.com/negarhdr/Diversified-Facial-
Expression-Recognition.

2. RELATED WORKS

Recent studies are focused on addressing the challenges of in-the-
wild facial expression recognition by training models with multi-
pose examples [14], and extracting key facial features based on fa-
cial landmarks and region-based attention mechanisms [15, 16, 17].
Learning facial features from global and local perspectives simulates
the human brain’s perception mechanism and helps achieving better
performance in visual perception problems. MA-Net [12] is a global

ar
X

iv
:2

21
0.

09
38

1v
1

 [
cs

.C
V

]
 1

7
O

ct
 2

02
2

multi-scale and local attention network which extracts features with
different receptive fields, to increase the diversity and robustness of
global features. This state-of-the-art method comprises of a back-
bone based on ResNet-18 for extracting preliminary features which
are fed into a two-branch network with global multi-scale and local
attention modules for high-level feature extraction. The first branch
receives the preliminary feature maps as input and applies several
multi-scale convolutions to extract both deeper semantic and shal-
lower geometry features. The second branch of the network also
receives the preliminary feature maps extracted by the backbone net-
work as input, divides the feature maps into several local spatial
regions without overlap, and then applies several parallel local at-
tention networks to highlight the most important facial features in
each region. At the end, a decision-level fusion strategy is employed
to classify the extracted multi-scale and local attention features into
different facial expression categories. However, this large network
with 50.54 M parameters needs to be trained on a large dataset, and
consistent with other state-of-the-art methods [18, 16], this network
is first trained on MS-Celeb-1M dataset, and then finetuned on in-
the-wild facial datasets AffectNet and RAF-DB.

ESR [13] has solved this issue by proposing an efficient
ensemble-based method which reduces the residual generalization
error on the AffectNet and FER+ datasets, and achieves state-of-the-
art performance while training from scratch on these datasets. ESR
model consists of two building blocks: 1) the base network which
is composed of a stack of convolutional layers and is responsible
for extracting low/middle-level features, 2) the ensemble network
composed of several network branches which are supposed to learn
distinctive features. All branches in this ensemble module receive
the same feature maps extracted by the base network as input, and
they compete for a common resource which is the base network.
The training algorithm of ESR starts with training the base network
and one ensemble branch. Thereafter, more convolutional branches
are added one by one while training, so that the base network
leads and speeds up learning by providing all ensemble branches
with shared preliminary feature maps which are suitable for all the
branches. Therefore, this method reduces redundancy in low-level
feature learning and focuses on learning high-level discriminative
features to be classified. Finally, the input facial image is classified
to an emotion category by fusing the predictions of all the ensemble
branches and applying majority voting.

In this paper we propose to complement discriminative feature
extraction by increasing the features diversity between attention-
regions, channel dimensions, and ensemble branches. In the next
section, the diversified feature learning mechanism is introduced,
and accordingly the modified learning mechanism for MA-Net and
ESR methods is described.

3. PROPOSED METHOD

Diversity of feature representations is important in deep learning for
enhancing the model generalization on unseen data, and improving
model’s accuracy in perceptual tasks by extracting non-redundant
and discriminative features. Inspired by [10], we propose to increase
spatial and channel-wise feature diversity in CNN architectures and
ensemble-based models for facial expression recognition.

Let us assume that Φl, l ∈ {1, 2, ..., L} is a feature map of size
C×H×W extracted by a CNN learner. The diversity between dif-
ferent feature maps obtained by different learners or different layers
of a CNN model can be obtained in channel and spatial dimensions
as illustrated in Figure 1 by first applying pooling on spatial and
channel dimensions and then computing the average similarity be-

Feature maps

Channel pool

Spatial pool

Channel pool

Spatial pool

Diversity

Optimize

Diversity

Fig. 1. Illustration of diversity mechanism over the channel and
spatial dimensions of feature maps. In this mechanism, spatial and
channel pooling are applied on the feature maps of different learn-
ers/layers, and the diversity between different pooled features are
then computed and optimized by the training algorithm.

tween every two pooled feature maps l, k using radial basis function
as follows:

Slk =
1

N

N∑

i=1

exp(−γ ‖φl(xi)− φk(xi)‖2), (1)

where N denotes the number of samples from which feature maps
are extracted, γ is a hyperparameter, φl(·) and φk(·) denote the
pooled feature maps of the lth and kth learners, respectively. The
feature maps are of size 1 × H × W and C × 1 × 1 when simi-
larity is measured on spatial (Figure 1 top row) and channel (Figure
1 bottom row) dimensions, respectively. Similar feature maps in-
dicate low diversity of the learner. Accordingly, using the pairwise
similarities between feature maps, the model diversity is obtained
by computing the determinant of the matrix S indicating pairwise
similarities of learners as Slk, i.e.,:

D = det(S). (2)

The model can be optimized in an end-to-end manner by minimiz-
ing the combined loss function comprising of classification loss and
diversity. That is, the overall loss value to be minimized is:

Loss = L − (Dch +Dsp), (3)

where L denotes the cross-entropy classification loss, and Dch, Dsp

denote the feature diversity computed through channel and spatial
dimensions, respectively using Eq. (1) and Eq. (2).

This mechanism can be used in CNN-based models to increase
diversity between the feature maps at different levels. Considering
the fact that diversity of learners is important in ensemble learning,
encouraging each branch of ESR to learn complementary features
of data can lead to better ensemble classification. To reach this
goal, we modified the architecture of ESR by adding the CBAM
attention mechanism [19] into each layer of the network and maxi-
mizing the diversity of both channel and spatial attention maps be-
tween different branches. The combined loss function of the modi-
fied ESR model is defined as a summation of the diversity loss be-
tween branches and the cross-entropy loss of each branch as follows:

Lesr =
∑

b

L(fb(X))− (Dch +Dsp), (4)

Ensemble

Base

CE
Loss

Ensemble
Diversity

Optimize

Diversity

Diversity

Input
Conv2D

BN
MaxPool
CBAM
GAP
FC

Summation

Spatial attention

Channel attention

Classification loss

Diversity loss

Fig. 2. Illustration of the modified ESR structure with added CBAM
attention modules in each layer and the ensemble diversity block
which diversifies the channel and spatial attention maps of the en-
semble branches.

where L denotes the cross-entropy classification loss function for
each of the ensemble learners fb which is combined with a negative
summation of spatial and channel diversity of the whole ensemble
model. In other words, by optimizing Lesr , the features of ensemble
branches (learner) are diversified, while each branch is encouraged
to classify features with minimum loss. Figure 2 illustrates the new
structure of ESR with added attention modules in each layer and
our augmented module which computes the ensemble diversity to be
optimized with cross entropy loss.

In MA-Net, the focus is on exploiting both local and global fea-
ture in two model branches. CBAM attention mechanism is origi-
nally employed in this method to highlight the key global and local
facial regions for recognizing the expression. As illustrated in Figure
3, the first branch of the network employs the feature map tensor in
its initial shape to extract the global features, but the second branch
divides the feature map into four patches to learn and highlight the
local feature in each of the patches separately. We modified MA-Net
structure to encourage the local branch to learn diversified regional
features. In this regard, channel and spatial pooling operations are
applied on divided patches and the diversity between them are com-
puted to be added to the model classification loss function. Besides,
in order to make the two branches of the network as effective as en-
semble learner, the global and the local features extracted by these
two branches can be diversified as well. In this regard, the local
feature patches are concatenated and introduced to the global aver-
age pooling layer, along with the global feature map, and the pooled
features are diversified by the branch diversity block and then classi-
fied by the fully connected layer. The whole model is optimized by
minimizing a combined loss function comprising of local and global
classification loss in addition to the branch and patch diversity as
follows:

Loss = λLlocal + (1− λ)Lglobal − (Db + (Dsp +Dch)), (5)

where Llocal, Lglobal denote the cross-entropy classification loss in
the local and global branches, respectively, 0 ≤ λ ≤ 1 is a hyper-
parameter balancing the two parts which is set to 0.6 in MA-Net,
Db is the diversity between the two branches and Dsp, Dch indicate
spatial and channel diversity between the local feature patches.

Feature
pre-extractor

Multi-scale
Module

Patch
Diversity

Local
Attention

Module

Spatial
Diversity

Diversity

Pa
tc

h
di

ve
rs

ity
 lo

ss

Concatenate

GAP

Branch
Diversity

Diversity

Channel

Branch diversity loss

GAP

FC

FC

CE
Loss

Optimize

C
lassification loss

Summation

FC Fully Connected layer

GAP Global Average Pooling

Channel pool

Spatial pool

Pa
tc

hi
ng

Modification of Resnet-18
Conv1-Conv3

Fig. 3. Illustration of the modified MA-Net structure by adding patch
diversity and branch diversity blocks to diversify local region-based
features in each feature map and also increase diversity of the ex-
tracted global and local features before passing them to the classifi-
cation layers.

4. EXPERIMENTS
We conducted experiments on three widely used in-the-wild datasets,
AffectNet [3], FER+ [4], RAF-DB [5]. AffectNet is the largest in-
the-wild dataset containing more than one million images collected
from the Internet by querying emotion keywords in different lan-
guages. Following the same experimental setting as in RAN [16],
ESR [13], and SCN [18], we used 450,000 images of this dataset
which are manually annotated with 8 discrete expressions contain-
ing 6 basic ones (happiness, surprise, sadness, anger, disgust, fear)
plus neutral and contempt. 287,568 images are used as training
data and 4,000 images are used as test data. FER+ is an extension
of FER2013 [20] dataset, which is a large-scale dataset contain-
ing 35,887 facial images collected by Google search engine with 7
expressions. FER+ annotators re-labeled the FER2013 by crowd-
sourcing and added contempt expression to the dataset. All the face
images in this dataset are aligned and annotated with 8 expressions.
RAF-DB dataset comprises of 30,000 facial images annotated with
basic or compound expressions. Similar to the experimental setting
in state-of-the-art methods, we used images with basic expressions,
including 12,271 training and 3,068 test image, in our experiments.

The experiments are conducted on PyTorch deep learning frame-
work [21] with one GRX 1080-ti GPU, SGD optimizer with a mo-
mentum of 0.9 and cross-entropy loss function. We followed the
experimental setting of ESR and MA-Net methods for reproducing
their results and also training the modified version of the models
on all the datasets. Table 1 shows a summary of our experimen-
tal results for all the three datasets, and Tables 2, 3, 4 compare the
performance of the state-of-the-art methods with our proposed diver-
sified ESR and MA-Net models in AffectNet, FER+ and RAF-DB,
respectively.

To reproduce the ESR results with 9 ensemble branches, referred
as ESR-9, the model is trained from scratch on AffectNet dataset and
then finetuned on FER+. This led to 58.8% accuracy on AffectNet
which is 0.5% less than the reported result in [13], however our re-
produced result for FER+ is around 0.85% higher than their origi-
nally reported accuracy. Although the performance of this method
is not reported in [13] for RAF-DB dataset, we finetuned the pre-
trained ESR-9 model on RAF-DB as well. To evaluate the effect of
attention layers added to the ESR structure, we did an ablation study
to compare the performance of ESR-9 with and without CBAM at-
tention layers, and spatial/channel-wise diversities. According to the
results reported in Table 1, the best ensemble classification accuracy
is obtained by adding CBAM attention layers, as well as maximiz-

Table 1. Comparisons of the classification accuracy of two state-of-
the-art methods, ESR and MA-Net, and their modified versions with
and without (channel and spatial) diversity computing on AffectNet,
FER+, and RAF-DB datasets. ∗ indicates our proposed version of
the method.

Method Attention Diversity Dataset
Spatial Channel AffectNet FER+ RAF-DB

ESR-9 [13] × × × 59.3 87.17 -
ESR-9∗ × × × 58.8 88.40 77.96

X × × 58.95 88.56 82.39
X X × 59.25 88.59 82.92
X X X 59.3 89.15 82.95

ESR-15∗ × × × 58.7 88.59 77.5
X × × 59.25 88.78 82.82
X X × 59.47 89.21 82.92
X X X 60.00 89.34 83.00

MA-Net [12] X × × 60.29 - 88.4
MAN-Net∗ X × × 59.85 87.49 88.68

X X X 60.02 88.34 89.99

Table 2. Comparisons of the classification accuracy of the state-of-
the-arts with our proposed version of ESR and MA-Net methods on
AffectNet dataset with 8 classes. ∗ indicates our proposed version
of the method.

Methods Pretrained Acc.(%)
MobileNet [22] - 56.00
VGGNet [22] - 58.00
AlexNet-WL [3] - 58.00
RAN [16] MS-Celeb-1M 59.50
SCN [18] MS-Celeb-1M 60.23
ESR-9 [13] AffectNet 59.30
ESR-9∗ AffectNet 59.30
ESR-15∗ AffectNet 60.00
MA-Net [12] MS-Celeb-1M 60.29
MA-Net∗ MS-Celeb-1M 60.02

Table 3. Comparisons of the classification accuracy of the state-of-
the-arts with our proposed version of ESR and MA-Net methods on
FER+ dataset with 8 classes. ∗ indicates our proposed version of the
method.

Methods Pretrained Acc.(%)
TFE-JL [23] - 84.30
PLD [4] - 85.10
SHCNN [24] - 86.54
SeNet50 [25] VGG-Face2 [26] 88.80
RAN [16] MS-Celeb-1M 88.55

VGG-Face [7] 89.16
SCN [18] MS-Celeb-1M 88.01
ESR-9 [13] AffectNet 87.17
ESR-9∗ AffectNet 89.15
ESR-15∗ AffectNet 89.34
MAN-Net [12] MS-Celeb-1M -
MAN-Net∗ MS-Celeb-1M 88.34

ing the diversity of both spatial and channel-wise attention between
ensemble branches.

It is mentioned in [13] that adding more than 9 branches to ESR
does not improve the performance. However, we assume that in-
creasing the feature diversity between branches increases the model
capacity for learning features with more ensemble branches. In this

Table 4. Comparisons of the classification accuracy of the state-of-
the-arts with our proposed version of ESR and MA-Net methods on
RAF-DB dataset with 7 classes. ∗ indicates our proposed version of
the method.

Methods Pretrained Acc.(%)
DLP-CNN [5] - 84.22
IPA2LT [27] AffectNet 86.77
gACNN [15] AffectNet 85.07
LDL-ALSG [28] AffectNet 85.53
RAN [16] MS-Celeb-1M 86.90
SCN [18] MS-Celeb-1M 87.03
ESR-9 [13] AffectNet -
ESR-9∗ AffectNet 82.95
ESR-15∗ AffectNet 83.00
MA-Net [12] MS-Celeb-1M 88.40
MA-Net∗ MS-Celeb-1M 89.99

regard, we increased the number of branches both in the original
ESR architecture and in our proposed version of ESR and trained
the ESR-15 models on AffectNet and finetuned them on FER+ and
RAF-DB. The results in Table 1 confirm our assumption, and indi-
cate the improved performance of ESR-15 for all the three datasets
compared to ESR-9. It should be noted that the maximum number
of branches is chosen empirically and in some cases, the best perfor-
mance is achieved in earlier branches so that at inference time, we
can get the results with early exits. Considering the results in Table
3, ESR-15∗, which is our modified version of ESR-15 with diversi-
fied features, outperforms all the state-of-the-arts with no need to be
pretrained on large-scale datasets like MS-Celeb-1M or VGG-Face.

Since MA-Net original structure includes CBAM attention lay-
ers, we did not modify the structure of the layers in this model.
MA-Net is first trained on MS-Celeb-1M dataset, and the pretrained
weights are then finetuned on AffectNet and RAF-DB datasets. In
our experiments, we used the available pretrained weights of MA-
Net on MS-Celeb-1M, provided by the authors, and finetuned the
weights on all the three datasets. However the reproduced classifi-
cation accuracy on AffectNet is 0.44% less than their reported ac-
curacy of 60.29%, while for RAF-DB dataset we get 0.28% higher
accuracy than the original one. After augmenting branch and patch
diversity blocks into the MA-Net structure and diversifying local
and global features, we achieved the state-of-the-art performance of
89.99% on RAF-DB dataset which outperforms all the other state-
of-the-arts listed in Table 4.

5. CONCLUSION

In this paper we proposed a mechanism to diversify features ex-
tracted by different CNN learners for facial expression recognition.
We targeted two state-of-the-art methods based on ensemble learning
and multi-scale attention networks to evaluate the effect of learning
diversified features in performance. Experimental results show that
diversifying features extracted by different ensemble learners can en-
hance the overall ensemble classification performance while increas-
ing the model capacity to include more learners for feature extrac-
tion. Furthermore, diversifying local regional features extracted by
a CNN learner improves the model performance in exploiting local
features and classifying facial images.

6. REFERENCES

[1] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih,
Zara Ambadar, and Iain Matthews, “The extended cohn-
kanade dataset (ck+): A complete dataset for action unit and
emotion-specified expression,” in IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2010, pp.
94–101.

[2] Michael Lyons, Shigeru Akamatsu, Miyuki Kamachi, and Jiro
Gyoba, “Coding facial expressions with gabor wavelets,” in
IEEE International Conference on Automatic Face and Ges-
ture Recognition, 1998.

[3] Ali Mollahosseini, Behzad Hasani, and Mohammad H Ma-
hoor, “Affectnet: A database for facial expression, valence,
and arousal computing in the wild,” IEEE Transactions on Af-
fective Computing, vol. 10, no. 1, pp. 18–31, 2017.

[4] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and
Zhengyou Zhang, “Training deep networks for facial expres-
sion recognition with crowd-sourced label distribution,” in In-
ternational Conference on Multimodal Interaction, 2016.

[5] Shan Li, Weihong Deng, and JunPing Du, “Reliable crowd-
sourcing and deep locality-preserving learning for expression
recognition in the wild,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[7] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman,
“Deep face recognition,” 2015.

[8] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jian-
feng Gao, “Ms-celeb-1m: A dataset and benchmark for large-
scale face recognition,” in European Conference on Computer
Vision, 2016, pp. 87–102.

[9] Bo Xie, Yingyu Liang, and Le Song, “Diverse neural net-
work learns true target functions,” in Artificial Intelligence and
Statistics, 2017, pp. 1216–1224.

[10] Firas Laakom, Jenni Raitoharju, Alexandros Iosifidis, and
Moncef Gabbouj, “Within-layer diversity reduces general-
ization gap,” International Conference on Machine Learning
Workshop on Information Theoretic Methods for Rigorous, Re-
sponsible, and Reliable Machine Learning, 2021.

[11] Firas Laakom, Jenni Raitoharju, Alexandros Iosifidis, and
Moncef Gabbouj, “On feature diversity in energy-based mod-
els,” International Conference on Learning Representations
Workshop on Energy-Based Models, 2021.

[12] Zengqun Zhao, Qingshan Liu, and Shanmin Wang, “Learning
deep global multi-scale and local attention features for facial
expression recognition in the wild,” IEEE Transactions on Im-
age Processing, vol. 30, pp. 6544–6556, 2021.

[13] Henrique Siqueira, Sven Magg, and Stefan Wermter, “Effi-
cient facial feature learning with wide ensemble-based convo-
lutional neural networks,” in AAAI Conference on Artificial
Intelligence, 2020, vol. 34, pp. 5800–5809.

[14] Feifei Zhang, Tianzhu Zhang, Qirong Mao, and Changsheng
Xu, “Joint pose and expression modeling for facial expression
recognition,” in IEEE Conference on Computer Vision and Pat-
tern Recognition, 2018, pp. 3359–3368.

[15] Yong Li, Jiabei Zeng, Shiguang Shan, and Xilin Chen, “Oc-
clusion aware facial expression recognition using cnn with at-
tention mechanism,” IEEE Transactions on Image Processing,
vol. 28, no. 5, pp. 2439–2450, 2018.

[16] Kai Wang, Xiaojiang Peng, Jianfei Yang, Debin Meng, and
Yu Qiao, “Region attention networks for pose and occlusion
robust facial expression recognition,” IEEE Transactions on
Image Processing, vol. 29, pp. 4057–4069, 2020.

[17] Negar Heidari and Alexandros Iosifidis, “Progressive spatio-
temporal bilinear network with monte carlo dropout for
landmark-based facial expression recognition with uncertainty
estimation,” in IEEE International Workshop on Multimedia
Signal Processing, 2021.

[18] Kai Wang, Xiaojiang Peng, Jianfei Yang, Shijian Lu, and
Yu Qiao, “Suppressing uncertainties for large-scale facial ex-
pression recognition,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6897–6906.

[19] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon, “Cbam: Convolutional block attention module,” in
European Conference on Computer Vision, 2018, pp. 3–19.

[20] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron
Courville, Mehdi Mirza, Ben Hamner, Will Cukierski, Yichuan
Tang, David Thaler, Dong-Hyun Lee, et al., “Challenges in
representation learning: A report on three machine learning
contests,” in International Conference on Neural Information
Processing, 2013.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmai-
son, Luca Antiga, and Adam Lerer, “Automatic differentiation
in pytorch,” in Neural Information Processing Systems Work-
shops, 2017.

[22] Charlie Hewitt and Hatice Gunes, “Cnn-based facial affect
analysis on mobile devices,” arXiv preprint arXiv:1807.08775,
2018.

[23] Ming Li, Hao Xu, Xingchang Huang, Zhanmei Song, Xiaolin
Liu, and Xin Li, “Facial expression recognition with identity
and emotion joint learning,” IEEE Transactions on Affective
Computing, vol. 12, no. 2, pp. 544–550, 2018.

[24] Si Miao, Haoyu Xu, Zhenqi Han, and Yongxin Zhu, “Recog-
nizing facial expressions using a shallow convolutional neural
network,” IEEE Access, vol. 7, pp. 78000–78011, 2019.

[25] Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew
Zisserman, “Emotion recognition in speech using cross-modal
transfer in the wild,” in ACM International Conference on Mul-
timedia, 2018.

[26] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew
Zisserman, “Vggface2: A dataset for recognising faces across
pose and age,” in IEEE International Conference on Automatic
Face & Gesture Recognition, 2018, pp. 67–74.

[27] Jiabei Zeng, Shiguang Shan, and Xilin Chen, “Facial expres-
sion recognition with inconsistently annotated datasets,” in Eu-
ropean Conference on Computer Vision, 2018.

[28] Shikai Chen, Jianfeng Wang, Yuedong Chen, Zhongchao Shi,
Xin Geng, and Yong Rui, “Label distribution learning on aux-
iliary label space graphs for facial expression recognition,” in
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020.

D3.3: Third report on deep human centric active perception and cognition 146/223

8.7 Self-Attention Neural Bag-of-Features
The appended paper follows.

OpenDR No. 871449

2022 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, AGU. 22–25, 2022, XI’AN, CHINA

SELF-ATTENTION NEURAL BAG-OF-FEATURES

Kateryna Chumachenko1, Alexandros Iosifidis2 and Moncef Gabbouj1

1Department of Computing Sciences, Tampere University, Tampere, Finland
2Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark

Emails: {kateryna.chumachenko,moncef.gabbouj}@tuni.fi, ai@ece.au.dk

ABSTRACT

In this work, we propose several attention formulations for multi-
variate sequence data. We build on top of the recently introduced
2D-Attention and reformulate the attention learning methodology by
quantifying the relevance of feature/temporal dimensions through la-
tent spaces based on self-attention rather than learning them directly.
In addition, we propose a joint feature-temporal attention mecha-
nism that learns a joint 2D attention mask highlighting relevant in-
formation without treating feature and temporal representations in-
dependently. The proposed approaches can be used in various archi-
tectures and we specifically evaluate their application together with
Neural Bag of Features feature extraction module. Experiments on
several sequence data analysis tasks show the improved performance
yielded by our approach compared to standard methods.

1. INTRODUCTION

Sequence data modeling became an important task in the field of ma-
chine learning, finding applications in a wide range of areas. These
include speech recognition [1], video processing [2], biosignal an-
laysis [3], and natural language processing [4]. Multiple methods
directed at solving sequence data analysis tasks were proposed to
date. Notable approaches include those based on Recurrent Neural
Networks, such as Gated Recurrent Units [4] or Long Short Term
Memory models [5] that aim to explicitly model the sequential na-
ture of the data with variable length and capture its temporal infor-
mation. In addition, methods based on Transformers have been pro-
posed as well, modelling the data representations as token sequences
with self-attention between tokens being the main driving force of
the model [6]. Besides, methods that were originally developed for
other types of data, such as Convolutional Neural Networks or Neu-
ral Bag of Features [7, 8], were shown beneficial in sequential data
analysis tasks.

Concurrent with the development of these methods, approaches
directed towards improving robustness of baseline models have been
emerging, with the attention modules [6] being one of the most no-
table ones. The goal of attention module is generally defined as
highlighting relevant information in the model while suppressing
less relevant one. This idea has been applied to a wide range of
base models, and explicit definitions of different attention variants
vary between specific models and data types. In CNNs, attention
is generally calculated in a form of a learned mask of weights that
is applied element-wise to the intermediate feature representation to
facilitate learning of stronger features, where mask can be applied

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871449
(OpenDR).

both in channel or spatial dimensions [9, 10, 11]. Another relevant
incarnation of an attention model is that of multi-head self-attention
that serves as a building block in Transformer models. In this for-
mulation, relevance of features is quantified by their relations in the
learnt latent space.

Bag of Features (BoF) [12] model has been widely used for fea-
ture extraction from image data, later emerging to other data types as
well, including sequential data [13, 14]. The learning process of BoF
consists of two stages, with the first stage being dictionary learning,
during which a codebook of representative features (codewords) is
learnt. During the second stage of BoF, the learnt codebook is used
to quantize the low-level feature representation of data into a his-
togram. To facilitate more powerful feature extraction, Discriminant
Bag of Features approaches were proposed [15, 16], while Neural
Bag of Features (NBoF) was proposed as a neural network gener-
alization of BoF [7]. NBoF can be used as an independent feature
extractor or as a submodule of a bigger architecture, and can be op-
timized end-to-end in either case. Besides, an attention module for
Neural Bag of Features has been recently proposed to address some
of its limitations and increase the robustness of the model [17, 18].
Specifically, 2D Attention (2DA) proposed three attention types: in-
put attention, with the aim of addressing the noise present in input
data; codeword attention, with the aim of highlighting most relevant
codewords in a codebook; and temporal attention, with the aim of
highlighting most relevant temporal dimensions in the representa-
tion.

In this paper, we propose to reformulate the idea of 2D-Attention
in sequence data and evaluate it in Neural Bag of Features model.
Our contributions are summarized as follows:

• We revisit the definition of 2D-Attention, and propose self-
attention based alternatives capable of more powerful quan-
tification of feature relevance. We propose self-attention
based formulations of both temporal and codeword attention.

• We develop codeword-temporal self-attention to facilitate
learning of representation relevance in joint codeword-
temporal latent space, rather than treating codeword and
temporal attentions separately.

• We evaluate the developed methods on sequence data analy-
sis tasks, including acoustic scene classification and cardiac
disease recognition from ECG and PCG signals, and aciheve
competitive performance.

The remainder of the paper is organized as follows. Section 2
provides an overview of the related work, Section 3 describes the
proposed formulations of 2DA self-attentions, Section 4 provides ex-
perimental results evaluating their performance in a variety of time-
series analysis problems against related approaches, and Section 5
concludes the paper.

978-1-6654-8547-0/22//$31.00 ©2022 IEEE

2. RELATED WORK

Neural Bag of Features (NBoF) [19] is a neural extension of the
Bag of Features algorithm that can be utilized both as an indepen-
dent learning method, as well as incorporated into larger models to
facilitate more powerful feature extraction. NBoF consists of two
steps, namely, dictionary learning and feature quantization. Specif-
ically, NBoF model receives as input a variable-size representation
and quantizes it into a fixed-size histogram representation. Quanti-
zation is performed using a learned dictionary that can be optimized
jointly with the full model architecture in an end-to-end manner. Fur-
ther, aggregation step is performed, where the extracted histogram
representations, known as codewords, are aggregated by averaging.
To date, several feature quantization approaches have been proposed,
including those based on Radial Basis Function (RBF) [19] and hy-
perbolic kernel [8]. Here we revisit the original definition based on
RBF kernel.

Formally, NBoF with an RBF kernel is defined as follows.
Given a sequence of N feature representations X = [x1, . . . ,xN] ∈
RD×N , the quantization layer produces a sequence of quantized fea-
tures Φ = [ϕ1, . . . ,ϕN] ∈ RK×N , where ϕn = [ϕn,1, . . . , ϕn,K]T ∈
RK is the quantized representation corresponding to feature xn. The
output of kth RBF neuron for feature xn is given as follows:

ϕn,k =
exp

(
− ∥(xn − vk)⊙wk∥2

)
∑K

m=1 exp
(
− ∥(xn − vm)⊙wm∥2

) , (1)

where vk is the kth codeword, K is the total number of codewords,
and wk ∈ RD is a learnable parameter controlling the shape of the
Gaussian kernel.

Following the quantization step, the quantized features are ag-
gregated by averaging:

y =
1

N

N∑

n=1

ϕn. (2)

Although providing reasonable feature extraction capabilities
in a variety of problems, NBoF has a number of limitations. One
of such limitations is that each learned codeword is considered to
be equally important in the learned representation, and hence con-
tributes equally to the prediction, although it is reasonable to assume
that certain codewords have learnt more powerful features. With
respect to sequence data modeling, another limitation is that during
the aggregation step, quantized features are combined by simple
averaging, disregarding the relative importance of each timestamp.
Nevertheless, temporal information can be of great importance in a
variety of sequence learning tasks, such as speech command recog-
nition, or dynamic activity recognition, where order of learnt feature
representation can be a defining factor for the prediction.

To address these limitations, an attention mechanism for se-
quence data has been proposed with NBoF as a baseline in mind
[17]. Specifically, the method is referred to as 2D-Attention (2DA)
and defines three attention types: input attention, codeword atten-
tion, and temporal attention, that aim to emphasize the most relevant
input data features, quantized features, and temporal timestamps,
respectively.

Formally, 2DA is defined as follows. Given a feature represen-
tation Φ, 2DA learns an attention matrix A:

A = softmax(ΦW), (3)

where softmax(·) function is applied row-wise to encourage com-
petition between columns of Φ, and W is a learnable weight matrix

with diagonal elements fixed at 1
N

. The learnt attention matrix is
subsequently applied as:

Φ̃ = F2DA(Φ) = α(Φ⊙A) + (1− α)Φ, (4)

where α is a learnt parameter controlling the strength of attention
matrix and Φ̃ is the attended representation.

The first attention type introduced in 2DA is the codeword at-
tention, the aim of which is to highlight most relevant codewords
obtained at quantization step of the NBoF model while suppressing
the non-relevant ones. This is desirable under the assumption that
the output of each quantization neuron contributes differently to the
final prediction. Formally, given the output of the quantization step
Φ ∈ RK×N , an attention mask A ∈ RK×N of attention weights is
applied to the features Φ in order to highlight or suppress its rows,
i.e., codewords, by applying the 2DA to ΦT :

Φ̃CA = F2DA(Φ
T). (5)

Similarly, 2DA can be applied directly on the input of NBoF
rather than its quantized output in order to improve the robustness of
the model towards noise. Since it is desired to highlight individual
series in the input data, the process is similar to that of codeword
attention, and 2DA is applied to XT :

X̃IA = F2DA(X
T). (6)

This type of attention is referred to as input attention.
In turn, temporal attention aims to highlight relevant timestamps

in the sequence during the aggregation step of the NBoF model to
address the limitation of the representations being simply averaged
during the aggregation step. Formally, it is achieved by applying
2DA on columns of Φ:

Φ̃TA = F2DA(Φ). (7)

3. PROPOSED METHODS

Although the 2DA attention addresses certain limitations of the
NBoF model in terms of highlighting most relevant attributes in
the quantized feature representation, further improvement can be
achieved by reformulating the attention learning methodology.

One limitation of previously proposed 2DA attention mecha-
nism is that attention is applied separately to either codebook or
temporal dimensions. Even if both attention masks are learnt and
applied simultaneously, such approach does not take into account
potential relationships of learned codewords with the temporal rep-
resentations in the training phase as the masks are learned indepen-
dently. At the same time, they are not necessarily independent in
real-world problems, as certain codewords can have different impor-
tance at different timestamps. We therefore hypothesize that learning
of joint codeword-temporal attention map can be beneficial for learn-
ing better feature representations and therefore assist in classification
task.

3.1. Codeword-temporal self-attention

Formally, we define the codeword-temporal attention as follows,
building on top of the well studied self-attention module. Consid-
ering a NBoF-learned feature representation Φ ∈ RK×N , where
K denotes the number of codewords and N denotes the temporal
length, we obtain the attention matrix by quantifying the relations
between codeword and temporal features in a joint learnt space. For-
mally, we define two learnable projection matrices Wn

q ∈ d × N ,

Wn
k ∈ d × K and project the representation Φ temporally and

codeword-wise into a joint d-dimensional space.

qn = ΦWn
q
T , qn ∈ K × d,

kn = ΦTWn
k
T , kn ∈ N × d. (8)

Further, to quantify the relations of learnt features in the joint
space we calculate the scaled dot-product similarity between rep-
resentations learned from temporal dimension and the ones learned
from the codebook and apply an activation function σ, to scale
the values. Since at this time we do not aim to promote com-
petition within codewords or timestamps, but rather learn a joint
two-dimensional attention matrix, we choose the sigmoid activation
function to scale the values to desirable range. An alternative can
be using softmax over flattened 2D representation, but we empiri-
cally observed no benefit in following this approach. Further, the
learnt attention matrix is applied element-wise to the input feature
representation. Following the widely-used definition of multi-head
self-attention [6], n attention matrices can be calculated indepen-
dently, with the outputs of all heads subsequently concatenated. The
attention matrix An corresponding to the head n, feature represen-
tation Φ̃n, and the combined feature representation Φ̃ are therefore
given as:

An = σ(
qnk

T
n√
d

) ∈ K ×N, (9)

Φ̃n = αnΦ+ (1− αn)An ⊙Φ, (10)

Φ̃ = [Φ̃1, ..., Φ̃n]. (11)

3.2. Codeword self-attention

A similar idea can be further developed into enhancing the inde-
pendent codebook and temporal attentions in 2DA. In the standard
definition, the projection matrix W outlined in Eq. 3 is fully learnt
from scratch, with a role of highlighting relevant codewords or tem-
poral features in Φ. Although by design the aim of W is to con-
verge to the values that reflect the relevance of the corresponding
codewords/timestamps, being optimized from scratch, nothing en-
sures or guides W towards reflecting these relations. To account for
this, we propose to explicitly derive the attention matrix by means of
calculating dot-product similarity of codewords in the latent space.
That is, considering the codeword attention, we define two learnable
projection matrices Wn

q ∈ d × N and Wn
k ∈ d × N from which

latent representations of Φ are learnt as:

qn = ΦWn
q
T ∈ K × d,

kn = ΦWn
k
T ∈ K × d. (12)

Following this, we can calculate the codeword attention as a K ×K
matrix following Eq. 9, where we utilize softmax as σ to promote
competition between codewords.

Note that unlike 2DA, following this approach the learnable pa-
rameters are responsible for merely learning a latent space, where
relevance of the codewords is explicitly calculated by means of dot
product similarity, rather than directly learning the relevance of each
codeword as in 2DA. The learnt attention matrix is subsequently
multiplied with a feature representation Φ to highlight the most rel-
evant codewords and multi-head approach can be followed here as
well:

Φ̃n = αnΦ+ (1− αn)AnΦ (13)

Φ̃ = [Φ̃1, ..., Φ̃n]. (14)

3.3. Temporal self-attention

Following the same principle, temporal self-attention can be defined
by quantifying temporal relevance of the representation by calculat-
ing this in a latent space. To achieve this, temporal self-attention can
be calculated by simply operating on the transpose of the feature rep-
resentation Φ, leading to N ×N attention matrix encoding relative
importance of each temporal dimension. Specifically, the queries,
keys, and combined multi-head representation can be achieved as
follows:

qn = ΦTWn
q
T ∈ N × d

kn = ΦTWn
k
T ∈ N × d (15)

Φ̃n = αnΦ
T + (1− αn)AnΦ

T (16)

Φ̃ = [(Φ̃1)
T , ..., (Φ̃n)

T] (17)

4. EXPERIMENTAL EVALUATION

In this section we report the experimental evaluation of the pro-
posed self-attention mechanisms and compare them with standard
2-DA attention. All the experiments are conducted with the logis-
tic formulation of Neural Bag of Features [7] that uses hyperbolic
kernel as a quantization layer and we use 256 codewords. We per-
form experiments on two tasks, namely, biosignal analysis and au-
dio analysis. We denote by 2DA-CA and 2DA-TA the conventional
2DA attention in its codebook and temporal formulations, respec-
tively, and by 2DA-CTSAd, 2DA-TSAd, and 2DA-CSAd - the pro-
posed variants of codebook-temporal self-attention, temporal self-
attention, and codebook self-attention with the dimensionality of the
latent space denoted by d. Note that d is a hyperparameter which
can be tuned, but we instead report the results across multiple val-
ues. Unless otherwise specified, single-head models are used.

4.1. Audio analysis

The first type of sequence data that we consider is audio. Specif-
ically, we evaluate the NBoF models with the proposed attention
approaches on the task of acoustic scene classification defined by
TUT-UAS2018 dataset [20]. The dataset poses a task of classifica-
tion of surrounding environments by their sounds, where 10 classes
of urban environments are defined: airport, shopping mall, metro sta-
tion, street pedestrian, public square, street traffic, tram, bus, metro,
park. We extract mel-spectrogram feature representations with 128
frequency bands that are used as an input to a set of convolutional
layers as defined in [17] to facilitate feature extraction, followed by
NBoF module. The models are trained for 90 epochs with Adam
optimizer and we use the batch size of 256. We utilize accuracy as
the performance metric and report the accuracy of validation set on
90th epoch averaged across three runs.

The results of the proposed attention models and competing
standard 2DA models are reported in Table I. Here and throughout
the paper, we highlight the best result in bold and underline the
results that outperform the baseline 2DA attention models. Specif-
ically, TSA, i.e., temporal self-attention is compared with TA, i.e.,
standard temporal attention, CSA is compared with CA, and CTSA
is considered to outperform standard 2DA if it outperforms both CA
and TA, i.e., both standard codeword and temporal attention models.

As can be seen in Table I, the best result is achieved by the
proposed temporal self-attention model that outperforms both 2DA
baselines. All of the proposed temporal self-attention models out-
perform the temporal 2DA, and similar result is achieved by code-
word self-attention that mostly outperforms codeword 2DA. All of

Table 1. Accuracies on TUT-UAS2018 dataset
Attention models TUT-UAS
2DA-CA 56.15 + 0.21
2DA-TA 56.09 + 0.51
2DA-CTSA512 56.20 + 1.11
2DA-CTSA256 57.53 + 1.28
2DA-CTSA128 56.84 + 1.07
2DA-CTSA64 56.56 + 0.59
2DA-TSA512 56.81 + 0.63
2DA-TSA256 57.55 + 1.40
2DA-TSA128 57.11 + 0.86
2DA-TSA64 56.91 + 0.91
2DA-CSA512 57.18 + 0.53
2DA-CSA256 55.62 + 1.11
2DA-CSA128 56.94 + 0.62
2DA-CSA64 56.74 + 1.44

the variants of the proposed codeword-temporal attentions outper-
form the baseline 2DA.

4.2. Biosignal analysis

The second type of sequence data considered by our approach is
biosignal data. Timely diagnosis of potential heart abnormalities,
such as atrial fibrillation or other cardiovascular diseases is an im-
portant problem in the modern world, with a multitude of solutions
proposed to address it. In our experiments addressed towards this
task, we consider two of the widely-adopted biosignals, namely,
Electrocardiogram (ECG) and Phonocardiogram (PCG). The first
dataset that we consider is the Atrial Fibrillation dataset (AF) that
poses the task of atrial fibrillation recognition from ECG signals
which are provided as the development data (training set) in the Phy-
sionet/Computing in Cardiology Challenge 2017 [21]. Specifically,
the task is formulated as a classification problem with 4 classes: nor-
mal sinus rhythm, atrial fibrillation, alternative rhythm, and noise.
Each ECG signal lasts between 9 to 60 seconds, which we clip or
zero-pad to achieve the length of 30 seconds. Further, prior to apply-
ing the NBoF module, we add several preprocessing convolutional
layers to the model to facilitate feature extraction. Specifically, we
utilize the same architecture as proposed in [17]. We perform 5-fold
cross-validation and report the average F1 score across the folds.
The rest of training hyperparameters are as described in audio clas-
sification task.

The second dataset considered for the task of biosignal analysis
is the PCG dataset of Phonocardiograms that come from the training
set provided in the Physionet/Computing in Cardiology Challenge
2016 [22]. Two different tasks are posed in this dataset: abnormal
phonocardiogram detection, and phonocardiogram quality evalua-
tion, where both tasks are binary classification problems. Due to
varying lengths of signals in the datset, we extract 5 second seg-
ments for classification similarly to [17]. For feature preprocessing,
we extract mel-spectrogram with 24 bands and a window of 25 ms,
which are subsequently fed to several preprocessing convolutional
layers similarly to [17] and then to NBoF model. Other training
hyperparameters are similar to those of AF dataset, except 3-fold
cross-validation is used due to the smaller daatset size.

The results of biosignal analysis tasks are shown in Table II. As
can be seen, in all three cases the best result is achieved by one of
the proposed variants. In PCG dataset, codeword-temporal variant
in high dimensions outperforms both codeword and temporal 2DA,

Table 2. F1 scores on biosignal datasets
Attention models PCG PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.75 + 0.78 73.75 + 1.81 77.56 + 1.75
2DA-CTSA256 87.46 + 1.30 73.50 + 0.77 77.55 + 2.42
2DA-CTSA128 87.74 + 0.65 73.62 + 1.80 76.96 + 1.24
2DA-CTSA64 87.07 + 1.02 73.38 + 1.36 77.87 + 1.71
2DA-TSA512 88.06 + 0.61 73.46 + 1.45 76.86 + 2.34
2DA-TSA256 87.26 + 0.52 74.14 + 1.77 76.87 + 1.86
2DA-TSA128 87.08 + 1.00 74.47 + 1.03 77.27 + 2.13
2DA-TSA64 87.77 + 0.61 73.31 + 1.58 76.99 + 1.74
2DA-CSA512 88.36 + 0.22 73.35 + 1.15 77.28 + 1.60
2DA-CSA256 88.38 + 0.55 73.95 + 0.90 77.70 + 1.90
2DA-CSA128 87.19 + 0.98 73.02 + 2.14 78.70 + 1.50
2DA-CSA64 87.71 + 0.44 72.79 + 0.67 77.96 + 1.88

and codeword self-attention significantly outperforms the codeword
2-DA. At the same time, in temporal representations the proposed
approach outperform the 2DA approach in quality evaluation task
on PCG dataset. Similar results are observed in AF dataset, where
proposed self-attention approaches outperform codeword and tem-
poral 2DA.

We further perform evaluation of the proposed methods with re-
spect to different parameters. Specifically, we evaluate utilization of
different number of heads in the models, as well as different Neural
Bag of Features formulations.

4.3. Self-attention with multiple heads

Using multiple heads in self-attention modules has been shown ben-
eficial in a variety of tasks, as learning multiple latent spaces in
parallel allows the model to jointly attend to information from dif-
ferent representation subspaces at different positions [6]. On the
other hand, using multiple heads yields additional model parameters.
Here, we evaluate the proposed self-attention modules with variants
consisting of 2 and 4 heads. In these variants, we use dropout of 0.2
on the attention matrix of codeword and temporal formulations as
defined in [6].

Table III shows the results on TUT-UAS dataset using 2 and 4
heads in multi-head self-attention. As can be seen, the proposed ap-
proaches mostly outperform the standard 2DA. Compared to single-
head variant, the multihead model with 4 heads perform the best,
leading to performance gain of tup to 2.5%. In terms of biosignal
datasets shown in Table IV, it can be seen that the overall results are
rather similar between the head numbers in terms of which variants
perform well in which datasets. In addition, utilization of multiple
heads bring an improvement similarly to the acoustic scene dataset.

4.4. Using other NBoF formulations

All experiments were performed with the logistic NBoF formulation
[7]. However, our proposed self-attention module can be equally
utilized with other formulations as well. Here, we evaluate our ap-
proaches and competing 2DA approaches using the temporal vari-
ant of NBoF that defines two codebooks, long-term and short-term
[8]. We refer to this method as TNBoF. Here we utilize the acous-
tic scene classification dataset and evaluate the TNBoF baseline with
our approaches with both single and multi-head variants, as shown in
Tables VI and VII. We can see that using this model, codeword self-

Table 3. Accuracies on TUT-UAS2018 dataset with 2 and 4 heads
Attention models TUT-UAS, h=2 TUT-UAS, h=4
2DA-CA 56.15 + 0.21 56.15 + 0.21
2DA-TA 56.09 + 0.51 56.09 + 0.51
2DA-CTSA512 57.23 + 1.00 57.04 + 0.80
2DA-CTSA256 56.15 + 1.17 58.52 + 0.70
2DA-CTSA128 57.48 + 0.64 58.02 + 0.45
2DA-CTSA64 54.91 + 1.22 58.07 + 1.92
2DA-CTSA32 57.21 + 0.29 56.31 + 0.74
2DA-TSA512 56.61 + 0.91 55.82 + 1.18
2DA-TSA256 55.80 + 0.98 56.07 + 0.48
2DA-TSA128 55.84 + 0.51 57.62 + 1.71
2DA-TSA64 57.83 + 0.16 56.71 + 0.81
2DA-TSA32 56.31 + 1.10 57.83 + 0.23
2DA-CSA512 57.40 + 0.23 57.13 + 1.20
2DA-CSA256 56.37 + 1.24 55.45 + 0.71
2DA-CSA128 55.62 + 1.18 56.91 + 1.31
2DA-CSA64 56.99 + 1.21 56.54 + 1.45
2DA-CSA32 56.04 + 1.06 56.26 + 1.53

Table 4. F1 scores on biosignal datasets with 2 heads
Models PCG-1 PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.80 + 0.73 74.57 + 1.14 76.43 + 2.78
2DA-CTSA256 87.84 + 0.12 73.14 + 0.70 76.60 + 1.70
2DA-CTSA128 87.24 + 0.74 73.77 + 1.02 77.06 + 1.39
2DA-CTSA64 88.04 + 0.52 73.73 + 1.16 76.98 + 1.92
2DA-CTSA32 87.63 + 0.83 73.69 + 0.98 77.79 + 2.00
2DA-TSA512 86.98 + 0.76 73.66 + 0.78 76.77 + 2.26
2DA-TSA256 87.61 + 0.70 73.32 + 1.15 76.31 + 1.59
2DA-TSA128 87.69 + 1.11 72.64 + 2.19 77.23 + 1.48
2DA-TSA64 87.09 + 0.60 73.55 + 0.80 77.21 + 1.95
2DA-TSA32 87.03 + 0.44 74.38 + 1.81 77.41 + 2.18
2DA-CSA512 87.47 + 0.78 72.97 + 0.72 77.88 + 1.43
2DA-CSA256 88.31 + 0.60 74.94 + 1.77 77.70 + 1.69
2DA-CSA128 87.33 + 0.68 74.46 + 0.62 77.47 + 0.96
2DA-CSA64 87.49 + 0.84 73.41 + 1.13 76.91 + 1.11
2DA-CSA32 87.72 + 0.57 73.08 + 0.60 76.69 + 1.22

Table 5. F1 scores on biosignal datasets with 4 heads
Attention models PCG-1 PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.88 + 0.56 74.34 + 0.85 77.09 + 1.24
2DA-CTSA256 88.04 + 0.53 73.37 + 1.94 78.26 + 1.69
2DA-CTSA128 86.91 + 0.29 72.60 + 1.18 77.51 + 1.75
2DA-CTSA64 86.65 + 0.57 73.62 + 1.58 77.87 + 2.29
2DA-CTSA32 87.74 + 0.67 73.12 + 0.13 77.61 + 1.66
2DA-TSA512 86.94 + 0.60 72.92 + 1.76 76.69 + 1.54
2DA-TSA256 87.45 + 0.71 73.59 + 0.89 77.13 + 1.84
2DA-TSA128 87.20 + 0.23 73.37 + 0.80 77.03 + 2.18
2DA-TSA64 87.29 + 0.39 74.07 + 1.11 76.94 + 2.47
2DA-TSA32 87.03 + 0.90 73.69 + 0.73 77.56 + 1.80
2DA-CSA512 88.27 + 0.63 73.29 + 1.51 77.77 + 1.72
2DA-CSA256 88.59 + 0.81 74.16 + 1.58 77.59 + 1.64
2DA-CSA128 87.67 + 0.41 72.82 + 1.82 77.30 + 1.60
2DA-CSA64 87.37 + 0.56 73.60 + 1.40 77.26 + 1.67
2DA-CSA32 87.12 + 0.66 74.35 + 0.97 76.73 + 1.77

Table 6. Accuracy scores on TUT-UAS2018 datast with TNBoF
model with 1 head

Attention models TUT-UAS, TNBoF
2DA-CA 56.79 + 0.60
2DA-TA 55.89 + 0.34
2DA-CTSA64 57.04 + 0.84
2DA-CTSA128 56.51 + 0.46
2DA-CTSA256 57.35 + 1.05
2DA-CTSA512 58.19 + 0.62
2DA-TSA64 56.94 + 0.63
2DA-TSA128 56.46 + 0.63
2DA-TSA256 56.32 + 0.26
2DA-TSA512 56.09 + 0.62
2DA-CSA64 55.70 + 0.20
2DA-CSA128 56.41 + 0.44
2DA-CSA256 56.83 + 0.57
2DA-CSA512 56.46 + 0.29

Table 7. Accuracy scores on TUT-UAS2018 dataset with TNBoF
model with 2 and 4 heads, respectively

Attention models TUT-UAS, TNBoF
h=2 h=4

2DA-CA 56.79 + 0.60 56.79 + 0.60
2DA-TA 55.89 + 0.34 55.89 + 0.34
2DA-CTSA512 56.26 + 0.92 56.36 + 0.82
2DA-CTSA256 57.08 + 0.86 56.57 + 0.65
2DA-CTSA128 57.77 + 0.91 57.31 + 1.01
2DA-CTSA64 56.51 + 1.89 56.42 + 0.22
2DA-CTSA32 57.25 + 0.91 57.38 + 0.79
2DA-TSA512 56.51 + 1.03 56.79 + 0.59
2DA-TSA256 57.45 + 0.97 56.98 + 1.79
2DA-TSA128 56.61 + 1.16 56.78 + 0.58
2DA-TSA64 55.95 + 0.99 56.24 + 1.24
2DA-TSA32 56.17 + 0.31 58.40 + 0.70
2DA-CSA512 55.89 + 0.52 56.15 + 1.47
2DA-CSA256 57.13 + 1.18 56.29 + 1.97
2DA-CSA128 57.04 + 1.11 55.45 + 0.41
2DA-CSA64 55.77 + 1.58 55.95 + 0.91
2DA-CSA32 55.60 + 0.68 57.09 + 0.71

attention mostly outperforms the basedline codeword 2DA, and the
other variants mostly outperform the baseline. At the same time, it
can be seen that overall the best performing variant is the single-head
one, hence utilization of additional heads degrades the performance
rather than improves it in this case.

5. CONCLUSION

In this paper, we revisited the standard formulation of a 2DA atten-
tion mechanism and proposed several ways of enhancing it. The pro-
posed ways are based on self-attention and allow to quantify code-
word and/or temporal relevances through latent spaces rather than
learning them directly. We evaluated the proposed approaches to-
gether with the Neural Bag-of-Features model on a few sequence
learning tasks. The experimental evaluation has shown the benefits
of the proposed approaches. Since the proposed attention models are
generic methods aimed towards multivariate sequence data, further
work into its applications with other architectures and tasks remains
as a future research direction.

6. REFERENCES

[1] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,
“Speech recognition with deep recurrent neural networks,” in
2013 IEEE international conference on acoustics, speech and
signal processing. IEEE, 2013, pp. 6645–6649.

[2] Bin Zhao, Xuelong Li, and Xiaoqiang Lu, “Hsa-rnn: Hier-
archical structure-adaptive rnn for video summarization,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7405–7414.

[3] Shraddha Singh, Saroj Kumar Pandey, Urja Pawar, and
Rekh Ram Janghel, “Classification of ecg arrhythmia using
recurrent neural networks,” Procedia computer science, vol.
132, pp. 1290–1297, 2018.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” arXiv preprint arXiv:1409.0473, 2014.

[5] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[7] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef
Gabbouj, and Alexandros Iosifidis, “Temporal logistic neural
bag-of-features for financial time series forecasting leveraging
limit order book data,” Pattern Recognition Letters, vol. 136,
pp. 183–189, 2020.

[8] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef
Gabbouj, and Alexandros Iosifidis, “Temporal bag-of-features
learning for predicting mid price movements using high fre-
quency limit order book data,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 4, no. 6, pp. 774–
785, 2018.

[9] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 7132–7141.

[10] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon, “Cbam: Convolutional block attention module,” in
Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 3–19.

[11] Firas Laakom, Kateryna Chumachenko, Jenni Raitoharju,
Alexandros Iosifidis, and Moncef Gabbouj, “Learning to ig-
nore: rethinking attention in cnns,” in British Machine Vision
Conference (BMVC), 2021.

[12] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce, “Be-
yond bags of features: Spatial pyramid matching for recogniz-
ing natural scene categories,” in 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’06). IEEE, 2006, vol. 2, pp. 2169–2178.

[13] Yu-Gang Jiang, Chong-Wah Ngo, and Jun Yang, “Towards
optimal bag-of-features for object categorization and semantic
video retrieval,” in Proceedings of the 6th ACM international
conference on Image and video retrieval, 2007, pp. 494–501.

[14] Matthew Riley, Eric Heinen, and Joydeep Ghosh, “A text re-
trieval approach to content-based audio retrieval,” in Int. Symp.
on Music Information Retrieval (ISMIR), 2008, pp. 295–300.

[15] Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas,
“Multidimensional sequence classification based on fuzzy dis-
tances and discriminant analysis,” IEEE Transactions on
Knowledge and Data Engineering, vol. 93, no. 6, pp. 1445–
1457, 2013.

[16] Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas, “Dis-
criminant bag of words based representation for human action
recognition,” Pattern Recognition Letters, vol. 49, pp. 185–
192, 2014.

[17] Dat Thanh Tran, Nikolaos Passalis, Anastasios Tefas, Moncef
Gabbouj, and Alexandros Iosifidis, “Attention-based neural
bag-of-features learning for sequence data,” arXiv preprint
arXiv:2005.12250, 2020.

[18] Firas Laakom, Nikolaos Passalis, Jenni Raitoharju, Jarno
Nikkanen, Anastasios Tefas, Alexandros Iosifidis, and Moncef
Gabbouj, “Bag of color features for color constancy,” IEEE
Transactions on Image Processing, vol. 29, pp. 7722–7734,
2020.

[19] Nikolaos Passalis and Anastasios Tefas, “Neural bag-of-
features learning,” Pattern Recognition, vol. 64, pp. 277–294,
2017.

[20] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen, “Tut
acoustic scenes 2017, evaluation dataset,” Nov. 2017.

[21] Gari D Clifford, Chengyu Liu, Benjamin Moody, H Lehman
Li-wei, Ikaro Silva, Qiao Li, AE Johnson, and Roger G Mark,
“Af classification from a short single lead ecg recording: The
physionet/computing in cardiology challenge 2017,” in 2017
Computing in Cardiology (CinC). IEEE, 2017, pp. 1–4.

[22] Gari D Clifford, Chengyu Liu, Benjamin Moody, David
Springer, Ikaro Silva, Qiao Li, and Roger G Mark, “Classi-
fication of normal/abnormal heart sound recordings: The phy-
sionet/computing in cardiology challenge 2016,” in 2016 Com-
puting in cardiology conference (CinC). IEEE, 2016, pp. 609–
612.

D3.3: Third report on deep human centric active perception and cognition 153/223

8.8 Self-Attention Fusion for Audiovisual Emotion Recognition with In-
complete Data

The appended paper follows.

OpenDR No. 871449

Self-attention fusion for audiovisual emotion
recognition with incomplete data
Kateryna Chumachenko1, Alexandros Iosifidis2 and Moncef Gabbouj1
1Department of Computing Sciences, Tampere University, Tampere, Finland

2Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
Emails: {kateryna.chumachenko,moncef.gabbouj}@tuni.fi, ai@ece.au.dk

Abstract—In this paper, we consider the problem of multi-
modal data analysis with a use case of audiovisual emotion
recognition. We propose an architecture capable of learning from
raw data and describe three variants of it with distinct modality
fusion mechanisms. While most of the previous works consider
the ideal scenario of presence of both modalities at all times
during inference, we evaluate the robustness of the model in the
unconstrained settings where one modality is absent or noisy,
and propose a method to mitigate these limitations in a form of
modality dropout. Most importantly, we find that following this
approach not only improves performance drastically under the
absence/noisy representations of one modality, but also improves
the performance in a standard ideal setting, outperforming the
competing methods.

I. INTRODUCTION

Recognition of human emotional states is an important
task within the field of machine learning, enabling better
understanding of social signals in the wide range of appli-
cations ranging from robotics to human-computer interaction
[1], [2]. Multiple approaches and emotion models have been
proposed to date, ranging from the task of recognizing discrete
emotional states, such as ‘happy’, ‘angry’, or ‘sad’, to the
estimation of emotional attributes, such as arousal and valence
on a continuous scale [3], [4]. The task has been approached
from multiple angles with different data types used as input,
including text [5], speech [6], and images [7].

With the abundance of available data, a wide range of
methods aiming to fully take advantage of this data are
emerging, giving momentum to the development of multi-
modal methods [8], [9], [10]. Multi-modal methods are a
class of methods that operate jointly on multiple data types.
These include, among others, video data that consists of audio
and visual modalities [11], joint RGB and depth images [12],
and RGB and skeleton data [13]. Methods operating on such
multi-modal representations range from simple decision-level
fusion approaches to more advanced joint feature learning
approaches. Although fusion of intermediate features can
potentially yield better performance due to joint learning of
representations of multiple modalities, late or early fusion
remain a popular choice in modern architectures due to their
simplicity and versatility [8]. On the other hand, early fusion
is not suitable for fusion of drastically different data types,

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871449
(OpenDR).

while late fusion primarily only considers features learnt in
each modality independently.

Most multi-modal methods developed to date assume full
presence of all the adopted modalities at all times during
inference, and only evaluate the performance of the models
in such a setting. Nevertheless, in real-world applications it
is often probable for one of the modalities to be missing or
having poor quality at certain times, hence robustness of the
model to such scenarios is an essential factor in building multi-
modal systems operating on real-world data.

In the task of multi-modal emotion recognition, especially
in the recent transformer-based architectures, the trend has
been largely in utilization of pre-extracted features that are
subsequently fused with a learnt model, rather than creating
end-to-end trainable models [14], [15], [16]. This limits the
applicability of such methods in real-world scenarios, as nec-
essary feature extraction is often challenging in unconstrained
settings and introduces another point of uncertainty to the
overall processing pipeline. This is especially the case for
the methods adopting language information [14], [15], as text
transcriptions of audio signals are rarely available in practical
applications and require separate estimation. We therefore
primarily target the task of audiovisual emotion recognition
that does not require separate feature learning.

In our work, we aim to address these limitations of existing
multi-modal emotion recognition methods by building an end-
to-end model that does not require prior feature learning, and
performing fusion at intermediate level, while being robust to
incomplete or noisy data samples. Our contributions can be
summarized as follows:

• We propose a new architecture for audiovisual emotion
recognition from facial videos and speech which does not
rely on separately learnt features and learns end-to-end
from raw videos;

• We employ several modality fusion approaches and pro-
pose an attention-based intermediate feature fusion ap-
proach that softly attends to modality-independent fea-
tures. To the best of our knowledge, such approach has
not been proposed before;

• We propose a new training scheme based on modality
dropout mechanisms aimed to improve the robustness
of the model under incomplete or noisy data of one
modality. We additionally find that the proposed approach

yields better performance also in the standard case under
presence of both modalities.

II. RELATED WORK

Emotion recognition has received a significant amount of
attention by the machine learning community, and a number of
methods aiming to solve this task have been proposed to date.
These methods operate on various data types, such as images
[7], speech [6], text [5], or biosignals [17]. At the same time,
methods combining these modalities have been proposed as
well [14], [16], [15] employing different multi-modal fusion
techniques.

Within the field of multimodal machine learning, generally,
three classes of multi-modal fusion approaches are identified:
early fusion, where the input data of multiple modalities are
simply combined via concatenation, addition, or any other
operation and further processed together; late fusion, where
modalities are treated independently and their features or
softmax classification scores are only combined in the very last
layers; and intermediate feature fusion, where feature sharing
is performed at middle layers of the network and hence the
feature representations of different modalities are learnt jointly.

A notable set of approaches in multimodal fusion rely on
utilization of self-attention [18]. Recall that self-attention is
formulated via calculating the dot-product similarity in the
latent space, where queries q, keys k, and values v are
learnt from input feature representation via learnable projec-
tion matrices Wq,Wk,Wv , and an attented representation is
calculated based on them:

An = softmax

(
qkT

√
d

)
v, (1)

where d is the dimensionality of a latent space. Considering
the task of fusion of two modalities a and b, self-attention
can be utilized as a fusion approach by calculating queries
from modality a and keys and values from modality b. This
results in representation learnt from modality a attending to
corresponding modality b and further applying the obtained
attention matrix to the representation learnt from modality b.

This idea has been extensively utilized for solving a plethora
of tasks involving multimodal fusion. In the context of emo-
tion/affect recognition, notable works include [14], [16], [15].
In [14] the authors propose a multimodal transformer-based
architecture for unaligned multimodal language sequences and
consider fusion of three modalities, namely, audio, vision,
and text. Data from each modality is first projected via a
1D convolutional layer to the desired dimensionality, and
further, a set of transformer blocks is applied. Specifically, two
transformer modules are utilized in each modality branch, with
each of the two modules being responsible for fusion of one
of the other modalities with the modality of the given branch
following the above-specified approach. These representations
are subsequently concatenated and another transformer module
is applied in each modality branch on joint representations.
The processed representations from each of three branches are
subsequently concatenated for final classification.

Another relevant work is [16] where audio and visual
modalities are considered for the task of emotion recognition.
There, each modality is first preprocessed with a separate
transformer block and representations learnt from each modal-
ity are fused with a transformer in a manner similar to Eq. (1).
Compared to previous work, only one modality is fused into
the other one, rather than performing fusion in a pair-wise
manner in separate branches.

Another work described in [15] considers emotion recog-
nition from speech and text modalities. Similarly, they first
perform modality-specific feature learning by means of convo-
lutional blocks, and further employ two cross-modal attention
blocks with one fusion audio into text, and the other one
performing fusion into opposite direction. The statistics is
pooled from each branch and concatenated for prediction.

As can be noticed, all the aforementioned methods are rather
similar in their fusion strategies in that the transformer fusion
is the building block of each of them, and the differences
between the architectures are rather nominal and dataset-
specific. At the same time, it can be noted that the models
focus on building multimodal fusion methods rather than
end-to-end emotion recognition systems, and often employ
features that require separate estimation, especially for the
vision modality. For example, [14] and [16] rely on facial
action units as features, and [14] and [15] utilize language
modality which requires separate annotation or estimation in
practical application.

It should also be noticed that all three mentioned methods
perform fusion in early or intermediate stages in the pipeline,
forcing joint representations to be learnt. While benefiting
from the joint feature learning, such fusion can become a
curse if the learnt fused representations are too co-dependent
and one of the modalities is noisy, incomplete, or simply non-
existing during inference. Indeed, common practice has been
to only evaluate the performance of the models under the ideal
scenario of both modalities being present and complete at all
times, while real-world applications do not necessarily reflect
such scenarios.

III. PROPOSED METHODS

Here we describe the overall architecture of the proposed
audiovisual emotion recognition model as well as three self-
attention based modality fusion methods. Further, we propose
an approach for accounting for missing data in one modality
during inference in a form of modality dropout. On a general
level, the model consists of two branches responsible for
learning audio and visual features, respectively, and fusion
modules placed either in the end or in the middle of the
two branches depending on the feature fusion type, as shown
in Figure 1. In both audio and visual branches, the 1D
Convolutional blocks that are applied in a temporal dimension
are primarily used.

A. Feature extraction

1) Vision branch: The vision branch consists of two parts,
with the first part being the visual feature extraction from

Fig. 1: Multimodal data fusion approaches.

individual video frames, followed by learning of joint rep-
resentation for the whole video sequence. To achieve an end-
to-end trainable model capable of learning from raw video, we
employ feature extraction as part of our pipeline and optimize
it jointly with the multimodal fusion module, unlike the vast
majority of existing works that separate feature extraction from
multimodal fusion and mostly utilize pre-extracted features,
such as facial landmark locations, facial action units, or head
pose information [14], [16]. We choose one of the recently
proposed facial expression recognition architectures, namely,
EfficientFace [7] and incorporate it for feature extraction from
individual frames prior to introducing them to subsequent 1D
convolutional blocks. Specifically, the 1D convolutional blocks
are added after average-pooled output of the last convolutional
block of EfficientFace.

Considering an input video sequence of k frames, each
of the k frames is processed independently by a 2D feature
extractor, resulting in a single vector descriptor for each frame.
These representations are further concatenated and processed
in a temporal dimension with the temporal convolution blocks
described further. We choose to follow this approach, as
opposed to directly employing 3D-convolutions as commonly
done in video tasks, as it provides a number of advantages in
the given task, with the first one being the lower computational
overhead brought by 2D convolutional layers compared to 3D
convolutions. It can also be argued that temporal relations
are of less importance in emotion recognition task, hence 1D
convolutional operations applied in temporal dimension are
sufficient to capture this information. Another major benefit of
following the proposed approach is the ability to employ 2D
feature extractor pre-trained on larger image-based emotion
recognition datasets, as such datasets are significantly less
common for videos that are necessary for pre-training 3D-
convolutional models.

Although we are primarily interested in building an end-to-
end pipeline that can learn from raw data, the first part, i.e.,
visual feature extraction can be decoupled from the model
and any other features can be used instead as input to the

Architecture of the visual branch
EfficientFace module

Stage1
Reshape

Conv1D [k=3, d=64, s=1] + BN1D + ReLU
Conv1D [k=3, d=64, s=1] + BN1D + ReLU

Stage2 Conv1D [k=3, d=128, s=1] + BN1D + ReLU
Conv1D [k=3, d=128, s=1] + BN1D + ReLU

Predict Global Average Pooling + Linear

Architecture of the audio branch

Stage1 Conv1D [k=3, d=64] + BN1D + ReLU + MaxPool1d [2x1]
Conv1D [k=3, d=128] + BN1D + ReLU + MaxPool1d [2x1]

Stage2 Conv1D [k=3, d=256] + BN1D + ReLU + MaxPool1d [k=2]
Conv1D [k=3, d=128] + BN1D + ReLU + MPool1D [k=2]

Predict Global Average Pooling + Linear

TABLE I: Architecture of the visual and audio modules

second part of the vision branch. That is, in the second part of
the architecture, we assume that certain feature representation
XN×d

v has been extracted from input visual data, where N
denotes the temporal dimension, and d denotes the feature
dimension. Here Xv can be represented by any feature types,
either deep features extracted using a pre-trained model, or
other features commonly used for emotion recognition, such
as facial action units or landmarks. We further apply a se-
quence of four convolutional blocks for learning a temporal
representation. Each convolutional block consists of an 1D
Convoluitonal layer with a 3×3 kernel, Batch Normalization,
and a ReLU activation. Further details can be seen in Table 1
that provides full details of vision branch, where k denotes the
kernel size, d denotes the number of filters in a convolutional
layer, and s denotes the stride. The convolutional blocks
are grouped into two stages for multimodal fusion described
further.

2) Audio branch: Similarly to the vision branch, the audio
branch operates on a feature representation, whether pre-
computed or optimized jointly, and applies four blocks of 1D
convolutional layers. Each block consists of a Convolutional
layer, Batch Normalization, ReLU activation, and MaxPooling,
with the specifications defined in Table 1. For audio, we

primarily use mel-frequency cepstral coefficients as features.
We observed no benefit in using other feature representation
types, such as chroma features or spectrograms.

B. Modality fusion approaches

In this section, we describe the considered fusion ap-
proaches. We will first describe the late transformer fusion
approach that is similar to previous works described in the
literature, and then describe the two proposed intermediate
fusion approaches.

1) Late transformer fusion: In this setup, features learnt
from two branches are fused with a transformer block. Specif-
ically, we employ two transformers at the outputs of each
branch, where fusion of one modality is performed into the
other one. The outputs of these transformer blocks are further
concatenated and passed to the final prediction layer. Formally,
this can be defined as follows.

Let Φa and Φv be the feature representations of audio and
vision modalities after the second feature extraction stage, i.e.,
after the fourth convolutional block. A transformer block is
added in each branch, taking representations of two modalities
as inputs. Considering the audio branch as an example, the
transformer block takes the vision branch representation Φv

as input and projects it to obtain keys and values, while queries
are computed from the audio branch features Φa. That is, self-
attention is calculated as

A = softmax

(
ΦaWqW

T
k Φ

T
v√

d

)
ΦvWv, (2)

followed by standard transformer block processing [18]. The
specific architecture of the transformer block is outlined in
Figure 2.

Φ̂ = Φv ⊙ vv, (3)

Fig. 2: Structure of the Transformer block.

The outputs of the two transformer blocks are concatenated
and passed to the final layer for prediciton.

2) Intermediate transformer fusion: We propose the uti-
lization of similar to the above-described transformer blocks
for fusion at intermediate feature layers. Specifically, fusion is
performed with a transformer block in each branch after the
first stage of feature extraction, i.e., after two convolutional
layers. Similar architecture to the one described in Figure 1

is used, and the fused feature representation is added to the
corresponding branch.

Since data from complementary modality is introduced
already at the earlier stage of the architecture, this allows to
learn the features that are jointly meaningful for the task at
hand between modalities during later convolutional layers.

3) Intermediate attention-based fusion: We further propose
a fusion approach that is based merely on dot-product simi-
larity that constitutes the attention in the transformer block.
Formally, this is defined as follows. Given the two feature
representations of different modalities Φa and Φb, we compute
queries and keys with learnt weights, similarly to conventional
attention. The scaled dot-product similarity is subsequently
calculated as

A = softmax

(
ΦaWqW

T
k Φ

T
v√

d

)
. (4)

Softmax activation promotes competition in the attention ma-
trix, hence highlighting more important attributes/timestamps
of each modality, and as a result providing the importance
score of each key with respect to each query, i.e., each
representation of modality a with respect to modality b. This
allows to calculate the relative importance of each attribute
of modality a by aggregating the scores corresponding to all
the attributes of modality b for each attribute of modality
a. As a result, we obtain an attention vector that can be
used to highlight more relevant attributes of the modality
a. Considering the dot-product attention between features of
audio and vision modalities shown in Equation 3, attention
vector of vision modality is given by vv =

∑
i=Nv

A[:, i].
Note that such a fusion approach does not directly fuse fea-

tures of the two modalities. Instead, it identifies the attributes
within each modality that are most relevant based to their
similarity scores with data of the other modality. As a result,
features that agree between the two modalities contribute the
most to the final prediction, hence guiding the model towards
learning modality-agnostic features or features with high level
of agreement between the modalities. Such approach enables
sharing of information between modalities, while not enforc-
ing strong co-dependency of the learnt features in different
branches as only attention scores are used for fusion.

C. Modality dropout

The vast majority of the multimodal learning methods
described to date assume the presence of both modalities at
all times during inference. Nevertheless, oftentimes in real-
world applications data of one or more modalities might not
be reliable or may be missing at times. In such scenarios,
conventional multi-modal approaches tend to fail. Here, we
aim to account for the potential cases of missing data and
propose the modality dropout as a way of mitigating it. As
will be shown further, utilization of this approach leads to
improved performance also in situations where both modalities
are present.

We propose the modality dropout, which randomly masks
out or attenuates data of one of the modalities during training.

Specifically, we consider three variants. In the first variant, dur-
ing training, data of one modality in each sample is randomly
selected and replaced with zeros, while the representation of
the other modality for a given sample is kept intact. This
approach imitates missing data and can also act as a regularizer
similarly to Dropout layer utilized in neural networks. Note
that in the case of the third fusion approach and absence of
bias terms, this results in zero dot similarity matrix in the
attention block, which after softmax and summation leads to
constant attention vector, hence no information transfer from
the zeroed modality.

In the second variant, for each pair of data samples we
generate a random scaling factor α in the range [0,1] [19]
and multiply one of the modalities by α, while the other
with 1 − α. The goal of this approach is to attenuate signals
from different modalities at different training steps, and hence
prevent the model from learning from strictly one modality. We
further refer to this approach as ‘soft’ modality dropout. The
third variant is aimed at the problem of noisy data, where the
input signal of one modality is corrupted. Here, the masking
is performed similarly to the first variant, except rather than
zero-masking, the data is randomly generated from a normal
distribution with zero mean and unit variance in one of the
modalities for each sample.

IV. EXPERIMENTS

In this section we describe the experimental protocol and
the data used for assessing the performance of the proposed
approaches. We report the results of the proposed model with
three fusion variants, as well as recent multimodal emotion
recognition methods, namely MULT [14] and multimodal
transformer [16]. Note that both methods report results on
datasets consisting of pre-extracted features. In addition, [14]
considers three modalities, and [16] does not provide details
on specific hyperparameters of the architecture, making direct
comparison infeasible. We therefore adopt our feature extrac-
tion and compare with competing works only in terms of the
fusion approaches described in these works. Specifically, to
compare with [16] we employ a transformer block on top of
our two convolutional branches that performs fusion either
from audio to video, or in the opposite direction, and replace
linear layers in the transformer block with 1D-convolutional
ones. Regarding MULT [14], we want to compare with purely
audiovisual model, so we remove the transformer blocks re-
sponsible for fusion from/to the language modality. This yields
the architecture that is similar to our late transformer fusion,
with additional single modality transformer blocks added in
each branch. Other hyperparameters, such as latent space
dimensionality, are kept identical between the methods for fair
comparison. Similarly to the comparison with [14], we add
our feature extraction blocks to the model. Unless otherwise
specified, we use a single transformer block with single head
everywhere to achieve a lightweight model. Naturally, better
performance can be expected from adding additional blocks
and parameters to the models. We used [20] for transformer
block implementation.

Subsequently, we perform experiments with modality
dropout in two settings. In the first one, we target the problem
of missing data from one modality and apply both soft and
hard modality dropout during training. That is, in this setting,
in each batch the data consists of the pairs of full data, pairs
without audio modality, pairs without video modality, and
pairs multiplied with random coefficients as described above.
We report the performance in the presence of both modalities
(denoted by ‘AV’), as well as in the full absence of one
modality (denoted by ‘A’ or ‘V’ for presence of only audio
and video modalities, respectively). We additionally report the
average metric over the three modality settings (denoted by
‘M’) to simplify the comparison between methods. In the
second setting, we consider robustness towards noise and apply
the third variant of modality dropout during training, and
replace one of the modalities with random noise during testing.

1) RAVDESS dataset: We choose RAVDESS dataset [21]
primarily due to availability of raw data in this dataset, as
opposed to others. The dataset consists of video recordings of
24 people speaking with different emotions and poses a task of
classification of emotional states into 7 classes: calm, happy,
sad, angry, fearful, surprise, and disgust. 60 video sequences
were recorded for each actor, and we crop or zero-pad them to
3.6 seconds, which is the average sequence length. For audio
processing, we extract 10 Mel-frequency cepstral coefficients
for further processing. For visual data, we select 15 uniformly
distributed frames from 3.6 second video, and crop the faces
of actors using a face detection algorithm [22]. Images are
resized into 224x224 pixels. We train the model on raw 15-
frame videos. We transfer the weights of EfficientFace pre-
trained on AffectNet dataset [4]. We split the data into training,
validation and test sets ensuring that the identities of actors
are not repeated across sets. Specifically, we used four actors
for testing, four for validation, and 16 for training, and report
the result averaged over five folds. The videos are scaled into
[0,1] scale, and random horizontal flip and random rotation
are used for data augmentation. All the models are trained for
100 epochs with SGD, learning rate of 0.04, momentum of
0.9, weight decay of 1e-3, and reduction of learning rate on
plateau of 10 epochs.

2) CMU-MOSEI dataset: We additionally conduct experi-
ments on CMU-MOSEI dataset. The dataset consists of 23,454
movie review video clips taken from YouTube and labeled by
human annotators with a sentiment score in the range [-3..3].
Note that we only consider audio and visual modalities in our
experiments. Since the dataset provides pre-extracted features
rather than raw data (specifically, 35 facial action units are
provided for vision modality and audio data is represented by
mfccs, pitch tracking, glottal source and peak slope parameters
resulting in 74 features), we omit the EfficientFace feature
extraction in the vision branch and training is performed
starting from convolutional blocks directly. We rely on the
implementation of [14] for the experimental protocol on
CMU-MOSEI dataset and adopt the training hyperparameters
described in therein.

RAVDESS. ACC MOSEI. ACC MOSEI. MAE
AV A V M AV A V M AV A V M

LT1 79.33 19.83 36.41 45.19 63.89 48.70 62.85 58.48 0.806 0.840 1.063 0.903
LT4 76.42 27.92 30.00 44.78 66.56 62.63 53.16 60.78 0.806 0.839 0.831 0.825
IT1 76.41 21.16 18.33 38.63 67.72 37.14 62.87 55.91 0.792 0.843 0.809 0.815
IT4 78.50 20.33 17.33 38.72 64.91 62.60 62.85 63.45 0.817 0.840 0.832 0.830
IA1 76.00 18.58 22.83 39.13 64.94 62.08 62.86 63.29 0.802 0.837 0.806 0.815
IA4 77.41 20.66 29.83 42.63 67.72 63.07 65.77 65.52 0.794 0.837 0.803 0.811
TAV 77.75 24.25 13.33 38.44 64.94 62.08 62.86 62.18 0.814 0.841 1.093 0.916
TVA 76.00 15.16 42.67 44.61 66.48 37.15 56.96 53.53 0.809 0.852 0.838 0.833
MLT 74.16 22.33 35.42 43.97 62.90 62.85 64.44 63.40 0.804 0.838 0.804 0.815

MODALITY DROPOUT
LT1 79.08 59.16 72.66 70.30 67.11 63.62 62.90 64.54 0.802 0.829 0.801 0.811
LT4 79.25 53.00 70.92 67.72 64.47 53.71 64.91 61.03 0.814 0.837 0.819 0.824
IT1 77.33 48.41 73.75 66.50 62.80 62.85 63.09 62.91 0.804 0.831 0.803 0.813
IT4 78.91 44.33 74.92 66.05 67.01 64.30 63.12 64.81 0.796 0.826 0.797 0.806
IA1 81.58 58.08 72.83 70.83 67.19 64.52 64.91 65.54 0.795 0.816 0.798 0.803
IA4 79.58 57.16 71.83 69.52 63.48 62.74 63.18 63.13 0.807 0.820 0.808 0.812
TAV 76.58 54.83 13.33 48.24 65.32 63.84 62.85 64.01 0.811 0.832 0.839 0.828
TVA 74.42 44.91 69.58 62.97 67.61 63.98 60.95 64.18 0.793 0.819 0.798 0.803
MLT 78.50 53.58 70.66 67.58 63.87 62.85 63.37 63.36 0.806 0.836 0.835 0.826

MODALITY DROPOUT with NOISE
LT1 77.08 53.16 68.50 66.24665.57 64.03 64.94 64.94 0.809 0.826 0.806 0.813
LT4 80.33 54.33 73.00 69.22 64.08 63.31 62.85 62.85 0.813 0.827 0.813 0.818
IT1 76.75 53.75 71.58 67.36 68.16 65.98 63.53 63.53 0.799 0.821 0.804 0.808
IT4 76.08 54.50 71.00 67.19 67.83 63.56 64.22 64.22 0.801 0.826 0.802 0.809
IA1 78.25 58.25 71.66 69.38 62.76 63.89 63.18 63.27 0.804 0.819 0.805 0.809
IA4 78.41 55.75 68.58 67.58 63.51 64.08 62.54 63.37 0.805 0.820 0.808 0.811
TAV 75.83 56.25 12.83 48.30 66.81 65.68 65.60 66.03 0.810 0.820 0.811 0.813
TVA 73.66 41.25 71.41 62.10 66.23 63.18 64.58 64.66 0.804 0.831 0.806 0.813
MLT 77.41 54.16 66.33 65.96 64.52 62.74 63.51 63.59 0.805 0.830 0.805 0.811

TABLE II: Performance of different fusion methods on
RAVDESS and MOSEI.

MOSEI. ACC MOSEI. MAE
AV A V M AV A V M

IT1 64.66 38.80 63.12 55.53 0.821 0.857 0.803 0.827
IT4 65.90 37.23 62.85 55.32 0.805 0.845 1.932 1.194
IA1 64.09 62.85 63.42 63.45 0.799 0.838 0.807 0.815
IA4 64.74 37.28 61.28 54.43 0.803 0.842 0.808 0.818
MLT 67.66 56.90 60.73 61.76 0.787 0.838 0.836 0.821

MODALITY DROPOUT
IT1 65.41 62.85 64.06 64.11 0.805 0.838 0.805 0.816
IT4 66.57 64.78 65.02 65.45 0.792 0.812 0.795 0.800
IA1 68.76 65.96 63.92 66.21 0.791 0.815 0.799 0.802
IA4 66.18 64.67 64.22 65.02 0.794 0.815 0.801 0.803
MLT 66.12 65.41 63.62 65.05 0.801 0.831 0.808 0.813

MODALITY DROPOUT with NOISE
IT1 64.72 54.07 66.34 61.71 0.798 0.839 0.797 0.812
IT4 64.69 64.33 61.83 63.61 0.801 0.826 0.799 0.808
IA1 67.25 64.96 64.74 65.65 0.794 0.813 0.799 0.802
IA4 63.40 63.23 62.85 63.16 0.806 0.820 0.806 0.811
MLT 66.18 64.19 64.39 64.92 0.790 0.813 0.791 0.798

TABLE III: Comparison with MULT [14].

A. Results and Discussion

Table II shows the results of the proposed approaches on the
RAVDESS and MOSEI datasets. Here, ‘LT1’ and ‘LT4’ denote
late transformer fusion with one and four heads, respectively,
and similarly ‘IT’ denotes intermediate transformer fusion,
‘IA’ denotes intermediate attention fusion, ‘TAV’ and ‘TVA’
refers to the fusion approaches described in [16], and ‘MULT’
refers to [14]. We report categorical accuracy on RAVDESS
dataset, and binary accuracy (positive vs negative sentiment)
on MOSEI dataset, as well as Mean Average Error between
the true and predicted sentiment scores.

As can be seen, in the setting without any type of dropout,
late transformer fusion achieves the best result on RAVDESS
dataset, while intermediate attention fusion achieves the best

result on MOSEI dataset on both the accuracy and MAE
metrics. Note that intermediate attention fusion is also the most
lightweight fusion approach compared to any of the methods
using full transformer blocks. At the same time, performance
under the presence of only one modality is extremely poor
on RAVDESS dataset. On MOSEI dataset the performance
drop is not drastic in the majority of cases, likely due to the
dataset consisting of already pre-extracted features, and hence
guaranteeing presence of meaningful independent features in
each modality even in the absence of the other one.

Further, it can be seen that utilization of modality dropout
improves the performance drastically under incomplete data of
one modality. This is the case for most fusion methods, while
intermediate attention fusion benefits from it the most. Be-
sides, the performance under the presence of both modalities is
improved as well, with the best result on RAVDESS achieved
by intermediate attention fusion. This is also the best result on
this dataset among all methods and dropout settings. Similar
conclusions can be made on MOSEI dataset; utilization of
modality dropout improves the performance in both single-
modality and two-modality case. Under the noisy setting, we
still observe the intermediate attention fusion performing best
on the average metric on RAVDESS.

To provide better comparison with state-of-the-art, we
additionally compare with full MULT model (omitting the
language modality), following the implementations provided
by [14] and using their convolutional layers, transformer block
implementations and other hyperparameters. Since in their
implementation several dense layers are added after the fusion
and prior to the output layer, we add similar dense layers to our
model for fair comparison. The results are provided in Table
III. As can be seen, while MULT outperforms the proposed
intermediate fusion approaches in the vanilla setting with both
modalities, intermediate fusion handles missing modalities
better, and especially under the presence of modality dropouts.
The best overall performance is achieved by intermediate
attention fusion with the first modality dropout variant.

As can be seen, in the majority of the cases the best per-
formance is achieved by the proposed intermediate attention
fusion combined with one of the proposed dropout approaches.
As in this approach no hard feature sharing is performed, the
learnt feature representations are less likely to be co-dependent
and therefore can be disentangled more easily, hence leading
to better robustness of the model in incomplete data settings.
This, in turn, leads to better generalization capabilities of the
model overall, leading to improved performance also under
the setting of both modalities.

V. CONCLUSION

We proposed a model for audiovisual emotion recognition
that learns end-to-end and an attention-based fusion method.
We evaluated the robustness of different modality fusion
approaches under the absence of, or noise present in, one of the
modalities and proposed an approach to improve the model’s
robustness. Importantly, the proposed approach also improves

the performance under the (ideal) standard setting where both
modalities are present.

REFERENCES

[1] Z. Liu, M. Wu, W. Cao, L. Chen, J. Xu, R. Zhang, M. Zhou, and J. Mao,
“A facial expression emotion recognition based human-robot interaction
system,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp.
668–676, 2017.

[2] J. Chen, Y. Lv, R. Xu, and C. Xu, “Automatic social signal analysis:
Facial expression recognition using difference convolution neural net-
work,” Journal of Parallel and Distributed Computing, vol. 131, pp.
97–102, 2019.

[3] A. Dzedzickis, A. Kaklauskas, and V. Bucinskas, “Human emotion
recognition: Review of sensors and methods,” Sensors, vol. 20, no. 3,
p. 592, 2020.

[4] A. Mollahosseini, B. Hasani, and M. H. Mahoor, “Affectnet: A database
for facial expression, valence, and arousal computing in the wild,” IEEE
Transactions on Affective Computing, vol. 10, no. 1, pp. 18–31, 2017.

[5] M. Soleymani, D. Garcia, B. Jou, B. Schuller, S.-F. Chang, and M. Pan-
tic, “A survey of multimodal sentiment analysis,” Image and Vision
Computing, vol. 65, pp. 3–14, 2017.

[6] R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M. H. Zafar, and T. Alhussain,
“Speech emotion recognition using deep learning techniques: A review,”
IEEE Access, vol. 7, pp. 117 327–117 345, 2019.

[7] Z. Zhao, Q. Liu, and F. Zhou, “Robust lightweight facial expression
recognition network with label distribution training,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp.
3510–3519.

[8] H. R. V. Joze, A. Shaban, M. L. Iuzzolino, and K. Koishida, “Mmtm:
Multimodal transfer module for cnn fusion,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 289–13 299.

[9] K. Chumachenko, J. Raitoharju, A. Iosifidis, and M. Gabbouj, “Speed-
up and multi-view extensions to subclass discriminant analysis,” Pattern
Recognition, vol. 111, p. 107660, 2021.

[10] Y. Wang, W. Huang, F. Sun, T. Xu, Y. Rong, and J. Huang, “Deep mul-
timodal fusion by channel exchanging,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[11] F. Xiao, Y. J. Lee, K. Grauman, J. Malik, and C. Feichtenhofer,
“Audiovisual slowfast networks for video recognition,” arXiv preprint
arXiv:2001.08740, 2020.

[12] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López,
“Multimodal end-to-end autonomous driving,” IEEE Transactions on
Intelligent Transportation Systems, 2020.

[13] F. Laakom, K. Chumachenko, J. Raitoharju, A. Iosifidis, and M. Gab-
bouj, “Learning to ignore: rethinking attention in cnns,” arXiv preprint
arXiv:2111.05684, 2021.

[14] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proceedings of the conference. Association for
Computational Linguistics. Meeting, vol. 2019. NIH Public Access,
2019, p. 6558.

[15] D. Krishna and A. Patil, “Multimodal emotion recognition using cross-
modal attention and 1d convolutional neural networks.” in Interspeech,
2020, pp. 4243–4247.

[16] J. Huang, J. Tao, B. Liu, Z. Lian, and M. Niu, “Multimodal transformer
fusion for continuous emotion recognition,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 3507–3511.

[17] L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, and X. Yang,
“A review of emotion recognition using physiological signals,” Sensors,
vol. 18, no. 7, p. 2074, 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[19] X. Shen, X. Tian, T. Liu, F. Xu, and D. Tao, “Continuous dropout,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 9, pp. 3926–3937, 2017.

[20] R. Wightman, “Pytorch image models,”
https://github.com/rwightman/pytorch-image-models, 2019.

[21] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database
of emotional speech and song (ravdess): A dynamic, multimodal set
of facial and vocal expressions in north american english,” PloS one,
vol. 13, no. 5, p. e0196391, 2018.

[22] R. Gradilla, “Multi-task cascaded convolutional networks (mtcnn) for
face detection and facial landmark alignment,” link]. Acessado em,
vol. 13, 2020.

D3.3: Third report on deep human centric active perception and cognition 161/223

8.9 Using Synthesized Facial Views for Active Face Recognition
The appended paper follows.

OpenDR No. 871449

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active

Face Recognition

Efstratios Kakaletsis* and Nikos Nikolaidis

Department of Informatics, Artificial Intelligence & Information
Analysis Laboratory, Aristotle University of Thessaloniki,

Thessaloniki, GR-54124, Greece.

*Corresponding author(s). E-mail(s): ekakalets@csd.auth.gr;
Contributing authors: nnik@csd.auth.gr;

Abstract

Active perception / vision exploits the ability of robots to interact with
their environment, for example move in space, towards increasing the
quantity or quality of information obtained through their sensors and,
thus, improving their performance in various perception tasks. Active
face recognition is largely understudied in recent literature. Attempting
to tackle this situation, in this paper, we propose an active approach
that utilizes facial views produced by photorealistic facial image ren-
dering. Essentially, the robot that performs the recognition selects the
best among a number of candidate movements around the person of
interest by simulating their results through view synthesis. This is
accomplished by feeding the robot’s face recognizer with a real world
facial image acquired in the current position, generating synthesized
views that differ by ±θ◦ from the current view and deciding, based
on the confidence of the recognizer, whether to stay in place or move
to the position that corresponds to one of the two synthesized views,
in order to acquire a new real image with its sensor. Experimental
results in three datasets verify the superior performance of the pro-
posed method compared to the respective ”static” approach, approaches
based on the same face recognizer that involve face frontalization
and synthesized views, as well as a state of the art active method.

Keywords: active vision ; active face recognition ; synthesized facial views;
photorealistic facial synthesis

1

Springer Nature 2021 LATEX template

2 Using Synthesized Facial Views for Active Face Recognition

1 Introduction

In recent years, the robotics and vision communities have started researching
more thoroughly the field of active vision / perception and exploration. Active
perception methods try to obtain more, or better quality, information from
the environment by actively choosing from where and how to observe it using
a camera (or other sensors), in order to accomplish more effectively tasks such
as 3D reconstruction [1, 2], [3], [4], [5] or object recognition [6], [7]. This could
be achieved, for example, by moving a camera-equipped mobile robot, e.g. a
wheeled robot or a UAV, in positions which offer different (and hopefully bet-
ter) views of the object of interest. Although active 3D object reconstruction
has attracted considerable interest, mainly towards solving the ”next-best-
view” problem (i.e. choosing the next viewing position in order to to obtain
a detailed and complete 3D object model), active approaches for recognition
tasks, especially for face recognition, are less frequent in the literature. Deep
Learning has lately dominated face recognition research due to the superior
performance achieved. However the vast majority of recognition methods adopt
a static approach i.e., an approach that is based on an image acquired from a
specific viewpoint, even in setups where an active approach could have been
used. Indeed, face recognition can be combined with an active approach for
controlling the movement of a camera-equipped robot towards capturing the
face from more informative views and thus obtaining more robust results, at
the expense of energy consumption and additional time needed. Synthesized
views of faces, whose images were acquired through a camera, can be used for
robot movement guidance in an active face recognition setup. Instead of hav-
ing the robot move in a physical way for capturing a novel (and better) view,
one can use a synthesized view as an aid towards choosing a new viewpoint
and improving recognition through an acquisition procedure.

In this paper, we propose an active face recognition approach that utilizes
facial views synthesized by photorealistic facial image rendering. Essentially,
the camera-equipped robot that performs the recognition selects the best
among a number of candidate physical movements around the face of interest
by simulating their results through view synthesis. In other words, once the
robot (that is at a certain location with respect to the subject) acquires an
image, it feeds the face recognizer with this image as well as with synthesized
views that differ by ±θ◦ from the current view. Subsequently, it either stays
in the current position or moves to the position that corresponds to one of the
two synthesized views. The respective decision is based on the confidence of
the three recognitions (on the real and the two synthesized views). In case of a
”move” decision, it proceeds in acquiring a ”real” image from its new location.
The procedure repeats in the same manner, for this location, for one or more
steps. Using synthesized facial views facilitates decision-making by providing
estimates of what is to be expected (in terms of recognition accuracy) in a new
robot position. The proposed method involves a face recognizer that is trained
to recognize frontal or nearly frontal faces, while having to deal with input

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 3

facial images obtained from an arbitrary view point. This fact makes recogni-
tion challenging, but at the same time more easily applicable in a real-world
scenario, since it does not require the existence of facial images acquired from
different viewpoints in order to train a view-independent face recognizer.

The remainder of this paper is organized as follows. In Section II related
work is presented, whereas in Section III we describe the details of the
proposed method. In Section IV experiments conducted to measure the algo-
rithm’s performance are presented. Finally, Section V provides a discussion
and conclusions.

2 Related Work

2.1 Active Computer Vision

A few recent active approaches for tasks such as object detection, recognition,
3-D reconstruction and manipulation are presented in this section. Additional
methods can be found in the review paper [8] that deals in particular with the
problem of view planning in robot active vision.

In [9], a robotic arm equipped with a depth camera captures information
for a scene from several poses, towards understanding the environment and
performing multiple object detection. Boundary Representation Models (B-
Reps) are used to represent the objects. The world representation is initialized
and, after generating a first set of object detection hypotheses, the approach
tries to perform exploration in order to generate new hypotheses or validate
existing ones. This is accomplished by finding regions of interest (regions to be
inspected) and suitable new views, acquired by appropriate poses of the arm.
A proof of concept using a KUKA LWR 4 arm is provided. As expected, the
object recognition rate increases as the number of views increases.

In [10] the authors deal with the problem of reconstructing a scene while
also identifying the objects in it using 3D scans and a dataset of 3D shapes.
Towards this end, a 3D attention model is developed that selects the best views
to scan from, as well as the most informative regions within in each view, so
as to achieve object recognition. The region-level attention mechanism gener-
ates features which are fairly robust against occlusion. Temporal dependencies
among consecutive views are encoded with deep recurrent networks.

A new approach, called 3D ShapeNets, for representing a 3D shape as a
probability distribution of binary variables on a voxel grid, using a Convolu-
tional Deep Belief Network is proposed in [11]. This representation supports
joint object recognition and shape completion from depth maps and enables
active object recognition through view planning. The model, learns the dis-
tribution of 3D shapes from different object categories and various poses
from raw CAD data, while also discovering hierarchical compositional part
representations.

Moreover, in [12], the authors present a novel methodology for optimizing
a robot’s vision sensor viewpoint and apply it in the tasks of object recogni-
tion and manipulation (grasping synthesis) in unstructured environments. The

Springer Nature 2021 LATEX template

4 Using Synthesized Facial Views for Active Face Recognition

algorithm uses extremum seeking control (ESC), which utilizes a task success
criterion in a continuous optimization loop. In the case of object recognition,
an image is captured by the robot’s camera and supplied to the recognition
algorithm. The algorithm generates a success rate value (probability of recog-
nizing an object) that forms the main component of the objective function,
which is to be maximized by the neural-network based ESC algorithm, towards
generating velocity commands for the robot camera. The camera moves on a
sphere (viewsphere) around the object, i.e., it points to the object all the time
while keeping the distance fixed. The algorithm requires neither a task model
nor training on offline image data for viewpoint optimization and is shown to
be robust to occlusions.

In [13] another active vision-based object recognition approach is pre-
sented, among other contributions. More specifically, a CNN-based approach
is described that allows object recognition over arbitrary camera trajectories,
(which generate multi-view image sequences) without requiring explicit train-
ing over the potentially infinite number of camera paths and lengths. This is
done by decomposing an image sequence into a set of image pairs, classifying
each pair independently, and then learning an object classifier by weighting the
contribution of each pair. The method is then extended to the next-best-view
problem in an active recognition framework. This is accomplished by train-
ing a second CNN to map from an observed image to the next viewpoint and
incorporating it into a trajectory optimisation task.

In [14] a method for active object recognition that involves a deep CNN
for the simultaneous prediction of the object label and the next action to be
performed by the sensor so as to improve recognition performance is presented.
The task is treated as a reinforcement learning problem and a generative model
of object similarities is embedded in the network for encoding the state of
the system. Other, older, active object recognition approaches, are reviewed
in [15–17].

[1] deals with the problem of active object reconstruction. In there, a next-
best-view planning scheme based on supervised deep learning is proposed. A
properly trained three-dimensional convolutional neural network (3D-CNN) is
used to predict the next-best-view position, given the current view.

Finally, in [18] a viewpoint planning strategy for 3D reconstruction with
application in the reconstruction of blades is presented. The algorithm focuses
on controlling surface overlap for the various views so as to allow for successful
registration. OctoMaps are used towards this end and the method is tested in
both simulation and real blade reconstruction.

2.2 Active Face Recognition

Despite the fact that active object recognition has attracted considerable inter-
est in the computer vision and robotics communities, active face recognition
has been scarcely studied. Such a simple method is described in [6] and com-
prises of a neural network-based face recognizer along with a decision making

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 5

controller that decides for the viewpoint changes. More specifically, a pre-
trained VGG-Face CNN is used by the recognition module in order to extract
facial image features and it is combined with a nearest-neighbor identity
recognition criterion. The simple controller module can make three different
decisions based on the uncertainty of the current result (i.e., the distance d
between the input image and the closest image in the database of known per-
sons): a) recognize the individual, if d is below a threshold t1 b) disregard
the individual as unknown, if d is above a threshold t2 or c) reassess the sub-
ject by moving to a different viewpoint, if t1 < d < t2. The direction towards
which the movement shall be performed in order to increase the probability of
correct recognition is not studied by the authors.

The authors in [7] propose a deep learning-based active perception method
for embedding-based face recognition and examine its behavior on a real multi-
view face image dataset. The proposed approach can simultaneously extract
discriminative embeddings, as well as predict the action that the robot must
take (stay in place, move left or right by a certain amount, on a circle centered
at the person) in order to get a more discriminative view.

2.3 Multi-view Facial Image Synthesis

A significant number of techniques for synthesizing facial images in novel views
appeared in the last years since such images can have a number of applica-
tions, e.g., in improving face recognition accuracy. For example, since profile
faces usually provide inferior recognition results compared to frontal faces,
generative adversarial networks (GANs) based methods for the frontalization
of profile facial images [19] or generation of other facial views [20] have been
proposed for improving face recognition results.

A method for the generation of frontal views from any input view that
utilizes a novel generative adversarial architecture called the Attention Selec-
tive Network (ASN) is described in [21]. Towards improving single-sample
face recognition by both generating additional samples and eliminating the
influence of external factors (illumination, pose), [22] presents an end-to-end
network for the estimation of intrinsic properties of a facial image with recov-
ery of albedo UV map and 3D facial shape. In [23], a facial image rendering
technique is used both in the training and testing stages of a face recognition
approach.

A method that produces photorealistic facial image views is described in
[24]. The basic idea of this approach is that rotating faces in the 3D space
and re-rendering them to the 2D plane can serve as a strong self-supervision.
A 3D head model (obtained by utilizing the 3D-fitting network 3DDFA [25–
27]), accompanied by the projected facial texture of a single view, is being
rotated and multi-view images of the face are rendered using the Neural 3D
Differential Renderer [28] along with 2D-to-3D style transfer and image-to-
image translation with GANs to fill in invisible parts. This last state-of-the-art
method was selected due to its robustness and photorealistic quality for the

Springer Nature 2021 LATEX template

6 Using Synthesized Facial Views for Active Face Recognition

generation of the synthetic facial images required by the method proposed in
this paper.

Although facial view synthesis can improve face recognition performance,
active perception methods can be expected to provide better results, in cases
where acquisition of additional ”real’ facial views is possible due to the
existence of e.g. a wheeled robot.

3 Proposed Active Face Recognition Algorithm

3.1 Face Recognition

Let us denote as database subset G a set of training facial images for the
persons that shall be recognized. Similarly, the facial images to feed the face
recognizer are included in the query (test) set T . The face recognition library
face.evoLVe [29] which contains many state-of-the-art deep face recognition
models, is used. More specifically, an implementation of a certain face recog-
nition approach of face.evoLVe from the OpenDr Toolkit [30, 31] was used.
IR-50 (50 layers) [32] trained on MS-CELEB-1M using an ArcFace [33] loss
head was used as the 512-dimensional feature extraction backbone.

For the database subset G, face detection, facial landmark extraction and
face alignment was based on the face.evoLVe module that is based on MTCNN
[34], whereas for the query images in T , these processing steps were based
on RetinaFace [35, 36]. Face recognition is performed by a nearest-neighbor
classifier that uses Euclidean distance in the 512-dimensional feature space to
find the database facial image that best matches the query image.

Face recognition confidence FRC ∈ [0, 1], is also evaluated based on the
distance between the input query image and the nearest image in the database
G. The FRC is given by the following formula:

FRC = 1− distance

threshold
(1)

where distance is the euclidean distance of query facial image from the nearest
neighbor image in the database G and threshold is the optimal threshold found
by running a pairwise matching experiment on LFW [37].

3.2 Active Face Recognition Using Synthesized Views

The proposed active face recognition algorithm uses the face recognition con-
fidence FRC and facial images synthesized for view angles around the current
robot view, in order to select the next robot movement, towards performing
a successful recognition. Starting from an initial position, the robot can take
one of the following three decisions: stay at the current position, move by θ◦ to
the right or move by θ◦ to the left, in order to acquire a new image. Depend-
ing on the achieved recognition confidence, one or more additional movements,
towards the same direction as the first one, might be decided.

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 7

Algorithm 1 Active Face Recognition Algorithm on Pseudocode

Input:Ir, threshold, θ
◦

Result:PersonID(Ir)

1: α = Estimate V iew Angle(Ir)
2: I−s = Render(α− θ◦, Ir)
3: I+s = Render(α+ θ◦, Ir)
4: I = argmax(FRC(x))

x∈{Ir,I−
s ,I+

s }
5: if I = Ir then
6: IID = Ir
7: go to 32
8: else
9: if I = I+s then

10: θincr = +θ◦

11: else
12: θincr = −θ◦

13: end if
14: end if
15:

16: I1stepr = Move and Capture(α+ θincr)
17: if FRC(I1stepr) > threshold then
18: IID = argmax(FRC(x))

x∈{Ir,I1step
r }

19: go to 32
20: else
21: I2steps =Render(α+ 2 ∗ θincr, I1stepr)
22: if FRC(I2steps) < FRC(I1stepr) then
23: IID = argmax(FRC(x))

x∈{Ir,I1step
r }

24: go to 32
25: else
26: I2stepr = Move and Capture(α+ 2 ∗ θincr)
27: IID = argmax(FRC(x))

x∈{Ir,I1step
r ,I2step

r }
28: go to 32
29: end if
30: end if
31:

32: PersonID(Ir) = Recognize(IID)

More specifically, given a facial query image Ir (subscript r stands for real),
captured by the robot camera at the robot starting position, the face syn-
thesis algorithm [24] is utilized to estimate the robot view angle α and then
render/generate facial views in 2 different view angles i.e. −θ◦ and +θ◦ in pan
with respect to the pan of Ir (and the same tilt as Ir). These two images are

Springer Nature 2021 LATEX template

8 Using Synthesized Facial Views for Active Face Recognition

denoted by I−s and I+s respectively (subscript s stands for synthetic). Then,
the face recognizer is fed with these three images Ir, I

−
s , I+s (one real, two

synthetic ones). Depending on the image that obtained the biggest face recog-
nition confidence FRC, the robot stays in its current position (if FRC was
maximum in Ir) or physically moves −θ◦ (or +θ◦) (if FRC was maximum in
I−s (or I+s)) and acquires through its camera a new real image I−r (or I+r). If a
”stay” decision was taken, the algorithm outputs the ID of the person it recog-
nized in Ir and terminates. If the robot moved, face recognition is performed
again in I−r (or I+r) and the obtained FRC is compared to an experimen-
tally evaluated threshold t. In case a high enough confidence was observed,
the algorithm outputs the ID of the person it recognized in I−r (or I+r) and
terminates. If not, it tries additional +θ◦ steps (movements) in pan, in the
same direction as the first step. In more detail, in this second step, it gener-
ates/synthesizes a facial view −θ◦ (or +θ◦) in pan from the current pan value
(and the same tilt), denoted as I−−

s (or I++
s), and evaluates (by calling the

face recogniser) FRC on this synthetic image. If FRC(I−r) > FRC(I−−
s) (or

FRC(I+r) > FRC(I++
s)) the algorithm decides that the robot shall stay in its

current position, outputs the ID of the person it recognized in I−r (or I+r) and
terminates. Otherwise, the robot physically moves −θ◦ (+θ◦) from its current
position, acquires a new image I−−

r (I++
r) and the algorithm outputs the ID

of the person it recognized in this image. The procedure can be repeated for a
number of additional steps (movements), until the predefined maximum num-
ber of steps is reached. The performance of the proposed procedure obviously
depends on whether the synthesis algorithm [24] estimates with sufficient accu-
racy the view angle of the query image Ir and also on whether the synthesized
views are of good quality. In order to limit the possibly negative effect of these
factors on the performance of the algorithm (e.g. by leading it to move towards
the wrong direction), the algorithm does not actually take a decision based on
the last real image it has visited but does so based on the real image where it
has obtained the maximum FRC value. In more detail, if the algorithm took
one step of −θ◦, it takes a decision using the real image I given by:

I = argmax
x∈{I−

r ,Ir}
(FRC(x)) (2)

or the equivalent expression that involves I+r , Ir, if a step of +θ◦ has been
taken. Similarly, if two steps of −θ◦ each have been performed, the algorithms
decides on the person ID using the real image I given by:

I = argmax
x∈{I−−

r ,I−
r ,Ir}

(FRC(x)) (3)

or the equivalent expression that involves I++
r , I+r , Ir, if two steps, of +θ◦ each,

have been taken. The pseudocode for the proposed method, when two steps
are allowed, is presented in algorithm 1.

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 9

It should be noted that the actual recognition is always performed on a
real image, i.e., an image captured by the robot camera. The synthesized views
are only used to aid the robot in deciding whether to move in a new position
(and acquire a new image there) or stay in the current position. The rationale
behind the proposed approach is that in case the initial robot position is far
from a frontal or nearly frontal one, the algorithm will hopefully direct it
to move towards a position which is closer to a frontal one. Obviously, the
procedure can work, in the same way, for tilt.

Table 1 Face recognition accuracy results and comparison with the static approach and
other variants

Method HPID [38] QMUL [39] Synthetic(SD)[40]
Static (only Queries) 72.49 % 69.88% 66.95%

Proposed (Active) (2 steps) 82.12% 85.57% 68.35 %
Proposed (Active) (4 steps) 88.10% 82.85% 80%

Frontalization (synthetic frontal views) 80.75% 75.95% 66.10%
Static & Synthetic (real & synthetic views) (4 steps) 72.22% 66.35% 62.28%

Table 2 Comparison with [7]

Method HPID [38] QMUL [39] Synthetic (SD) [40]
Proposed (Active) (2 steps) 82.88% 82.47% 85.00%
Proposed (Active) (4 steps) 87.78% 84.59% 88.81%

[7] (Active) (2 steps) 60.96% 69.94% 67.63%
[7] (Active) (4 steps) 61.30% 68.11% 70.41%

4 Performance Evaluation

For the evaluation of the proposed active face recognition approach, a number
of experiments were conducted using the HPID dataset [38], the Queen Mary
University of London Multi-view Face Dataset (QMUL)[39] and a Synthetic
Dataset (SD) [40]. In all three datasets, images of all subjects were divided
into two non-overlapping subsets: a database subset G (images that the face
recognizer uses to decide upon the ID of the query image through the nearest
neighbor classifier) and a query (test) subset T (these are meant to be the
images captured by the robot camera in its initial position). This was done by
choosing images with different pan ranges for G and T . With this setup we
are simulating active recognition where the robot is moving only in the pan
direction. Short descriptions of the three datasets are provided below.

4.1 HPID Dataset

The HPID dataset [38] is a head pose image database consisting of 2790 face
images of 15 subjects captured by varying the pan and tilt angles from −90◦ to

Springer Nature 2021 LATEX template

10 Using Synthesized Facial Views for Active Face Recognition

+90◦, in 15◦ increments. Two series of images were captured for each person,
(93 images in each series).

The database subset G (Figure 1) contains facial images with tilt
in angles [−30◦,−15◦, 0◦,+15◦,+30◦] and pans [−15◦, 0◦], i.e. only nearly
frontal images. The query subset (Figure 2) contains face images with tilts
[−30◦,−15◦, 0◦,+15◦,+30◦] and pans [−90◦,−75◦,−60◦,−45◦,−30◦]. The
selection of the range [−90◦...− 30◦] in pan, instead of the full ([−90◦...− 30◦]
and [+30◦... + 90◦]) semi-circle, in this and the other two datasets, was just
for simplicity. Similar results were obtained in experiments involving the full
semi-circle.

Synthetic images generated from the ”real” query images for use from our
algorithm are depicted in Figure 3.

4.2 QMUL Dataset

Queen Mary University of London Multi-view Face Dataset (QMUL) [39]
consists of automatically aligned, cropped and normalised face images of 48
persons. Images of 37 persons are in greyscale (dimensions: 100x100 pixels)
whereas those of the remaining 11 subjects are in colour and of dimensions
56x56. For each person 133 facial images exist, covering a viewsphere of
−90◦... + 90◦ in pan and −30◦... + 30◦ in tilt in 10◦ increments. For the
Database split G, the facial images with pan in angles [−10◦, 0◦] and tilt in
angles [−30◦, ...,+30◦] were used. The Query split T (test) includes images
with pan in angles [−90◦, ...,−20◦] and tilt in the range [−30◦, ...,+30◦].

4.3 Synthetic Dataset

The Synthetic Dataset (SD) was generated using Unity’s Perception package.
It consists of 175422 cropped face images of 33 subjects taken at different
environments, lighting conditions, camera distances and angles. In total, the
dataset contains images for 8 environments, 4 lighting conditions, 7 camera
distances (1m-4m) and 36 camera angles (0− 360◦ at 10◦ intervals). A subset
of the dataset was used in the experiments. The subset included all 33 subjects
in all environments and 1 lighting condition, at a camera distance of 1.0 m. For
the Database split G, facial images with pan [0◦,+10◦] and tilt 0◦ were used.
The Query (test) split T included images with pan in the range [+20◦, ...,+90◦]
and tilt 0◦.

4.4 Results

Results (in terms of recognition accuracy) are presented in Table 1. The line
marked ”Static” in this Table presents the result of the static equivalent of
our approach, in which only the initial query facial image is used by the same
recogniser involved in the active approach. As can be seen, the proposed active
method (lines ”Proposed (Active), 2 steps” and ”Proposed (Active), 4 steps”,
referring to the cases where the robot can move up to 2 or 4 times from its
initial position in θ◦ increments) outperforms its static counterpart for both 2

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 11

and 4 algorithm steps, at the obvious expense of additional robot movements
and time required to perform them. For the HPID and SD datasets the best
performance is obtained for 4 steps of the algorithm and the absolute increase
of accuracy with respect to the static version is 15.61% and 13.05% respec-
tively, whereas for the QMUL dataset the best performance is obtained for 2
steps (increase of 15.69% compared to the static approach).

The proposed approach was also compared to the frontalization approach
that is often used in face recognition when the recognizer is trained only on
frontal views. In this case, the facial view synthesis algorithm [24] is used in
order to generate a frontal (0◦ in pan) view from the input (query) image.
This image is then provided to the recognizer. The results (line ”Frontal-
ization (synthetic frontal views)”) show that although frontalization achieves
improved performance with respect to the static approach in HPID and QMUL
datasets and similar performance in SD, it is superseded by the proposed active
approach. Indeed the best achieved results of the proposed approach corre-
spond to an absolute increase in accuracy (with respect to the frontalization
approach) of 7.35%, 9.62% and 13.9% for the HPID, QMUL and SD datasets
respectively.

One can naturally wonder what is the benefit of introducing an active
approach, that involves actual robot movement, over the use of synthetic
images only. To answer this question we set up another experiment where for
each (real) query image, captured at a view angle α we generate (where pos-
sible) 8 synthetic images at angles α ± θ◦, ..., α ± 4θ◦ around the query and
feed them to the recognizer along with the query image. The result with the
highest FRC is then adopted as the final decision. Results are presented in
line ”Static & Synthetic (real & synthetic views) (4 steps)”. Obviously this
approach is not viable, providing results inferior to those of the static case.

Finally, the proposed method was compared to the recent embedding-based
active deep face recognition technique [7]. The experimental setup followed in
[7] for the HPID datased, was used in all three datasets. More specifically,
75% of the subjects contained in each dataset was used to train the models
of [7], while the remaining 25% were used for evaluating the trained models
(test set). Since our approach requires no training, only the test set data were
utilized in the experiments that involved it. Images in the test set were used
to form the Database split G and the Query split T, in the same way (same
range of pan and tilt angles) mentioned in Sections 4.1 to 4.3. Results are
presented in Table 2. One can observe that the proposed method outperforms
the method in [7] in both the 2 and 4 steps setups, achieving (in the 4 steps
setup) an absolute increase in accuracy of 26.48%, 16.48% and 18.40% for the
HPID, QMUL and SD datasets respectively.

Statistics regarding the steps taken by the proposed approach (4 steps) are
presented in Table 3 for the SD dataset. Each row in this Table corresponds to
the type of real image that the algorithm reached in its course, i.e., the number
of steps it has taken towards the right or the left direction. These types are
mentioned in the first column and follow the same naming conventions used

Springer Nature 2021 LATEX template

12 Using Synthesized Facial Views for Active Face Recognition

in Section 3.2. For example, the row marked I+r includes statistics for cases
where the algorithm (robot) moved by +10◦ from its initial position (the one
represented by the input query image). The pan angle increment from the
initial position, the number of images and the percentage they represent over
the total are presented for each case. The presented statistics show that in
24.34% of the cases the robot decided to stay in its initial position whereas in
the remaining 75.66% it moved by ±10◦, ..,±40◦ (one to four steps). It shall
be noted however that the decision on the ID of the depicted person is not
necessarily obtained from the last position the robot has visited, due to the
fact that the image with the maximum recognition confidence (FRC) is used
for this purpose.

Table 3 Active Face Recognition Statistics (4 Steps, SD dataset): steps performed by the
algorithm.

Image type Angle # Images Percentage
Ir 0◦ 28 24.34%

I+r +10◦ 5 4.347%

I++
r +20◦ 7 6.086%

I+++
r +30◦ 5 4.347%

I++++
r +40◦ 3 2.608%

I−r −10◦ 52 45.217%

I−−
r −20◦ 8 6.956%

I−−−
r −30◦ 4 3.478%

I−−−−
r −40◦ 3 2.608%
Total − 115 100%

The average number of movements that the algorithm instructs the robot
to perform can be easily evaluated from statistics such as the ones presented
in Table 3. The respective figures are presented in Table 4. Note that in case
the robot decides to performs no movement (stay decision) the number of
movements is obviously zero. As can be seen, when 4 steps are allowed, the
algorithm instructs the robot to make, on average, from 0.76 to 1.17 move-
ments, a fact that denotes that the time required for active recognition (time
for the computations as well as the time for the robot to move) is relatively
low and can be further lowered if only 2 steps are allowed.

Table 4 Active Face Recognition Statistics: average number of steps.

Method HPID [38] QMUL [39] SD [40]
2 steps 0.82 0.6689 1.14
4 steps 0.89 0.7623 1.17

In addition, Table 5 presents statistics regarding the moves that the algo-
rithm (equivalently the robot in a real situation) performs and whether these
lead towards a frontal view, i.e., 0◦ in pan (which is something that might be
expected since the recognised is trained on near frontal images) or away from

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 13

Table 5 Active Face Recognition Statistics: move type (4 steps)

Move Type HPID [38] QMUL [39] SD [40]
towards frontal 447(59.67%) 57(4.9%) 67(58.26%)

stay 117(15.62%) 573(49.35%) 28(24.34%)
away from frontal 155(20.69%) 531(45.73%) 20(17.39%)

total 749 1161 115

such a view. The statistics for the HPID, show that in most cases (59.6%) the
algorithm moves the robot towards a frontal view. However, in another 20.6%
of the cases the robot moves away from the frontal position, which indicates
that either the estimate for the view angle of the input (query) image provided
by the view synthesis algorithm is rather inaccurate or that the generated syn-
thetic views are in some cases of poor quality, causing the algorithm to err
with respect to the direction it shall move the robot. A similar behavior can
be observed in the SD dataset, whereas in QMUL in the majority of cases
49.35% the algorithm decides to stay in the initial position whereas it moves
away from the frontal direction in 45.73% of the cases. Despite these issues,
the algorithm manages to achieve good results in most cases.

5 Discussion and Conclusions

An active face recognition approach that utilizes facial views produced by
facial image synthesis was presented in this paper. The camera-equipped robot
that performs the recognition selects the best among a number of candidate
physical movements around the person of interest by simulating their results
through view synthesis. Experimental results show that the proposed method
is superior to both its static version and face recognition that involves syn-
thetically generated images. Moreover, it achieves significantly better results
than the method in [7].

It shall be noted that certain assumptions were adopted in this paper and,
furthermore, a number of issues were not fully addressed. First of all, the
actual control of the robot in order to move in θ◦ increments around the person
is not dealt with, being outside the scope of the paper. However, a rough
estimate of the person position with respect to the robot would suffice to enable
robot control. Also, it was assumed that the person being recognized remains
relatively static during the recognition process, which can be a fair assumption
if this process is brief. In case the person moves during this process, this shall
be taken into account by the algorithm.

Moreover, it was assumed that there are no obstacles in the robot path. If
this is not the case, these obstacles shall be detected (e.g. by a depth sensors)
and taken into account when planning the next move. Furthermore, obstacles
in the space between the robot and the person might occlude the person for
certain robot-person relative positions. However, since the algorithm decides
on the person’s identity based on the acquired image where the recognizer
obtained the largest recognition confidence, it is rather safe to assume that, in

Springer Nature 2021 LATEX template

14 Using Synthesized Facial Views for Active Face Recognition

Fig. 1 Samples from the database subset G of the HPID dataset, depicting real facial
images of a subject with tilt angles [−30◦,−15◦, 0◦, 15◦, 30◦] and pans [−15◦, 0◦, 15◦].

Fig. 2 Samples from the query subset T depicting real facial images of a subject with tilts
[−30◦,−15◦, 0◦, 15◦, 30◦] and pans [−90◦,−75◦,−60◦,−45◦,−30◦].

Fig. 3 Samples of synthetic facial images generated from the query subset T of the HPID
dataset. Each row depicts the two synthetic images generated in pan angles pan − 15◦ ,
pan+15◦ from real images with pans [−75◦,−60◦,−45◦,−30◦]. Each row corresponds to a
different tilt value of the real image, in the range [−30◦,−15◦, 0◦, 15◦, 30◦].

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 15

Fig. 4 Samples from the database subset G of the SD dataset, depicting facial images of
four subjects with tilt angle 0◦ and pans [0◦,+10◦].

Fig. 5 Samples from the query subset T of SD Dataset depicting facial images of four
subjects with tilt 0◦ and pans [+20◦,+30◦,+40◦,+50◦,+60◦].

most such cases, the algorithm might not face serious problems, even if it has
instructed the robot to move in positions where occlusions occur.

One could also argue that, instead of using the synthesized views as pro-
posed in this paper, it would suffice to estimate the view angle of the robot
with respect to the person and instruct it to move directly (i.e., without inter-
mediate steps) to the position that would allow it to obtain a frontal view
(0◦ in pan). However, there are certain difficulties that would make such an

Springer Nature 2021 LATEX template

16 Using Synthesized Facial Views for Active Face Recognition

approach hard to implement in practice. Indeed, we observed during the exper-
iments that view angle estimates (at least those provided by the view synthesis
algorithm used in this paper) although accurate enough for the purposes of
view synthesis, are quite far from the ground truth values, thus deeming this
approach rather problematic. Moreover, moving the robot from a view angle
that differs significantly from frontal (e.g. 75◦) to 0◦ is costly in time and energy
and also unnecessary, since accurate enough recognitions might be obtained
from other view positions, reachable by smaller movements.

Regarding algorithm performance, as mentioned in the previous section,
there is a significant number of cases where the algorithm instructs the robot
to move in a direction that is not towards a more frontal view. This might
be attributed to errors of the view angle estimation and view synthesis algo-
rithms. Using a better algorithm of this type might possibly lead to even bigger
improvements with respect to the static approach. Another useful observation
is that, giving the robot the freedom to move for additional steps (4 instead
of 2) does, in two of the three datasets, significantly improve the recognition
accuracy.

In the future, we plan to evaluate the proposed algorithm in larger datasets,
and by creating a realistic simulation in an appropriate environment, e.g. in
Unity, or Webots [41, 42], so as to investigate some of the issues mentioned
above (occlusions, actual robot control, objects that hinder robot motion etc).
Comparing our approach to additional methods is also planned.

Acknowledgments

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment number 871449 (OpenDR). This publication reflects only the authors
views. The European Union is not liable for any use that may be made of the
information contained therein.

References

[1] Miguel Mendoza, J Irving Vasquez-Gomez, Hind Taud, L Enrique Sucar,
and Carolina Reta. Supervised learning of the next-best-view for 3D
object reconstruction. Pattern Recognition Letters, 133:224–231, 2020.

[2] Jeffrey Delmerico, Stefan Isler, Reza Sabzevari, and Davide Scaramuzza.
A comparison of volumetric information gain metrics for active 3D object
reconstruction. Autonomous Robots, 42(2):197–208, 2018.

[3] Stefan Isler, Reza Sabzevari, Jeffrey Delmerico, and Davide Scaramuzza.
An information gain formulation for active volumetric 3D reconstruc-
tion. In Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pages 3477–3484. IEEE, 2016.

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 17

[4] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Appearance-
based active, monocular, dense reconstruction for micro aerial vehicles. In
Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.

[5] J Irving Vasquez-Gomez, David Troncoso, Israel Becerra, Enrique Sucar,
and Rafael Murrieta-Cid. Next-best-view regression using a 3d convo-
lutional neural network. Machine Vision and Applications, 32(2):1–14,
2021.

[6] Masaki Nakada, Han Wang, and Demetri Terzopoulos. Acfr: Active
face recognition using convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 35–40, 2017.

[7] Nikolaos Passalis and Anastasios Tefas. Leveraging active perception for
improving embedding-based deep face recognition. In Proceedings of IEEE
22nd International Workshop on Multimedia Signal Processing (MMSP),
pages 1–6. IEEE, 2020.

[8] Rui Zeng, Yuhui Wen, Wang Zhao, and Yong-Jin Liu. View planning in
robot active vision: A survey of systems, algorithms, and applications.
Computational Visual Media, 6(3):225–245, 2020.

[9] Dorian Rohner and Dominik Henrich. Using active vision for enhancing an
surface-based object recognition approach. In Proceedings of Fourth IEEE
International Conference on Robotic Computing (IRC), pages 375–382.
IEEE, 2020.

[10] Kai Xu, Yifei Shi, Lintao Zheng, Junyu Zhang, Min Liu, Hui Huang, Hao
Su, Daniel Cohen-Or, and Baoquan Chen. 3D attention-driven depth
acquisition for object identification. ACM Transactions on Graphics
(TOG), 35(6):1–14, 2016.

[11] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3D shapenets: A deep representa-
tion for volumetric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1912–1920,
2015.

[12] Berk Calli, Wouter Caarls, Martijn Wisse, and Pieter P Jonker. Active
vision via extremum seeking for robots in unstructured environments:
Applications in object recognition and manipulation. IEEE Transactions
on Automation Science and Engineering, 15(4):1810–1822, 2018.

[13] Edward Johns, Stefan Leutenegger, and Andrew J Davison. Pairwise
decomposition of image sequences for active multi-view recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Springer Nature 2021 LATEX template

18 Using Synthesized Facial Views for Active Face Recognition

Recognition (CVPR), pages 3813–3822, 2016.

[14] Mohsen Malmir, Karan Sikka, Deborah Forster, Ian Fasel, Javier R Movel-
lan, and Garrison W Cottrell. Deep active object recognition by joint
label and action prediction. Computer Vision and Image Understanding,
156:128–137, 2017.

[15] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Active vision in robotic
systems: A survey of recent developments. The International Journal of
Robotics Research, 30(11):1343–1377, 2011.

[16] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee.
Active recognition through next view planning: a survey. Pattern
Recognition, 37(3):429–446, 2004.

[17] GCHE de Croon, Ida G Sprinkhuizen-Kuyper, and Eric O Postma. Com-
paring active vision models. Image and Vision Computing, 27(4):374–384,
2009.

[18] Weixing Peng, Yaonan Wang, Zhiqiang Miao, Mingtao Feng, and Yong-
peng Tang. Viewpoints planning for active 3-d reconstruction of profiled
blades using estimated occupancy probabilities (EOP). IEEE Transac-
tions on Industrial Electronics, 68(5):4109–4119, 2020.

[19] Qingyan Duan and Lei Zhang. Look more into occlusion: Realistic face
frontalization and recognition with boostgan. IEEE Transactions on
Neural Networks and Learning Systems, 32(1):214 – 228, January 2021.

[20] Rui Huang, Shu Zhang, Tianyu Li, and Ran He. Beyond face rotation:
Global and local perception gan for photorealistic and identity preserv-
ing frontal view synthesis. In Proceedings of the IEEE International
Conference on Computer Vision, (ICCV), pages 2439–2448, 2017.

[21] Jiashu Liao, Alex Kot, Tanaya Guha, and Victor Sanchez. Attention
selective network for face synthesis and pose-invariant face recognition.
In Proceedings of IEEE International Conference on Image Processing
(ICIP), pages 748–752. IEEE, 2020.

[22] Huan Tu, Gesang Duoji, Qijun Zhao, and Shuang Wu. Improved sin-
gle sample per person face recognition via enriching intra-variation and
invariant features. Applied Sciences, 10(2):601, 2020.

[23] Iacopo Masi, Tal Hassner, Anh Tuân Tran, and Gérard Medioni. Rapid
synthesis of massive face sets for improved face recognition. In Proceedings
of 12th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2017), pages 604–611. IEEE, 2017.

Springer Nature 2021 LATEX template

Using Synthesized Facial Views for Active Face Recognition 19

[24] Hang Zhou, Jihao Liu, Ziwei Liu, Yu Liu, and Xiaogang Wang. Rotate-
and-Render: Unsupervised photorealistic face rotation from single-view
images. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5911–5920, 2020.

[25] Jianzhu Guo, Xiangyu Zhu, and Zhen Lei. 3DDFA. https://github.com/
cleardusk/3DDFA, 2018.

[26] Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei, and Stan Z
Li. Towards fast, accurate and stable 3D dense face alignment. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages
152–168. Springer International Publishing, 2020.

[27] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face alignment
in full pose range: A 3d total solution. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(1):78–92, 2017.

[28] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D mesh
renderer. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3907–3916, 2018.

[29] Qingzhong Wang, Pengfei Zhang, Haoyi Xiong, and Jian Zhao. Face.
evolve: A high-performance face recognition library. arXiv preprint
arXiv:2107.08621, 2021.

[30] Nikolaos Passalis, Stefania Pedrazzi, Robert Babuska, Wolfram Burgard,
Daniel Dias, Francesco Ferro, Moncef Gabbouj, Ole Green, Alexandros
Iosifidis, Erdal Kayacan, Jens Kober, Olivier Michel, Nikos Nikolaidis,
Paraskevi Nousi, Roel Pieters, Maria Tzelepi, Abhinav Valada, and
Anastasios Tefas. OpenDR: An Open Toolkit for Enabling High Per-
formance, Low Footprint Deep Learning for Robotics. arXiv preprint
arXiv:2203.00403, 2022.

[31] OpenDR: A modular, open and non-proprietary toolkit for core
robotic functionalities by harnessing deep learning. https://github.com/
opendr-eu/opendr. Accessed: 2022-06-27.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[33] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface:
Additive angular margin loss for deep face recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4690–4699, 2019.

Springer Nature 2021 LATEX template

20 Using Synthesized Facial Views for Active Face Recognition

[34] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face
detection and alignment using multitask cascaded convolutional networks.
IEEE signal processing letters, 23(10):1499–1503, 2016.

[35] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos
Zafeiriou. Retinaface: Single-shot multi-level face localisation in the wild.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5203–5212, 2020.

[36] OpenDR Face Detection module: RetinaFace. https:
//github.com/opendr-eu/opendr/blob/master/docs/reference/
face-detection-2d-retinaface.md. Accessed: 2022-06-27.

[37] Gary B. Huang Erik Learned-Miller. Labeled faces in the wild: Updates
and new reporting procedures. Technical Report UM-CS-2014-003,
University of Massachusetts, Amherst, May 2014.

[38] Nicolas Gourier, Daniela Hall, and James L Crowley. Estimating face ori-
entation from robust detection of salient facial structures. In Proceedings
of Workshop on Visual Observation of Deictic Cestures, volume 6, page 7.
FGnet (IST–2000–26434) Cambridge, UK, 2004.

[39] Jamie Sherrah and Shaogang Gong. Fusion of perceptual cues for robust
tracking of head pose and position. Pattern Recognition, 34(8):1565–1572,
2001.

[40] Charalampos Georgiadis. Generation of a synthetic annotated dataset for
training and evaluating active perception methods. BSc Thesis, Aristotle
University of Thessaloniki, 2022, doi : 10.13140/RG.2.2.21002.34248.

[41] Webots. http://www.cyberbotics.com. Open-source Mobile Robot
Simulation Software.

[42] O. Michel. Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, 2004.

D3.3: Third report on deep human centric active perception and cognition 182/223

8.10 Active Face Recognition through View Synthesis
The appended paper follows.

OpenDR No. 871449

Active Face Recognition through View Synthesis
Efstratios Kakaletsis, Nikos Nikolaidis

Department of Informatics, Artificial Intelligence & Information Analysis Laboratory
Aristotle University of Thessaloniki

Thessaloniki, Greece, GR-54124
Email: {ekakalets, nnik }@csd.auth.gr

Abstract—Active vision exploits the ability of robots to interact
with their environment, towards increasing the quantity / quality of
information obtained through their sensors and, therefore, improving
their performance in perception tasks. Active face recognition is largely
understudied in recent literature. In this paper, we propose an active
approach that utilizes facial views produced by facial image rendering.
The robot that performs the recognition selects the best among a number
of candidate movements around the person of interest by simulating their
results through view synthesis. This is achieved by passing to the robot’s
face recognizer a real world facial image acquired in the current position,
generating synthesized views that differ by ±θ◦ from the current view
and deciding, on the basis of the confidence of the recognizer, whether to
stay in place or move to the position that corresponds to one of the two
synthesized views, so as to to acquire a new real image. Experimental
results in two datasets verify the superior performance of the proposed
method compared to the respective ”static” approach and an approach
based on the same face recognizer that involves face frontalization with
synthesized views.

I. INTRODUCTION

Recently the robotics and computer vision communities have
started researching more thoroughly the field of active vision /
perception and exploration [1]. Active perception methods try to
obtain more, or better quality, information from the environment by
actively choosing from where, when and how to observe it using a
camera (or other sensors), in order to accomplish more effectively
tasks such as 3D reconstruction [2], [3], [4], [5], [6] or object
recognition [7], [8]. This could be achieved, for example, by moving
a camera-equipped mobile robot, e.g. a wheeled robot or a UAV, in
positions which provide different, hopefully better, views of the object
of interest. Although active 3D object reconstruction has attracted
considerable interest, mainly towards tackling the ”next-best-view”
problem (choosing the next viewing position so as to obtain a detailed
and complete 3D object model), active approaches for recognition
tasks, particularly for face recognition, are much less frequent in the
literature. Deep Learning dominates face recognition research due to
its superior performance. However the vast majority of recognition
approaches adopt a static approach i.e., an approach that is based on
an image acquired from a certain viewpoint, even in setups where an
active approach could have been used. Indeed, face recognition can
be combined with an active approach for directing the movement of
a robot towards capturing the face from more informative views and
thus obtain more robust results, at the expense of energy consumption
and additional decision time. Synthesized views of faces, whose
images were captured through a camera, can be used for robot
movement guidance in an active face recognition setup. Instead of
having the robot move in a physical way for capturing a novel view,

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement number 871449 (OpenDR). This publication reflects only the
authors views. The European Union is not liable for any use that may be made
of the information contained therein.

one can use a synthesized view as an aid towards choosing a new
viewpoint and improving recognition.

In this paper, we propose an active face recognition approach
that utilizes facial views synthesized by photorealistic facial image
rendering. Essentially, the camera-equipped robot that performs the
recognition selects the best among a number of candidate physical
movements around the face of interest by simulating their results
through view synthesis. In other words, once the robot (that is at a
certain location with respect to the subject) acquires an image, it pro-
vides the face recognizer with this image as well as with synthesized
views that differ by ±θ◦ from the current view. Subsequently, it either
stays in the current position or moves to the position that corresponds
to one of the two synthesized views. The respective decision is based
on the confidence of the three recognitions (on the real and the two
synthesized views). In the case of a ”move” decision, it proceeds to
acquire a ”real” image from its new location. The procedure repeats
in the same manner, for this location, for one or more steps. Using
synthesized facial views facilitates the decision-making procedure
by providing estimates of what is to be expected in a new robot
position. The proposed method involves a face recognizer that is
trained to recognize frontal or nearly frontal faces, while having to
deal with input facial images obtained from an arbitrary view point.
This fact makes recognition challenging, but at the same time more
easily applicable in a real-world scenario, since it does not require
the existence of facial images acquired from different viewpoints in
order to train a view-independent face recognizer.

The remainder of this paper is organized as follows. Section II
presents related work, whereas in Section III we describe the details
of the proposed method. In Section IV experiments conducted to
measure the algorithm’s performance are presented. Finally, Section
V provides a discussion and conclusions.

II. RELATED WORK

Despite the fact that active object recognition has attracted consid-
erable interest in the computer vision and robotics communities [9],
[10],[11], active face recognition has been scarcely studied. Such a
simple method is described in [7] and comprises of a neural network-
based face recognizer along with a decision making controller that
decides for the viewpoint changes. More specifically, a pre-trained
VGG-Face CNN is used by the recognition module in order to extract
facial image features and it is combined with a nearest-neighbor
identity recognition criterion. The simple controller module can make
three different decisions based on the uncertainty of the current result
(i.e., the distance d between the input image and the closest image
in the database of known persons): a) recognize the individual, if
d is below a threshold t1 b) disregard the individual as unknown,
if d is above a threshold t2 or c) reassess the subject by moving
to a different viewpoint, if t1 < d < t2. The direction towards
which the movement shall be performed in order to increase the
probability of correct recognition is not studied by the authors. The

authors in [8] propose a deep learning-based active perception method
for embedding-based face recognition and examine its behavior on
a real multi-view face image dataset. The proposed approach can
simultaneously extract discriminative embeddings, as well as predict
the action that the robot must take (stay in place, move left or right
by a certain amount, on a circle centered at the person) in order to
get a more discriminative view.

A significant number of techniques for synthesizing facial images
in novel views appeared in the last years since such images can
have a number of applications, e.g., in improving face recognition
accuracy. For example, since profile faces usually provide inferior
recognition results compared to frontal faces, generative adversarial
networks (GANs) based methods for the frontalization of profile
facial images [12] or generation of other facial views [13] have been
proposed for improving face recognition results. In order to improve
face recognition accuracy, a significant number of techniques for
synthesizing facial images in novel views appeared in the last years
since such images can have substantial impact on these applications.
For example, since profile faces usually provide inferior recognition
results compared to frontal faces, generative adversarial networks
(GANs) based methods for the frontalization of profile facial images
[12] or generation of other facial views [13] have been proposed for
augmenting the face recognition results. A method for the generation
of frontal views from any input view that utilizes a novel genera-
tive adversarial architecture called the Attention Selective Network
(ASN) is described in [14]. Towards improving single-sample face
recognition by both generating additional samples and eliminating
the influence of external factors (illumination, pose), [15] presents
an end-to-end network for the estimation of intrinsic properties of a
facial image with recovery of albedo UV map and 3D facial shape. In
[16], a facial image rendering technique is used both in the training
and testing stages of a face recognition approach. A method that
produces photorealistic facial image views is described in [17]. The
basic idea of this approach is that rotating faces in the 3D space
and re-rendering them to the 2D plane can serve as a strong self-
supervision. A 3D head model (obtained by utilizing the 3D-fitting
network 3DDFA [18], [19], [20]), accompanied by the projected facial
texture of a single view, is being rotated and multi-view images of
the face are rendered using the Neural 3D Differential Renderer [21]
along with 2D-to-3D style transfer and image-to-image translation
with GANs to fill in invisible parts. This last state-of-the-art method
was selected due to its robustness and photorealistic quality for the
generation of the synthetic facial images required by the method
proposed in this paper.

Although facial view synthesis can improve face recognition
performance, active perception methods can be expected to provide
better results, in cases where acquisition of additional ”real’ facial
views is possible due to the existence of e.g. a wheeled robot.

III. PROPOSED ALGORITHM

A. Face Recognition

Let us denote as database subset G a set of training facial images
for the persons that shall be recognized. Similarly, the facial images
to feed the face recognizer are included in the query (test) set T . The
face recognition library face.evoLVe [22] which contains many state
of the art deep face recognition models, is used. More specifically, an
implementation of a certain face recognition approach of face.evoLVe
from the OpenDr Toolkit [23], [24] was used. IR-50 (50 layers) [25]
trained on MS-CELEB-1M using an ArcFace [26] loss head was
used as the 512-dimensional feature extraction backbone. For the
database subset G, face detection, facial landmark extraction and face

alignment was based on the face.evoLVe module that is based on
MTCNN [27], whereas for the query images in T , these processing
steps were based on RetinaFace [28]. Face recognition is performed
by a nearest-neighbor classifier that uses Euclidean distance in the
512-dimensional feature space to find the database facial image that
best matches the query image.

Face recognition confidence FRC ∈ [0, 1], is also evaluated based
on the distance between the input query image and the nearest image
in the database G. The FRC is given by the following formula:

FRC = 1− distance

threshold
(1)

where distance is the euclidean distance of query facial image from
the nearest neighbor image in the database G and threshold is the
optimal threshold found by running a pairwise matching experiment
on LFW [29].

B. Active Face Recognition Through Synthesized Views

The proposed active face recognition algorithm uses the face
recognition confidence FRC and facial images synthesized for view
angles around the current robot view, in order to select the next robot
movement, towards performing a successful recognition. Starting
from an initial position, the robot can take one of the following three
decisions: stay at the current position, move by θ◦ to the right or
move by θ◦ to the left, in order to acquire a new image. Depending
on the achieved recognition confidence, an additional movement,
towards the same direction as the first one, might be decided. More
specifically, given a facial query image Ir (subscript r stands for
real), captured by the robot camera at the robot starting position, the
face synthesis algorithm [17] is utilized to estimate the view angle
and then render/generate facial views in 2 different view angles i.e.
−15◦ and +15◦ in pan with respect to the pan of Ir (and the same
tilt as Ir). These two images are denoted by I−s and I+s respectively
(subscript s stands for synthetic). Then, the face recognizer is fed
with these three images Ir , I−s , I+s (one real, two synthetic ones).
Depending on the image that obtained the biggest face recognition
confidence FRC, the robot stays in its current position (if FRC
was maximum in Ir) or physically moves −15◦ (or +15◦) (if FRC
was maximum in I−s (or I+s)) and acquires through its camera a new
real image I−r (or I+r). If a ”stay” decision was taken, the algorithm
outputs the ID of the person it recognized in Ir and terminates. If
the robot moved, face recognition is performed again in I−r (or I+r)
and the obtained FRC is compared to an experimentally evaluated
threshold t. In case a high enough confidence was observed, the
algorithm outputs the ID of the person it recognized in I−r (or I+r)
and terminates. If not, it tries yet another 15◦ step (movement)
in pan, in the same direction as the first step. In more detail, in
this second step, it generates/synthesizes a facial view −15◦ (or
+15◦) in pan from the current pan value (and the same tilt), denoted
as I−−

s (or I++
s), and evaluates (by calling the face recogniser)

FRC on this synthetic image. If FRC(I−r) > FRC(I−−
s) (or

FRC(I+r) > FRC(I++
s)) the algorithm decides that the robot shall

stay in its current position, outputs the ID of the person it recognized
in I−r (or I+r) and terminates. Otherwise, the robot physically moves
−15◦ (+15◦) from its current position, acquires a new image I−−

r

(I++
r) and the algorithm outputs the ID of the person it recognized

in this image.
The performance of the proposed procedure obviously depends

on whether the synthesis algorithm [17] estimates with sufficient
accuracy the view angle of the query image Ir and also on whether
the synthesized views are of good quality. In order to limit the

Algorithm 1 Active Face Recognition Algorithm (2 steps) on Pseu-
docode
Input:Ir , threshold, θ◦

Result:PersonID(Ir)

1: α = Estimate V iew Angle(Ir)
2: I−s = Render(α− θ◦, Ir)
3: I+s = Render(α+ θ◦, Ir)
4: I = argmax(FRC(x))

x∈{Ir,I−s ,I+s }
5: if I = Ir then
6: IID = Ir
7: go to 28
8: else
9: if I = I+s then

10: θincr = +θ◦

11: else
12: θincr = −θ◦

13:
14: I1stepr = Move and Capture(α+ θincr)
15: if FRC(I1stepr) > threshold then
16: IID = argmax(FRC(x))

x∈{Ir,I1stepr }
17: go to 28
18: else
19: I2steps =Render(α+ 2 ∗ θincr, I

1step
r)

20: if FRC(I2steps) < FRC(I1stepr) then
21: IID = argmax(FRC(x))

x∈{Ir,I1stepr }
22: go to 28
23: else
24: I2stepr = Move and Capture(α+ 2 ∗ θincr)
25: IID = argmax(FRC(x))

x∈{Ir,I1stepr ,I
2step
r }

26: go to 28
27:
28: PersonID(Ir) = Recognize(IID)

possibly negative effect of these factors on the performance of the
algorithm (e.g. by leading it to move towards the wrong direction),
the algorithm does not actually take a decision based on the last real
image it has visited but does so based on the real image where it has
obtained the maximum FRC value. In more detail, if the algorithm
took one step of −15◦, it takes a decision using the real image I
given by:

I = argmax
x∈{I−r ,Ir}

(FRC(x)) (2)

or the equivalent expression that involves I+r , Ir , if a step of +15◦ has
been taken. Similarly, if two steps of −15◦ each have been performed,
the algorithms decides on the person ID using the real image I given
by:

I = argmax
x∈{I−−

r ,I−r ,Ir}
(FRC(x)) (3)

or the equivalent expression that involves I++
r , I+r , Ir , if two steps,

of +15◦ each, have been taken. The pseudocode is presented in
algorithm 1.

It should be noted that the actual recognition is always performed
on a real image, i.e., an image captured by the robot camera. The
synthesized views are only used to aid the robot in deciding whether
to move in a new position (and acquire a new image there) or stay
in the current position. The rationale behind the proposed approach

is that in case the initial robot position is far from a frontal or nearly
frontal one, the algorithm will hopefully direct it to move towards a
position which is closer to a frontal one. Obviously, the procedure
can be generalized to include additional steps (movements), i.e., more
than the two movements it currently has. It can also work, in the same
way, for tilt.

IV. EXPERIMENTAL EVALUATION

For the evaluation of the proposed active approach experiments
were conducted using the HPID dataset [30] and the Queen Mary
University of London Multi-view Face Dataset (QMUL)[31]. In the
two datasets, images of all subjects were divided into two non-
overlapping subsets: a database subset G (images that the face rec-
ognizer uses to decide the ID of the query image through the nearest
neighbor classifier) and a query (test) subset T (which includes the
images captured by the robot camera in its initial position). Obviously
G and T contained images from different pan ranges. This setup was
adopted in order to simulate active recognition where the robot is
moving only in the pan direction. Concise descriptions of the two
datasets are provided below.

A. Datasets

The HPID dataset [30] is a head pose image dataset that consists of
2790 face images of 15 subjects captured by varying the pan and tilt
from −90◦ to +90◦, in increments of θ = 15◦. Two sets of images
were captured for each person, (93 images in each set).

The database subset G (Figure 1) contains facial images with
tilt in angles [−30◦,−15◦, 0◦,+15◦,+30◦] and pans [−15◦, 0◦],
i.e., only nearly frontal images. The query subset contains
face images with tilts [−30◦,−15◦, 0◦,+15◦,+30◦] and pans
[−90◦,−75◦,−60◦,−45◦,−30◦]. The selection of the range
[−90◦...− 30◦] in pan, instead of the full (i.e., [−90◦...− 30◦] and
[+30◦...+90◦]) semi-circle, in this and the QMUL dataset, was just
for simplicity. Similar results were obtained when the experiments
involved the entire semi-circle.

Fig. 1. Samples from the database subset G of the HPID dataset, depicting
real facial images of a subject with tilt angles [−30◦,−15◦, 0◦, 15◦, 30◦]
and pans [−15◦, 0◦, 15◦].

Queen Mary University of London Multi-view Face Dataset
(QMUL) [31] consists of automatically aligned, cropped and nor-
malised face images of 48 persons. Images of 37 persons are in
greyscale (100x100 pixels) whereas those of the remaining 11 persons
are in colour and of dimensions 56x56 pixels. For each person 133
facial images exist, populating a viewsphere of −90◦...+90◦ in pan
and −30◦... + 30◦ in tilt in θ = 10◦ increments. For the Database
split G, images with pan in angles [−10◦, 0◦] and tilt in the range
[−30◦, ...,+30◦] were used. The Query split T includes images with
pan in angles [−90◦, ...,−20◦] and tilt in the range [−30◦, ...,+30◦].

B. Experimental Results

The results (in terms of recognition accuracy) are presented in
Table I. The line marked ”Static” in this Table presents the result of
the static equivalent of our approach, in which only the initial query
facial image is used by the same recogniser involved in the active
approach. As can be seen, the proposed active method, implemented
so as to perform up to 4 steps (line ”Proposed (Active) (4 steps)”)
outperforms its static counterpart, increasing the recognition accuracy
by 15.61% and 12.97% (absolute increase) in HPID and QMUL
datasets, respectively. -

TABLE I
FACE RECOGNITION ACCURACY RESULTS AND COMPARISON WITH THE

STATIC APPROACH AND OTHER VARIANTS

Method HPID [30] QMUL [31]
Static (only Queries) 72.49 % 69.88%

Proposed (Active) (4 steps) 88.10% 82.85%
Frontalization (synthetic frontal views) 80.75% 75.95%

The proposed approach was also compared to the frontalization
approach that is often used in face recognition when the recognizer
is trained only on frontal views. In this case, the facial view synthesis
algorithm [17] is used in order to generate a frontal (0◦ in pan)
view from the input (query) image. This image is then provided
to the recognizer. The results (line ”Frontalization (synthetic frontal
views)”) show that although frontalization achieves improved perfor-
mance with respect to the static approach, it is clearly superseded by
the proposed active approach.

TABLE II
ACTIVE FACE RECOGNITION STATISTICS (4 STEPS, HPID DATASET):

STEPS PERFORMED BY THE ALGORITHM.

Image type Angle # Images Percentage
Ir 0◦ 397 26.48%

I+r +15◦ 368 24.54%

I++
r +30◦ 84 5.603%

I+++
r +45◦ 0 0%

I++++
r +60◦ 1 0.066%

I−r -15◦ 515 34.35%

I−−
r -30◦ 121 8.07%

I−−−
r -45◦ 9 0.600%

I−−−−
r -60◦ 5 0.333%
Total − 1500 100%

Statistics regarding the steps taken by the proposed approach were
also evaluated and are presented in Table II for HPID dataset. These
statistics show that in 26.48% of the cases the robot decided to stay
in its initial position whereas in the remaining 73.64% it moved by
±15◦, ..,±60◦ (one to four steps). It shall be noted however that the
decision on the ID of the depicted person is not necessarily obtained
from the last position the robot has visited, due to the fact that the
image with the maximum recognition confidence (FRC) is used for
this purpose (equations (2) and (3)).

The average number of movements that the algorithm instructs
the robot to perform can be easily evaluated from statistics such
as the ones presented in Table II. Based on these calculations, the
algorithm instructs the robot to make, on average, 0.76 (HPID) or 0.89
(QMUL) movements, a fact that signifies that the time required for
active recognition (time for the computations as well as the time for
the robot to move) is relatively low. Note that in case the robot decides
to performs no movement (stay decision) the number of movements
is obviously zero.

V. DISCUSSION AND CONCLUSIONS

An active approach for face recognition that utilizes facial views
produced by facial image synthesis was presented in this paper. The
robot that performs the recognition selects the best among a number
of candidate physical movements around the person of interest
by simulating their results through view synthesis. Experimental
evaluation showed that the method supersedes both its static version
and face recognition that involves frontalization through synthesis of
frontal images.

It must be stressed that certain assumptions were adopted in this
paper, whereas a number of issues were not fully addressed. First, the
actual control of the robot so as to move in θ◦ increments around the
person was not dealt with, since it falls outside the scope of the paper.
However, a rough estimate of the person position with respect to the
robot would suffice to enable robot control. Also, it was assumed
that the person being recognized remains relatively static during the
recognition process, which can be n acceptable assumption if the
process is brief. If the person moves during this process, this shall
be taken into account by the algorithm.

In addition, it was assumed that there are no obstacles in the robot’s
path. If this is not the case, these obstacles shall be detected (by
e.g. depth sensors) and taken into account while planning the next
movement. Furthermore, obstacles in the space between the robot
and the person might occlude the person for certain robot positions.
However, since the algorithm decides on the person’s identity based
on the acquired image where the recognizer obtained the largest
recognition confidence, it is rather safe to assume that, in most such
cases, the algorithm might not face serious problems, even if it has
instructed the robot to move in positions where occlusions occur.

One could also consider, instead of using the synthesized views
as proposed in this paper, to estimate the view angle of the robot
camera with respect to the person and instruct it to move directly
(namely, without intermediate steps) to the position that would allow
it to capture a frontal view (0◦ in pan). However, there are certain
difficulties that make this approach difficult in practice. Indeed, we
observed in the experiments that view angle estimates (i.e., those
provided by the utilized view synthesis algorithm used) although
accurate enough for the purposes of view synthesis, are quite far from
the ground truth values, thus rendering this approach problematic.

Future plans include evaluation of the algorithm in additional
datasets and creation of a realistic simulation in an appropriate
environment so as to investigate some of the issues mentioned above
(occlusions, actual robot control, objects that hinder robot motion
etc). Employing a more sophisticated face recognizer and comparing
it to additional methods, are also planned.

REFERENCES

[1] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active percep-
tion,” Autonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[2] M. Mendoza, J. I. Vasquez-Gomez, H. Taud, L. E. Sucar, and C. Reta,
“Supervised learning of the next-best-view for 3d object reconstruction,”
Pattern Recognition Letters, 2020.

[3] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A comparison
of volumetric information gain metrics for active 3d object reconstruc-
tion,” Autonomous Robots, vol. 42, no. 2, pp. 197–208, 2018.

[4] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An information
gain formulation for active volumetric 3d reconstruction,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 3477–3484.

[5] C. Forster, M. Pizzoli, and D. Scaramuzza, “Appearance-based active,
monocular, dense reconstruction for micro aerial vehicles,” 2014.

[6] J. I. Vasquez-Gomez, D. Troncoso, I. Becerra, E. Sucar, and R. Murrieta-
Cid, “Next-best-view regression using a 3d convolutional neural net-
work,” Machine Vision and Applications, vol. 32, no. 2, pp. 1–14, 2021.

[7] M. Nakada, H. Wang, and D. Terzopoulos, “Acfr: Active face recognition
using convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 35–40.

[8] N. Passalis and A. Tefas, “Leveraging active perception for improving
embedding-based deep face recognition,” in 2020 IEEE 22nd Interna-
tional Workshop on Multimedia Signal Processing (MMSP). IEEE,
2020, pp. 1–6.

[9] S. Chen, Y. Li, and N. M. Kwok, “Active vision in robotic systems: A
survey of recent developments,” The International Journal of Robotics
Research, vol. 30, no. 11, pp. 1343–1377, 2011.

[10] B. Calli, W. Caarls, M. Wisse, and P. P. Jonker, “Active vision via ex-
tremum seeking for robots in unstructured environments: Applications in
object recognition and manipulation,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 4, pp. 1810–1822, 2018.

[11] M. Malmir, K. Sikka, D. Forster, I. Fasel, J. R. Movellan, and G. W.
Cottrell, “Deep active object recognition by joint label and action
prediction,” Computer Vision and Image Understanding, vol. 156, pp.
128–137, 2017.

[12] Q. Duan and L. Zhang, “Look more into occlusion: Realistic face
frontalization and recognition with boostgan,” IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[13] R. Huang, S. Zhang, T. Li, and R. He, “Beyond face rotation: Global
and local perception gan for photorealistic and identity preserving frontal
view synthesis,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2439–2448.

[14] J. Liao, A. Kot, T. Guha, and V. Sanchez, “Attention selective network
for face synthesis and pose-invariant face recognition,” in 2020 IEEE
International Conference on Image Processing (ICIP). IEEE, 2020,
pp. 748–752.

[15] H. Tu, G. Duoji, Q. Zhao, and S. Wu, “Improved single sample
per person face recognition via enriching intra-variation and invariant
features,” Applied Sciences, vol. 10, no. 2, p. 601, 2020.

[16] I. Masi, T. Hassner, A. T. Tran, and G. Medioni, “Rapid synthesis of
massive face sets for improved face recognition,” in 2017 12th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2017). IEEE, 2017, pp. 604–611.

[17] H. Zhou, J. Liu, Z. Liu, Y. Liu, and X. Wang, “Rotate-and-render:
Unsupervised photorealistic face rotation from single-view images,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 5911–5920.

[18] J. Guo, X. Zhu, and Z. Lei, “3ddfa,”
https://github.com/cleardusk/3DDFA, 2018.

[19] J. Guo, X. Zhu, Y. Yang, F. Yang, Z. Lei, and S. Z. Li, “Towards fast,
accurate and stable 3d dense face alignment,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[20] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range:
A 3d total solution,” IEEE transactions on pattern analysis and machine
intelligence, 2017.

[21] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 3907–3916.

[22] Q. Wang, P. Zhang, H. Xiong, and J. Zhao, “Face. evolve: A high-
performance face recognition library,” arXiv preprint arXiv:2107.08621,
2021.

[23] N. Passalis, S. Pedrazzi, R. Babuska, W. Burgard, D. Dias, F. Ferro,
M. Gabbouj, O. Green, A. Iosifidis, E. Kayacan, J. Kober, O. Michel,
N. Nikolaidis, P. Nousi, R. Pieters, M. Tzelepi, A. Valada, and A. Tefas,
“Opendr: An open toolkit for enabling high performance, low footprint
deep learning for robotics,” arXiv preprint arXiv:2203.00403, 2022.

[24] “OpenDR: A modular, open and non-proprietary toolkit for core
robotic functionalities by harnessing deep learning, howpublished =
https://github.com/opendr-eu/opendr, note = Accessed: 2022-06-27.”

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4690–
4699.

[27] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and align-
ment using multitask cascaded convolutional networks,” IEEE signal
processing letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[28] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 5203–5212.

[29] G. B. H. E. Learned-Miller, “Labeled faces in the wild: Updates and
new reporting procedures,” University of Massachusetts, Amherst, Tech.
Rep. UM-CS-2014-003, May 2014.

[30] N. Gourier, D. Hall, and J. L. Crowley, “Estimating face orientation
from robust detection of salient facial structures,” in FG Net workshop
on visual observation of deictic gestures, vol. 6. FGnet (IST–2000–
26434) Cambridge, UK, 2004, p. 7.

[31] J. Sherrah and S. Gong, “Fusion of perceptual cues for robust tracking
of head pose and position,” Pattern Recognition, vol. 34, no. 8, pp.
1565–1572, 2001.

D3.3: Third report on deep human centric active perception and cognition 188/223

8.11 Active Vision Control Policies for Face Recognition using Deep Re-
inforcement Learning

The appended paper follows.

OpenDR No. 871449

Active Vision Control Policies for Face Recognition
using Deep Reinforcement Learning

Pavlos Tosidis, Nikolaos Passalis, and Anastasios Tefas
Computational Intelligence and Deep Learning Group, AIIA Lab

School of Informatics, Faculty of Sciences
Aristotle University of Thessaloniki

Thessaloniki, Greece
{ptosidis, passalis, tefas}@csd.auth.gr

Abstract—Robotic systems are capable of interacting with their
environment in order to better sense their surroundings. This
key ability of robotic systems is often ignored when developing
Deep Learning models, since the later are usually trained using
static datasets. This limits the ability of robots to perceive
the environment in challenging scenarios. On the other hand,
integrating perception and action in tightly coupled systems while
operating on-the-edge, holds the credentials for deploying DL-
enabled robots in such scenarios; Thus leading to more robust
agents that can solve challenging tasks more accurately. In this
work, we investigate whether active perception approaches can be
employed and integrated into robotic systems in order to improve
face recognition accuracy, as well as, study the effect of such an
approach on the computational requirements for edge applica-
tions. To this end, we propose a DRL-based control approach
for training agents that are able to identify task-relevant objects,
as well as, issue the appropriate control commands to acquire
better results. Through the conducted experimental evaluation,
we demonstrate that the proposed method leads to significant
improvements in face recognition over the rest of the evaluated
approaches by providing accurate control commands.

Index Terms—Active Perception, Active Vision, Deep Rein-
forcement Learning

I. INTRODUCTION

Recent advances in Deep Learning (DL) led to a number
of spectacular applications, ranging from self-driving cars and
robots that outperform humans in various tasks [1]. Despite
the enormous success in these areas, DL methods operate in
a static fashion, i.e., they do not typically provide means for
interacting with the environment in order to better perceive it.
This is in contrast, with the way many organisms, including
humans, perceive their environment since perception and ac-
tion usually form a tightly coupled system at various levels.
For example, eyes can adjust to various illumination conditions
while we tend to examine an object from different angles
and/or distances when we are uncertain about it. This process
is called active perception [2], and it is thought to be a critical
component of robotic agents that can work in challenging real-
world scenarios.

There have been several recent attempts to integrate active
perception principles into DL models [3], [4]. Most of them
focused on robotics tasks, where they attempt to appropriately
manipulate a camera and/or a robot in order to improve the
accuracy of the models. However, training DL models for such

tasks is not trivial, since most datasets used for training DL
models do not provide the appropriate data and/or annotations
that can be exploited in active perception scenarios. Indeed,
active perception requires an agent that can interact with its
environment and acquire an improved view of the world.
To overcome this limitation, existing methods either employ
simple handcrafted rules for implementing active perception
feedback [3], or use multi-view datasets to simulate some of
the effects of active perception feedback [4]. However, due
to the lack of appropriate datasets, such methods are still
usually trained with simplistic rules, e.g., to predict if moving
left/right will increase/decrease the confidence on correctly
recognizing a person [4]. Another closely related line of work
employs Deep Reinforcement Learning (DRL) algorithms to
perform a specific control task [5], [6], [7], e.g., acquire a
frontal view of a person [8]. Despite the effectiveness of
DRL approaches in these robotics tasks, applying them on
challenging computer vision tasks typically require realistic
simulation environments and/or appropriate training methods,
e.g., sim2real approaches [9]. At the same time, the lengthy
training time of DRL methods further limits their applications
in robotics. As a result, despite their enormous potential for
developing active perception approaches their application faces
significant obstacles.

The main contribution of this work is to propose a DRL-
based active perception approach integrated with state-of-the-
art DL-based face recognition models. More specifically, our
goal is to investigate whether active perception approaches
can be employed and integrated into robotic systems, in order
to improve face recognition results, as well as, study the
effect of such an approach on the computational requirements.
To this end, we propose a DRL-based control approach for
training agents that are able to identify and focus on task-
relevant objects, i.e., humans, as well as issue appropriate
control commands accordingly to acquire better results. To
train and evaluate the proposed method, we developed a
simulation environment using the Webots simulator [10] and
generated several 3D human models using the MakeHuman
software [11]. The proposed method aims to control a drone,
equipped with a camera, in order to improve face recognition
results over existing baseline and rule-based active perception
approaches. Indeed, as the experimental results demonstrate,

the proposed method managed to lead to significant im-
provements in face recognition over the rest of the evaluated
approaches by issuing the appropriate control commands.
Indeed, the trained agents showed an emergent behavior that
can resemble those of humans, e.g., move closer or around a
person in order to more confidently identify it. At the same
time, it is demonstrated that the proposed method can also
lead to computational savings under certain conditions.

The rest of the paper is structured as followed. First, the
related work is briefly introduced in Section II. Then, the pro-
posed method is introduced in Section III. The experimental
evaluation is provided in Section IV, while conclusions are
drawn in Section V.

II. RELATED WORK

Face recognition research in the past years has made
tremendous leaps. From traditional approaches that represent
faces with hand-crafted features extracted from an image [12],
to modern deep learning approaches that automatically learn
the distinctive features of a face, when trained on massive
datasets [13], [14], [15]. The face recognition pipeline of
such approaches typically consists of four stages: a) face
detection and cropping, b) (optionally) face alignment, c)
feature extraction, and d) classification/verification. The two
first stages are often considered as preprocessing stages. A
face recognition model requires an input image that is carefully
cropped and aligned. This preprocessed image is then fed into
a DL model which extracts a discriminative feature vector.
Finally, this vector is compared to a set of feature vectors
of people of interest [13], [14], [15], performing the final
classification or verification task. The method proposed in
this paper is orthogonal to these approaches, since it can be
readily combined with any face recognition model and further
increase its accuracy. Indeed, as demonstrated in Section IV,
the proposed method can be readily combined with a state-
of-the-art DL-based face recognition system and increase its
accuracy by integrating it into an active vision pipeline.

This work is also closely related to active perception ap-
proaches. According to Bajscy [16], [17], an actively per-
ceiving agent is one which can, among others, appropriately
control its mechanical components in order to enable the
best sensing of its surroundings, as well as, select the best
viewpoint to achieve the task in hand. However, there are
only a few recent approaches to active face recognition using
DL [3], [4]. An active face recognition system that employs a
DL model to extract the facial features and a controller module
to act based on the results of the DL model was proposed
in [3]. The controller module works as a rule-based controller
that selects the most appropriate action according to the face
recognition confidence and predefined thresholds for each
action. A fully end-to-end trainable DL-based approach was
also proposed in [4], where a DL model was trained to output
both the face feature embeddings, as well as, a suggested
action. The network was trained on a small dataset containing
facial images at various pans and tilts, providing a proof-of-
concept demonstration for a DL-based pipeline for active face

recognition. Moreover, this approach cannot fully exploit the
potential of active perception, since it only considers 1-step
actions for training the control branch of the DL model.

The proposed method goes beyond these approaches by
employing a powerful RL-based formulation that is both end-
to-end trainable and does not make any assumption regarding
the control policy. In this way, more advanced policies can
be discovered without introducing any strong prior, using
handcrafted rules either for training or inference. However, the
proposed method requires a realistic simulation environment
for training, since the control module cannot be trained using
the existing static datasets. To overcome this limitation, in this
work, we employed the realistic Webots simulator, along with
3D human models generated using the MakeHuman software.
A sample of the generated human models can be seen in
Fig. 2. Furthermore, both aforementioned works require the
use of a face detector to appropriately crop the face image
before feeding it to the face recognition module. On the other
hand, the proposed method allows for significantly reducing
the computational requirements by working independently of
the face recognition model. In this way, a lightweight DL
model is used for performing control and the heavy face
recognition pipeline (face detection and recognition) is only
employed when deemed appropriate.

III. PROPOSED METHOD

Let x ∈ RW×H×C be an image that contains a face to be
recognized, where W , H and C are the width, height, and
number of channels of the corresponding image. As described
before, face recognition algorithms require to first employ a
face detection model to detect and crop the bounding box that
encloses each face. Therefore, let

xp = fp(x) ∈ RWp×Hp×Cp (1)

be the cropped face image, where the notation fp(·) is used to
refer to the face detector and preprocessing pipeline employed
to crop the image and Wp, Hp, and Cp are the width, height
and number of channels of the cropped image. Most recent
deep face recognition methods, e.g., [15], aim at learning
an appropriate model y = fr(xp) ∈ RD that will extract a
discriminative identify-oriented representation from each face
image, where D denotes the dimensionality of the embedding
space used for representing the input face images.

Different loss functions have been proposed to train the face
recognition model fr, to extract discriminative embeddings. In
this work, we employ the Additive Angular Margin Loss [13],
which is minimized when embeddings that belong to the same
identity are close, while the representations of face images
that do not belong to the same person are far. After training
the model y = fr(xp), the identity of a person depicted in an
image xp can be obtained simply by calculating the Euclidean
distance between the feature vector of that image and the
feature vectors on a database that contains images xi of known
identities, i.e., Xd = {(xi, li)}, where li is the identity of the
person depicted in the i-th image. Therefore, during inference

DRL Control Agent

Control
Action

Input Image

Face Detection Face Recognition
Face Embedding

Active Perception Feedback Loop

Face
Database

Identity

Fig. 1. Proposed Active Perception Approach: A DRL agent is employed to issue control commands in order to acquire the most appropriate view for improve
face recognition accuracy.

Fig. 2. Realistic human models generated using MakeHuman.

the identity l of a person appearing in a novel image x is
obtained as l = lk, where

k = argmin
i
||f(xi)− f(x)||2 (∀(xi, li) ∈ Xd). (2)

The proposed method aims to teach an agent that can
appropriately control a robot in order to re-acquire an input
image x in which the depicted person can be more confidently
identified, as shown in Fig. 1. To this end, another model
fa,W(x) is introduced, where W denotes the trainable param-
eters of the model. This model is responsible for controlling
the position and orientation of the robot in order to recognize
the human in the scene with the greatest confidence possible.
Five possible actions are supported by this model:

1) stay, where the robot does not move and initiates the
face recognition pipeline,

2) move forward/backward, where the robot moves for-
ward/backward, and

3) move left/right, where the robot rotates and translates its
position on a predefined arc either on the left or right.

All actions translate into discrete actions in the simulation
environment, e.g., moving forward/backward moves the agent
0.1m to the corresponding direction. Note that the face recog-
nition pipeline is only employed when the agent issues the
stay command. This can significantly reduce the computational
complexity of the employed pipeline, since both the face
detection and recognition models run only when the control
agent is confident enough that the depicted person can be

indeed recognized. This is in contrast with other active vision
approaches that require all models to run simultaneously,
e.g., [4].

The proposed agent is trained using DRL. More specifi-
cally, the Proximal Policy Optimization (PPO) algorithm was
used [6]. The reward used for training the DRL agent was
defined based on the face recognition confidence of a pre-
trained face recognition model. If the person was not correctly
identified, the agent received a reward of 0. Therefore, after
identifying the embedding of the most similar person (k) in
the database according to (2), the reward at time-step t can be
defined as:

rt =

{
c if ∥y − yk∥2< a

0 otherwise
, (3)

where yk = f(xk), c is the face recognition confidence, and a
is a cut-off value for recognizing a person, i.e., if the Euclidean
distance is larger than a, then we assume that the person
has not been recognized. The face recognition confidence is
calculated simply as the negative of the normalized Euclidean
distance between the current embedding vector and the em-
bedding vector of the most similar person in the database:

c = 1− ∥y − yl∥2
a

. (4)

Note that c is bounded between 0 and 1, since the Euclidean
distance cannot exceed the value of a, due to the used cut-off
threshold.

A deep convolutional neural network, receiving input im-
ages of 400 × 300 pixels, was used to implement the policy,
i.e., fa,W(x), as well as, to estimate the advantage value. A
lightweight DL model was used to this end. The architecture
of the model was the following: 2 convolutional layers with
16 (8 × 8) and 32 (4 × 4) filters respectively utilizing the
ReLU activation function, one fully connected layer of 256
neurons and two output layers. The first layer was responsible
for providing the policy function fa,W(x) function. This
layer was composed of the same number of neurons as the
number of available actions and employed the softmax function
to provide the final action probabilities. The other one was
used for implementing the critic function and was composed
of one output neuron providing the current advantage. To
constraint the advantage values the tanh activation function
was employed for this branch.

Each training episode lasts 1,000 steps and the agent ini-
tially starts at a random position around the human model,
which also faces at different directions in each episode. The
simulation world consists of a square room, a human model
at the center and a drone robot controlled by the DRL agent.
After each time-step the agent must decide whether or not
its position and orientation must be adjusted. For training the
network we employed the Adam optimization algorithm with
a learning rate of 0.0003, while a total of 10,000,000 steps
where performed during the training.

IV. EXPERIMENTAL EVALUATION

The proposed method was evaluated under two different
setups. In the first setup, the agent was trained to select one
of the first three actions (“stay”, “move forward” and “move
backward”). In this setup, the human was always initialized
to be in front of the drone and correctly centered. The aim of
this ablated setup was to evaluate the ability of the agent to
control the movement in just one axis in order to increase the
face recognition model’s confidence. In the second setup, the
agent was allowed to select any of the available control actions,
evaluating the ability of the proposed method to perform more
complicated sequences of actions, in order to improve face
recognition accuracy.

The proposed method was also compared to two other
baselines. First, a face recognition pipeline was employed
to evaluate the ability of existing approaches to detect and
recognize humans at different distances. This setup was called
“static” in the conducted experiments. Then, we also employed
an active perception enabled agent that uses rules. The rule-
based agent employed a face detector to detect if a face exists
in the scene. If a face is found, it outputs the appropriate
control commands to center it to its field of view based on
the detected bounding box and then moves forward based
on the face recognition model’s confidence, until it reaches
the maximum confidence. This method is called “rule-based”
in the conducted experiments. For all methods we used Arc-
Face [13] for the face recognition and RetinaFace [18] for the
face detection. Furthermore, the database of known identities
consists of one feature vector extracted from cropped frontal

TABLE I
EVALUATION FOR CONTROLLING ONE AXIS (SETUP 1). FACE

RECOGNITION CONFIDENCE IS REPORTED. A VALUE OF ZERO IS USED
WHEN A PERSON IS NOT CORRECTLY RECOGNIZED.

Distance Static Rule-based Proposed

1m 0.76 0.77 0.78
2m 0.55 0.77 0.78
3m 0.43 0.78 0.77
4m 0.19 0.76 0.76

5m 0 0.77 0.77
6m 0 0.63 0.75
7m 0 0 0.76
10m 0 0 0.71

15m 0 0 0.68
20m 0 0 0.48

In this setup the drone is initialized at a distance of 20m, which
decreases by 1m in every evaluation episode. We report the average
face recognition confidence reached for 4 different human models at
each distance.

face images of 5 different human models that were used for
the conducted experiments.

The experimental results for the first setup are reported in
Table I. In this setup, the drone was positioned at various
distances in front of the human subject, ranging from 1m to
20m. Using a static setup, where the drone does not move,
allows for recognizing persons only up to 4 meters. On the
other hand, the rule-based approach, which allows the drone
to move closer to the subject at hand, enables confident
recognition up to 6 meters. This demonstrates that active
perception, even when implemented using simple rules, can
indeed lead to improved perception accuracy. The proposed
method outperforms all the other evaluated methods, since it
allows for confidently recognizing persons even up to 15m,
while it can work correctly even for larger distances (up to
20m).

Similar conclusions can be also drawn for the evaluation
results reported in Table II, using the second setup. Again, the
proposed method can significantly improve the view invariance
of face recognition, allowing not only for recognizing the
persons at different distances, but also in a wide range of
different angles, for some of which most face recognition
pipelines typically fail. It is worth noting that at a distance
of 7m only the proposed method manages to work correctly,
while the provided face recognition accuracy is virtually the
same with a robot that was initially placed in close distance in
front of a human subject. Additionally, note that the proposed
method does not need a face detector to actively perceive
the surroundings, which can lead to significant performance
improvements. Indeed, the proposed method runs on 180 FPS
on average, while the rule-based approach runs on 62 FPS.
A GPU-enabled workstation (8 GB VRAM, 9 TFLOPS) was
used for measuring the performance of the evaluated agents.

TABLE II
EVALUATION FOR CONTROLLING TWO AXES (SETUP 2). FACE

RECOGNITION CONFIDENCE IS REPORTED. A VALUE OF ZERO IS USED
WHEN A PERSON IS NOT CORRECTLY RECOGNIZED.

Angle Static Rule-based Proposed

3m

0◦ 0.48 0.77 0.76
60◦ 0.24 0.32 0.78
120◦ 0 0 0.78
180◦ 0 0 0.76
240◦ 0 0 0.79
300◦ 0 0.14 0.78

5m

0◦ 0.18 0.53 0.79
60◦ 0 0.32 0.79
120◦ 0 0 0.79
180◦ 0 0 0.77
240◦ 0 0 0.78
300◦ 0 0.13 0.79

7m

0◦ 0 0 0.78
60◦ 0 0 0.78
120◦ 0 0 0.77
180◦ 0 0 0.76
240◦ 0 0 0.77
300◦ 0 0 0.77

In this setup the drone is initialized at three different distances, while
for each distance we also evaluated the performance of the agents at
6 different angles around the human model. We report the average
face recognition confidence reached for 4 different human models at
each distance.

V. CONCLUSIONS

Despite its potential in a wide variety of robotics systems,
active perception using DL models is a field not yet explored
deeply. Indeed, it is expected that a robot should be able to
interact with its environment to better understand it, improve
situational awareness and make informed decisions. In this
work we demonstrated that active perception approaches can
indeed lead to improved face recognition accuracy in a wide
variety of setups, including challenging ones, e.g., when
images taken from the back side of humans or faces appear too
small to be detected by traditional face detection models. At
the same time, it was also shown that DRL can be efficiently
integrated into such active perception pipelines, given that
the appropriate reward function has been defined. Also, the
proposed method can lead to performance improvements,
apart from more accurate agents, since it can replace part
of the existing DL pipelines. This work paves the way for
more advanced DRL-based active perception approaches for
human-centric perception.These approaches can be trained
on more complex simulation environments, employ sim2real
approaches [9], while also consider the trade off between the
expected accuracy improvement and energy expenditure for
each control action.

ACKNOWLEDGMENT

This work was supported by the European Union’s Horizon
2020 Research and Innovation Program (OpenDR) under
Grant 871449. This publication reflects the authors’ views
only. The European Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436, 2015.

[2] Ruzena Bajcsy, “Active perception,” 1988.
[3] Masaki Nakada, Han Wang, and Demetri Terzopoulos, “Acfr: Active

face recognition using convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 35–40.

[4] Nikolaos Passalis and Anastasios Tefas, “Leveraging active perception
for improving embedding-based deep face recognition,” in Proceedings
of the International Workshop on Multimedia Signal Processing, 2020,
pp. 1–6.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller, “Playing
atari with deep reinforcement learning,” 2013.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov, “Proximal policy optimization algorithms,” 2017.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller,
Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis, “Human-level control
through deep reinforcement learning,” Nature, vol. 518, pp. 529–533,
2015.

[8] A Tzimas, Nikolaos Passalis, and Anastasios Tefas, “Leveraging deep
reinforcement learning for active shooting under open-world setting,” in
Proceedings of the IEEE International Conference on Multimedia and
Expo, 2020, pp. 1–6.

[9] Andrei A Rusu, Matej Večerı́k, Thomas Rothörl, Nicolas Heess, Razvan
Pascanu, and Raia Hadsell, “Sim-to-real robot learning from pixels with
progressive nets,” in Proceedings of the Conference on Robot Learning,
2017, pp. 262–270.

[10] Olivier Michel, “Cyberbotics ltd. webots™: professional mobile robot
simulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, pp. 5, 2004.

[11] Manuel Bastioni, Simone Re, and Shakti Misra, “Ideas and methods
for modeling 3d human figures: the principal algorithms used by
makehuman and their implementation in a new approach to parametric
modeling,” in Proceedings of the Bangalore Annual Compute Confer-
ence, 2008, pp. 1–6.

[12] Jun Zhang, Yong Yan, and Martin Lades, “Face recognition: eigenface,
elastic matching, and neural nets,” Proceedings of the IEEE, vol. 85,
no. 9, pp. 1423–1435, 1997.

[13] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou, “Arcface:
Additive angular margin loss for deep face recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 4690–4699.

[14] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao
Zhou, Zhifeng Li, and Wei Liu, “Cosface: Large margin cosine loss
for deep face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 5265–5274.

[15] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj,
and Le Song, “Sphereface: Deep hypersphere embedding for face
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 212–220.

[16] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no.
8, pp. 966–1005, 1988.

[17] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos, “Revisiting
active perception,” Autonomous Robots, vol. 42, no. 2, pp. 177–196,
2018.

[18] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos
Zafeiriou, “Retinaface: Single-shot multi-level face localisation in the
wild,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 5203–5212.

D3.3: Third report on deep human centric active perception and cognition 194/223

8.12 Active Perception for Occlusion Removal in Face Recognition
The appended paper follows.

OpenDR No. 871449

Active Perception for Occlusion Removal in Face Recognition

V. Dimaridou, N. Passalis and A. Tefas
Computational Intelligence and Deep Learning (CIDL) Group, AIIA Lab.,

Dept. of Informatics, Aristotle University of Thessaloniki

Abstract

Face recognition is an essential functionality in robotics,
with a very high requested accuracy. While great success
has been achieved in this task using all the latest advances
of deep learning, it often relies on clear views of the query
person. Partial or full occlusions in the face area greatly
degrade the accuracy of available methods, setting them un-
suitable for usage in robot agents. In this work we leverage
active vision for getting a clear view of the person’s face.
For this, we carefully design a two-step pipeline, that ini-
tially predicts the target direction of the robot’s movement.
By moving towards to this direction using a predefined step,
a second view of the face and the occluder object is cap-
tured. This view is later used for regressing the remaining
movement the agent has to perform, as a ratio of the first
step. The initial movement of the agent is essential for the
network to take into consideration the distance of the oc-
cluder object. Using our framework we manage to clear
out severe occlusions, above 50%, and reach verification
accuracy of 97%, 92% and 99% in agedb30, cplfw and lfw
benchmark datasets respectively.

1. Introduction
The usage of facial recognition technology has increased

dramatically the last couple of years, with new applications
arising every day. Facial recognition is now so technolog-
ically mature, that it is being used in the most demanding
fields, including border and access control, national secu-
rity and banking identification.

In recent years face recognition is treated as a feature
comparison problem. In the most common scenario, a de-
tected and aligned image region of a person’s face in given
as an input to a deep convolutional network, which outputs
a feature representation of it. Given the deep representation,
a chosen similarity function is used to measure the degree
of identity similarity between two images, known as verifi-
cation, or a set of initially enrolled subjects, otherwise iden-
tification. Face recognition approaches follow the evolution
of architecture and advanced training techniques of deep

learning, thus common architectures such as ResNet, used
in SphereFace [16] and VGG, proposed in VGGface2 [6]
are utilized. Although backbone architectures significantly
affect face recognition accuracy, the huge success rates are
mostly based on carefully designed loss functions, specifi-
cally targeted to minimize the intra-class variation and max-
imize the inter-class variation. Large margin cosine [23] or
additive angular margin losses [7] both target on obtaining
highly discriminative face features. Face recognition poses
as a zero-shot problem, and requires a massive amount of
training data and training time to be deployed in real-world
applications.

Person identification technology is also of great interest
in the robotics field. The robot’s ability to recognize indi-
viduals is a fundamental requirement for improving human-
robot interaction. Face recognition techniques in robotics
tend to follow the advances in literature, although they of-
ten use lightweight variations, due to limited computational
ability. An example of hardware optimized deep learning
face recognition module is presented in [22], where the au-
thors optimize a topology based on SqueezeNet using ad-
vanced pruning and quantization, resulting on a well-fitted
network that can be deployed on FPGA accelerator. Apart
from hardware limitations, robotics face recognition also
tries to tackle challenges introduced by the unconstrained
environment. The authors of [12] propose a GAN schema
that aims on predicting the neutral expression of the person
in query, resulting in a face image that fits the distribution
of the existing training face databases.

Face recognition challenges can be split into four main
categories, the natural process of aging, which is uncontrol-
lable in the sense that each person passes through different
aging patterns; pose invariance, which can be potentially
tackled with advanced alignment methods; severe illumina-
tion changes; and partial occlusions [1]. Further analyzing,
partial occlusions refer to obstacles in the query image that
block the face area by an occlusion less than 50%. The
occluder object can be sunglasses, scarf, hair, masks, an-
other person/object or even severe shadows. Partial FR is
an active research topic that often uses face patches. More
specifically, dynamic feature matching uses face patches

and face images of a subject for reducing the intra-class
variation [9]. On the other hand, newer approaches modify
the network architecture using attention modules [10] that
drive the model to focus on relevant parts of the occludee
face. All the aforementioned solutions try to tackle the par-
tial FR problem using a single static image representation.
However, a robot agent acts in dynamic environments and
has the ability to further explore its surroundings to get a
better understanding.

”We do not only see, we look”, is written in an early
active perception and exploratory robots work [3]. More
recent works argue that one of the main reasons to use ac-
tive control is to see a portion of the visual field otherwise
hidden due to occlusion [4]. While object detection has un-
dergone tremendous advancements, it is still rational that
problems considered ill-posed for a passive observer can be
simplified when managed by an active agent [2]. Applica-
tions on active perception that enforce deep learning often
use reinforcement learning [[18], [20], [5]] and are being
applied to various tasks, such as image classification or ad-
versarial scenarios detection.

Enforcing the ability of robot agents to move around, we
aim to tackle the occluded face recognition problem as an
active perception vision task. We propose an active per-
ception pipeline that intents on simultaneously moving to-
wards a direction that gives a clear face view for the robot
and performing face recognition. Our proposed pipeline is
two-step, initially the robot captures the face image and de-
cides the direction of the movement towards removing the
object in the most efficient way. Later, given a new face
view, the agent decides how much further it should move to
fully clear out the occlusion, as a ratio of the initial move-
ment. Both the direction decision network and the regres-
sion module are implemented using efficient deep learning
networks.

One could easily question why two different networks
are needed, when it is fairly easy to train a feature extrac-
tion network with two heads, one predicting the movement
direction and the other the movement distance. This is a ra-
tional pipeline if the problem we aimed to solve would stay
in the 2D image world or we had a 3D view of the environ-
ment as an extra input. However, we consider an agent that
can only acquire color information of its surroundings, as a
two dimensional image. Thus, given only an RGB image as
input, there is no out-of-the-box way of knowing the actual
distance between the agent and the object that causes the
occlusion. We aim to solve this issue by first performing a
pre-defined movement towards the direction that is picked
by our network. This pre-defined movement will result in
different image views based on three dimensional factors
such as the robot’s positioning with regards to the object
and the human. Our second network is trained so that it rec-
ognizes the impact of the initial movement and regresses a

factor showing how much more the network should move.
A second aspect of our work that needs to be noted is

that our simulation modules operate in pixel values and
not three-dimensional ones. We pick this formulation as
we want to make full usage of the plethora of image
datasets that exist and not restrict ourselves in three dimen-
sional models and slow simulation modules. However, our
pipeline is exactly constructed for this reason, the network’s
output is never expected to be in pixel or distance metrics.
On the contrary, we force the network to predict the remain-
ing movement as a ratio of the first pre-defined movement.
We also conduct a detailed mathematical analysis on why
the ratio that is predicted is analogous to distance metric
values in the world. Our contributions can be summed up
as follows:

• We consider a real-world problem, formally describe
it, and construct an active perception pipeline to solve
it.

• We design a two-step pipeline that initially predicts
the direction of movement and then regresses towards
the full object removal from robot’s point of view.
We manage to use the image data after the first pre-
define movement, in order to understand objects that
are placed in various positions from the agent, without
the need of any depth sensor.

• We follow a classic deep learning training procedure
with two dimensional data, but specifically target into
a pixel agnostic solution.

• We propose a pipeline which is currently applied
in face recognition, but all the modules included
can be plugged in a plethora of object identifica-
tion/recognition problems.

The rest of the paper is structured as follows. The prob-
lem formulation along with formal definition of the main
modules included in our pipeline are extensively described
in Section 2. Our data creation and simulation pipeline are
explained in Section 3, while our networks architecture and
implementation details are reported in 2. All the required
experiments that validate our methodology and assisted in
picking the appropriate architecture for our final module are
included in Section 5. Finally, Section 6 concludes the doc-
uments.

2. Methodology
2.1. Problem Formulation

Given a pair of face images and I1 and I2, we consider a
function Featm (implemented by a deep neural network)
that predicts distinctive face features, F1 and F2 respec-
tively. Given a threshold tth and a distance function d, the

decision if the faces belong to the same or different individ-
uals is produced by

Same = d(F1, F2) < tth . (1)

The verification accuracy calculated upon a number of fixed
sets of verification pairs is acc. When obstacle images O1

and O2 are applied on arbitrary positions upon I1 and I2 re-
spectively, new predicted features F o

1 and F o
2 are acquired.

Repeating the application of eqn. (1) using the same func-
tions Featm, d, a new acco is obtained, where generally,
acco < acc.

Considering a robot agent that can move freely into 3D
space, and capture new face images after each movement,
we are looking for a set of movements that result in a view-
point where the objects O1 and O2 are not visible in the new
input images. The final target is to obtain acco ≃ acc.

2.2. Face Recognition Model

We consider a face recognition model that consists of
a function Featm, responsible for predicting disciminative
features and a face recognition head that compresses the
features into a dimension where distance functions can pre-
dict the final classification match. Since a face recognition
model should strictly separate faces in the feature space,
specifically built classification heads and loss functions are
enforced during the training procedure. During inference,
the classification head is not used, on the contrary com-
pressed face features are compared with candidate matches
using various similarity functions.

2.3. Direction Decision Network

The first step towards getting a better viewpoint for the
face image is to predict the direction towards obstacle re-
moval. For this reason, we consider a direction classifier,
Dm, which operates upon face embeddings F o

n (input). Dm

is implemented with a deep neural network, and is opti-
mized with cross entropy loss,

cost(d, d′; θ1) ≜ −
5∑

c=1

d′o,c log(Dm(F o
n)o,c), (2)

where d is the predicted movement and d′ is the ground
truth, as defined by 2D occlusion generator. Dm network
and its optimization procedure is depicted in Figure 1.

We argue and later show that the pre-trained face fea-
tures predicted by Featm preserve positional information
regarding the obstacles that exist on face area. Direction
Decision Network operates into 5 distinct categories: (1)
up, (2) bottom, (3) right, (4) left, (5) none. None category is
optimized using training samples that do not include obsta-
cles in the face area, and is required so that the agent stays
still and performs face recognition without further delay in
this case. In our experimental analysis we operate on the

before-mentioned 5 categories, however our pipeline can be
easily extended to more complex agent movements.

2.4. Regress towards target

Given an occluded image Ion, direction decision network
operates upon its features F o

n and decides for the direction
d that would efficiently remove the obstacle from the agent
point of view. We employ a 3D emulator module that syn-
thesizes the occluded image from a viewpoint that follows
movement direction d. The 3D emulator module is respon-
sible for moving the occluder object in a way that simulates
a constant robot movement towards direction d. The same
module is in control of how the pre-defined agent move-
ment would affect the new 2D image representation based
on the distance of the agent and the occluder object, thus
the name 3D emulator. Further information and formal def-
inition about 3D emulator can be found in section 3.

Given the initial occluded image Ion and the new 2d rep-
resentation captured by the modified viewpoint I ′on, we em-
ploy a function Rm that is responsible for predicting the re-
mainder movement, so that the occlusion is fully removed.
In detail, Rm is implemented by a deep neural network,
which extracts features from Ion and I ′n

o, combines them,
and regresses the rest of the movement. Our key contribu-
tion is that we do not regress either pixels or distance values.
On the contrary, we predict a value that represents the pro-
portion of the initial movement that needs to be repeated
in order to fully clear out the robot’s viewpoint from any
occlusions. Finally, Rm network is optimized by

cost(r, r′; θ2) ≜ ∥Rm(Ion, I
′
n
o)− r′∥1, (3)

where r′ is the ground truth movement percentage produced
by 3D simulator and r is the predicted movement, formu-
lated by Rm network. Rm and its optimization procedure
are illustrated in Figure 2.

2.5. Three dimensional analysis

Throughout the current document we defined all of our
equations using two-dimensional representations in image
plane. Although we consider pre-defined robot movement
during stage 2 training and agent-object distance in 3D sim-
ulator module, all those are theoretically defined and are
not represented by numerical values. 3DS module calcu-
lates the object movement and movement remainder (used
as ground truth for stage 2 training), using image plane co-
ordinates. Our end goal, as discussed, is a active perception
pipeline that can be deployed in real life scenarios. That
brings up a vital question: How does the movement remain-
der, that is calculated using pixel values, correspond to real
world distance metric?

We consider a three-dimensional point P1(x, y, z) in
world plane, pointing at the occluder object surface. We
also employ a robot agent, that is capable of moving freely

Faces Pool

Objects Pool

2D
Occlusion
Generator

IR-50 Encoder

features out

Face Recognition
Head

Movement
Classification Head

CE loss

occluded image

GT movement predicted movement

Convolutional blocks

Batch Normalization

Fully Connected Layer

Forward pass

Forward & Backward
pass (Gradient)

ReLU

Face 1 Training
Face Recognition & Direction Decision

Network

predicted movement

Figure 1. A detailed overview of our face 1 training procedure. 2D Occlusion Generator module iterates through face (In) and object (o)
pool, generating occluded face images Ion. Those are fed into direction decision network, Dm, which predicts the agent movement towards
occlusion removal, d. Cross entropy loss drives the training procedure (eq. 2), with gradients flowing in the green arrows direction. Red
outlined modules are kept frozen during training.

at the world plane. The agent, performs predefined steps
in horizontal and vertical axis, denoted as m. Finally, we
consider the robot agent to have a camera system attached,
which can be described by a pinhole camera model.

Point P1(x, y, z) can be formatted as

p1 =

fx 0 cx
0 fy cy
0 0 1

×

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

×

x
y
z
1

 ,

(4)
in the image plane. We follow the pinhole camera model
formulation, which converts a 3D point with cartesian co-
ordinates (x, y, z) to camera space using

[
R|t
]
, where R is

the rotation matrix and t is the translation vector that corre-
spond points from 3D world to camera world. Final conver-
sion to image plane comes from the first matrix product of
4, where fx and fy are the focal length values, and cx and
cy is the camera center expressed in pixels. The same point

P1(x, y, z) is calculated by

p2 =

fx 0 cx
0 fy cy
0 0 1

×

r11 r12 r13 t1 + m
r21 r22 r23 t2
r31 r32 r33 t3

×

x
y
z
1

 ,

(5)
using a translated

[
R|(t,m)

]
matrix. The translation comes

from the robot movement in the predicted direction d, by
distance m. In eq. 5 we consider robot moving in horizon-
tal direction, however our conclusions can be extended in
vertical direction too. In our pipeline, Rm network tries to
regress the remaining movement the robot has to perform,
as a proportion of the first pre-defined step. The prede-
fined step which is given in pixel coordinates by 3DS mod-
ule does not yet correspond to real world robot movement.
However, given the previous analysis, the remainder of the
robot’s movement can be extended as

rout ∗Dp = rout ∗ (p2 − p1) = rout ∗m ∗

fx
0
0

 . (6)

Eq. 6 shows that the predicted remaining movement can
be expressed as proportion of the agent’s actual movement

Face 2 Training
Regress Towards Target

Movement
Classification

occluded
image

predicted
direction

3D
simulator

moved
occluded

image

EfficientNet
B7

EfficientNet
B7

A
d

ap
ti

ve
A

vg
P

o
o

l 2
d

Fu
lly

 C
o

n
n

ec
te

d

H
ar

d
sw

is
h

D
ro

p
o

u
t

Fu
lly

 C
o

n
n

ec
te

d

Si
gm

o
id

𝑳𝟏 loss
relative

prediction

relative GT

Figure 2. The second step of our training pipeline. Initial occluded image Ion is used as input in Dm network, and the predicted direction d
is fed into 3D simulator module. A new viewpoint of occluded image, referred as I ′no, along with the initial Ion view are fed into regression
prediction network Rm. The training is led by l1 loss, between Rm output and ground truth relative movement produced by 3D simulator.
During this step, Dm network isn’t optimized.

and focal length, which is constant for a given camera sys-
tem. The above mathematical analysis is illustrated in Fig-
ure 3.

3. Occluded Faces Dataset

In order to initially test our assumption that face recog-
nition is severely affected by partial occlusions and later
construct an active perception method that solves the above
problem, we need to create a pipeline that can generate par-
tially occluded face images. Our main requirement for the
data creation pipeline is that it can be easily parameterized,
in order to conduct different experiment types. Towards this
end, we consider a set of 2D RGB face images, F , and a set
of 2D RGBA object images, O. Overlaying set O to F set,
results to a huge amount of occlusion data, that is easy to
handle and fast to generate. We first describe the baseline
datasets used as F and O sets, and then describe the pre-
processing steps along with our 2D Occlusion Generation
and 3D Simulation modules.

3.1. Baseline Datasets

MS-Celeb-1M MS-Celeb dataset [8] is one of the largest
publicly available databases used for face recognition and

verification. It consists of a total of 10M images, from
1M individuals. The individuals depicted in this database
are people that have received public attention, mostly due
to their profession. The dataset includes diversity both in
terms of age and race. The subset that is used in the current
pipeline, as the main training dataset F , is constructed by
selecting the top 100K celebrities, based on the frequency
of their appearance. The final training dataset consists of
5084127 unique images.

COCO Common Objects in Context [15] dataset is a
publicly available database that consists of 328K images.
It includes highly detailed annotations for object detection,
human pose estimation and instance segmentation. COCO
dataset comes with 2.5M labelled instances, depicting 91
categories of commonly used objects (e.g. toothbrush,
oven, apple). The dataset is split into training, validation
and testing subsets. Training set consists of 164K images,
while validation and testing set share 82K images each. In
the current document, objects acquired from training set are
used in the training process and objects from validation set
during architecture search. COCO dataset consists of ob-
jects with different scaling, type and viewpoint, thus using
it as the overlay dataset O offers high diversity to the data
generation pipeline.

x

y z

robot
movement

World Plane

Image Plane

Figure 3. We consider a robot agent that can move freely into world plane and a partly occluded person (left side of figure). A point
P1(x, y, z) of the world plane is expressed as p1(u, v) on image plane (right side of figure). When the robot agent moves towards the
predicted direction expressed by Dm, a new edge occlude point is created, denoted as p2(u, v). Rm model’s training target is created by
predicting a ratio of occlude change in pixel values, which can be expressed as a ratio of the agent’s movement.

3.2. Occlusion Generator & 3D Simulator

COCO dataset includes highly accurate annotations for
instance segmentation task, which makes it ideal for object
extraction. More specifically, we use the instance segmen-
tation masks to accurately crop all the annotated objects
included in each sample image. We save the cropped ob-
jects as RGBA samples, in order to seamlessly apply the
occlusions on face images. We later apply 3 post process-
ing steps to further improve the quality and realism of the
occlusions: (1) we remove images that their axis aligned
bounding box is smaller than 50x50 pixels; (2) we apply
contour detection and exclude the images that contain more
than one blob (this happens due to object split, caused by
occlusion with a different instance); (3) we further crop the
objects, so that the object coverage in the RGBA image is
higher than 70%. We specifically perform the last two steps,
because we want the object to occlude as much as possible
and not leave face features visible in the occlusion areas.
Our final object dataset includes 129K and 65K objects split

into training and validation sets respectively.

Our face occlusion dataset is formulated by two sep-
arate components: the 2D Occlusion Generator(2DOG)
and the 3D simulator(3DS) module. 2D Occlusion Gen-
erator picks an image and an object from sets F and O, a
direction of occlusion and an occlusion percentage. Given a
face image of size wf × hf , an object with size wo × fo
and an occlusion percentage Op we resize the object to
wf × (Op ∗ hf) size, apply the appropriate padding and
overlay the two images. For training, we choose to place
the model up, down, right and left (object rotation is per-
formed for right and left occlusions). Other experimen-
tation during testing phase includes objects placed on the
center of the image or in random positions across the im-
age plane. 3D simulator module accepts an occluded im-
age produced by 3DOG and the direction decided by the
direction decision network. It first simulates different ob-
ject distance by setting the movement impact to be variant
across samples. Considering a movement towards the direc-

tion of the classifier’s decision, the object padding changes
and it is reapplied on top of the initial face image. The same
module then calculates the remaining movement needed for
complete object removal, as a ratio of the movement im-
pact. This ratio is the target for the regression model op-
timization process. Implementation-wise, our data gener-
ation pipeline applies on-the-fly modifications to the train-
ing/validation samples, while a random seed on both 2DOG
and 3DS modules is used for result reproducibility.

4. Architecture
The pipeline described in Section 2 includes three net-

works: (1) Face Recognition Model; (2) Direction Decision
Network; (3) Ratio Regression Module. In this section we
describe the architecture of each one, as well as the pro-
posed two-step training procedure.

4.1. Models Architecture

Face Recognition Model, Featm, is implemented using
a deep convolutional network provided by the high perfor-
mance face recognition library Face.evolve [24]. The back-
bone used is a ResNet inspired network with 50 layers; the
head used during training is ArcFace [7]; and focal loss [14]
drives the training procedure. We select the pretrained vari-
ant that is optimized on MS-Celeb-1M dataset. Throughout
all the training procedure for our Dm and Rm models we do
not back-propagate gradients on Featm model, thus keep-
ing its weights frozen. We choose the above model since we
want a well fitted and accurate baseline to conduct our ex-
periments, however our proposed modules can be plugged
in to every face recognition network that produces face fea-
tures.

Direction Decision Network, Dm, is designed as an ex-
tra classification head that predicts direction data paral-
lel to Featm final classification head. It operates on the
512 × 7 × 7 feature maps produced by face recognition
model, using two linear layers, where the last linear module
outputs five probabilities, one for each possible direction.
More details on Dm architecture can be found on Figure 1,
in the Movement Classification Head component. While it
would be possible to enforce a separate backbone and head
to serve as direction decision network, we choose to oper-
ate upon pre-trained face features. The main reason for this
choice is that we can acquire both the face representation
and the proposed direction of movement on a single forward
pass. Given the above, the recognition process can continue
with no further delay in the case that the predicted direc-
tion in none (which in real scenarios will be a very common
one).

Ratio Regression Module, Rm, expects an input of two
face images. A logical continuation of Dm design process
would be to use Featm predicted features for each image,
fuse them, and attach them into a regression head. While

this method often results to accurate predictions, it has a se-
vere drawback: the features predicted by Featm are robust
to small object displacements. This results to feature maps
with zero mean absolute difference. To overcome this issue,
we use a separate lightweight backbone network, which ac-
cepts the raw images as input and outputs the regression
value. We consider two different variations of our regres-
sion module: a backbone model that accepts six channel in-
put and predicts one class; and a Siamese inspired network
architecture, where the same backbone branch predicts fea-
tures that are concatenated and used as input in a two linear
layer regressor. The regressor architecture is depicted on 2.
The backbone used is EfficientNet B7 variant [21] variant.
Both of the variations use Sigmoid activation, so that we
can limit the robot’s movement into non-extreme values.

4.2. Implementation Details

We enforce a two-step pipeline to train our direction de-
cision and ratio regression modules. The first part of the
training pipeline includes the fine-tuning of the movement
classification head, as visualized in Figure 1. We load pre-
trained weights both for the face feature extractor and face
recognition head (from [24]) and keep them frozen in the
optimization step. The second part of the training pipeline
includes the training of ratio regression module, as depicted
in Figure 2. The previously trained (from face 1) move-
ment classification head remains frozen in this step, and Ef-
ficientNet B7 backbone along with its classification head
are being optimized. We initialize the parameters of the
backbone with ImageNet pre-trained weights and normal-
ize the input images accordingly. We use PyTorch deep
learning library [19] and enforce CE and MSE for stage
1 and 2 respectively. All the experiments mentioned in this
manuscript are trained for 250K iterations, and the latest
model is used. Adam optimizer is used [13] with an initial
learning rate of 1e−3.

5. Experiments
5.1. Validation Datasets

LFW Labeled Faces in the Wild [11] is a publicly avail-
able dataset used in face verification. The dataset contains
13233 labeled images, collected from the web. The to-
tal number of distinct people depicted in this collection is
5749. From those, 1680 people have two or more distinct
images picturing them. The dataset is separated into 10
non-repeating subsets of verification pairs, where each sub-
set contains 300 positive and 300 negative matches. LFW
dataset is mostly used in academic research, since it lacks
of diversity in terms of depicting people from different age
groups or various ethnicity. Some examples of LFW images
are depicted in the first row of Figure 4.

CPLFW Cross-Pose Labeled Faces in the Wild [25] is

Dataset agedb-30 cplfw lfw
Verification Accuracy 97.63% 92.23% 99.81%

Table 1. Baseline accuracy of [24] across different datasets.

a refactored version of LFW dataset. It contains 11652 im-
ages, with the same individuals as LFW, however it is en-
riched with additional images for each person, so that none
of them has less than two images. The additional images
and the verification pairs are closely selected, so that pos-
itive samples include images with as large pose difference
as possible. Additionally, negative samples include cherry-
picked images with people with the same race and gender.
Second row of Figure 4 illustrates three hard-examples of
same person pair (first six images) and different person pair
(last six images).

AgeDB-30 Age Database [17] is a database that contains
a large number of human faces, annotated with their ages,
at the time the photo was taken. It includes 16488 unique
images, with annotations of identity, age and gender. The
number of distinct subjects is 568, with the average number
of photos per person being 29. Since it was first constructed
to be used in age-specific tasks, it includes subjects with age
ranges from 1 to 101. AgeDB-30 is an use-case of AgeDB,
where a verification dataset is created, exploiting the iden-
tity labels. Following LFW protocol, AgeDB dataset con-
sists of 10 folds of images, where each fold includes 300
positive and 300 negative pairs. The variation of AgeDB
used in the current document, is the one where the age dif-
ference of each verification pair is set to a fixed range of 30
years. The last row of 4 shows some sample images from
AgeDB-30 dataset.

The validation protocol followed in the current document
uses all the three available datasets to verify the generaliza-
tion ability of the trained models. LFW poses as the easiest
target, while CPLFW and AgeDB-30 both include different
additional challenges. It is important to note here that the
maximum expected accuracy is limited by the frozen face
recognition network used in all of the experiments.

5.2. Partial Occlusion Effect on Verification

We consider the face features predicted by [24] as our
baseline face recognition accuracy. We choose a stable and
well-fitted deep learning module to serve as our baseline
model, however it has to be noted that our active perception
modules can be plugged into any model that produces face
features. Initial face verification accuracy across different
datasets is given in Table 1.

Our target is to inspect how verification accuracy drops
when random objects are placed upon face images, using
our dataset generation pipeline. For this reason, we main-
tain the feature extraction network unchanged, while the
verification pairs also remain the same. We gradually in-
crease the occlusion percentage and place the objects on our

Dataset agedb-30 cplfw lfw
Baseline Accuracy 97.63% 92.23% 99.81%

30% object coverage 96.46% 90.28% 99.49%
40% object coverage 92.03% 85.64% 97.68%
50% object coverage 81.50% 72.46% 89.75%
60% object coverage 69.76% 63.50% 81.68%

Table 2. Face verification accuracy when occlusion objects are
applied on face images. Object coverage percentage shows the
occlusion object coverage upon the face image. The task is verifi-
cation, thus random classifier percentage is 50% (binary task).

Dataset agedb-30 cplfw lfw

DDN Classification Accuracy 89.46% 84.13% 90.775%

Table 3. Classification Accuracy of DDN. Our validation split of
COCO objects is applied on verification datasets, with occlusions
ranging from 20% to 60%. The target used to compute the classi-
fication result is produced by 2D Occlusion Generator module.

four pre-selected locations: top, borrom, right & left. The
verification accuracy gradually drops, as depicted in Table
2.

When applying a 30% object occlusion, our selected
baseline model manages to extract discriminatory features
(in the majority of the cases), proving its robustness on mild
occlusions. However, as the occlusion coverage rises, the
model cannot keep-up, and gradually drops its accuracy to
near random classifier levels. Please note that the task we
consider here is verification, which is a binary task, there-
fore the random classifier percentage is 50%. Another ob-
servation worth noticing is that accuracy drop reflects on
dataset difficulty level. LFW verification accuracy doesn’t
manage to drop bellow 80%, proving that it is a relatively
easy dataset to solve, while cplfw suffered the most severe
accuracy drop. Finally, for the majority of our experimen-
tation we will not increase the object coverage above 60%,
as we are interested in partial occlusion cases.

5.3. Iterative Direction Decision Network

The first step of our pipeline is to train the decision clas-
sifier. Given the architecture and implementation details
mentioned in subsection 4, we present the classification ac-
curacy of our Direction Decision Network in Table 3. In
order to validate our network’s accuracy, we used our 2D
Occlusion Generator module, where the faces pool consists
of the images present in LFW, CPLFW and AgeDB-30 ver-
ification pairs and the objects pool is a 20% subset of our
COCO objects, all unknown during training. 2D Occlusion
Generator applies occlusions in range 20%-60%.

A rational first approach to our obstacle removal problem
would be to iteratively use the direction decision network.
To this end, a pre-defined step that the agent will perform is
set, and the input image is fed into Dm network. The agent
will perform the movement as defined by the step and the

LF
W

C
PL

FW
A

g
eD

b
-

3
0

Same Person Different Person

Figure 4. Examples of LFW (row 1), CPLFW (row 2) and AgeDB-30 (row 3). First three pairs of each row illustrate actual verification
samples of the same person, while last three pairs depict verification samples of different people. Notice how CPLFW and AgeDB-30
include more challenging pairs compared to LFW.

network’s decision. Newly captured images are again fed to
the network, until the network decides that there is no ob-
stacle in the face view, or a maximum step has reached. We
apply the last condition to verify that the procedure will end
in the case the network makes circle decisions. We use the
iterative pipeline to report verification accuracy on multi-
ple datasets on Table 4. Note that we report multiple occlu-
sion positions hard cases, such as constant high occlusion or
even center position on the image. Even though the baseline
verification accuracy in severe occlusion cases drops down
to random classifier, the iterative solution manages to reach
high verification scores after 10 position fixes, proving the
generalization ability of our Dm module, that mostly makes
usage of pre-trained face features.

5.4. Direction & Regression Pipeline

Although our iterative solution boosts the verification ac-
curacy near baseline face verification metrics, it lacks in
terms of efficiency. More specifically, it is unsure how many
iterations should be set as a maximum value. For example
center occlusion position in Table 4 could not be removed
even after 10 iterations of the direction network. For this
reason, we employ our regression model, that given two dif-
ferent views of the face image, regresses the percentage of
movement the network should perform for the occlusion to
be fully removed. In this section we aim to discuss the de-
sign choices made for the final regression model.

As discussed, a natural architecture choice would be to
take advantage of the pre-trained face features produced by
Featm, fuse the predicted featured coming from the two
sequential images, and attach a regression head for the final
regression output. This has been implemented and tested
in our pipeline, with feature fusion being implemented us-
ing concatenation and regression head defined as a two lin-
ear layer network that accepts flattened features. The re-
gression l1 loss perceived by the network, when validated

on unknown data, is given in the second line of Table 5.
To overcome the issues caused by the Features Regressor
when in the two sequential the object has slight movement,
we design EfficientNet Dual Regressor, which instead of
using the pre-trained Featm model, uses the EfficientNet
backbone to produce features for each of the two images,
fuses them, and uses the same regreesion head as in Fea-
tures Regressor case. The results acquired by this training
procedure are given on the second row of Table 5. We have
to mention here, that for fair comparison, we train the two
before-mentioned networks for the same number of itera-
tions. However, this is towards Feature Regressor favor,
since it has a lot more parameters to fine-tune. Lastly, we
design a simpler network, that includes an Effiecient Re-
gressor backbone, that accepts 6 channels on its input layer
and uses the same regression head to output the regression
value. The l1 loss of this model (see third row of Table 5)
shows that it converges quickly, even for a small number of
iterations. Thus, this model architecture is included in our
final pipeline.

In our stage-2 training, we use our Dm model in order
to create the second occlusion image. This exact pipeline
scheme, including both Dm and Rm modules is also be-
ing using during inference. However, we experiment with
replacing the trained movement classifier with a random
classifier, which randomly picks a direction from choices
top, bottom, right, left. The intuition behind this choice
is that the resulting model would be more robust and could
handle wrong classifications from Dm model during infer-
ence. Our design choice is validated by cplfw column in
Table 5, where our model trained with random occlusion
model (denoted with †), improves upon baseline, in the
dataset where Dm model has the poorest accuracy.

Occlusion Percentage 20%-60% 60% 60% center
Dataset agedb-30 cplfw lfw agedb-30 cplfw lfw agedb-30 cplfw lfw

Baseline Verification Accuracy ↑ 89.03% 81.61% 95.04% 69.76% 63.5% 81.68% 52.43% 51.56% 63.65
Verification Accuracy Iterative Fix (max 1)↑ 94.51% 87.43% 98.23% 83.01% 71.88% 91.36% 55.28% 54.23% 72.28%
Verification Accuracy Iterative Fix (max 2)↑ 96.50% 89.93% 99.41% 91.7% 79.95% 96.96% 65.88% 61.23% 82.06%
Verification Accuracy Iterative Fix (max 3) ↑ 97.23% 90.91% 99.59% 95.73% 85.35% 99.18% 77.81% 71.91% 87.98%

Verification Accuracy Iterative Fix (max 10) ↑ 97.38% 91.68% 99.66% 97.28% 90.83% 99.56% 88.85% 86.74% 91.46%

Table 4. Verification accuracy after iterative usage of direction decision network. Baseline Verification Accuracy denotes the accuracy
when no correction is performed in the occluded image. Note that our iterative solution manages to boost the accuracy even on extreme
occlusions - however, this comes on a high computational cost.

Dataset agedb-30 cplfw lfw
Features Regressor l1 ↓ 8.93 15.78 8.46

EfficientNet Dual Regressor l1 ↓ 6.83 34.54 11.56
Efficient 6 channel Regressor l1 ↓ 3.89 8.01 2.70
Efficient 6 channel Regressor†l1 ↓ 5.50 6.00 2.17

Table 5. Regression accuracy of different models, measured on
our three validations sets, using unknown occlude objects (from
validation set). When trained on the same number of iterations,
the 6 channel solution clearly outperforms the other two.

Dataset agedb-30 cplfw lfw
Verification Accuracy 20-60% ↑ 97.63 % 92.05% 99.8%

Verification Accuracy 60% ↑ 97.60 91.79 99.76
Verification Accuracy 60% center ↑ 90.66 88.96 % 93.34 %

Table 6. Verification accuracy of Efficient 6 channel Regressor †
model, measured on our three validations sets, using unknown oc-
clude objects (from validation set). When validated on the same
occlusion schema as in training, the verification accuracy reaches
baseline face model levels. Even when validated on severe occlu-
sions, our pipeline manages to restore a large percentage of verifi-
cation accuracy loss.

6. Conclusion

Object recognition tasks are often tackled using a static
inference schema. However, robot agents act in a dynamic
environment and are able to alter the viewpoint of their cam-
era system. For this reason, we consider a common prob-
lem, namely the face verification under partial occlusion,
and aim to tackle it using an active perception pipeline. Our
proposed two-step pipeline can be trained using classic deep
learning procedures, while being able to advantage from all
the available image data present in face recognition litera-
ture. However, we systematically prove that our pipeline
is specifically created to be pixel-agnostic in environments
that only include image color sensors. Our experimental re-
sults prove the decrease of face verification accuracy into
random classifier values, under partial occlusion settings.
We later manage to correct the accuracy drop near percent-
age rates before the addition of occluder objects using our
proposed methodology. We hope that our pipeline leads the
way for more active perception methodologies that are the
only way to solve ill-posed problems in real world.

Acknowledgment
This project has received funding from the European

Union’s Horizon 2020 research and innovation programme
under grant agreement No 871449 (OpenDR). This publi-
cation reflects the authors views only. The European Com-
mission is not responsible for any use that may be made of
the information it contains.

References
[1] Face recognition techniques: A survey. CoRR,

abs/1803.07288, 2018. Withdrawn. 1
[2] Alexander Andreopoulos and John K Tsotsos. 50 years of

object recognition: Directions forward. Computer vision and
image understanding, 117(8):827–891, 2013. 2

[3] Ruzena Bajcsy. Active perception and exploratory robotics.
1989. 2

[4] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. Re-
visiting active perception. Autonomous Robots, 42(2):177–
196, 2018. 2

[5] Luca Bartolomei, Lucas Teixeira, and Margarita Chli.
Semantic-aware active perception for uavs using deep rein-
forcement learning. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 3101–
3108. IEEE, 2021. 2

[6] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In 2018 13th IEEE international con-
ference on automatic face & gesture recognition (FG 2018),
pages 67–74. IEEE, 2018. 1

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1, 7

[8] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and
Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition. In European conference on
computer vision, pages 87–102. Springer, 2016. 5

[9] Lingxiao He, Haiqing Li, Qi Zhang, and Zhenan Sun. Dy-
namic feature learning for partial face recognition. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7054–7063, 2018. 2

[10] Stefan Hörmann, Zeyuan Zhang, Martin Knoche, Torben
Teepe, and Gerhard Rigoll. Attention-based partial face
recognition. In 2021 IEEE International Conference on Im-
age Processing (ICIP), pages 2978–2982. IEEE, 2021. 2

[11] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007. 7

[12] Tianfu Jiang, Tao Wang, Boyan Ding, and Han Wu.
Degan: De-expression generative adversarial network for
expression-invariant face recognition by robot vision. In
2019 WRC Symposium on Advanced Robotics and Automa-
tion (WRC SARA), pages 209–214. IEEE, 2019. 1

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 7

[14] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 7

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[16] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 212–220,
2017. 1

[17] Stylianos Moschoglou, Athanasios Papaioannou, Chris-
tos Sagonas, Jiankang Deng, Irene Kotsia, and Stefanos
Zafeiriou. Agedb: the first manually collected, in-the-wild
age database. In proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
51–59, 2017. 8

[18] Hossein K Mousavi, Guangyi Liu, Weihang Yuan, Mar-
tin Takáč, Héctor Muñoz-Avila, and Nader Motee. A lay-
ered architecture for active perception: Image classifica-
tion using deep reinforcement learning. arXiv preprint
arXiv:1909.09705, 2019. 2

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
7

[20] Macheng Shen and Jonathan P How. Active perception in ad-
versarial scenarios using maximum entropy deep reinforce-
ment learning. In 2019 International Conference on Robotics
and Automation (ICRA), pages 3384–3390. IEEE, 2019. 2

[21] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 7

[22] Iris Walter, Jonas Ney, Tim Hotfilter, Vladimir Rybalkin,
Julian Hoefer, Norbert Wehn, and Jürgen Becker. Embed-
ded face recognition for personalized services in the assistive
robotics. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 339–350.
Springer, 2021. 1

[23] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 1

[24] Qingzhong Wang, Pengfei Zhang, Haoyi Xiong, and Jian
Zhao. Face. evolve: A high-performance face recognition
library. arXiv preprint arXiv:2107.08621, 2021. 7, 8

[25] Tianyue Zheng and Weihong Deng. Cross-pose lfw: A
database for studying cross-pose face recognition in un-
constrained environments. Beijing University of Posts and
Telecommunications, Tech. Rep, 5:7, 2018. 7

D3.3: Third report on deep human centric active perception and cognition 206/223

8.13 AUTH-Persons: A Dataset for Detecting Humans in Crowds from
Aerial Views

The appended paper follows.

OpenDR No. 871449

AUTH-PERSONS: A DATASET FOR DETECTING HUMANS IN CROWDS FROM AERIAL
VIEWS

Charalampos Symeonidis, Ioannis Mademlis, Ioannis Pitas and Nikos Nikolaidis

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Email: {charsyme, imademlis, pitas, nnik}@csd.auth.gr

ABSTRACT

Recent advances in artificial intelligence, control and
sensing technologies have facilitated the development of au-
tonomous Unmanned Aerial Vehicles (UAVs). Detecting
humans from video input captured on-the-fly from UAVs is
a critical task for ensuring flight safety, mostly handled with
lightweight Deep Neural Networks (DNNs). However the
detection of individual people in the case of dense crowds
and/or distribution shifts (i.e., significant visual differences
between the training and the test sets) is still very challeng-
ing. This paper presents AUTH-Persons, a new, annotated,
publicly available video dataset, that consists of both real
and synthetic footage, suitable for training and evaluating
aerial-view person detection algorithms. The synthetic data
were collected from 8 visually distinct photorealistic outdoor
environments and they mostly contain scenes with crowded
areas, where heavy occlusions and high person densities pose
challenges to common detectors. This dataset is employed
to evaluate the generalization performance of various state-
of-the-art detection frameworks, by testing them on environ-
ments that are visually distinct from those they have been
trained on. Finally, given that Non-Maximum Suppression
(NMS) methods at the end of person detection pipelines typ-
ically suffer in crowded scenes, the performance of various
NMS algorithms is also compared in AUTH-Persons.

Index Terms— person detection, Unmanned Aerial Vehi-
cles, synthetic data generation, Non-Maximum Suppression

1. INTRODUCTION
Recent advances have led to an unprecedented popularization
of Unmanned Aerial Vehicles (UAVs, or “drones”) during the
last decade. Drones have proven useful for many civilian
and military applications, such as search and rescue opera-
tions, surveillance, inspection, mapping [1], wildlife moni-
toring, crowd monitoring/management, precision agriculture,
or aerial media production [2] [3] [4] [5]. Gradual increases

The AUTH-Persons dataset is available at: https://aiia.csd.
auth.gr/open-multidrone-datasets/. This research has re-
ceived funding from the European Union’s Horizon 2020 research and in-
novation programme under grant agreements No 731667 (MULTIDRONE)
and No 871449 (OpenDR).

in UAV cognitive autonomy have made flight safety a criti-
cal issue, due to the hazard drones potentially pose in case
of malfunction. Safety during UAV interactions with the en-
vironment must be particularly ensured when the vehicle is
operating near humans. Autonomous UAVs should be able
to visually detect people with a high-level of precision from
various aerial views [6]. This task poses challenges due to
the small size of objects/persons (especially in high flight al-
titudes), as well as due to unforeseen and wide-ranging vari-
ations in illumination, camera orientation, etc. Problems are
exacerbated when UAVs must detect the presence of individ-
uals within crowded areas.

A typical object detector, employed in real-life conditions,
must be trained on multiple datasets in order to improve its
generalization abilities and ensure its robustness during ac-
tual deployment. In recent years, several real-world and syn-
thetic datasets have been proposed to tackle the problem of
detecting humans from aerial images/video frames. Stanford
Drone Dataset [7] is a large-scale video dataset consisting of
60 annotated videos for detection and tracking of various ob-
ject classes, including pedestrians. The Okutama-Action [8]
dataset, mainly developed for concurrent human action de-
tection, can also be employed for person detection. It consists
of 43 minute-long fully-annotated sequences with the corre-
sponding bounding-boxes/Regions-of-Interest (ROIs) and 12
action classes. The VisDrone dataset [9] consists of 263 video
clips with 179,264 frames and additional 10,209 static im-
ages. The videos/images were acquired by various drone plat-
forms, including the DJI Mavic Phantom series, and depict
various scenarios across 14 cities in China. The dataset is
suitable for image and video object detection, as well as for
single/multi-object detection tracking.

In the general person detection task, the use of synthetic
datasets has recently gathered pace since they can viably re-
place or augment real-world training data. In [10], 3D hu-
man models rendered on random backgrounds are employed
to train a pedestrian detector. In a similar fashion, [11] in-
serts realistic DNN-generated 3D human models into existing
natural background images, while trying to select appropri-
ate scale and insertion locations. In [12], a graphical simu-
lator is proposed which can automatically generate datasets
for pedestrian and crowd analysis. Experimental evaluation

on crowd estimation showed that DNN models which were
pretrained on a synthetic dataset and later finetuned with the
real-world dataset, outperformed models trained exclusively
with real-world data.

A typical case where person detection methods may
drastically fail to perform is when they operate on images
depicting dense crowds [13]. Non-Maximum Suppression
(NMS), which is a common post-processing step typically
placed at the end of the overall person detection pipeline,
suffers especially in crowded scenes. NMS methods prune
the number of overlapping detected raw candidate ROIs gen-
erated by a detector, in order to assign a single and spatially
accurate detection to each object. The de facto standard
in NMS for object detection is Greedy-NMS [14]. It selects
high-scoring detections and deletes less confident neighbours,
since they most likely cover the same object. An Intersection-
over-Union (IOU) threshold determines which less confident
neighboring detections are suppressed. Modern alternatives
include Soft-NMS [15], where a rescoring function decreases
the score of neighboring less confident detections, instead of
completely eliminating them, achieving better precision and
recall rates. GossipNet [16] is a DNN designed to perform
NMS, by processing the coordinates and scores of the detec-
tions. Overall, it jointly analyzes all detections in the image,
so as not to directly prune them, but to rescore them. Gos-
sipNet was modified in [17] for the specific case of person
detection from aerial views, so as to jointly process visual ap-
pearance and geometric properties of candidate ROIs. More
recently, [18] proposed Distance-IoU (DIoU), a new metric
which can replace the typical IoU metric in Greedy-NMS,
by also considering the distance between the centers of two
neighboring detections. Alternatively, Cluster-NMS was pro-
posed in [19], i.e., a method where NMS is performed by
implicitly clustering candidate detections, achieving very
fast inference runtimes. Finally, a DNN-based NMS method
called Seq2Seq-NMS [20] achieved top person detection re-
sults by assuming a sequence-to-sequence formulation of the
NMS problem, exploiting the Multihead Scale-Dot Product
Attention mechanism and jointly processing both geometric
and visual properties of the input candidate detections.

This paper introduces AUTH-Persons, a large-scale dataset
containing videos that depict human crowds from an aerial
point of view and is suitable for training/evaluating relevant
person detection methods. The paper makes the following
contributions:

• AUTH-Persons is presented and made publicly avail-
able. It contains both synthetic videos, from diverse
and realistic landscape environments, and real-world
videos collected at the campus of the Aristotle Univer-
sity of Thessaloniki, Greece. In both cases, the footage
was collected using UAVs performing flights at vari-
ous altitudes, while crowds of people were present on
the ground. All video frames are annotated with 2D
bounding boxes.

• AUTH-Persons was constructed with the explicit aim to
study person detection performance in the presence of
distribution shifts between the training and the test set
in crowded scenes. This has barely been explored in the
literature. Thus, experimental evaluation of multiple
DNN-based person detectors is conducted on AUTH-
Persons in a manner that allows us to assess their ability
to generalize to environments that are visually distinct
from those they have been trained with.

• To complement this study, a lightweight version of
YOLOv4 [21] is employed to evaluate the performance
of several NMS methods at the end of the person de-
tection pipeline, in an attempt to examine the negative
impact of this data distribution shift on them. Such a
study is of particular interest, because NMS algorithms
are particularly susceptible to performance degradation
in crowded scenes.

The dataset is available at: https://aiia.csd.auth.
gr/open-multidrone-datasets/.

2. DATASET DESCRIPTION
AUTH-Persons is a UAV video dataset containing 53 videos,
summing to footage with a total duration of 37.31 minutes. It
is suitable for training and evaluating methods related to the
person detection task. Overall, 4 of those videos were col-
lected from a DJI Phantom 4 while performing flights in the
campus of the Aristotle University of Thessaloniki, Greece.
The resolution of real-world video frames is 3840×2160 pix-
els. The remaining videos were collected in virtual environ-
ments, using AirSim [22] and a set of environments we de-
signed on Unreal Engine 41. We designed 8 environments,
aiming to realistically simulate various environmental condi-
tions (e.g., snow, fog, etc.) in rural landscapes. All envi-
ronments were populated with a large number of humans and
obstacles (e.g., trees, structures, etc.), in order to achieve a
high level of occlusions. The footage was collected from a
virtual UAV, while orbiting around in various altitudes. The
resolution of these synthetic video frames is 1280×720 pix-
els. Video frames from AUTH-Persons are depicted in Figure
1. The frame-rate of all videos is set to 30 fps. The aver-
age number of people depicted in each frame is 14.79. 2D
bounding boxes of humans are provided as annotations for
each frame. Details about the structure of the dataset are pro-
vided in Table 1.

3. EXPERIMENTAL EVALUATION
The evaluation conducted on AUTH-Persons, using recent
DNN-based object detectors and NMS methods, is presented
here. Exploiting the diversity of the dataset, AUTH-Persons
was split so that the test set contains environments that are vi-
sually distinct from those included in the training set. Thus,
environments I-VII were selected for training and the rest for
testing. This setup simulates the case where a person detector,

1https://www.unrealengine.com/en-US/

Fig. 1: Video frames from the AUTH-Persons dataset, depicting both real and synthetic environments. The ground-truth
bounding boxes surrounding visible humans are depicted in red.

Table 1: Structure of the AUTH-Persons Dataset.

Env. Synthetic/ Num. of Duration Resolution Aver. Num. of
ID Real-World Videos [mm:ss] Persons per Frame
I S 7 03:33 1280×720 13.50
II S 6 03:34 1280×720 13.95
III S 6 04:29 1280×720 16.14
IV S 4 03:14 1280×720 18.15
V S 6 03:27 1280×720 31.34
VI S 10 05:19 1280×720 10.75
VII R 1 02:22 3840×2160 8.69
VIII S 3 02:12 1280×720 16.93
IX S 7 05:41 1280×720 15.67
X R 3 03:40 3840×2160 3.9
– – 53 37:31 – 14.79

embedded in an autonomous UAV, is deployed on an unseen
environment. The goal was to measure the impact of such a
data distribution shift on the detector’s precision, as well as on
the performance of its integrated DNN-based NMS method.

Evaluation of Person Detection Methods: First, we re-
port results of three person detectors: the Single Shot Detec-
tor (SSD) [23], YOLOv3 [24] and YOLOv4-tiny [21]. Vari-
ous Convolutional Neural Networks (CNNs) are employed as
backbone feature extractors. Both the training and the test set
were constructed by sampling 1 out of 10 consecutive video
frames. All detectors were trained for 15 epochs. Their learn-
ing rate was initially set to 5 × 10−4 and it was decreased
twice by multiplying it with 0.1 at epochs 10 and 13, respec-
tively. The remaining training hyperparameters were adjusted
in the best possible manner, so as to achieve a fair compari-
son. Greedy-NMS with a 0.6 IoU threshold was applied as the
last step on all detectors. The results on both sets are reported
in Table 2.

All detectors exhibit a significant precision drop of at least
8% in AP0.5 in the test set, compared to the training set. The
obvious explanation is the distribution shift between the train-
ing and the test data, due to the visually different environ-
ments depicted in those two sets. The best precision rates
in the test set were achieved by YOLOv4-tiny, although it

did not achieve top precision in the training set. Overall,
YOLOv4-tiny seems to be the most robust method.

Table 2: Person Detection Evaluation.

Detector
Training Set Test Set

AP0.5 AP0.95
0.5 AP0.5 AP0.95

0.5

SSD-512 (VGG16 atrous) 88.6% 52.3% 76.7% 40.4%
SSD-512 (ResNet50) 85.8% 47.8% 73.8% 36.7%
SSD-512 (MobileNetV1-1.0) 84.3% 43.7% 68.4% 31.1%
YOLOv3-512 (DarkNet53) 94.6% 61.5% 81.9% 48.4%
YOLOv3-512 (MobileNetV1-1.0) 92.3% 55.9% 77.4% 41.5%
YOLOv3-800 (MobileNetV1-1.0) 94.6% 61.9% 79.8% 47.2%
YOLOv4-tiny-608 (CSPDarknet53-tiny) 93.7% 56.3% 85.0% 47.3%

Evaluation of NMS Methods: YOLOv4-tiny was se-
lected as the main person detector for the evaluation of the
NMS methods. In this setup we compare the performance
of the recently proposed Seq2Seq-NMS [20] and a wealth
of other state-of-the-art NMS methods. The second compet-
ing method is a baseline Greedy-NMS approach running on
CPU. The third is TorchVision’s 2 Greedy-NMS implemented
to run very fast on GPUs. Additionally, the non-neural ap-
proach Soft-NMS [15] was tested, using both the proposed
linear and the Gaussian weighting functions (referred to as
Soft-NMSL and Soft-NMSG, respectively). The method was
executed on CPU. Furthermore, several variants of the more
recent Cluster-NMS [19] non-neural approach were selected
for comparison purposes. In what follows, the term Cluster-
NMSS is used to imply the case where the score penalty mech-
anism is used, and Cluster-NMSD the scenario where the nor-
malized central point distance is added. In the latter case, the
method is equivalent to DIoU-NMS [18]. Moreover, the term
Cluster-NMSS+D is used when both of these mechanisms are
utilized. Finally, Cluster-NMSS+D+W indicates the case where
a weighted strategy is applied. The last selected approach is

2https://pytorch.org/vision/stable/ops.html#
torchvision.ops.nms

GossipNet [16], a neural NMS method achieving good preci-
sion.

The vast majority of NMS methods operate by only an-
alyzing geometric relations between raw candidate detec-
tion ROIs in an image. Very few, such as Seq2Seq-NMS,
exploit also visual appearance information. However, the
visual data distribution shift between the training and the
test samples may disproportionately affect in a negative
manner those DNN-based NMS methods which do exploit
appearance-based features in comparison to those who do not.
Thus, Seq2Seq-NMS was evaluated in two variants: a) the
vanilla Seq2Seq-NMS [20], and b) a trivial variant Seq2Seq-
NMSgeom which only exploits geometry-based features with-
out considering visual appearance. Seq2Seq-NMSgeom was
implemented by simply feeding the DNN a zero vector for
each ROI, as a dummy appearance-based feature.

Table 3: Comparison of different NMS methods on AUTH-
Persons dataset using detections from YOLOv4-tiny [21].

Method Device Test set Average
Inference
Time (ms)AP0.5 AP0.95

0.5

Greedy-NMS IoU>0.5 CPU 84.7% 46.8% 1.8

Greedy-NMS IoU>0.6 CPU 85.0% 47.3% 1.9

Greedy-NMS IoU>0.7 GPU 83.9% 47.5% 2.1
Original NMS IoU>0.5 GPU 84.7% 46.9% 0.4TorchVision
Original NMS IoU>0.6 GPU 84.9% 47.3% 0.4TorchVision
Original NMS IoU>0.7 GPU 83.8% 47.5% 0.4TorchVision

Soft-NMSL CPU 84.5% 48.0% 2.5

Soft-NMSG CPU 84.6% 47.9% 1.9

Cluster-NMS GPU 84.9% 47.4% 1.3

Cluster-NMSS GPU 84.3% 47.8% 1.6

Cluster-NMSD GPU 85.0% 47.2% 1.9

Cluster-NMSS+D GPU 84.5% 47.9% 2.0

Cluster-NMSS+D+W GPU 84.4% 47.4% 15.6

GossipNet GPU 85.4% 47.4% 5.6

Seq2Seq-NMS GPU 85.2% 46.9% 15.8

Seq2Seq-NMSgeom GPU 85.5% 48.0% 15.8

The hyperparameters of all competing NMS methods
were set according to the original respective papers. In order
to account for the extremely large number of raw detections
in several frames, we first apply TorchVision NMS with
the relaxed 0.8 IoU threshold on all deployed methods as a
typical preprocessing step. A similar scheme was also em-
ployed in the training and the testing phases of GossipNet
and Seq2Seq-NMS. All experiments were performed on a PC
using an Intel Core i7-9700 CPU and an NVIDIA GeForce
RTX 2070 GPU with 8GB of memory, both for training and
inference.

NMS evaluation results on AUTH-Persons are provided
in Table 3. Vanilla Seq2Seq-NMS, which exploits both
appearance-based and geometry-based features, achieves an

AP0.5 of 85.2%, which is the second highest after GossipNet.
Seq2Seq-NMSgeom improves upon vanilla Seq2Seq-NMS in
AP0.5 and AP 0.95

0.5 by +0.3% and +1.1%, respectively, thus
rendering it the overall best NMS method for AUTH-Persons.
Notably, Soft-NMSL also achieves a top AP 0.95

0.5 score, equal
to that of Seq2Seq-NMSgeom. The non-negligible improve-
ment of Seq2Seq-NMSgeom over vanilla Seq2Seq-NMS con-
firms our intuition that NMS methods exploiting appearance-
based features suffer more in the presence of distribution
shifts, compared to methods that only exploit geometry-based
features.

4. CONCLUSIONS
Detecting humans on video footage captured on-the-fly by
UAVs is a challenging, yet critical task for ensuring flight
safety in the case of autonomous drones. However, aerial de-
tection of individual people in crowds under the presence of
distribution shifts is still very challenging. This paper pre-
sented AUTH-Persons in order to facilitate relevant research.
It is a new, publicly available video dataset that consists of
both real and synthetic footage, summing approximately to a
duration of 37 minutes. The dataset is suitable for training
and evaluating aerial-view person detection algorithms. The
synthetic data were collected from 8 visually distinct photore-
alistic outdoor environments and they mostly contain scenes
with crowded areas, where heavy occlusions and high person
densities pose challenges to common detectors. The gener-
alization performance of various state-of-the-art DNN-based
object detectors was evaluated on AUTH-Persons, by testing
them on environments that are visually distinct from those
they have been trained on. YOLOv4-tiny was empirically
shown to be the most robust person detector. Finally, given
that Non-Maximum Suppression (NMS) methods at the end
of the person detection pipeline suffer in crowded scenes,
they were compared with respect to the degree that train-to-
test distribution shifts affect them in such settings. Among
DNN-based free-rescoring NMS algorithms, Seq2Seq-NMS
achieved top precision, while appearance-based features are
more likely to lead to NMS performance degradation under
distribution shift, compared to purely geometry-based ones.

5. REFERENCES

[1] F. Nex and F. Remondino, “UAV for 3D mapping appli-
cations: a review,” Applied Geomatics, vol. 6, no. 1, pp.
1–15, 2014.

[2] I. Mademlis, V. Mygdalis, N. Nikolaidis, M. Montagn-
uolo, F. Negro, A. Messina, and I. Pitas, “High-level
multiple-UAV cinematography tools for covering out-
door events,” IEEE Transactions on Broadcasting, vol.
65, no. 3, pp. 627–635, 2019.

[3] I. Karakostas, I. Mademlis, N. Nikolaidis, and I. Pitas,
“Shot type constraints in UAV cinematography for au-

tonomous target tracking,” Elsevier Information Sci-
ences, vol. 506, pp. 273–294, 2020.

[4] I. Karakostas, I. Mademlis, N. Nikolaidis, and I. Pitas,
“Shot type feasibility in autonomous UAV cinematogra-
phy,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2019.

[5] I. Mademlis et al., “A multiple-UAV architecture for
autonomous media production,” Springer Multimedia
Tools and Applications, pp. 1–30, 2022.

[6] C. Symeonidis, E. Kakaletsis, I. Mademlis, N. Niko-
laidis, A. Tefas, and I. Pitas, “Vision-based UAV safe
landing exploiting lightweight Deep Neural Networks,”
in Proceedings of the International Conference on Im-
age and Graphics Processing (ICIGP), 2021.

[7] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese,
“Learning social etiquette: Human trajectory under-
standing in crowded scenes,” in Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2016.

[8] M. Barekatain, M. Martı́, H.F. Shih, S. Mur-
ray, K. Nakayama, Y. Matsuo, and H. Prendinger,
“Okutama-action: An aerial view video dataset for con-
current human action detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2017, pp. 2153–2160.

[9] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and
H. Ling, “Detection and tracking meet drones chal-
lenge,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pp. 1–1, 2021.

[10] L. Pishchulin, A. Jain, C. Wojek, M. Andriluka,
T. Thormählen, and B. Schiele, “Learning people detec-
tion models from few training samples,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[11] C. Symeonidis, P. Nousi, P. Tosidis, K. Tsampazis,
N. Passalis, A. Tefas, and N. Nikolaidis, “Efficient
realistic data generation framework leveraging deep
learning-based human digitization,” in Proceedings of
the 22nd Engineering Applications of Neural Networks
Conference, 2021.

[12] A. Khadka, P. Remagnino, and V. Argyriou, “Syn-
thetic crowd and pedestrian generator for deep learning
problems,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020.

[13] L. Songtao, H. Di, and W. Yunhong, “Adaptive nms:
Refining pedestrian detection in a crowd,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[14] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan, “Object detection with discriminatively
trained part-based models,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 32, no. 9,
pp. 1627–1645, 2010.

[15] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis,
“Soft-NMS: Improving object detection with one line of
code,” in Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[16] J. Hosang, R. Benenson, and B. Schiele, “Learn-
ing Non-Maximum Suppression,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[17] C. Symeonidis, I. Mademlis, N. Nikolaidis, and I. Pitas,
“Improving neural Non-Maximum Suppression for ob-
ject detection by exploiting interest-point detectors,” in
Proceedings of the IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), 2019.

[18] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren,
“Distance-IoU loss: Faster and better learning for
bounding box regression,” Association for the Advance-
ment of Artificial Intelligence (AAAI), vol. 34, no. 7, pp.
12993–13000, 2020.

[19] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and
W. Zuo, “Enhancing geometric factors in model learn-
ing and inference for object detection and instance seg-
mentation,” ArXiv, vol. abs/2005.03572, 2020.

[20] C. Symeonidis, I. Mademlis, I. Pitas, and N. Niko-
laidis, “Neural attention-driven non-maximum sup-
pression for person detection,” TechRxiv, vol.
10.36227/techrxiv.16940275.v1, 2021.

[21] J. Zicong, Z. Liquan, L. Shuaiyang, and J. Yanfei,
“Real-time object detection method based on improved
yolov4-tiny,” ArXiv, vol. abs/2011.04244, 2020.

[22] S. Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor, “Airsim: High-fidelity visual and physical sim-
ulation for autonomous vehicles,” in Field and Service
Robotics (FSR), 2017.

[23] W. Liu, D. Anguelov, D.and Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg, “SSD: Single shot multibox
detector,” in Proceedings of the European Conference
on Computer Vision (ECCV). Springer, 2016.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You Only Look Once: Unified, real-time object detec-
tion,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

D3.3: Third report on deep human centric active perception and cognition 212/223

8.14 Efficient Feature Extraction for Non-Maximum Suppression in Vi-
sual Person Detection

The appended paper follows.

OpenDR No. 871449

EFFICIENT FEATURE EXTRACTION FOR NON-MAXIMUM SUPPRESSION IN VISUAL
PERSON DETECTION

Charalampos Symeonidis, Ioannis Mademlis, Ioannis Pitas and Nikos Nikolaidis

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
E-mail: {charsyme, imademlis, pitas, nnik}@csd.auth.gr

ABSTRACT
Non-Maximum Suppression (NMS) is a post-processing step
in almost every visual object detector, tasked with rapidly
pruning the number of overlapping detected candidate rect-
angular Regions-of-Interest (RoIs) and replacing them with
a single, more spatially accurate detection (in pixel coordi-
nates). The common Greedy NMS algorithm suffers from
drawbacks, due to the need for careful manual tuning. In
visual person detection, most NMS methods typically suf-
fer when analyzing crowded scenes with high levels of in-
between occlusions. This paper proposes a modification on
a deep neural architecture for NMS, suitable for such cases
and capable of efficiently cooperating with recent neural ob-
ject detectors. The method approaches the NMS problem as
a rescoring task, aiming to ideally assign precisely one detec-
tion per object. The proposed modification exploits the ex-
traction of RoI representations, semantically capturing the re-
gion’s visual appearance, from information-rich feature maps
computed by the detector’s intermediate layers. Experimental
evaluation on two common public person detection datasets
shows improved accuracy against competing methods, with
acceptable inference speed.

Index Terms— Non-Maximum Suppression, Object De-
tection, Scaled-Dot Product Attention, Person Detection

1. INTRODUCTION

Non-Maximum Suppression (NMS) is a final refinement step
incorporated to almost every visual object detection frame-
work, where any detected rectangular Regions-of-Interest
(RoIs, defined in pixel coordinates) that spatially overlap are
merged/filtered. The problem it attempts to solve arises from
the tendency of many detectors to output multiple, neighbour-
ing candidate object RoIs for a single given visible object, due
to their implicit sliding-window nature. NMS methods typ-
ically rescore the raw candidate detections/RoIs outputted
by the detector, before thresholding these modified scores
so that, ideally, only a single RoI is finally retained for each
visible object.

This research has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871449
(OpenDR).

The de facto standard in NMS for object detection is Gree-
dyNMS [1]. It selects high-scoring detections and deletes
less confident neighbours, since they most likely cover the
same object. Its simplicity and speed make it competitive
against proposed alternatives, given that rapid execution is
of utmost importance in NMS. An Intersection-over-Union
(IOU) threshold determines which less-confident neighbors
are suppressed by a detection. Most NMS algorithms, in-
cluding GreedyNMS, do not make any extra effort to jointly
process the RoIs and assign one detection per object. In ad-
dition, this fixed IOU threshold leads GreedyNMS to failure
in certain cases. For instance, wide suppression may remove
detections that cover objects with lower scores, while too low
a threshold is unable to suppress duplicate detections.

A typical case where most NMS methods struggle to
perform is when they operate on images depicting objects in
complex scenes, where several in-between occlusions appear.
This occurs frequently when detecting persons/pedestrians
within human crowds. This is a very important scenario for
security- or safety-critical applications [2] [3] [4].

Over the years, several methods have been proposed as
alternatives to GreedyNMS, achieving faster inference times
or improved accuracy. Both non-neural algorithms and, more
recently, deep learning (DL) have been employed to this end
(see Section 2).

However, the vast majority of existing methods only
exploit geometric properties/interrelations between the can-
didate RoIs, in the form of geometric features. An exception
specifically for the case of person detection is Seq2Seq-NMS
[5], a deep neural architecture which approaches NMS as
a sequence-to-sequence problem. Seq2Seq-NMS extracts
RoI representations based on geometric and visual appear-
ance properties of the input candidate RoIs. An efficient
implementation of FMoD [6] is employed for visual RoI de-
scription. These RoI representations are then refined by the
Seq2Seq-NMS, by capturing relations of neighboring RoIs
and aiming to ideally assign precisely one detection per per-
son. A more recent variant of Seq2Seq-NMS, which used as
input only geometric RoI representations, was presented in
[7] showing that it can achieve improved accuracy rates when
deployed on distribution shift scenarios.

Motivated by the relative lack of NMS methods exploit-

ing high-level, semantically meaningful representations of the
candidate RoI/detections’ visual appearance, this paper pro-
poses a novel variant of Seq2Seq-NMS, named FSeq2-NMS,
which is able to harness the information-rich intermediate
feature maps of DL-based object detectors. These are used
to derive learned, high-level, semantically meaningful RoI
representations, which are then exploited instead of hand-
crafted visual descriptors (such as [6]). FSeq2-NMS can be
easily plugged on top of any DL-based detector, and trained
as a separate submodule. The efficacy achieved by the inter-
nal/latent image representations of state-of-the-art detectors
allows the method to discriminate duplicate RoIs from a set of
densely sampled and heavily occluded candidate detections,
a problem commonly encountered when detecting humans in
crowded scenes. Experiments conducted on two public per-
son detection datasets, widely used for detecting humans in
crowded scenes, confirms that FSeq2-NMS is highly suitable
for this scenario, achieving top accuracy.

2. RELATED WORK

Modern attempts to replace GreedyNMS and improve upon
it were initially non-neural. Thus, Soft-NMS [8] employs a
rescoring function aiming to decrease the score of neighbor-
ing less-confident detections, instead of completely eliminat-
ing them, achieving better precision and recall rates compared
to GreedyNMS. Gaussian and linear weighting functions are
utilized, which both require a hyper-parameter tuning simi-
lar to GreedyNMS. In [9], the authors replaced the classifi-
cation scores of candidate detections, used in GreedyNMS,
with learned localization confidences to guide NMS towards
preserving more accurately localized bounding boxes.

A number of more advanced methods rely on Distance-
IoU (DIoU) [10], a new metric which can replace the typical
IoU metric in GreedyNMS. [10] suggested that the suppres-
sion procedure should take into account not only the overlap
of two neighboring detections, but also the distances between
their centers. Alternatively, Cluster-NMS was proposed in
[11], i.e., a technique where NMS is performed by implicitly
clustering candidate detections. Cluster-NMS can incorporate
geometric factors to improve both precision and recall rates
and can efficiently run on a GPU, achieving very fast infer-
ence runtimes. In [12], the authors presented Representative
Region NMS, an approach to effectively remove the duplicate
candidate detections in human crowded scenes. The method
uses the IoU between the visible parts of two RoIs to deter-
mine whether the two full-body boxes are overlapped. In the
pedestrian detection task, the novel attribute-aware MMS [13]
was proposed, in order to distinguish the pedestrian from a
high overlapped group. The proposed method adaptively re-
jects the false-positive results in the crowded settings.

Due to the prevalence of DL, neural NMS methods started
to appear during the late 2010s. In [14], an attention module
exploited relations between the input detections, in order to
classify them as duplicate or not. Adaptive-NMS [15] is a dy-

namic thresholding version of GreedyNMS, specifically for
detecting humans within crowds. A relatively shallow neu-
ral network was designed for predicting a density map and
then the proposed method set an adaptive IoU thresholds in
NMS for different detections according to the predicted den-
sity. In [16], the authors presented GossispNet, a DNN-based
NMS method, which jointly analyzes the scores and coordi-
nates of candidates detections in the image, so as not to di-
rectly prune them, but to rescore them. GossipNet was mod-
ified in [17], for the specific case of person detection from
aerial views, by exploiting the handcrafted FMoD descrip-
tor vectors [6] for representing the visual appearance of the
candidate RoIs. Seq2Seq-NMS [5], upon which the method
presented in this paper relies, also exploited FMoD descrip-
tors for visual RoI representation and incorporated them into
a sequence-to-sequence DL neural architecture for candidate
RoI rescoring, operating via the Scaled-Dot Product Atten-
tion mechanism. Finally, NMS-Loss [18] can be incorporated
to almost any single class DL-based object detector, allowing
it to be trained with NMS end-to-end and pay attention to the
false predictions caused by NMS.

3. PROPOSED METHOD

Seq2Seq-NMS [5] is a DL-based NMS method, aiming to
classify an input candidate detection as “correct” or as “po-
tentially suppressed”. The label of each candidate detection
is formed based on evaluation criteria established in object
detection [19] [20]. The method mainly relies on the Scaled
Dot-Product Attention mechanism, for exploring relations
between neighboring candidate RoIs and finally build dis-
criminative RoI representations for the classification task.
As input, Seq2Seq-NMS receives appearance-based and geo-
metric representations for each candidate RoI. In the original
version of the method, the authors proposed the use a fast
and parallel GPU-bound implementation of FMoD [6], as
an optional step, for extracting appearance-based RoI rep-
resentations. In this implementation, FMoD computed an
edge map of the corresponding image, and then extracted an
appearance-based representation for each RoI based on sta-
tistical properties (e.g., mean, skew, etc.,) of the spatial dis-
tribution of the enclosed edges. Based on the corresponding
experimental evaluation, Seq2Seq-NMS, along with FMoD,
achieved top results against competing methods, proving to
be a suitable solution for Non-Maximum Suppression on the
person detection task.

Aiming to exploit the representational efficacy of mod-
ern DL-based detectors, we propose FSeq2-NMS, which in-
corporates an appearance-based RoI representations extrac-
tion module, capable to utilize feature-maps, already com-
puted from the in-between layers of the deployed detector. To
our intuition, the proposed module will enable FSeq2-NMS to
provide improved results on the challenging task of detecting
humans within crowded scenes, by feeding it with more qual-
itative RoI representations regarding their visual appearance.

Fig. 1: Appearance-based RoI representations extraction
module, capable to utilize feature-maps of the corresponding
detector.

The proposed architecture of the appearance-based Roi
representations extraction module is depicted on Fig. 1. As
input, the module receives B = [b0,b1, ..,bN] ∈ RN×4 ,
which correspond to the coordinates of N candidate RoIs,
as well as M ∈ R64×64×Cm , which correspond to a set of
features maps, extracted from an in-between layer of the de-
ployed detector and resized to a fixed 64× 64 resolution. Cm

corresponds to the number of the channels of the correspond-
ing feature maps. Using the RoIAlign [21] operator, initial
RoI maps can be in-parallel extracted in a fixed 20× 20 spa-
tial resolution. Then two convolutional layers, with the Rec-
tified Linear Unit (ReLU) as activation function, followed by
a max-pooling layer are applied on the extracted RoI maps.
The final RoI representations A = [a1, a2, .., aN] ∈ RN×dr

are computed by flattening the RoI maps and applying a fully
connected layer using ReLU as activation function. da cor-
responds to the dimension of the final appearance-based RoI
representations.

Fig. 2: Pipeline of the overall object detection framework, in
which FSeq2-NMS in employed.

The proposed appearance-based RoI representations ex-
traction module should be trained along with core attention-
based Seq2Seq-NMS, as it consists part of the overall struc-
tur. However, similar to [5], the training procedure of the
proposed architecture of FSeq2-NMS must be carried out af-
ter the training of the deployed detector. The overall detec-

tion pipeline, which incorporates FSeq2-NMS, is depicted in
Fig. 2.

4. EXPERIMENTAL EVALUATION
The performance of the proposed Seq2Seq-NMS variant was
evaluated on two separate datasets, suitable for detecting hu-
mans in crowded scenes. In both datasets, candidate RoIs
from the Single Shot Detector (SSD) [22] were provided as in-
put to the corresponding NMS methods. In the implemented
version of the detector, VGG16 with atrous convolutions was
selected as the backbone CNN. The input images were re-
sized to a resolution of 512 × 512 pixels, while the detector
was trained from scratch for each dataset1.

The core attention-based architecture of Seq2Seq-NMS
and the training setup were similar to [5] and any deviations
are reported separately on each dataset. Feature-maps from
the initial layer of VGG16 were selected as input to the em-
ployed appearance-based RoI representations extraction mod-
ule. Based on this selection, Cm = 512. In addition, we set
dr = 315.

In both datasets, FSeq2-NMS was compared against neu-
ral and non-neural NMS algorithms. The first competing
method is a baseline Greedy NMS approach running on GPU.
The second is TorchVision’s2 GreedyNMS implemented to
run very fast on GPUs. Soft-NMS [8], i.e., a non-neural
NMS method widely used as a more accurate replacement
for Greedy NMS, was also tested. Additionally, several vari-
ants of Cluster-NMS [11], a more recent non-neural method,
were also used for comparisons. The last approach selected
for comparison purposes is GossipNet [16], a neural NMS
method achieving state-of-the-art accuracy. More details re-
garding these variations can be found in [11]. Additional
information about the variant of each competing method can
be found in [5].

The hyperparameters of all non-neural methods were
tuned so as to report the best achieved results on 0.5 IoU
matching threshold. Evaluation was performed on a PC using
an Intel Core i7-7700 CPU and an NVIDIA GeForce RTX
2080 GPU with 11GB of memory, both for training and infer-
ence. The employed evaluation metrics are AP0.5, AP0.95

0.5 and
inference times. AP0.5 corresponds to the average precision
for 0.5 IoU, while AP0.95

0.5 to the mean average precision for
IoU ranging from 0.5 to 0.95 with a step size of 0.05. Finally,
all RoIs outputted by the NMS algorithms were utilized for
evaluation, without any thresholding.

4.1. PETS
PETS [23] is a relatively small dataset, whose images were
collected from static surveillance cameras and provide diverse
levels of occlusion.

1The employed SSD implementation was adopted from https:
//github.com/opendr-eu/opendr/tree/master/src/
opendr/perception/object_detection_2d/ssd

2https://pytorch.org/vision/stable/ops.html#
torchvision.ops.nms

The average number of people depicted in an image is ap-
proximately 14. The proposed NMS architecture was trained
for 6 epochs. The learning rate was set to 10−4/10−5/10−6

for epochs 1-3/4-5/6, respectively. GossipNet’s architecture
and training followed [16]. Final parameters of all methods
were selected according to the best achieved accuracy in the
validation set.

Table 1 reports the results using cadidate detections from
[22]. FSeq2-NMS achieved an AP0.5 of 87.4% and an AP0.95

0.5

of 38.0% in the validation set, thus attaining gains of +0.4%
+1.0% over GossipNet in the corresponding metrics. In the
testing set, the proposed method achieved an AP0.5 of 91.2%
and an AP0.95

0.5 of 38.9% surpassing GossipNet by +0.5% and
+0.1% in the corresponding metrics.

Table 1: Comparison of different NMS methods on PETS
dataset.

Method Device Val set Test set Average
Inference
Time (ms)AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

Greedy-NMS CPU 84.3% 34.7% 89.9% 36.3% 13.1
TorchVision NMS GPU 84.3% 34.7% 90.0% 36.4% 0.2

Soft-NMSL CPU 85.3% 35.9% 90.0% 38.2% 108.8
Soft-NMSG CPU 83.9% 36.2% 89.6% 38.6% 134.4

Cluster-NMS GPU 84.5% 34.3% 90.2% 36.9% 13.4
Cluster-NMSS GPU 84.7% 36.0% 90.1% 38.0% 13.8
Cluster-NMSD GPU 84.5% 34.5% 90.2% 36.6% 17.9

Cluster-NMSS+D GPU 85.7% 36.0% 90.6% 38.3% 22.4
Cluster-NMSS+D+W GPU 85.7% 36.0% 90.6% 38.3% 38.2

GossipNet GPU 87.1% 37.0% 90.7% 38.8% 24.5
FSeq2-NMS GPU 87.4% 38.0% 91.2% 38.9% 7.8

Gains +0.3% +1.0% +0.5% +0.1% -

4.2. CrowdHuman
The CrowdHuman dataset has been released specifically to
target human detection in crowded areas, and has been proved
to be a challenging for person detectors, due to heavy visual
occlusions of individual humans. The average number of per-
sons in an image is 22.64.

FSeq2-NMS was trained for 14 epochs. The learning rate
was set to 10−4/10−5/10−6 for epochs 1-8/9-12/13-14, re-
spectively. GossipNet was trained for 106 iterations, with a
learning rate set to 10−4 and decreased by 0.1 at the 6× 105-
th and the 8× 105-th iterations.

Table 2 shows that the proposed method achieves gains,
both in terms of AP0.5 and AP0.95

0.5 . FSeq2-NMS, achieved an
AP0.5 of 75.3% and an AP0.95

0.5 of 36.9%, which are +2.9%
and +1.9% improvements against GossipNet, respectively.

4.3. Discussion
Overall, FSeq2-NMS incorporating the appearance-based
RoI representations extraction module, achieved top accu-
racy rates on AP0.5 and AP0.95

0.5 metrics in both datasets. The
results demonstrate that the proposed module can push the
core attention-based Seq2Seq-NMS DNN towards achiev-
ing top results in the challenging task of detecting humans

Table 2: Comparison of different NMS methods on Crowd-
Human dataset.

Method Device Test set Average
Inference
Time (ms)AP0.5 AP0.95

0.5

Greedy-NMS CPU 67.0% 32.4% 9.8
TorchVision NMS GPU 66.9% 32.4% 0.4

Soft-NMSL CPU 66.5% 32.3% 54.2
Soft-NMSG CPU 67.1% 33.0% 58.1

Cluster-NMS GPU 67.1% 32.1% 5.0
Cluster-NMSS GPU 64.0% 31.0% 5.2
Cluster-NMSD GPU 67.1% 32.1% 6.5

Cluster-NMSS+D GPU 65.7% 31.8% 8.0
Cluster-NMSS+D+W GPU 65.7% 31.9% 32.3

GossipNet GPU 72.4% 35.0% 10.0
FSeq2-NMS GPU 75.3% 36.9% 4.8

Gains +2.9% +1.9% -

in crowded scenes. This is done by exploiting the repre-
sentational efficacy of modern-DL based detectors towards
providing FSeq2-NMS with enriched RoI representations
regarding their visual appearance.

5. CONCLUSIONS
Successful NMS is challenging when detecting humans in
crowded areas with high levels of in-between occlusions. This
paper proposed a modification to a DL-based NMS archi-
tecture, capable of harnessing the representational efficacy
of state-of-the-art neural detectors. The proposed approach,
called FSeq2-NMS, is able to utilize feature maps, extracted
from the intermediate detector layers, in order to build seman-
tically rich representations of the candidate RoIs’ visual ap-
pearance. These are then employed by the NMS Deep Neural
Network which this paper improves (Seq2Seq-NMS), for bet-
ter discriminating whether a candidate detection is duplicate
or not. Experiments on two person detection datasets, whose
images mostly depict humans in crowded scenes, showed that
the proposed method is indeed suitable for such a scenario,
achieving top accuracy rates among the competing methods.
The results confirm that exploiting semantic visual appear-
ance descriptions of the candidate RoIs is indeed the best
option for NMS in person detection within dense crowd im-
ages, compared either to geometry-only RoI representations,
or to using lower-level statistical visual appearance descrip-
tors (e.g., FMoD).

6. REFERENCES

[1] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester,
and D. Ramanan, “Object detection with discrimina-
tively trained part-based models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32,
pp. 1627–1645, 2009.

[2] C. Papaioannidis, I. Mademlis, and I. Pitas, “Fast CNN-
based single-person 2D human pose estimation for au-
tonomous systems,” IEEE Transactions on Circuits and
Systems for Video Technology, 2022.

[3] E. Kakaletsis, C. Symeonidis, M. Tzelepi, I. Madem-
lis, A. Tefas, N. Nikolaidis, and I. Pitas, “Computer
vision for autonomous UAV flight safety: An overview
and a vision-based safe landing pipeline example,” ACM
Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–37,
2021.

[4] E. Kakaletsis, I. Mademlis, N. Nikolaidis, and I. Pitas,
“Multiview vision-based human crowd localization for
UAV fleet flight safety,” Signal Processing: Image Com-
munication, vol. 99, pp. 116484, 2021.

[5] C. Symeonidis, I. Mademlis, I. Pitas, and N. Niko-
laidis, “Neural attention-driven non-maximum sup-
pression for person detection,” TechRxiv, vol.
10.36227/techrxiv.16940275.v1, 2021.

[6] I. Mademlis, N. Nikolaidis, and I. Pitas, “Stereoscopic
video description for key-frame extraction in movie
summarization,” in Proceedings of the EURASIP Euro-
pean Signal Processing Conference (EUSIPCO), 2015.

[7] C. Symeonidis, I. Mademlis, I. Pitas, and N. Nikolaidis,
“AUTH-Persons: A dataset for detecting humans in
crowds from aerial views,” in Proceedings of the IEEE
International Conference on Image Processing (ICIP),
2022, pp. 596–600.

[8] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis,
“Soft-NMS: Improving object detection with one line of
code,” in Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[9] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Ac-
quisition of localization confidence for accurate object
detection,” in Proceedings of the European Conference
on Computer Vision (ECCV). 2018, Springer.

[10] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren,
“Distance-IoU loss: Faster and better learning for
bounding box regression,” Association for the Advance-
ment of Artificial Intelligence (AAAI), vol. 34, no. 07,
pp. 12993–13000, 2020.

[11] Z. Zheng, P. Wang, W. Ren, D.and Liu, R. Ye, Q. Hu,
and W. Zuo, “Enhancing geometric factors in model
learning and inference for object detection and instance
segmentation,” IEEE Transactions on Cybernetics, vol.
52, no. 8, pp. 8574–8586, 2022.

[12] X. Huang, Z. Ge, Z. Jie, and O. Yoshie, “Nms by repre-
sentative region: Towards crowded pedestrian detection
by proposal pairing,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020, pp. 10747–10756.

[13] J. Zhang, L. Lin, J. Zhu, Y. Li, Y.-C. Chen, Y. Hu, and
S. C. H. Hoi, “Attribute-aware pedestrian detection in a
crowd,” IEEE Transactions on Multimedia, vol. 23, pp.
3085–3097, 2021.

[14] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Rela-
tion networks for object detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[15] S. Liu, D. Huang, and Y. Wang, “Adaptive NMS: Re-
fining pedestrian detection in a crowd,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[16] J. Hosang, R. Benenson, and B. Schiele, “Learn-
ing Non-Maximum Suppression,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[17] C. Symeonidis, I. Mademlis, N. Nikolaidis, and I. Pitas,
“Improving neural Non-Maximum Suppression for ob-
ject detection by exploiting interest-point detectors,” in
Proceedings of the IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), 2019.

[18] Z. Luo, Z. Fang, S. Zheng, Y. Wang, and Y. Fu,
“NMS-Loss: Learning with non-maximum suppression
for crowded pedestrian detection,” in Proceedings of
the 2021 International Conference on Multimedia Re-
trieval, 2021, p. 481–485.

[19] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2014.

[20] M. Everingham, L. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (VOC)
challenge,” International Journal of Computer Vision,
vol. 88, pp. 303–338, 2009.

[21] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask
R-CNN,” in Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,
C.-Y. Fu, and A. Berg, “SSD: Single shot multibox de-
tector,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2016.

[23] J. M. Ferryman and A. Ellis, “PETS2010: Dataset
and challenge,” in Proceedings of the IEEE Interna-
tional Conference on Advanced Video and Signal-Based
Surveillance (AVSS), 2010.

D3.3: Third report on deep human centric active perception and cognition 218/223

8.15 Real-time synthetic-to-real human detection for robotics applications
: The appended paper follows.

OpenDR No. 871449

Real-time synthetic-to-real human detection for
robotics applications

Maria Tzelepi, Charalampos Symeonidis, Nikos Nikolaidis, and Anastasios Tefas
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

email: {mtzelepi, charsyme, nnik, tefas}@csd.auth.gr.

Abstract—During the recent years, Deep Learning achieved
exceptional performance in various computer vision tasks, paving
auspicious research directions for its application in robotics. A
key component for its exceptional performance is the availability
of sufficient training data. However obtaining such amount of
training data constitutes a challenging task, especially considering
robotics applications. Thus, synthetic data have recently been
regarded as a promising tool to overcoming the data availability
problem. In this work we first build a synthetic human dataset,
and then we train a lightweight model, capable of operating
in real-time for high-resolution input on low-power GPUs, for
discriminating between humans and non-humans. The target of
this work is to assess the generalization of the model trained on
synthetic data, to real data, and also to explore the effect of using
(few) real images in the training phase. As it is shown through
quantitative and qualitative results the use of only few real images
can beneficially affect of the performance of the synthetic-to-real
real-time model.

Index Terms—Synthetic-to-real, human detection, real-time,
heatmaps, robotics.

I. INTRODUCTION

During the recent years, Deep Learning (DL) attained
widespread popularity due to its exceptional performance on
various computer vision tasks [1]–[4]. Its impressive perfor-
mance on computer vision, paved auspicious research direc-
tions for its application in robotics [5]–[8]. A key component
for the successful performance of DL algorithms is the avail-
ability of sufficient training data. State-of-the-art DL models
require millions of training examples [9]. However, obtaining
such amount of training data, especially considering robotics
applications, constitutes a challenging task. Thus, synthetic
data, i.e., data generated artificially rather than by actual
events, have recently been regarded as a very promising tool
to circumvent the data availability problem [10].

The use of synthetic data is accompanied, in general, by
various benefits linked with their low-cost nature and ability to
meet specific requirements imposed by the application, which
may not be feasible in real data. Thus, synthetic data have been
utilized in a wide range of robotics applications, e.g., [11]–
[14]. Their application on robotics applications is associated
with a series of specific advantages. A few of those follow
below: 1) synthetic data provide detailed annotations, since

these are automatically produced, without containing errors
usually occurring in the manual annotation process; 2) they are
usually large in scale, since they are procedurally generated; 3)
they minimize the risk of DL methods deployed in simulation
environments in robotics to exhibit unstable behaviours or
complete failures, due to not having been adapted to the visual
differences between the virtual and the real world data.

A key issue associated with the successful use of synthetic
data in robotics is the gap between the generated data and their
deployment considering real data (that is, synthetic-real gap).
The need for bridging this gap has fueled a new research area
[15]–[17].

In this work, we first build a synthetic dataset for
discriminating between humans and non humans, and use
it to train a lightweight fully convolutional model that is
capable of operating in real-time (about 25 Frames Per
Second - FPS) utilizing a low-power GPU for high resolution
input [18]. The target is to use the model to provide semantic
heatmaps of human presence on real data. That is, we train
the real-time model on the synthetic data, and we test the
model on unseen images that contain real humans, producing
semantic heatmaps, as explained in [18]. A main objective
of this work is to assess the generalization of the model to
real data, and investigate the effect of using real images in
the training phase. As it is demonstrated in the experimental
evaluation the use of even few real training examples can
considerably improve the performance of training merely with
synthetic data, while this is also reflected in the qualitative
evaluation through the produced heatmaps.

The remainder of the manuscript is organized as follows.
Section II presents in detail the proposed synthetic-to-real real-
time human detection model, including the real-time model
and the constructed synthetic dataset. Subsequently, in Sec-
tion III the experiments conducted to assess the performance
the synthetic-to-real real-time model, both quantitatively and
qualitatively, are provided. Finally the conclusions are drawn
in Section IV.

II. REAL-TIME SYNTHETIC-TO-REAL HUMAN DETECTION

In this work we propose a synthetic-to-real real-time model
for discriminating between humans and non humans. The core
objective of this work is to assess the generalization of the978-1-6654-6390-4/22/$31.00 ©2022 IEEE

INPUT

IMAGE

Conv1_1
Conv1_2 Conv2_1 Conv2_2

8 10
6

Conv_last

1

1

8
6 6 62

Stride: 2 Stride: 2

62

62

30

30

28

28

13

13

Fig. 1. Architecture of the real-time VGG-1080p model.

model trained on synthetic data, to real data, and also to
explore the effect of using (few) real images in the training
phase. In the following Sections we describe the real-time
model architecture and the generation of the synthetic human
dataset.

A. Real-Time Model

In this work, we train a fully convolutional lightweight on
synthetic data, that is able to operate in real-time for detecting
humans in real-images, considering high-resolution input on
a low-power GPU. That is, the VGG-1080p model [18] is
used, consisting of five convolutional layers 11K parameters.
The model’s architecture is illustrated in Fig. 1. The model
runs in real-time (i.e., 25.6 FPS) on a Jetson TX-2 for 1080p
input. More specifically, the network is trained on synthetic
images of size 64×64, and then in the test phase, real images
of size 1920 × 1080 are propagated to the network, and for
every window 64× 64 the output of the network at the output
layer is computed, in order to generate the heatmaps of human
presence.

B. Synthetic Human Dataset

The synthetic human dataset consists of real background
images populated with 3D human models in various poses.
PIFu [19], a state-of-the-art deep learning method for gen-
erating realistic 3D human models from single-view images,
is used to generate the human models. The dataset consists
in 133 human models, generated using full-body images of
people from the Clothing Co-Parsing [20] dataset as PIFu’s
input. The Cityscapes [21] dataset which is composed of video
sequences depicting street scenes in various cities, was used to
take background images. The 3D human models are placed on
potential 2D image locations (e.g., pavements, roads), based on
coarse annotations for semantic image segmentation provided
by Cityscapes, so as to manage a higher level of realism.

Since, the target is to train models that can run in real-time
on high-resolution input for producing heatmaps of human
presence [18], the generated images are cropped, and a train
set of 20,000 synthetic cropped images containing humans is
constructed. The train set also contains 20,000 non human
images, cropped from images of the Cityscapes dataset. The
test set consists of 4,000 real images containing humans and
4,000 real images without humans, cropped from video frames
that were gathered by querying YouTube video search engine
with random keywords. The cropped images are of size 64×
64. Since a main objective of this work is to evaluate the effect
of real-human images on the train set, we also construct four

Fig. 2. Sample images of Synthetic Human dataset.

Fig. 3. Classification accuracy using the synthetic-to-real real-time model
trained with 0, 100, 200, 500, and 1000 real images throughout the training
iterations.

additional versions of the train set where 100, 200, 500, and
1000 out of 20,000 images are real-human images, while the
rest are synthetic. The real human images are derived from
the CUHK Person Re-identification datasets [22], [23]. Sample
images of the constructed dataset are provided in Fig. 2.

III. EXPERIMENTAL EVALUATION

A. Evaluation Metrics and Implementation Details

Two sets of experiments were conducted. First, the per-
formance of the synthetic-to-real real-time human detection
model is evaluated using classification accuracy (test accu-
racy) as evaluation metric. Furthermore, the training curves
of classification accuracy throughout the training iterations.
Second, qualitative results are provided using the proposed
synthetic-to-real real-time model. The model is used to pro-
duce heatmaps of human presence on real unseen high-
resolution test images. The models are trained for 200,000
iterations (i.e., 320 epochs) using the mini-batch gradient
descent with mini-batch of 64 samples, and we set the learning
rate to 10−3.

B. Experimental Results

In Table I we provide the classification accuracy of the
synthetic-to-real real-time model trained merely with synthetic
data, and with 100, 200, 500, and 1000 real images. As it is
demonstrated, the model trained only with synthetic humans
achieves sufficient performance, while as we include real

Fig. 4. Heatmaps on real-image containing humans using the synthetic-to-real real-time model trained with 0, 500, and 1000 real images respectively.

human images, we can accomplish progressively increased
performance. We can notice that even by adding only 100 real
images the performance is remarkably improved. Furthermore,
the same remarks are drawn in Fig. 3, where the training
curves of the synthetic-to-real real-time model trained with
0, 100, 200, 500, and 1000 real images throughout the train-
ing iterations, are illustrated. Furthermore, another important
remark is that the more real images we include in the training
procedure, the more stable the performance is. That is, we
notice that when training only with synthetic data, apart from
the poorer performance in terms of classification accuracy,
the model also exhibits unstable performance. This is also
occurs in the case of training with only 100 real images, while
when training with 200, and especially with 500 and 1000 real
images a more stable performance is managed.

Finally, in the second set of experiments, we use the pro-
posed trained model on the synthetic human dataset to generate

TABLE I
CLASSIFICATION ACCURACY USING THE SYNTHETIC-TO-REAL REAL-TIME

MODEL TRAINED WITH 0, 100, 200, 500, AND 1000 REAL IMAGES.

N. of real images Classification accuracy
0 0.7725

100 0.9546
200 0.9848
500 0.9871
1000 0.9958

heatmaps on unseen high-resolution images that contain real
humans. That is, as previously mentioned, unseen images of
size 1920 × 1080 are fed to the network, and for every
window 64 × 64 we compute the output of the network at
the output layer. First, in Fig. 4 we provide the heatmaps
on an unseen high-resolution image, with the model trained
with none, 500, and 1000 real images respectively. As it is

Fig. 5. Heatmaps on real-images containing humans using the synthetic-to-real real-time model trained with 1000 real images.

shown, the beneficial effect of including a few real images in
the training , demonstrated in the first set of experiments, is
also reflected in the qualitative results. That is, as it is shown
in the produced heatmaps, while using only synthetic data,
only a few humans can be detected, when using 1000 real
images in the training, all of them can be detected. Finally, in
Fig. 5, we provide some heatmaps using the synthetic-to-real
real-time model, trained with only 1000 real images. As it is
demonstrated, the model achieves remarkable performance on
detecting real humans.

IV. CONCLUSIONS

In this paper, we dealt with synthetic data considering
robotics applications. More specifically, we first built a syn-
thetic human dataset, and then we trained a lightweight model,
capable of running in real-time for high-resolution input,
for discriminating between humans and non-humans. The
objective of this work is to assess the generalization of the
model trained on synthetic data, to real data, and also to
investigate the effect of using (few) real images in the training
phase. As it is demonstrated in the experimental evaluation,
the use of only few real images can beneficially affect of the
performance of the synthetic-to-real real-time model.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 871449 (OpenDR). This publication
reflects the authors’ views only. The European Commission
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[2] M. Tzelepi and A. Tefas, “Deep convolutional learning for content based
image retrieval,” Neurocomputing, vol. 275, pp. 2467 – 2478, 2018.

[3] C. Nasioutzikis, M. Tzelepi, and A. Tefas, “Deep hashing regularization
towards hamming space retrieval,” in 11th Hellenic Conference on
Artificial Intelligence, 2020, pp. 74–77.

[4] M. Tzelepi and A. Tefas, “Quadratic mutual information regularization
in real-time deep cnn models,” in 2020 IEEE 30th International Work-
shop on Machine Learning for Signal Processing (MLSP). IEEE, 2020,
pp. 1–6.

[5] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[6] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning
in robotics: Survey on model structures and training strategies,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1,
pp. 266–279, 2020.

[7] N. Passalis, S. Pedrazzi, R. Babuska, W. Burgard, D. Dias, F. Ferro,
M. Gabbouj, O. Green, A. Iosifidis, E. Kayacan et al., “Opendr: An
open toolkit for enabling high performance, low footprint deep learning
for robotics,” arXiv preprint arXiv:2203.00403, 2022.

[8] M. Tzelepi and A. Tefas, “Semantic scene segmentation for robotics
applications,” in 2021 12th International Conference on Information,
Intelligence, Systems & Applications (IISA). IEEE, 2021, pp. 1–4.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2012, pp. 1097–
1105.

[10] S. I. Nikolenko, “Synthetic data for deep learning,” arXiv preprint
arXiv:1909.11512, 2019.

[11] D. Ward, P. Moghadam, and N. Hudson, “Deep leaf segmentation using
synthetic data,” arXiv preprint arXiv:1807.10931, 2018.

[12] Z. Tang, M. Naphade, S. Birchfield, J. Tremblay, W. Hodge, R. Kumar,
S. Wang, and X. Yang, “Pamtri: Pose-aware multi-task learning for
vehicle re-identification using highly randomized synthetic data,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 211–220.

[13] Y. Lin, C. Tang, F.-J. Chu, and P. A. Vela, “Using synthetic data and deep
networks to recognize primitive shapes for object grasping,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10 494–10 501.

[14] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2020, pp. 737–744.

[15] M. Yan, Q. Sun, I. Frosio, S. Tyree, and J. Kautz, “How to close sim-
real gap? transfer with segmentation!” arXiv preprint arXiv:2005.07695,
2020.

[16] W. Chen, Z. Yu, Z. Wang, and A. Anandkumar, “Automated synthetic-to-
real generalization,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1746–1756.

[17] W. Zhao, J. P. Queralta, L. Qingqing, and T. Westerlund, “Towards
closing the sim-to-real gap in collaborative multi-robot deep reinforce-
ment learning,” in 2020 5th International Conference on Robotics and
Automation Engineering (ICRAE). IEEE, 2020, pp. 7–12.

[18] M. Tzelepi and A. Tefas, “Improving the performance of lightweight
cnns for binary classification using quadratic mutual information regu-
larization,” Pattern Recognition, vol. 106, p. 107407, 2020.

[19] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li,
“Pifu: Pixel-aligned implicit function for high-resolution clothed human
digitization,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019.

[20] W. Yang, P. Luo, and L. Lin, “Clothing co-parsing by joint image
segmentation and labeling,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[21] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in PProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[22] W. Li, R. Zhao, and X. Wang, “Human reidentification with transferred
metric learning,” in ACCV, 2012.

[23] W. Li and X. Wang, “Locally aligned feature transforms across views,”
in CVPR, 2013.

	Introduction
	Deep person/face/body part active detection/recognition and pose estimation (T3.1)
	Deep person/face/body part tracking, human activity recognition (T3.2)
	Social signal (facial expression, gesture, posture, etc.) analysis and recognition (T3.3)
	Deep speech and biosignals analysis and recognition (T3.4)
	Multi-modal human centric perception and cognition (T3.5)
	Connection to Project Objectives

	Deep person/face/body part active detection/recognition and pose estimation
	Using Synthesized Facial Views for Active Face Recognition
	Introduction, state of the art and work performed so far
	Performance evaluation

	Active Vision Control Policies for Face Recognition using Deep Reinforcement Learning
	Introduction, objectives and summary

	Active Perception for Occlusion Removal in Face Recognition
	Introduction, objectives and summary

	Active Perception for enabling Efficient High Resolution Pose Estimation
	Introduction, objectives and summary of state of the art
	Summary of state of the art
	Description of work performed so far
	Performance evaluation
	Conclusions and Future Work

	Feature Selection for Attention-based Non-Maximum Suppression
	Introduction objectives and summary of state of the art
	Description of work performed so far and performance evaluation

	Real-time synthetic-to-real human detection for robotics applications
	Introduction, objectives and summary of state of the art

	Deep person/face/body part tracking, human activity recognition
	Continual Transformers
	Introduction and objectives
	Summary of state of the art
	Description of work performed so far
	Performance evaluation

	Continual 3D Convolutional Neural Networks
	Introduction and objectives

	Continual Spatio-Temporal Graph Convolutional Networks for Online Skeleton-based Human Action Recognition
	Introduction and objectives
	Summary of state of the art
	Description of work performed so far
	Performance evaluation

	Structured Pruning Adapters
	Introduction and objectives
	Summary of state of the art
	Description of work performed so far
	Performance evaluation

	Social signal (facial expression, gesture, posture, etc.) analysis and recognition
	Facial Expression Recognition with Learning Diversified Feature Representations
	Introduction and objectives
	Summary of state of the art
	Description of work performed so far
	Performance evaluation

	Deep speech and biosignals analysis and recognition
	Self-Attention Neural Bag-of-Features
	Prior work and work performed so far
	Performance evaluation

	Multi-modal human centric perception and cognition
	Self-attention fusion for audiovisual emotion recognition
	Introduction and objectives
	Summary of state of the art
	Description of work performed so far
	Performance evaluation

	Conclusions
	Appendix
	Continual 3D Convolutional Neural Networks for Real-time Processing of Videos
	Continual Inference: A Library for Efficient Online Inference with Deep Neural Networks in PyTorch
	Continual Transformers: Redundancy-Free Attention for Online Inference
	Continual Spatio-Temporal Graph Convolutional Networks for Online Skeleton-based Human Action Recognition
	Structured Pruning Adapters
	Facial Expression Recognition with Learning Diversified Feature Representations
	Self-Attention Neural Bag-of-Features
	Self-Attention Fusion for Audiovisual Emotion Recognition with Incomplete Data
	Using Synthesized Facial Views for Active Face Recognition
	Active Face Recognition through View Synthesis
	Active Vision Control Policies for Face Recognition using Deep Reinforcement Learning
	Active Perception for Occlusion Removal in Face Recognition
	AUTH-Persons: A Dataset for Detecting Humans in Crowds from Aerial Views
	Efficient Feature Extraction for Non-Maximum Suppression in Visual Person Detection
	Real-time synthetic-to-real human detection for robotics applications

