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Executive Summary
This document presents the status of the work performed for WP4–Deep environment active
perception and cognition during the third year of the project. This work package consists
of four main tasks, which are Task 4.1–Object detection/recognition and semantic scene seg-
mentation and understanding, Task 4.2–2D/3D object localization and tracking, Task 4.3–Deep
SLAM and 3D scene reconstruction, and Task 4.4–Sensor information fusion. After a general
introduction that provides an overview of the individual chapters with a link to the main ob-
jectives of the project, the document dedicates a chapter to each of the tasks. Each chapter (i)
provides an overview on the state of the art for the individual topics, (ii) details the partners’
current work in each task with (initial) performance results, and (iii) describes the next steps for
the individual tasks. Finally, a concluding chapter provides a final overview of the work and the
planned future work for each individual task.
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1 Introduction
This document describes the work progress of the third year of the project in the four ma-
jor tasks of WP4–Deep environment active perception and cognition, namely Task 4.1–Object
detection/recognition and semantic scene segmentation and understanding, Task 4.2–2D/3D
object localization and tracking, Task 4.3–Deep SLAM and 3D scene reconstruction and Task
4.4–Sensor information fusion. In this section, a brief description of the work conducted by
the consortium in these tasks is provided, along with a short description on how this work con-
tributes to the Objectives of the project. A more detailed description of the conducted work is
provided in the following sections.

1.1 Object detection/recognition and semantic scene segmentation and
understanding (T4.1)

Performance of recent methods for object detection/recognition and semantic scene segmenta-
tion and understanding can be impressive, when the underlying deep learning models used are
of high number of parameters. To make such methods applicable in the context of OpenDR
where efficiency in terms of memory and computational cost is required, one needs to use high-
performing lightweight deep learning models. Thus, emphasis needs to be placed in the design
of the adopted deep learning and the training processes used to optimize the parameters of such
models. To this end, OpenDR participants developed a variety of methods and tools towards
tackling challenges that arise in deep environment active perception and cognition. These meth-
ods target improving performance and efficiency of deep learning models used for classification
or semantic segmentation of images, via improved model architectures, or by allowing for mod-
eling the model’s uncertainty related to its response. ALU-FR proposed a method for amodal
panoptic segmentation of RGB images [82] to provide pixel-wise labels of both visible and
occluded regions of an image (Section 2.1).

AU proposed Layer Ensembles (Section 2.2), an uncertainty estimation method for deep
neural networks that outperforms Deep Ensembles [89] in memory, speed and uncertainty qual-
ity. Layer Ensembles consider an independent Categorical distribution over the weights of each
layer of the network, and randomly sample weights for these layers on each forward pass. This
results in a high number of sampled models with common layer weights, but not all of them are
needed to achieve good uncertainty quality. By using sample ranking, one can achieve a twice
higher uncertainty quality than in Deep Ensembles while using less memory and lower num-
ber of samples. Additionally, AU continued working on Variational Neural Networks (VNNs)
[87] and developed implementations in PyTorch and JAX Machine Learning frameworks [88]
which provide an easy way to introduce uncertainties into an existing Machine Learning project
(Section 2.3).

Furthermore, AUTH developed a deep active object detection pipeline that provides active
perception capabilities to existing object detectors (Section 2.4). The proposed pipeline em-
ploys a separate planning network that regresses the rotation and translation that a robot should
follow in order to increase the object detection confidence.

1.2 2D/3D object localization and tracking (T4.2)
Localization and tracking of objects in the 3D space requires the development of efficient meth-
ods that are able to operate in real time. OpenDR participants developed methods for 3D object
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tracking operating on different types of input data, i.e. LiDAR-generated point cloud, radar, and
color images.

AU and AUTH proposed a 3D single object tracking method called Voxel Pseudo Image
Tracking (VPIT) [86] (Section 3.1). VPIT outperforms other 3D single object tracking meth-
ods in real-time evaluation scenarios using embedded devices, during which frames that appear
before the model finishes processing the previous ones are skipped. VPIT uses a Siamese ap-
proach to compare the object features with the features of a search region to find the position
and rotation of the target in the current frame, and uses PointPillars [60] as a backbone to extract
features. Additionally, AU performed optimization of 3D Object Detection methods PointPil-
lars and FairMOT by applying channel pruning on the trained models leading on a speed-up
of 1.9× on NVIDIA Xavier and 2.7× on NVIDIA TX2 embedded platforms compared to the
original models (Section 3.2).

ALU-FR proposed a novel method for 3D multi-object tracking using a graph neural net-
work [12] (Section 3.3). The approach called Batch3DMOT leverages multiple modalities in-
cluding camera, LiDAR, and radar, and provides 3D tracks of multiple objects in a given scene.

1.3 Deep SLAM and 3D scene reconstruction (T4.3)
For the field of mapping and localization, OpenDR aims to use the latest advances in deep learn-
ing to integrate network structures into classic SLAM methods to make learning more robust
and efficient. Lately, several methods have put some effort into embedding traditional SLAM
structures into deep network architectures. This approach has been shown to have more robust
performance and better generalization capabilities compared to methods that approximate the
whole procedure with a black box function approximator. For example, Neural SLAM [130]
embeds the motion model, mapping, and localization procedures [13] into a completely differ-
entiable deep neural network. The network includes an external memory architecture which is
used as a “map” for the agent to learn to write onto and read from. The method in [49] encodes
particle filtering processes into a network [102]. Active neural localizer incorporates traditional
filtering-based localization methods into a completely differentiable network and demonstrates
the effectiveness of the learned policy in both 2D and 3D simulated environments [15]. Fol-
lowing these ideas, OpenDR will train separate deep learning modules for each component of
the SLAM pipeline. In this way, each module could either be trained end-to-end, or they could
still use traditional methods but take deep features as inputs. For all the methods, the use of
a lightweight deep learning methodology will be explored to allow deployment on embedded
hardware.

In particular, in Section 4.1, ALU-FR introduces their work on deep learning-based loop
closure detection and point cloud registration for LiDAR-based SLAM systems. During training
time, PADLoC [2] leverages an attention-based network architecture with ground truth panoptic
labels to enhance both tasks compared to a purely spatial approach. Moreover, in Section 4.2,
ALU-FR describes a new task called continual SLAM [112] that combines lifelong SLAM with
online domain adaptation to reflect challenges that occur when deploying a SLAM system to
the open world. To address this task, the proposed CL-SLAM efficiently exploits both a dual-
network architecture and experience replay, enabling continual online training of the visual
odometry network.

In Section 4.3, AGI introduces the developed SLAM for Row Guidance System, which
includes detecting crops in real time using a combination of GNSS (Global Navigation Satellite
System) and deep learning. The agriculture field robot uses GNSS to determine its location
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and follow a planned path provided by the farmer. The robot also has forward-facing cameras
that capture images of the field. An algorithm uses these images, along with deep learning
techniques, to identify the locations of crop rows. As the robot moves through the field, it
navigates based on the actual positions of the crop rows and builds a map of the field in real time
using Amazon Web Services (AWS). This map can be accessed through the Robotti website.
This approach allows the Robotti to adapt to changes in the field.

1.4 Sensor information fusion (T4.4)
Computer Vision is another essential part of robotics, as visual information from the environ-
ment is widely utilized in numerous successful solutions. Deep learning algorithms in particular
have shown powerful capabilities for solving tasks such as image classification, face identifi-
cation, and object detection. However, they remain sensitive to input variations, which can be
caused by illumination changes or other harsh visual conditions. Therefore, robotic vision can
also benefit greatly from the performance boost and increased redundancy provided by sensor
information fusion. Effective fusion methodologies are crucial for achieving robustness against
asymmetric sensor failures and minimizing uncertainties in the predictions.

To that end, TUD built on the methodologies developed last year for efficient sensor fusion
in the context of object detection for RGB and IR/depth sensors for harsh lighting conditions
and data augmentation by the Random Shadows-Highlights (RSH) method, and proposed an
extension to polygon-shaped masks called “Semantic Shadow and Highlights” (SSH), in order
to further improve robustness against lighting perturbations (Section 5.1). Moreover, TUD is
currently also working on evaluations in vision-based robot manipulation task.

Meanwhile TAU continued the developmental work on previously reported Multimodal Fea-
ture Fusion Framework (Section 5.2), tackling the issues of simulation setup, computational
efficiency, robustness via input reconstruction and cross-modal compensation. Initial experi-
ments with constructing feature encoders by neural architecture search were also performed, to
limited results.

1.5 Connection to Project Objectives
The work carried out by the consortium in the context of WP4, as summarized in the previous
subsections, is directly related to the overarching project goals. In particular, the work described
here progressed the state-of-the-art towards meeting the project goals O1 and O2, as will be
presented in detail below.

O1 To provide a modular, open and non-proprietary toolkit for core robotic functionalities
enabled by lightweight deep learning

O1a To enhance the robotic autonomy exploiting lightweight deep learning for on-board de-
ployment

AU and AUTH proposed a new voxel-based 3D Single Object Tracking method that op-
erates with real-time speed on embedded GPU platforms and achieves high tracking ac-
curacy under the real-time evaluation scenario (Section 3.1).

AU introduced a novel uncertainty estimation method called Layer Ensembles that achieves
higher uncertainty quality than Deep Ensembles, while achieving higher speed and lower
memory usage (Section 2.2). Additionally, AU introduced a Variational Neural Networks
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(VNNs) implementation in PyTorch and JAX that allows for easy experimentation and ap-
plication of VNNs to the existing projects (Section 2.3), and performed structured pruning
to 3D Object Detection models for increasing their inference speed (Section 3.2).

O2 To leverage AI and Cognition in robotics: from perception to action

O2a To propose, design, train and deploy models that go beyond static computer perception,
towards active robot perception

AUTH developed a novel active perception object recognition approach that provides
active perception capabilities for any existing DL-based object detector (Section 2.4).

O2c To provide tools for enhanced robot navigation, action and manipulation capabilities that
can exploit if needed deep environment active robot perception

TUD proposed an extension to its lightweight learning-free data augmentation method
which creates random highlights and shadows to mimic harsh lighting conditions (Sec-
tion 5.1).

ALU-FR proposed PAPS, a method for amodal panoptic segmentation, to enable robots
to see “behind” objects by providing panoptic annotations for both visible and occluded
regions of an image (Section 2.1). Additionally, ALU-FR proposed Batch3DMOT, an
offline 3D tracking framework that leverages multiple sensor modalities to solve a multi-
frame, multi-object tracking objective (Section 3.3). Furthermore, ALU-FR proposed
PADLoC, an attention-based loop closure detection and point cloud registration method
for LiDAR-SLAM exploiting panoptic annotations during training time (Section 4.1). Fi-
nally, ALU-FR proposed the novel task of Continual SLAM combining lifelong SLAM
with online domain adaptation to effectively address challenges that occur when deploy-
ing a SLAM system in the real world (Section 4.2).

TAU committed to improvements and optimizations of its multimodal feature fusion
framework for control, extending its functionality and laying the foundation for its suc-
cessful integration in manipulation-requiring use cases (Section 5.2).

AGI proposed a method using SLAM that allows an agriculture field robot to navigate
based on actual crop row positions instead of fully relying on RTK GNSS (Section 4.3).
This method includes DL-based method to increase the confidence of the row placement
and decrease possible noise from weeds and wind.
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2 Object detection/recognition and semantic scene segmen-
tation and understanding

2.1 Perceiving the Invisible: Proposal-Free Amodal Panoptic Segmenta-
tion

2.1.1 Introduction and objectives

Amodal perception enables human perceptual and cognitive understanding of the world [83].
This allows humans to understand the physical state and the 3D structure of the objects that are
partially visible. However, robots are limited to modal perception [109, 137, 79]. A recently
introduced task [81] aims to model this ability in robots. This task aims to provide both visible
and occluded pixel-wise semantic segmentation labels for things classes (i.e. humans, cars, etc.)
and only visible labels for stuff classes (i.e. road, sky, etc.); where each pixel can have multiple
labels to keep the information for things classes. In this work, we present a proposal-free
amodal panoptic segmentation architecture (PAPS) that addresses and eliminates the chronic
issues of proposal-based architectures, e.g., generating overlapping inmodal instance masks.
PAPS decomposes the amodal masks of objects in a given scene into several layers based on
their relative occlusion ordering in addition to conventional instance center regression for visible
object regions of the scene referred to as inmodal instance center regression. Hence, the network
can focus on learning the non-overlapping segments present within each layer. An overview of
the approach is depicted in Figure 1.

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.1:

• [82] R. Mohan and A. Valada, “Perceiving the Invisible: Proposal-Free Amodal Panoptic
Segmentation”, IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 4, pp. 9302-
9309, 2022.

Figure 1: Overview of our proposed PAPS architecture for amodal panoptic segmentation.
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Figure 2: Illustration of our proposed PAPS architecture consisting of a shared backbone and
asymmetric dual-decoder followed by a fusion module that fuses the outputs of the multiple
heads of the decoder to yield the amodal panoptic segmentation output.

2.1.2 Summary of state of the art

Amodal panoptic segmentation is a task that has emerged recently [81]; thus, it is still an
area open to research. The most recent method, APSNet [81] which is the current state-of-
the-art top-down approach focuses on explicitly modeling the complex relationships between
the occluders and occludees. On the other hand, panoptic segmentation has already been an
extensively researched topic. In the current state of research, panoptic segmentation models
can be classified in two main families: top-down approaches [95, 37, 80, 106], and bottom-
up approaches [30, 20]. In this work, we present the first bottom-up approach that learns the
complex relationship between the occluder and occludee by focusing on learning the relative
occlusion ordering of objects, and we follow the aforementioned schema with instance center
regression to obtain the panoptic variant of our proposed architecture.

2.1.3 Description of work performed so far

In this section, we first give a brief overview of our proposed PAPS architecture followed by a
summary of each of its constituting components. For an in-depth description of the approach,
we refer to the full paper [82], which is also included in Appendix 7.1. Our network structure
can be seen in Figure 2. It consists of one main encoder shared backbone and two decoders that
perform semantic segmentation and amodal instance segmentation. The outputs of the decoders
are fused during inference to obtain the panoptic segmentation predictions.

Backbone: The backbone is built upon HRNet [114] which specializes in preserving high-
resolution information throughout the network. It has four parallel outputs. We then upsample
the feature maps and concatenate the representations of all the resolutions, followed by reduc-
ing the channels. Lastly, we aggregate multi-scale features by downsampling high-resolution
representations to multiple levels.

Context Extractor: We design a lightweight module called the context extractor which is based
on the concept of spatial pyramid pooling and is known for efficiently capturing multi-scale
contexts from a fixed resolution.
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Cross Task Module: We propose the cross-task module to enable bilateral feature propagation
between the decoders to mutually benefit each other. Given feature inputs FI and FS from the
two decoders, we fuse them adaptively by employing cross-attention followed by self-attention
as:

FR = (1−g1(FS)) ·FI +(1−g2(FI)) ·FS, (1)
FO = g3(FR) ·FR, (2)

where g1(·), g2(·), and g3(·) are functions to compute feature confidence score of FS and FI . FO
is the output of the cross-task module.

Semantic Decoder: The semantic decoder takes feature maps and the output of the cross-task
module as its input. First, feature maps are upsampled and concatenated to the dense prediction
cell (DPC) [17]. The output of DPC is iteratively upsampled and passed through multiple con-
volution layers. Afterwards, we concatenate the resulting FS with the output of the cross-task
module (FO) and feed it to the three heads, namely, relative occlusion order segmentation (Lroo),
semantic segmentation (Lss), and occlusion segmentation (Los). The relative occlusion order
segmentation head predicts foreground mask segmentation for ON layers. We use the binary
cross-entropy loss (Lroo) to train this head. Next, the semantic segmentation head predicts se-
mantic segmentation of both stuff and thing classes, and we employ the weighted bootstrapped
cross-entropy loss [123] (Lss) for training. The overall semantic decoder loss is given as

Lsem = Lss +Los +Lroo. (3)

The predictions from all the heads of the semantic decoder are used in the fusion module to
obtain the final amodal panoptic segmentation prediction.

Instance Decoder: The instance decoder employs a context encoder at each scale and adds
the resulting feature maps; then, the decoder repeatedly uses a processing block until FI fea-
ture resolution is obtained, which is fed to the cross-task module. Subsequently, the features
from the occlusion segmentation head of the semantic decoder are concatenated to incorpo-
rate explicit pixel-wise local occlusion information referred to as FIO features. The instance
decoder employs five prediction heads, namely, inmodal center prediction head Licp with occlu-
sion awareness Lico, the thing semantic segmentation Ltss, the inmodal center regression Licr,
amodal center offset Laco, relative occlusion order amodal center regression Lrooacr. The overall
loss for the instance decoder is

Linst = Ltss +Lico +αLicp +β (Licr +Laco +Lrooacr), (4)

where the loss weights are α = 200 and β = 0.01.

Amodal Mask Refiner: We propose the amodal mask refiner module to model the ability of
humans to leverage priors on complete physical structures of objects for amodal perception, in
addition to visually conditioned occlusion cues. The amodal mask refiner shown in Figure 2
consists of two encoders, unoccluded feature embeddings, and a decoder. We employ the Reg-
Net [99] topology with its first and last stages removed. The two encoders are an inmodal
embedding encoder that encodes unoccluded objects features and a query encoder that encodes
the amodal features. Then after several processes, we obtain the output. We refer to this output
as FAMR. The resulting features enrich the amodal features of occluded objects with similar un-
occluded object features, thereby enabling our network to predict more accurate amodal masks.
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Table 1: Comparison of amodal panoptic segmentation benchmarking results on the KITTI-
360-APS and BDD100K-APS validation set. Subscripts S and T refer to stuff and thing classes
respectively. All scores are in [%].

Model KITTI-360-APS BDD100K-APS

APQ APC APQS APQT APCS APCT APQ APC APQS APQT APCS APCT

Amodal-EfficientPS 41.1 57.6 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.4
ORCNN [26] 41.1 57.5 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.5
BCNet [50] 41.6 57.9 46.2 34.4 58.1 57.6 45.2 46.4 55.0 30.7 64.7 42.1
VQ-VAE [47] 41.7 58.0 46.2 34.6 58.1 57.8 45.3 46.5 54.9 30.8 64.7 42.2
Shape Prior [122] 41.8 58.2 46.2 35.0 58.1 58.2 45.4 46.6 55.0 31.0 64.8 42.6
ASN [98] 41.9 58.2 46.2 35.2 58.1 58.3 45.5 46.6 55.0 31.2 64.8 42.7
APSNet [81] 42.9 59.0 46.7 36.9 58.5 59.9 46.3 47.3 55.4 32.8 65.1 44.5

PAPS (Ours) 44.6 61.4 47.5 40.1 59.2 64.7 48.7 50.4 56.5 37.1 66.4 51.6

2.1.4 Performance evaluation

We have trained the PAPS module in two different datasets, namely KITTI-360-APS and BDD100K-
APS [81]. Both of these datasets provide amodal panoptic annotations for the respective datasets
KITTI-360 [69] and BDD100K [125]. All our models are trained using the PyTorch library on
8 NVIDIA TITAN RTX GPUs with a batch size of 8. We present results comparing the per-
formance of our proposed PAPS architecture against current state-of-the-art amodal panoptic
segmentation approaches. We report the APQ and APC metrics of the existing state-of-the-art
methods directly from the published manuscript [81]. Table 1 presents the benchmarking results
on both datasets. PAPS outperforms the current methods for both datasets and can be considered
the new state-of-the-art method for the amodal panoptic segmentation task. Detailed results on
the specific modules that are proposed, together with different architectural comparisons can be
found in Appendix 7.1.

2.1.5 Future Work

In this section, we presented the first proposal-free amodal panoptic segmentation architecture
that achieves state-of-the-art performance on both the KITTI-360-APS and BDD100K-APS
datasets. To facilitate learning proposal-free amodal panoptic segmentation, our PAPS network
learns amodal center offsets from the inmodal instance center predictions while decomposing
the scene into different relative occlusion ordering layers such that there are no overlapping
amodal instance masks within a layer. In the future, we will extend this framework to the task
of panoptic tracking to obtain consistent object IDs across a sequence of frames.

2.2 Layer Ensembles
2.2.1 Introduction and objectives

Bayesian Neural Networks (BNNs) [73, 121, 16] can be used to estimate prediction uncertainty
by sampling different models from the weights’ distribution and computing the mean and vari-
ance of their outputs. Depending on the type of the adopted distribution, different types of
BNNs arise, including Bayes By Backpropagation (BBB) [7] with Gaussian distribution, Hy-
permodel [24] methods, Monte Carlo Dropout (MCD) [29] with Bernoulli distribution, and
Deep Ensembles [89] with Categorical distribution.
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We introduce Layer Ensembles, which consider multiple weight options for each layer that
are sampled using independent Categorical distributions, resulting in a high number of possible
models that can have common layer samples. The preprint describing this method in more detail
can be found in Appendix 7.2:

• [85] I. Oleksiienko and A. Iosifidis, “Layer Ensembles”, arXiv:2210.04882, 2022.

2.2.2 Summary of state of the art

Different approaches to uncertainty estimation result in different statistical quality and compu-
tation requirements of the process. This means that in order to decide which methods are better
for the task at hand, they should be ranked by the uncertainty quality and computational require-
ments needed to achieve such quality. To estimate the uncertainty quality of the method, one
needs a dataset containing the true uncertainty values, that can be used to compute the error be-
tweeen the model predictions to the ideal ones. However, it is a hard task to create such dataset
for real-life data, and therefore Epistemic Neural Networks (ENNs) [90] propose a framework
to estimate uncertainty quality using a synthetic dataset with a Neural Network Gaussian Pro-
cess (NNGP) [61] trained on it, representing the true predictive distribution for each test point.
The method of interest is evaluated using the KL-divergence [58] between the true predictive
distribution from NNGP and the predictive distribution of the model of interest.

Monte Carlo Dropout (MCD) [29] uses Dropout [107] layers during both training and infer-
ence phases. This leads to multiple randomly sampled models providing different outputs for
an input, the variance of which is an estimate of the network uncertainty to its response. Bayes
By Backpropagation (BBB) [7] considers a Gaussian distribution over the network weights and
trains it using the Backpropagation algorithm by applying the reparametrization trick [53]. Vari-
ational Neural Networks (VNNs) [87] consider a Gaussian distribution over the output of each
layer, the mean and variance of which are parametrized by the outputs of the corresponding sub-
layers. Hypermodels [24] consider an additional hypermodel θ = gν(z) to generate parameters
of a base model fθ (x) using a random variable z∼N (0, I) as an input to the hypermodel.

Deep Ensembles [89] provide hiqh-quality uncertainty and can be described as a BNN with
Categorical distribution over the network weights, where the target number of samples is equal
to the number of networks in the ensemble. The uncertainty quality of Deep Ensembles can be
improved by adding predictions of untrained prior networks to the outputs, as shown in [89].
Deep Sub-Ensembles [110] divide the network into two parts, where the first one is the same
for all ensembles and is computed only once, while the last part is a regular ensemble of smaller
subnetworks. This reduces the memory and time requirements, but also negatively impacts the
uncertainty quality of the resulting ensemble. Batch Ensembles [118] optimize Deep Ensembles
by using Hadamard product operations instead of matrix multiplications, resulting in better
inference speed and lower memory requirements.

2.2.3 Description of work performed so far

A neural network F(x,w) parametrized by weights w processes an input x and contains N layers.
A Deep Ensemble formed by K neural networks contains K instances of weights wi, i ∈ [1,K]
which are trained independently and applies the same transformation F(x,wi) with different
values of wi. We formulate Layer Ensembles as a stochastic neural network with N layers
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(a) Deep Ensemble structure (b) Layer Ensemble structure

(c) Two samples of a Layer Ensemble network with common first two layer options

Figure 3: Example structures of (a) Deep Ensembles and (b) Layer Ensembles for a 3-layer
network with 3 ensembles (N = 3, K = 3). While the memory structure remains identical,
Layer Ensembles have many more options for sampling that can be optimized considering the
common layers in samples. Layer Ensembles with common layers earlier in the architecture
lead to faster inference (c).

LEi(x,wi
q), i ∈ [1,K], q ∈ [1,N] and K weight options for each layer:

wi
q ∼ Categorical(K). (5)

The memory structure of Layer Ensembles is identical to the Deep Ensembles with KN layer
weight tensors, but layer weights in Layer Ensembles are independently sampled and, therefore,
layers of different ensembles can be connected to form a model sample. This gives a much
higher number of possible samples, many of which will contain common subnetworks that can
be computed once for multiple samples. Fig. 3 shows how the same memory structure is used
differently in Deep Ensembles (Fig. 3a) and Layer Ensembles (Fig. 3b).

Layer Ensembles are trained in the same way as Deep Ensembles, with a regular loss and
averaging predictions of different model samples. The number of samples for Deep Ensembles
is usually selected to be K, i.e, equal to the number of neural networks in the ensemble, but
Layer Ensembles with K options for each of N layers has KN possible samples. Using all
possible ensembles in that case is not computationally efficient but, in order to effectively train
the model it is not required to use all samples, as many of them are overlapping. This means
that the network will be expected to use all layer samples on average with at least K samples
per training step.

Following [89], we add untrained prior networks to Layer Ensembles and use the same
draws from Categorical distributions for their inference, as for the corresponding trained net-
works. Experiments show that this improves the uncertainty quality of Layer Ensembles by a
factor of 2 for each number of ensembles.

Deep Ensembles [89] and Deep Sub-Ensembles [110] can be viewed as specific cases of
Layer Ensembles. Considering K layer options for each of N layers, the number of Layer
Ensemble samples is KN . By sampling K networks where no layers are used in two different
networks, we obtain a Deep Ensemble. By, further, considering 1 layer option for the first T
layers and K options for the remaining N−T layers, we obtain a Deep Sub-Ensemble.

Inference Optimization When required to compute multiple samples at once, the overlap-
ping parts of the samples that receive identical inputs can be computed only once for two or
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more sub-networks. Fig. 3c shows a Layer Ensemble in which the first two layers are the
same for both networks, but the last layer is different. Instead of computing c2(b2(a1(x))) and
c1(b2(a1(x))) independently, we first compute the common value V = b2(a1(x)) first, and then
c2(V ) and c1(V ). An implementation of this idea is provided in Algorithm 1, which recursively
computes the output of Layer Ensembles for a set of sorted samples. The samples are repre-
sented as an array of layer indices, such as [1,2,2] and [1,2,1] for the model in Fig. 3c, these
samples are sorted by the first-most values, and if equal, by the later indices. This allows to
placing the most overlapping samples in a row and to compute the common layer value at the
start of a sequence. The result of Optimized Layer Ensembles (OLE) is an array of all outputs,
which can be later used to calculate the mean and variance of predictions. The memory saved
and speed up of OLE, depending on the number of ensembles, of a 4-layer CNN on the MNIST
dataset are shown in Fig. 1.

Algorithm 1 Optimized Layer Ensembles

Require: Network F(x), list of sorted samples S, layer index i, input x
1: function OLE(F,Si, i,x)
2: result← []
3: si+1← []
4: if i = size(s) then return [x] ▷ Final layer computed
5: end if
6: sl ← Si[0]
7: l← F [i][sl](x) ▷ First sampled option for layer i
8: for t ∈ [0..size(Si)] do ▷ For each sample
9: if Si[t] ̸= sl then

10: result = result∪OLE(F,si+1, i+1, l)
11: sl ← Si[t]
12: ▷ Next sampled option for layer i
13: l← F [i][sl](x)
14: si+1← []
15: end if
16: ▷ Update sub-samples list for input l
17: si+1← si+1∪ si[t][1 :]
18: end for
19: result = result∪OLE(F,si+1, i+1, l)
20: return result
21: end function
22: return OLE(F,S,0,x)

2.2.4 Performance evaluation

We implement Layer Ensembles as a part of Epistemic Neural Networks (ENNs) [90] frame-
work to estimate the uncertainty quality of the method and to compare it with Deep Ensembles.
ENNs consider a regression task y = f (x)+ ε and create a synthetic dataset for this problem in
order to train an NNGP that represents the true predictive distribution. The dataset is described
as DT = {(x,y)t for t ∈ [0,T − 1]}, where x is a Dx-dimensional input vector, y is an output
scalar, ε ∼N (0,σ2) is a random noise, and T = Dxλ is a dataset size. For each data point,
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Figure 4: Speed up and memory saved during inference of Optimized Layer Ensembles com-
pared to the regular Layer Ensembles for different number of ensembles of a 4-layer CNN for
MNIST classification. This excludes memory used for the ML framework and model weights.

the model of interest should provide mean and variance of predictions, which are treated as a
Gaussian predictive distribution N (µ,σ2). These predictions are compared to the true ones
by computing the KL-divergence between Gaussians, obtained from the model M and from the
NNGP. The result Q(M) is averaged across all data points:

Q(M) =
1
T

T−1

∑
t=0

KL(NM ∥NNNGP),

NM = N (E[M(xt)],Var[M(xt)]),

NNNGP = N (E[NNGP(xt)],Var[NNGP(xt)]),

(6)

where M and NNGP are the model of interest and the true NNGP model, respectively, and KL
is a Kullback–Leibler divergence function [58].

Fig. 5 illustrates the comparison between Deep Ensembles and Layer Ensembles for dif-
ferent numbers of ensembles and samples. Layer Ensembles start to achieve good uncertainty
quality at a much lower number of ensembles and outperform Deep Ensembles for the same
number of ensembles, however, requiring more samples to be processed. To overcome this
problem, we introduce a layer sample ranking process that allows to improve performance in
both speed and memory, while keeping better uncertainty quality.

Layer sample ranking Many Layer Ensemble samples overlap, and even though there is a
way to efficiently compute all the outputs, we do not always need them all to make a good
prediction. Random selection of samples, as shown in Fig. 5 decreases the uncertainty quality
of a model. Instead of that, we can specifically select desired samples by using a ranking
process. This can be done by computing the uncertainty quality of all possible combinations
on the validation set and selecting the best ones but, to reduce the computational cost of the
ranking process we progressively add samples to the best sample set by computing the validation
uncertainty quality of the existing set with each such addition and selecting the best one. We
start from a single sample with the best mean error s1:

s1 = argmax
s j

Q(M{s j}), (7)

where Q(·) is the uncertainty quality score function, M{s j} is the Layer Ensemble model applied
to a set of layer samples with only one sample s j. For a size P, a set of optimal layer samples
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Figure 5: Comparison of mean KL values with 1 STD range for Deep Ensembles and Layer
Ensembles with random unique layer samples, averaged across all experiment parameters.

Figure 6: Comparison of mean KL values with 1 STD range for Layer Ensembles with different
number of ensembles and sampled layers, averaged across all experiment parameters. The best
layer samples are selected based on the validation set and evaluated on the test set.

SP = {sP
i |i ∈ [1..P]} is enriched by the best sample as follows:

sP+1 = argmax
s j

Q(MSP∪s j),

SP+1 = SP∪ sP+1.

(8)

Fig. 6 shows the uncertainty quality results obtained by using the best samples for different
number of samples and different number of ensembles. Starting from 3 ensembles, the optimal
number of samples is reached far before the maximum, with a clear optimum, which means
that sample ranking improves both inference speed and uncertainty quality. Layer Ensembles
with 5 ensembles achieve the best uncertainty quality at 36 samples, and with 20 samples the
uncertainty quality is lowered only by 6%. This is, still, 2 times better than the uncertainty
quality of Deep Ensembles with 30 ensembles, while using 6 times less memory and at least
1.5 times less inference time. This advantage of Layer Ensembles in computation time can be
possibly improved using OLE, depending on the level of overlap between samples.
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2.3 Variational Neural Networks
2.3.1 Introduction and objectives

Uncertainty estimation is an important task for critical problems where silent failures of neural
networks may lead to costly results, like those found in robotics applications. Many differ-
ent approaches to uncertainty estimation have been proposed, with Bayesian Neural Networks
(BNNs) [73, 121, 16] being the most popular one. BNNs consider a distribution over the net-
work weights that is updated after observing the data following the Bayes rule. The choice
of distribution changes the statistical and computational properties of the model, as well as the
training procedure. Different distributions are used in different types of models, including Gaus-
sian [7], Bernoulli [29] and Categorical [89] distributions. Direct Bayesian approach is hard to
be achieved considering the high-dimensionality of the weight space in neural networks, which
is the reason to develop methods that approximate the posterior distribution or follow indirect
sampling procedures, such as Variational Inference [6] or Markov Chain Monte Carlo (MCMC)
[38].

In year-2 of the OpenDR project, we introduced Variational Neural Networks (VNNs) [87]
which, instead of considering a distribution over the network weights, generate in run-time a
Gaussian distribution over the outputs of each layer, with mean and covariance parameters being
outputs of the corresponding sub-layers. We followed [90] to estimate the uncertainty quality of
VNNs and compared it to other methods, showing that VNNs outperform methods belonging to
the same Bayesian Model Averaging group, i.e, Monte Carlo Dropout (MCD) [29] and Bayes
By Backprop (BBB).

2.3.2 Description of work performed so far

We implemented VNNs in PyTorch [94] and JAX [10] Machine Learning frameworks to ensure
reproducibility of image classification and uncertainty quality experiments, and to allow for an
intuitive and easy way to implement VNNs into an existing Machine Learning project. The
paper describing this library in more detail can be found in Appendix 7.3:

• [88] I. Oleksiienko, D. T. Tran and A. Iosifidis, “Variational Neural Networks implemen-
tation in PyTorch and Jax”, Software Impacts, 14:100431, 2022.

2.4 Deep Active Object Detection
2.4.1 Introduction, objectives and summary of state of the art

Object detection is critical for many robotics applications. However, recent works demonstrated
that there is is a multitude of factors affecting the performance of object detectors [91]. Indeed,
there are many real-world scenarios in which detection accuracy will be below the expected
standards. That is due to a set of factors that sometimes are controllable, e.g., robot position,
camera zoom, etc., and sometimes they are not, e.g., obstacles. Most of these controllable
factors have been studied with relative success, however, the optimal location/rotation of a
sensor in the environment is still a less studied subject. A camera sensor that may be exposed
in a non-optimal positioning/angle setting related to the object of interest, is a problem that can
be solved with a translation and/or rotation in the 3D space. In this work, we follow the active
perception paradigm [93] [9] and we propose a neural network architecture which searches for
optimal viewpoints in the 3D space that maximize detection accuracy while at the same time
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minimizing the movement-related cost. We also explore the properties of such a system, ways of
optimization, as well as the experimental results of these algorithms in simulation environments.

2.4.2 Description of work performed so far

The process of active object detection consists of three discrete stages: (i) object detection is
executed and the confidence of the object of interest is evaluated. If the detection is below a
desired threshold, e.g., 80% (ii) the navigation module triggers and proposes a position/rotation
in the 3D space. Further on, (iii) we evaluate the detection again on the proposed point, as well
as in some points in between.

Phase 1: Initial Object Detection
A regular deep learning-based object detector is employed during this step. This detector can be
described as a function fdetect(xi), where xi is the observation at the i-th time step. The obser-
vation in this particular case is a 2D projection (a camera image) of the 3D world in which the
robot resides. The detector produces a confidence score pi which describes the certainty of the
appearance of the object of interest in the observation xi, as well as its location (y1,y2) in the 2D
grid (image). If the confidence score pi of the object of interest is below a threshold (if the de-
tection is inadequate), then we proceed with Phase 2 and Phase 3 in order to improve the results.

Phase 2: Navigation Proposal
The next step consists of inferring the movement that the robot should perform in order to
increase the detection confidence. To this end, in this work we employ a dedicated naviga-
tion network. The navigation network is a regression convolutional neural network capable of
estimating optimal navigation plan in order to maximize pi+1 and provide active perception ca-
pabilities. In other words we try to maximize the confidence of the object detector at the next
observation xi+1 at the next time step i+1. The navigation module is a function with inputs the
observation xi which outputs the translation and rotation vector for the robot, i.e., zi+1 and ri+1,
that lead to the next optimal point in the 3D space in terms of confidence score. The final step
of this phase is to apply these transformations to our robot. That means that we have to rotate
around the object of interest by ri+1 and then move by zi+1 frontal or backwards.

Phase 3: Object Detection in Trajectory
Since we have a translation vector zi+1, and a rotation vector ri+1 we can formulate a trajectory
from the starting point at time step i to the ending (optimal) point at time step i+1. While the
robot moves in this trajectory we can evaluate the object detection confidence multiple times
until it reaches its final destination in order to further increase the perception accuracy. An
example of robot movement is depicted in Fig. 7.

2.4.3 Performance evaluation

The proposed method was evaluated using the Webots simulation environment using a DJI
Mavic drone as a robot, as shown in Fig. 8. We have developed a core controller for the drone
which provides the necessary functionalities regarding movement and sensor data acquisition.
More specifically, the drone can be moved in two ways, either by utilizing the Supervisor class
in Webots [77], which allows instant translation/rotation anywhere in the 3D space without the
cost, or by fully activating the drone motors and the atmosphere/gravity in the environment in
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Figure 7: Movement example of a robot that performs active perception in order to increase
object detection confidence. Red point: Initial Position, Green point: Navigation Proposal.

Figure 8: The Webots simulation environment was used for the conducted experiments.
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Figure 9: Active perception pipeline for object detection

order to test for real-world conditions. We have also implemented a camera system running on
the drone. The camera captures data in 30 frames per second. Using the developed simulation
environment we have created two datasets for training the employed DL models: a) a classic
object detection dataset and a b) a active perception dataset that can support the corresponding
task. For the needs of the latter dataset, we utilized simulated 3D models of a Tesla Model S and
Toyota Corolla. All of the data in the synthetic car dataset were produced in this way and were
later used to fine-tune pre-trained object detectors in this environment and train from scratch the
custom navigation head. For the regular object detection dataset images of cars were extracted
in different world settings and angles. The object detector was fine-tuned with 5,000 images
around the car in 65 different radius values for 76 angles. This extra training/finetuning step
was done in order for the detector to achieve better results for our use-case, instead of using
the generic trained car detector. The label for each image is a pair of rotation and translation
vectors that lead to a “better” point of view in the 3D space for the next observation. The max
distance from the car was 60 meters.

The neural network module consists of two neural networks. The object detection network
and the navigation proposal network. The object detection network always scans the area for
objects, in this particular experiment cars. When it works adequately (over a pre-defined detec-
tion confidence threshold) there is no need for improvement. When it does not, the navigation
proposal neural network takes over, in order to propose a movement in the 3D space which
will improve object detection accuracy. These two neural networks take as input the same data
(video stream frames from the camera of the drone). In this work we use an SSD-based ar-
chitecture for the object detection [71] with the addition of a VGG feature extraction layer.
Furthermore, instead of the original VGG fully connected layers, a set of auxiliary convolu-
tional layers (from conv6 onwards) were added, allowing features to be extracted at multiple
scales and the size of the input to each subsequent layer to be progressively reduced. For the
navigation module, we used a Resnet-18 [39] convolutional architecture. The input of the net-
work is adjusted to fit the dimensions of our camera input stream, i.e., (420x240x3), while the
output of the network was adjusted in order to regress the rotation and translation vectors. The
sigmoid activation function was used for the output layer of the network. Note that the training
targets were appropriately normalized to support this architecture, i.e., they were normalized to
(0, 1).

The complete active perception pipeline involves both of these networks. First, the detection
network runs and produces confidences for the detected objects. This is compared against a pre-
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Figure 10: Mapping different position to optimal navigation plan according to object detection
confidence

defined threshold. The thresholds used for the production of the navigation proposal network
dataset were 0.7, 0.8, 0.9, 0.95, and 0.98. We achieved the best results using the 0.9 threshold
for the dataset creation. Thus, for our use case when the detector detects a car with confidence
below 0.9 accordingly, the next navigation network is enabled. Note that the navigation net-
work takes the same input as the detection network, but produces the rotation and translation
vectors instead. In order to train the navigation network, we needed ground-truth 3D translation
and rotation vectors, that lead to optimal viewpoints in the 3D world. Based on the detection
evaluations above we map every point inside the training 3D worlds, to another one that maxi-
mizes the viewpoint detection confidence, and then create navigation labels based on these. We
map these points to the closest possible points near them over a viewpoint confidence threshold
(0.95) as seen in Fig.10. For this particular example, the point that eventually gets mapped as
the optimal viewpoint is the closest to the current position. The red bar below Fig. 10 represents
the closest point distance from the best viewpoint. The label for this example would be the
distance from the best viewpoint signed positively (meaning rotation around the object to the
right), which would be +0.40 rads. For the 3D case, we do the same as in 2D, adding another
dimension (translation movement). In Fig.11 we plot the confidence of an object detector at
different angles and distances in order to further highlight the process of dataset creation for
object detection in the 3D case.

Then, we run 100 experiments for each evaluation case and averaged the total improvement
of the detector. We tested in an unknown environment for the navigator model. In every exper-
iment from the total of 100 for each case, we randomized the robot position-rotation making
it spawn in different coordinates of the 3D map, as shown in Fig. 12. The proposed method
manages to increase the object detection confidence in 67% of the evaluation cases, i.e., in 67%
of the evaluated cases the final object detection confidence was higher than the initial object
detection confidence. A random navigation policy lead to a significantly lower improvement
rate of 22%. Finally, we also evaluated a classification navigation policy, where instead of re-
gressing the actual movement, we performed classification to select the direction of movement.
In this case, the active perception policy increased the confidence in 51% of the evaluated cases.
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Figure 11: Object detection confidence at different angles and distances

Figure 12: Random initialization during evaluation

2.4.4 Conclusions and Future Work

The conducted experiments demonstrated that it is possible to train DL models to regress a
robot plan that can increase object detection confidence, providing an easy and practical way to
equip robots with active perception capabilities. This promising result can be further explored
by a) incorporating the regression network to the object detection model, providing active per-
ception feed at virtually no cost, b) exploiting co-integrated simulation and training in order
to reduce sim-to-real gap and ensure that models will perform as expected in real conditions
and c) train the models using reinforced learning-based formulations, in order to remove the
time-consuming data generation step.
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3 2D/3D object localization and tracking

3.1 VPIT: Real-time Embedded Single Object 3D Tracking Using Voxel
Pseudo Images

3.1.1 Introduction

3D Single Object Tracking (3D SOT) focuses on tracking a single object and combines chal-
lenges from both 3D Object Detection and 3D Multiple Object Tracking, requiring to accurately
detect the object of interest and correctly identify it, avoiding losing it due to the presence of
similar objects in the scene. SOT in both 2D and 3D is usually performed by using correla-
tion filters [8, 44], deep learning models that regress to the predicted object offset [43], voting
[97, 103], or a Siamese approach[25, 4, 63, 62] where the features of the target object are
computed in the previous frame and compared to the features of a search region in the current
frames. We propose a novel 3D SOT method called Voxel Pseudo Image Tracking (VPIT) that
uses a modified PointPillars model for generating voxel pseudo images and processes them to
create features for target and search regions.

Most Lidars operate at 10-20 Hz, which means that a 3D SOT method cannot receive inputs
faster than 10/20 times per second, but having higher FPS may allow other resource-heavy
methods to be used in parallel. However, this is not the only benefit for tracking methods, as
their performance directly depends on the sequence of inputs that are received. If the operation
speed of a method is not enough compared to the sampling frequency of the Lidar, the input
frames should either be queued, resulting in a constantly increasing delay between inputs and
predictions, or some inputs should be skipped, which may decrease the accuracy of a tracker.
For this reason, following [66] we implemented a real-time evaluation protocol that simulates
frames lost due to model latency and evaluates results with the predictions “available” at the
time step of a ground-truth sample.

The preprint describing this method in more detail can be found in Appendix 7.4:

• [86] I. Oleksiienko, P. Nousi, N. Passalis, A. Tefas and A. Iosifidis, “VPIT: Real-time
Embedded Single Object 3D Tracking Using Voxel Pseudo Images”, arXiv:2206.02619,
2022

3.1.2 Summary of state of the art

3D SOT methods are often formulated as extensions of 2D SOT methods. The main difficulty
arises from the unordered nature of Point Clouds which cannot be processed with regular CNNs.
SC3D [36] uses a Siamese approach and encodes the target point cloud shape from the initial
frame and constantly fuses it with the predicted point cloud of new frames. The object search
is performed by using cosine similarity between point cloud features. The search region is
defined to be a small area around the target, assuming that the object offset should be small
in consecutive frames. P2B [97] uses a point-wise network to create similarity maps between
target and search regions and find candidates for target centers, which are later processed by a
voting algorithm to select the best position candidate. BAT [134] is based on P2B and enriches
point cloud features by adding Box Cloud representations which include distances between
points and the center and corners of a corresponding 3D bounding box. 3D-SiamRPN [25]
uses a Siamese point-wise approach, creating target and search point cloud features, which are
later compared by a cross-correlation algorithm to find points of the target in a new frame. The
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final bounding box is predicted using the region proposal subnetwork. F-siamese tracker [136]
fuses camera and Lidar data by applying a 2D Siamese tracker on an image and then using the
generated 2D proposals to create 3D frustums as inputs to a 3D Siamese model that predicts
the final 3D position. Point-Track-Transformer (PTT) [103, 48] uses transformers for point-
based SOT methods and employs it based on a P2B model. 3D Siam-2D [129] uses a fast 2D
Siamese model in Bird’s-eye View (BEV) coordinates to create BEV proposals and a second
Siamese model that uses projected BEV proposals to identify which of them belongs to the
object of interest. The BEV projection loses information due to pixel overlap but voxel pseudo
images, despite also being in the BEV space, represent all the information from the point cloud
by processing the corresponding points with small subnetworks.

3.1.3 Description of work performed so far

Siamese methods use an identical transformation θ(·) to process target and search inputs x and
z. These inputs are further combined by some function g(·), i.e. f (x,z) = g(θ(x),θ(z)). For
Siamese tracking, θ(·) is usually selected to be an embedding function, such as CNN, and g(·)
to be a similarity function, such as convolution.

SOT is performed by first initializing the target region t0 with the provided ground truth
object location and creating a search region s0 = σ(t0). Given the frames Fτ−1 and Fτ , the
previous target and search regions tτ−1 and sτ−1, the target and search regions for the current
frame Fτ are predicted as follows:

tτ = tτ−1 +δ ( f (ξt(tτ−1),ξs(sτ−1))),

sτ = σ(tτ),
(9)

where δ (·) uses the similarity map, predicted by a model θ(·) to create an offset between last
and current target region positions, ξt(·) and ξs(·) transform target and search regions into
respective voxel pseudo images to be used as inputs for the θ(·) function. This process is
applied for each new frame to find the new target position. We adapt PointPillars’ [60] Region
Proposal Network (RPN) (Fig. 13) by creating a Feature Generation Network (FGN) as a down-
sampling part of RPN, excluding transposed convolutions. The FGN is used as θ(·) that creates
features from the input voxel pseudo-images, which are then compared by a 2D convolution
g(a,b) = conv2Dω=b(a), where ω are the weights of the layer, resulting in a similarity map.

The architecture of VPIT is shown in Fig. 14. The input point cloud is voxelized around the
region of interest and processed by a Pillar Feature Network to create a voxel pseudo image.
The search and target regions are processed by the same FGN module and compared using the
convolutional cross-correlation function to create the score map, that is used in post-processing
to predict the new target position.

Target and search regions are represented by a 5-dimensional vector (x,y,w,h,α), where
(x,y) is the position of the region center in pseudo image space in pixels, (w,h) is the size of
the region and α is the rotation angle. The initial ground truth bounding box is described by
a 7-dimensional vector (x,y,z,w,h,d,α) with 3D position, size and a rotation angle around the
vertical axis. The corresponding target and search regions are created as follows:

t0 = κc((Bx
gt ,B

y
gt ,B

w
gt ,B

h
gt ,B

α
gt)),

s0 = σ(t0),
(10)
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Figure 13: Structure of PointPillars 3D object detection model. The RPN is a 2D CNN that
takes a pseudo image as input.

Figure 14: Structure of the proposed Voxel Pseudo Image Tracking model. The input point
cloud is voxelized and processed with the PointPillars’ Pillar Feature Network to create a voxel
pseudo image, which serves as an input to the Siamese model. The Feature Generation Network
(FGN), which is a convolutional subnetwork of the PointPillars’ RPN, processes the target and
search regions to create corresponding features that are then compared to find a position of the
best similarity.

where t0 and s0 are the initial target and search region and κc(·) adds context to the target region
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based on the amount of context parameter c:

κc(t) =

{
κc+(t), if c> 0,
κc−(t), otherwise,

κc+(x,y,w,h,α) = (x,y,mn,mn,α),

mn =
√
(w+m)(h+m),

m = c(w+h),
κc−((x,y,w,h,α)) = (x,y,w(1− c),h(1− c),α),

(11)

where κc+(·) adds context by creating a square region around the original one, and κc−(·) in-
creases the dimensions of the original independently. The σ(·) function creates a search region,
which is σs times bigger than the target region:

σ(x,y,w,h,α) = (x,y,σsw,σsh,α). (12)

The predicted output at frame τ is computed as:

Bτ = (tx
τ , t

y
τ ,B

z
gt , t

w
τ , t

h
τ ,B

d
gt , t

α
τ ). (13)

Description of the training and inference procedures can be found in the preprint in Ap-
pendix 7.4.

3.1.4 Performance evaluation

We use KITTI [31] tracking training dataset split to train and test our model, with tracks 0-18
for training and validation and tracks 19-20 for testing (as is common practice [25, 36, 129, 97,
103]). Precision and Success metrics are used to measure the accuracy of a model, as defined
in One Pass Evaluation [56]. Precision is describing the difference between ground-truth and
predicted object centers in 3D, while Success is computed based on the 3D Intersection over
Union (IoU) between predicted and ground truth 3D bounding boxes.

Out of 3 feature blocks in PointPillars’ RPN, we use only 1 with 4 layers in a block. We train
the model for 64,000 steps with BCE loss, 1 ∗ 10−5 learning rate and 2 positive label radius.
We create 3 search region rotations with 0.15 step during inference, with 0.98 rotation penalty.
A penalty map multiplier of 0.85 is used, a score upscale of 8, original target/search sizes are
used, together with context amount of 0.27, rotation interpolation of 1, offset interpolation of
0.3, target feature merge scale of 0.005 and linear search position extrapolation.

Evaluation results on 1080Ti GPU are given in Table 2. VPIT is the fastest method on
1080Ti and achieves competitive Precision and Success values. We evaluate the fastest methods
(P2B, PTT, VPIT) on different high-end and embedded GPUs to show how the architecture of
devices influences the inference speed. We compute all time spent while processing the inputs,
including the pre- and post-processing times, but excluding the data loading time.

As can be seen from Table 3, in terms of speed, VPIT outperforms P2B by 67% on 1080Ti
GPU, 99% on 2080 GPU and 86% on 2080Ti GPU with 104-core CPU, but for embedded
devices, VPIT outperforms P2B by 135% on TX2 and by 98% on Xavier.
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Table 2: Results of 3D Car tracking on KITTI dataset. Modality represents the type of data
the tracking is performed on (PC for point cloud, BEV for Birds-Eye-View and VPI for voxel
pseudo image). FPS values are reported on a 1080Ti GPU by a corresponding paper. FPS values
with a star notation are obtained by running the methods’ official implementations on a 1080ti
GPU considering the full runtime of the network.

Method Modality Success Precision FPS

3DSRPN PCW [25] PC 56.32 73.40 16.7
3DSRPN PW [25] PC 57.25 75.03 20.8
SCD3D-KF [36] PC 40.09 56.17 2.2
SCD3D-EX [36] PC 76.94 81.38 1.8
3D Siam-2D [129] PC+BEV 36.3 51.0 -

BAT [134] PC 65.38 78.88 23.96*
PTT-Net [103] PC 67.8 81.8 39.51*
P2B [97] PC 56.2 72.8 30.18*

VPIT (Ours) VPI 50.49 64.53 50.45

Table 3: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset. The evaluation
is performed with official implementations on high-end and embedded GPU platforms with
different combinations of GPU/CPU. 32C CPU and 104C CPU correspond to 32-core and 104-
core CPUs, respectively.

Method Modality Success Precision
FPS

1080Ti 2080 2080Ti TX2 Xavier
32C CPU 32C CPU 104C CPU

P2B [97] PC 56.2 72.8 30.18 26.34 38.93 6.20 10.37
PTT-Net [103] PC 67.8 81.8 39.51 33.34 50.25 8.04 13.49
VPIT (Ours) VPI 50.49 64.53 50.45 52.52 72.53 14.61 20.55

Real-time evaluation We implemented a real-time evaluation protocol, following [66], to
test how the performance of the fastest 3D SOT methods drops when the data processing time is
limited and may lead to dropped frames from the Lidar. For a time step τ , only the set of inputs
that appeared before τ is seen to the model: Sin = (xi,τi|i ≤ τ), where (xi,τi) is a pair of an
input frame and a corresponding time step. The prediction for time step τ will appear later than
τ , as the model inference is not instant, meaning that the output pi will appear at time τ̂i and
cannot be compared to the label from yi frame the same frame, and therefore each label yi will
be compared with the latest available prediction at the corresponding time step plpr(i). Given the
regular error function E, the predictive real-time error is computed as follows:

Epr(yi) = E(yi, plpr(i)),

lpr(i) = argmax
j

τ̂ j ≤ τi.
(14)

As shown in [66], some techniques can be applied to existing models to counter the time
difference between input and prediction, increasing the real-time evaluation score. To eliminate
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Table 4: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset in real-time
settings without the predictive requirement. The evaluation is performed with official imple-
mentations on embedded GPU platforms for 10 and 20 Hz Lidars (Data FPS). Frame drop
represents the percentage of frames that could not be processed due to the model’s latency.
Regular represents evaluation without real-time requirements.

Method Data FPS Success (non-predictive) Precision (non-predictive) FPS Frame drop
Regular TX2 Xavier Regular TX2 Xavier TX2 Xavier TX2 Xavier

P2B [97] 10 56.20 21.90 36.50 72.80 21.70 42.40 6.17 10.07 37.41% 7.00%
PTT-Net [103] 10 67.80 29.50 63.60 81.80 30.00 75.10 6.90 12.38 28.21% 0.81%
VPIT (Ours) 10 50.49 50.31 50.49 64.53 64.08 64.53 14.31 20.55 0.68% 0.00%

P2B [97] 20 56.20 10.90 16.70 72.80 7.90 15.0 5.54 9.61 70.57% 51.56%
PTT-Net [103] 20 67.80 17.90 26.50 81.80 15.70 26.60 6.61 11.88 64.14% 38.95%
VPIT (Ours) 20 50.49 38.96 47.70 64.53 45.50 59.87 14.37 20.06 30.17% 2.38%

Table 5: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset in real-time
settings with the predictive requirement. The evaluation is performed with official implementa-
tions on embedded GPU platforms for 10 and 20 Hz Lidars (Data FPS). Frame drop represents
the percentage of frames that could not be processed due to the model’s latency. Regular repre-
sents evaluation without real-time requirements

Method Data FPS Success (predictive) Precision (predictive) FPS Frame drop
Regular TX2 Xavier Regular TX2 Xavier TX2 Xavier TX2 Xavier

P2B [97] 10 56.20 19.10 30.30 72.80 17.80 33.70 6.17 10.07 36.31% 6.79%
PTT-Net [103] 10 67.80 24.90 50.70 81.80 23.40 59.00 7.07 12.26 26.15% 0.90%
VPIT (Ours) 10 50.49 45.82 46.68 64.53 57.76 59.28 14.61 20.55 0.57% 0.00%

P2B [97] 20 56.20 9.10 13.50 72.80 6.00 10.90 5.54 9.47 69.57% 50.31%
PTT-Net [103] 20 67.80 15.40 23.20 81.80 13.10 21.50 6.67 12.06 62.49% 37.35%
VPIT (Ours) 20 50.49 34.00 41.39 64.53 36.61 49.36 14.40 20.77 29.41% 1.56%

the factor of “predictive errors”, we introduce a non-predictive benchmark where the labels are
available one frame after the inputs:

lnpr(i) = argmax
j

τ̂ j ≤ τi+1. (15)

Table 4 contains evaluation results of P2B, PTT and VPIT on embedded devices for the
non-predictive benchmark and Table 5 contains results for the predictive benchmark. Data FPS
is selected to represent the most popular Lidars of 10 and 20 Hz, with 10 Hz evaluation on
Xavier being the easiest case and 20 Hz on TX2 the hardest one.

VPIT is the only method that did not suffer from frame drop on the easiest case. The highest
frame drop is suffered by P2B and PTT on the hardest case with 60− 70% of frames not pro-
cessed, resulting in 6 and 4 times worse results than during the regular evaluation, respectively,
meaning that these methods could not work under real-time conditions on TX2 with a 20 Hz
lidar. As shown in Fig. 15, Success drop of VPIT is the smallest, but other methods loose most
of their tracking ability under real-time evaluation conditions.
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Figure 15: Evaluation of the fastest models with real-time requirements on embedded devices
and a desktop GPU. Data FPS represents 10 and 20 Hz Lidars. Devices are sorted in descending
order by their computational power.

3.2 Speed up of 3D Object Detection models
3.2.1 Introduction and objectives

To reach the desired inference speed of 3D detection methods, we deploy several post-training
optimization techniques, including ONNX optimization and model pruning. ONNX optimiza-
tion is performed by representing the model in ONNX format that is used for inference only and
usually leads to faster inference than using the general-purpose frameworks, such as PyTorch.
Model pruning is the procedure of removing model weights or neurons iteratively to reduce the
number of parameters and possibly increase the inference speed, while aiming to suffer little to
no accuracy of the model.

Pruning can be performed in an unstructured way by removing specific model parameters
without any restrictions, or in a structured way by removing parameters corresponding to neu-
rons or channels. While the former can greatly reduce the number of model parameters, it rarely
increases inference speed. This is because, when sparse matrix multiplication packages are not
used, data processing on GPU will mostly remain the same. Structured pruning, if performed on
channels, can directly reduce the inference time, as it leads to a “thinner” model with reduced
computations having the standard structure of layers included in most of the programming li-
braries. Selection of the weights or channels that can be pruned can be done in different ways,
with magnitude-based criteria being among the most widely used, where the weights with the
lowest n-norm are considered less important and are pruned first.

3.2.2 Description of work performed so far

We follow [42] and implement channel pruning of PointPillars and FairMOT. We prune 10−
20% of channels in each layer and fine-tune for 5− 15 epochs after each pruning step, com-
puting the speed and the accuracy of the model after each fine-tuning step. We found the best
results using 10% pruning and fine-tuning for 10 epochs on each iteration for 10 iterations for
PointPillars. We implemented the results of [84] and apply pruned and original models on the
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near sub-scene setup.
Tables 6 and 7 show that PointPillars achieves 1.9× speed-up on NVIDIA Xavier with 14%

mAP loss when using pruning on near depth zone, resulting in inference speed of 16 FPS, while
it achieves 11 FPS with pruning only and 8% mAP loss. The speed-up on NVIDIA TX2 is
2.7× with 7 FPS for a pruned model on the near depth zone. The resulting models operate in
real-time for the 10 Hz Lidars on Xavier.

Table 6: Evaluation of PointPillars models speed and accuracy with pruning and near depth
zones on NVIDIA Xavier.

Method Pruning Near mAP FPS

PointPillars 77 8.40
PointPillars ✓ ✓ 66 16.00
PointPillars ✓ 71 11.50
PointPillars ✓ 69 9.66

Table 7: Evaluation of PointPillars models speed and accuracy with pruning and near depth
zones on NVIDIA TX2.

Method Pruning Near mAP FPS

PointPillars 77 2.55
PointPillars ✓ ✓ 66 7.03
PointPillars ✓ 71 5.11
PointPillars ✓ 69 4.90

3.3 3D Multi-Object Tracking Using Graph Neural Networks With Cross-
Edge Modality Attention

3.3.1 Introduction and objectives

3D multi-object tracking (MOT) is an essential component of the scene understanding pipeline
of autonomous robots. It aims at inferring associations between occurrences of object instances
at different time steps in order to predict plausible 3D trajectories. These trajectories are then
used in various downstream tasks such as trajectory prediction [100] and navigation [78]. In this
section, we present Batch3DMOT, an offline 3D tracking framework that follows the tracking-
by-detection paradigm and utilizes multiple sensor modalities (camera, LiDAR, radar) to solve
a multi-frame, multi-object tracking objective. Sets of 3D object detections per frame are first
turned into attributed nodes. In order to learn offline 3D tracking, we employ a graph neural
network (GNN) that performs time-aware neural message passing with intermediate frame-wise
attention-weighted neighborhood convolutions.

Our main contributions can be summarized as follows:

OpenDR No. 871449



D4.3: Third report on deep environment active perception and cognition 34/143

• A novel multimodal GNN framework for offline 3D multi-object tracking on multi-category
tracking graphs including k-NN neighborhood attention across semantic graph compo-
nents.

• A cross-edge attention mechanism that uses intermittent sensor data to substantiate the
differentiation between active and inactive edges.

• Methodology and pre-processing pipeline for constructing category-disjoint tracking graphs
over multiple timesteps as well as a novel agglomerative trajectory clustering scheme for
effective trajectory generation.

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.5:

• [12] M. Büchner and A. Valada, “3D Multi-Object Tracking Using Graph Neural Net-
works With Cross-Edge Modality Attention”, IEEE Robotics and Automation Letters
(RA-L), vol. 7, no. 4, pp. 9707-9714, 2022.

3.3.2 Summary of state of the art

Multi-object tracking (MOT) can be categorized into online and offline settings. Whereas on-
line methods are limited to using past and current data, offline methods can efficiently leverage
future data to find solutions to the global data association problem. Besides a temporal catego-
rization, MOT can be applied in the 2D [131, 46, 111] or the 3D [51, 119, 124, 28] domain, ex-
ploiting either 2D or 3D object detections. Finally, two commonly followed approaches involve
the tracking-by-detection paradigm [131, 11, 124] and joint object detection and tracking [46].
2D MOT is an already well-studied research area, where both online and offline methods have
been jointly evaluated on a single benchmark [23]. Most offline methods formulate 2D MOT
as a graph association problem solved using optimization techniques from graph and network
theory [115, 128, 108, 45]. On the other hand, 3D MOT datasets are more challenging since
they involve intricate sensor motion and significantly smaller frame rates [27, 32, 23]. Recent
state-of-the-art approaches [120, 127] facilitate graph neural networks to capture higher-order
artifacts on graph structures. OGR3MOT [127] follows NMPTrack [11] in using neural mes-
sage passing but solves the online 3DMOT problem while leveraging Kalman state predictions
for improved track representations. Our approach differs from NMPTrack [11] by introducing
a novel modality and node representation scheme relevant for 3D tracking and a novel agglom-
erative trajectory clustering scheme that yields higher recall rates and fewer false positives.
Compared to OGR3MOT [127], we include multiple sensor modalities and model trajectories
based on object similarity instead of exploiting Kalman filters for predictive track representation
in online tracking.

3.3.3 Description of work performed so far

Following the tracking-by-detection paradigm, we turn a set of detections per frame Ot =
{o1, ...,on} into nodes on a directed acyclic graph G = (V,E) that holds an ordered set of
frames. Instead of using detection edges, we follow the approach of Brasó et al. [11] in collaps-
ing them. Since our approach involves learning on graph-structured data, both nodes and edges
are attributed. In the subsequent section, we first outline the approach for extracting features
from the various modalities, followed by the graph construction process. We then present the
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Figure 16: Overview of our Batch3DMOT architecture.

graph neural network architecture and the graph traversal algorithm that yields the final trajec-
tories. More detailed explanations can be found in Appendix 7.5. An overview of our modal
architecture can be seen in Figure 16.

Feature Representation: In typical tracking scenarios such as autonomous driving, we are
confronted with a multitude of sensor modalities such as camera, LiDAR, radar, or even ther-
mal images. While the detections are often derived only from a single sensor modality such as
LiDAR or camera, the entirety of modalities can still be utilized for improved similarity finding
of detections in the tracking task. Our approach fuses 3D pose & motion features (3D-PM) from
bounding boxes with 2D as well as 3D appearance features from (surround) cameras (2D-A),
LiDAR (3D-AL) as well as radar sensors (3D-R). Different from tracking in the image plane,
3D bounding box information essentially represents a more discriminative feature in 3D track-
ing due to available depth information [120]. Most importantly, this simplifies re-association
after false negatives (FN) generated by occlusions or missed detections but also eases the iden-
tification of false positives (FP). Instead of solely exploiting bounding box information in terms
of relative node differences for an initial edge feature [11], the 3D-PM feature constitutes the
primary node feature in the proposed approach.

Graph Construction: The chosen approach arranges nodes on a tracking graph over 5 frames
in a sliding window manner with a stride of 1. The tracking performance improves drasti-
cally when learning the tracking task with actual detections instead of ground truth annotations
since FP filtering and FN handling pose major challenges in real-world tracking. Consequently,
ground truth annotation identifiers need to be paired with actual detections in order to construct
edge labels for the learning stage. Under the assumption that ground truth annotations gener-
ally do not show significant intra-category overlap, we match detection results to geometrically
close annotations in the birds-eye view (BEV).

Message Passing Graph Neural Network: This work employs the principle of time-aware
neural message passing [11], which is extended to allow information exchange between inter-
category nodes that reside in particular disconnected graph components. In addition, we present
a novel way to include intermittent sensor modalities across edges.

Inference and Graph Traversal: The outputs of the GNN architecture are Sigmoid-valued
scores that represent whether an edge is likely to be active/inactive. Instead of thresholding at
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an edge score of 0.5 to find active/inactive edges to turn into trajectories, we follow the spirit
of ByteTrack [131] and try to associate (nearly) every detection with a preliminary trajectory.
Based on the assumption that the predicted edge scores show some inherent order, i.e., FP edges
exhibit lower scores than TP edges within local neighborhoods of the graph, we propose a score-
based agglomerative trajectory clustering paradigm (Algorithm 2). The edge score predictions
of multiple overlapping batches are averaged per edge. All edges are arranged in descending
order and empty (ordered) clusters are initialized that will later hold output trajectories. As
shown in Algorithm 2, we loop through all edges from the highest to lowest score and check
whether the edge is constrained or unconstrained. If constrained, it is checked whether the edge
would essentially add time-wise leading or trailing nodes to one of the temporary clusters or
if it joins two clusters. In the case of joining two clusters, an additional score-wise threshold
needs to be met. Otherwise, the edge does not violate any tracking constraints and a new cluster
is initialized.

Algorithm 2 Agglomerative Trajectory Clustering.
1: Epred ,Nmeta← CombineBatches(GNN(X,Xe))
2: E∗pred ← DescSortEdgesByScore(epred)
3: vis← CreateVisitedNodesDict()
4: C ← CreateEmptyClustersDict()
5: for e ji,score in E∗pred do
6: if j /∈ vis and i /∈ vis then
7: C ← CreateNewCluster(e ji)
8: UpdateVisitedNodes(e ji,C )
9: else

10: if j /∈ vis and i ∈ vis then
11: if i is leading node in C(i) then
12: C ← AddToCluster(e ji)
13: vis← UpdateVisitedNodes(e ji,C )
14: end if
15: else if j ∈ vis and i /∈ vis then
16: if j is trailing node in C ( j) then
17: C ← AddToCluster(e ji)
18: vis← UpdateVisitedNodes(e ji,C )
19: end if
20: else if j ∈ vis and i ∈ vis then
21: if j is trailing C ( j) and i is leading C (i) then
22: C ← JoinClusters(e ji)
23: vis← UpdateVisitedNodes(e ji,C )
24: end if
25: end if
26: end if
27: end forreturn TurnClustersIntoTrajectories(C )
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Table 8: Comparison of AMOTA scores on the nuScenes validation set. Bold/underlined num-
bers denote best/second best model scores, respectively.

Method Overall Bicyc. Bus Car Moto. Ped. Trailer Truck

AB3DMOT [119][135] 0.179 0.09 0.489 0.36 0.051 0.091 0.111 0.142
Prob3DMOT [21][135] 0.561 0.272 0.741 0.735 0.506 0.755 0.337 0.580
CenterPoint [124] 0.665 0.458 0.801 0.842 0.615 0.777 0.504 0.656
ProbMM-3DMOT [57] 0.687 0.490 0.820 0.843 0.702 0.766 0.534 0.654

3D-PM-MEGVII[135] 0.623 0.368 0.759 0.789 0.655 0.796 0.378 0.617
3D-PM-CP [124] 0.708 0.540 0.837 0.849 0.728 0.813 0.497 0.689
3D-PM-C-CP [124] 0.709 0.542 0.837 0.851 0.733 0.813 0.502 0.688
3D-PM-CL-CP [124] 0.715 0.540 0.855 0.851 0.748 0.821 0.493 0.695
3D-PM-CLR-CP [124] 0.713 0.545 0.851 0.850 0.736 0.820 0.494 0.696

3.3.4 Performance evaluation

In this section, we present quantitative and qualitative evaluations of our proposed Batch3DMOT
on the nuScenes [27] and KITTI [32] datasets using the average multiple-object tracking accu-
racy (AMOTA) and multiple-object tracking accuracy (MOTA) metrics, respectively. Similar
to existing methods, we evaluate our model on the nuScenes test set as well as the KITTI 2D
MOT benchmark. One can see a comparison of AMOTA scores on the nuScenes in Table 8.
The rest of the experimental results can be found in Appendix 7.5.

Detections and GT Matching: In this approach, we use the detections provided by MEGVII [135]
and CenterPoint [124] for nuScenes. On the KITTI dataset, we use Point-RCNN detections
[104] as also used by FG3DMOT [96] and AB3DMOT [119]. We match detections to ground
truth trajectory labels to obtain identifiers. As proposed earlier [135, 27], the L2 center distance
is often used for matching, which is beneficial for faraway objects. Our empirical findings show
that especially large objects suffer from this heuristic, e.g., their respective length is not pre-
dicted correctly, which leads to considerable object center translations and effectively renders
the L2 distance uninformative. Therefore, we follow a bi-level approach by first selecting a
close radius (L2) and then checking whether detection and annotation exhibit a significant IoU
overlap in the Bird’s-Eye-View.

3.3.5 Future Work

In this section, we proposed a framework for addressing the offline 3D MOT task using a multi-
modal graph neural network including a novel agglomerative trajectory construction scheme.
Our method was able to improve tracking accuracy and demonstrate enhanced false positive
filtering, compared to current online methods, using the same detections. In the future, we plan
to extend our approach to also cope with long-term occlusions.
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4 Deep SLAM and 3D scene reconstruction

4.1 PADLoC: LiDAR-Based Deep Loop Closure Detection and Registra-
tion using Panoptic Attention

4.1.1 Introduction and objectives

One of the essential tasks in autonomous robotics is Simultaneous Localization and Mapping
(SLAM). Many SLAM systems have been proposed for different sensor modalities including
cameras [112] and LiDARs [65]. While vision-based methods fail in challenging lighting condi-
tions such as illumination changes, LiDAR-based approaches are more robust to such alterations
and provide a more accurate representation of the environment. In this work, we address the
joint problem of loop closure detection and map registration for LiDAR-based SLAM. Using
the inspiration from semantic mapping approaches [19, 101] and methods that exploit panop-
tic information for vision-based loop closure detection [126], we leverage panoptic segmenta-
tion of point clouds in this work. We propose a more versatile approach, which only requires
panoptic labels during training. Furthermore, we demonstrate that the proposed PADLoC ap-
proach achieves state-of-the-art performance, compared to the existing methods, on three well-
established datasets.

The main contributions of this work are as follows:

1. We propose PADLoC, a transformer encoder architecture for point cloud matching and
registration. Unlike existing methods, we use separate inputs as keys, values, and queries
effectively, exploiting the transformer structure.

2. We define a novel loss function that leverages panoptic information for registration. We
further propose formulating both geometric and panoptic registration losses as bidirec-
tional functions that greatly improve performance.

3. We study the effect of multiple weighting methods in SVD to enhance point matching.

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.6:

• [2] J. Arce, N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “PADLoC: LiDAR-
Based Deep Loop Closure Detection and Registration using Panoptic Attention”, arXiv:
2209.09699, 2022.

4.1.2 Summary of state of the art

Only a handful of works have proposed to leverage semantic information for large-scale map-
ping and localization [19, 3], and particularly for loop closure detection. Based on semantic
segmentation, SuMa++ [19] filters dynamic objects from a LiDAR-based map and extends the
ICP algorithm with additional semantic constraints. While SuMa++ does not utilize seman-
tic information for loop closure detection, RINet [64] explicitly addresses LiDAR-based place
recognition via a rotation invariant global descriptor combining semantic and geometric infor-
mation. For the same task, Kong et al. [54] propose to build a graph representation of point
clouds, which are enriched by both semantic and instance segmentation and perform graph
similarity matching. SA-LOAM [65] integrates a semantic-aided variant of ICP into the pop-
ular LOAM pipeline for point cloud registration. To address loop closure, it uses a similar
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graph representation as Kong et al. [54]. SV-Loop [126] is a loop closure detection method
for vision-based SLAM. It separately proposes loop closure candidates based on raw images
and panoptic segmentation maps, which are then fused to extract the most feasible candidates.
In our approach, we exploit panoptic annotations of point clouds while predicting both loop
closure detection and point cloud registration. Additionally, we only utilize them during the
training process but not for deployment, making the method more versatile.

4.1.3 Description of work performed so far

Our novel PADLoC architecture is built upon our previously proposed LCDNet [14], where
instead of using a differentiable approximation of the optimal transport to obtain point matches,
we propose to leverage the cross-attention matrices of transformers. The overview of the archi-
tecture can be seen in Figure 17.

Anchor points

shared

shared

Feature extraction

Registration &
matching module

Registration &
matching module

shared

Global descriptor

Global descriptor

Global descriptor

shared

shared

Loop closure
detection

Point cloud
registration

Positive points

Negative points

Registered loop closure

Figure 17: Overview of our proposed PADLoC architecture for joint loop closure detection
and point cloud registration. It consists of a shared feature extractor (green) followed by a
global descriptor head (blue) for loop closure detection and a registration and matching module
(orange) to estimate the 6-DoF transform between two point clouds (red).

Loop Closure Detection: The global descriptor module of PADLoC further encodes the pre-
viously extracted features to perform loop closure detection. For this task, we employ the
NetVLAD layer [1] to convert the feature vectors F of the anchor, the positive, and the negative
points to their respective final descriptor D.

Point Matching: The matching module predicts soft correspondences between keypoints of a
source point cloud and a target point cloud. Additionally, it outputs projected target coordinates
which are linear combinations of the original target coordinates with a one-to-one pairing with
the points of the source set and a confidence weight for each of these matches. Inspired by the
success of transformers in related tasks, we propose a novel architecture that performs cross-
attention directly on the encoder part, obviating the need for a decoder by feeding independent
inputs for the queries, keys, and values.

Point Cloud Registration: To obtain the final relative transformation from a source point cloud
to a target point cloud, we perform a weighted version of the Kabsch-Umeyama algorithm that
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Table 9: Comparison of loop closure detection and point cloud registration performance

KITTI Seq. 08 [33] Ford Seq. 01 [92]

Method AP ↑ rerr [°] ↓ terr [m] ↓ AP ↑ rerr [°] ↓ terr [m] ↓
H

an
dc

ra
ft

ed

M2DP [41] 0.05 — — 0.89 — —
Scan Context∗ [52] 0.65 3.11 — 0.97 16.68 —
LiDAR-Iris∗ [117] 0.64 1.84 — 0.90 1.66 —
ISC∗ [113] 0.31 6.27 — 0.62 6.15 —
ICP (pt2pt) [132] — 160.63 2.41 — 9.56 2.79
ICP (pt2pl) [132] — 160.73 2.49 — 9.16 2.62

L
ea

rn
in

g DCP [116] — 46.06 2.59 — 12.14 3.42
OverlapNet∗ [18] 0.32 65.45 — 0.79 9.44 —
LCDNet [14] 0.76 0.37 0.19 0.97 1.82 1.44
PADLoC (ours) 0.81 0.37 0.16 0.98 1.50 1.41

Comparison of the average precision (AP) for loop closure detection as well as rotation error
rerr and translation error terr for point cloud registration of PADLoC with previous methods.
All learning-based models are trained on the KITTI odometry benchmark dataset. PADLoC
uses panoptic annotations from the SemanticKITTI dataset. Methods denoted with ∗ only
estimate the yaw between two point clouds instead of a full 6-DoF transformation. Bold
and underlined values denote the best and second best scores, respectively.

finds the optimal translation and rotation between two sets of points by minimizing the root
mean square error of the point pairs.

Loss Functions: Our total loss function consists of a weighted sum of the triplet loss for loop
closure detection as well as a geometric loss and the newly proposed panoptic loss for point
cloud registration. The triplet loss enforces a small distance between the descriptors of an
anchor point cloud and a positive point cloud, i.e., a LiDAR scan of a true loop closure, while
increasing the distance between the descriptors of the anchor and a negative point cloud, i.e.,
a LiDAR scan taken at a different place. We formulate our geometric loss, which compares
the predicted relative transformation from the anchor to the positive sample with the ground
truth transformation, and an auxiliary matching loss, where we transform the anchor points
with the ground truth transformation and project the positive sample. We also formulate a novel
panoptic loss as the sum of semantic misclassification losses and the multi-matched objective
loss. For the misclassification losses, we treat the matching process as a classification task,
where the projected positive points are assigned a semantic class. In our novel multi-matched
object loss, we further exploit the instance labels to encourage the network to match entire
objects consistently from one point cloud to the other. Furthermore, in our method, we further
exploit the instance labels to encourage the network to match entire objects consistently from
one point cloud to the other. This is done by penalizing matches of points from a single object
in the anchor to multiple objects in the positive sample.

4.1.4 Performance evaluation

In order to quantitatively evaluate the performance of our proposed approach, we compute the
average precision (AP), the rotation error in degrees, and the translation error in meters. We
perform experiments on two publicly available autonomous driving datasets, namely the KITTI
odometry benchmark [33] and the Ford campus vision and LiDAR dataset [92]. Additionally,
we also present results on a more challenging in-house dataset recorded in Freiburg, Germany.

OpenDR No. 871449



D4.3: Third report on deep environment active perception and cognition 41/143

We compare our proposed method with three of the most recent learning-based methods for
loop closure detection namely LCDNet [14], OverlapNet [18], and Deep Closest Point (DCP) [116],
as well as previously proposed handcrafted methods M2DP [41], Intensity Scan Context (ISC) [113],
Scan Context [52], and LiDAR-Iris [117]. For DCP, we combine the feature extraction module
of PADLoC with a full transformer-based matching module based on the authors’ code release.
For the other methods, we directly use the official code published by the respective authors.

In Table 9, we show the average precision, rotation and translation errors for PADLoC and
the baselines. Overall, our method is able to effectively address all opposing challenges as listed
in the previous section. Furthermore, it is also shown that PADLoC reaches the highest average
precision and lowest translation/rotation errors for the KITTI odometry benchmark [33] and the
Ford campus vision and LiDAR dataset [92] compared to previous methods.

4.1.5 Future Work

In this work, we proposed the novel PADLoC architecture that is composed of a common feature
extractor, a global descriptor as well as a transformer-based registration and matching module.
Unlike previous approaches, we feed different inputs as value, query, and key to the transformer
encoder exploiting its internal structure. We further introduced a new loss function that lever-
ages ground truth panoptic annotations by penalizing matching points from different semantic
classes as well as across multiple objects and validated its positive impact. Through extensive
experimental evaluations, we demonstrated the efficacy of PADLoC compared to both hand-
crafted and learning-based methods. Future work will focus on exploiting panoptic information
in an online manner and applying the matching approach of PADLoC to point cloud registration
tasks in other domains.

4.2 Continual SLAM: Beyond Lifelong Simultaneous Localization and
Mapping through Continual Learning

4.2.1 Introduction and objectives

An essential task for an autonomous robot, deployed in the open world without prior knowledge
about its environment, is to perform SLAM. While classical methods typically rely on hand-
crafted low-level features that tend to fail under challenging conditions, deep learning-based
approaches mitigate such problems due to their ability to learn high-level features. However,
they lack the ability to generalize to out-of-distribution data, with respect to the training set.
For visual SLAM, such out-of-distribution data can correspond to images sourced from cities
in different countries or under substantially different conditions. In the following, we use the
term environment to refer to a bounded geographical area. While different environments can
share the same fundamental structure, e.g., urban areas, their specific characteristics prevent the
seamless transfer of learned features, resulting in a domain gap between cities.

In the context of this work, lifelong SLAM considers the long-term operation of a robot
in a single environment (see Figure 18). Although this environment can be subject to tem-
poral changes, the robot is constrained to stay within the area borders [55]. Recent works
attempt to relax this assumption by leveraging domain adaptation techniques for deep neural
networks [133, 67, 68, 72]. While a naive solution for adapting to a new environment is to
source additional data, this is not feasible when the goal is to ensure the uninterrupted operation
of the robot. Moreover, changes within an environment can be sudden, and data collection and
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annotation often come at a high cost. Therefore, adaptation methods should be trainable in an
unsupervised or self-supervised manner without the need for ground truth data. As illustrated in
Figure 18, the setting addressed in domain adaptation only considers unidirectional knowledge
transfer from a single known to a single unknown environment [5] and thus does not represent
the open world, where the number of new environments that a robot can encounter is infinite
and previously seen environments can be revisited. To address this gap, we take the next step by
considering more complex sequences of environments and formulate the novel task of continual
SLAM that leverages insights from both continual learning (CL) and lifelong SLAM. We pro-
pose a dual-network architecture called CL-SLAM to balance adaptation to new environments
and memory retention of preceding environments.

. . .
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Figure 18: While lifelong SLAM considers the long-term operation of a robot in a single dy-
namically changing environment, domain adaptation techniques aim toward transferring knowl-
edge gained in one environment to another environment. The newly defined task of continual
SLAM extends both settings by requiring omnidirectional adaptation for multiple environments.
Agents have to both quickly adapt to new environments and effectively recall knowledge from
previously visited environments.

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.7:

• [112] N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “Continual SLAM: Beyond
Lifelong Simultaneous Localization and Mapping through Continual Learning”, Interna-
tional Symposium of Robotics Research (ISRR), 2022.

4.2.2 Summary of state of the art

Recently, Luo et al. [72] employed a subtask of CL for self-supervised visual odometry and
depth estimation, opening a new avenue of research. Online adaptation enables these meth-
ods to enhance the trajectory and depth prediction on a test set sourced from a different data
distribution than the originally used training set. Both Zhang et al. [133] and CoMoDA [59] pri-
marily target the depth estimation task. While Zhang et al. propose to learn an adapter to map
the distribution of the online data to the one of the training data, CoMoDA updates the internal
parameters of the depth and pose networks based on online data and a replay buffer. The work
in spirit most similar to ours is done by Li et al. [67]. They propose to substitute the standard
convolutional layers in the depth and pose networks with convolutional LSTM variants. Then,
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the model parameters are continuously updated using only the online data. In subsequent work,
Li et al. [68] replace the learnable pose network by point matching from optical flow. Note that
all existing works purely focus on one-step adaptation, i.e., transferring knowledge gained in
one environment to a single new environment. In this paper, we introduce continual SLAM to
take the next step by considering more complex deployment scenarios comprising more than
two environments and further alternating between them.

4.2.3 Description of work performed so far

Continual SLAM: As motivated in the introduction, the newly formulated problem of contin-
ual SLAM addresses the domain gap caused by deploying a SLAM system to the open world.
Ideally, a method addressing this problem should be able to achieve the following goals: 1)
quickly adapt to unseen environments while in deployment, 2) leverage knowledge from pre-
viously seen environments to speed up the adaptation, and 3) effectively memorize knowledge
from previously seen environments to minimize the required adaptation when revisiting them,
while mitigating overfitting to any of the environments. Formally, continual SLAM can be
defined as a potentially infinite sequence of scenes S = (s1→ s2→ . . .) from a set of differ-
ent environments si ∈ {Ea,Eb, . . .}, where s denotes a scene and E denotes an environment.
For a more complete formal definition along with details of our newly proposed metrics, the
adaptation quality (AQ) and the retention quality (RQ), we refer to the full paper.

To conclude, we identify the following main challenges: 1) large number of different envi-
ronments, 2) huge number of chained scenes, 3) scenes can occur in any possible order, and 4)
environments can contain multiple scenes. Therefore, following the spirit of continual learning
(CL), a continual SLAM algorithm has to balance between short-term adaptation to the current
scene and long-term knowledge retention. This trade-off is also commonly referred to as avoid-
ing catastrophic forgetting with respect to previous tasks without sacrificing performance on the
new task at hand.

. . .

Replay
buffer

Update
weights

Update
weights

Time

Generalizer Expert

DepthNet PoseNet

Figure 19: Online adaptation scheme of our proposed CL-SLAM that is constructed as a dual-
network architecture including a generalizer (left) and an expert (right). While the expert fo-
cuses on the short-term adaptation to the current scene, the generalizer avoids catastrophic for-
getting by employing a replay buffer comprising samples from the past and the present.
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Table 10: Translation and rotation error for computing the AQ and RQ metrics

Used Previous Current Bfixed Bexpert Bgeneral CL-SLAM
for scenes scene terr rerr terr rerr terr rerr terr rerr

AQ

ct k1 130.74 26.35 2.50 0.37 7.21 1.26 2.50 0.37
ct r1 170.76 13.37 28.94 5.63 29.05 5.49 28.94 5.63

ct → r1 k1 – – 3.66 0.73 14.14 1.79 3.24 0.54
ct → k1 r1 – – 32.56 6.08 34.79 6.64 30.13 5.87

RQ

ct → k1→ r1 k2 164.77 25.07 45.20 5.62 8.48 1.79 4.85 1.59
ct → k1→ r1→ k2 r2 200.14 28.94 15.91 4.93 16.02 4.98 20.50 4.77

ct → k1 k2 – – 15.82 2.50 9.37 2.21 7.48 1.63
ct → k1→ r1 r2 – – 14.89 4.62 12.24 4.38 16.41 4.58

The previous scenes denote the scenes that have been used for previous training of the algorithm,
the current scene denotes the evaluation scene to compute both errors terr in [%] and rerr in
[°/100m]. ct refers to the Cityscapes training set. ri and ki are sequences from KITTI and the
Oxford RobotCar dataset. Bold and underlined values indicate the best and second best scores
on each sequence.

CL-SLAM: To address continual SLAM in the context of vision-based data, we propose CL-
SLAM as shown in Figure 19. The core of CL-SLAM is the dual-network architecture of the
visual odometry (VO) model that consists of an expert that produces myopic online odometry
estimates and a generalizer that focuses on the long-term learning across environments. We
train both networks in a self-supervised manner where the weights of the expert are updated
only based on online data, whereas the weights of the generalizer are updated based on a com-
bination of data from both the online stream and a replay buffer. We use the VO estimates of
the expert to construct a pose graph. To reduce drift, we detect global loop closures and add
them to the graph, which is then optimized. Finally, we can create a dense 3D map using the
depth predicted by the expert and the optimized path. A complete description of the technical
approach including details of the model architecture and training scheme can be found in the
full paper.

4.2.4 Performance evaluation

In order to quantitatively evaluate the performance of our proposed approach, we compute both
the adaptation quality (AQ) and the retention quality (RQ) by deploying CL-SLAM and the
baseline methods on a fixed sequence of scenes. In particular, we use the official training
split of the Cityscapes dataset [22] to initialize the DepthNet and PoseNet. The pre-training
step is followed by a total of four scenes of the Oxford RobotCar dataset [74] and the KITTI
dataset [33].

(ct → k1→ r1→ k2→ r2), (16)

where ct refers to the Cityscapes training set.
We compare CL-SLAM to three baselines that are inspired by previous works towards on-

line adaptation to a different environment compared to the environment used during training. As
previously noted, continual SLAM differs from such a setting in the sense that it considers a se-
quence of different environments. First, Bexpert imitates the strategy employed by Li et al. [67],
using a single set of network weights that is continuously updated based on the current data.
This corresponds to only using the expert network in our architecture without resetting the
weights. Second, Bgeneral follows CoMoDA [59] leveraging a replay buffer built from pre-
viously seen environments. This method corresponds to only using the generalizer network.
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Finally, we compute the error without performing any adaptation, i.e., Bfixed utilizes network
weights fixed after the pre-training stage.

In Table 10, we show the translation and rotation errors for our CL-SLAM and the baselines.
For the AQ and PQ scores, please refer to the full paper. Overall, our method is able to effec-
tively address all challenges listed in the previous section, due to its dual-network architecture
and efficient usage of replay data.

4.2.5 Future Work

Future work will focus on transferring the proposed design scheme to more advanced visual
odometry methods, e.g., using point matching via optical flow. We further plan to address the
currently infinite replay buffer to mitigate the scaling problem, e.g., by storing more abstract
representations or keeping only the most representative images.

4.3 SLAM for Row Guidance System
4.3.1 Introduction, objectives and summary of state of the art

In agriculture, farmers first seed their crops and then conduct plant care operations, e.g., weed-
ing, insect control, fungicides, etc. If the farmer chooses to seed their crop with a tractor instead
of the field robot, the location of the plant rows are unknown. Although the positions of the
plant rows can be recorded with an RTK GPS tractor, it is very likely (and this is what AGI has
observed throughout the years) that the recorded rows and the actual rows won’t match due to
RTK GPS accuracy and errors. If a farmer then uses the Robotti for a plant care operation, it is
highly likely that the implement or the robot will damage the crop.

To handle this problem, AGI tried to create a row guidance system for Robotti that will
enable it to follow rows that have not been seeded/planted by itself.

4.3.2 Description of work performed so far

Row guidance can be a combination of DL-based methods, classic image analysis and computer
vision algorithms and GNSS localization. Using the robot’s plan and its GNSS position, the
robot starts driving. Using its FrontEye camera, the robot can detect the crop rows and steer
the robot based on their actual location. Using its GNSS, the robot records its positions in real
time and uploads them to Amazon Web Service (AWS) in order to map its position and path.
By doing so, the user is able to ‘replay’ the recorded path in subsequent operations.

The plant emergent zone Deep Learning model can find the point at which the plant emerges
from the soil. This can be used by the row guidance algorithm to better extrapolate where the
position of the rows is at. The robot can change its path based on the position of the crop rows.
Using the robots GNSS, the path based on the position of the rows is recorded and uploaded to
the cloud server in real time.

Row Guidance Algorithm
The row guidance algorithm has been improved. The structure of the original row guidance
algorithm is shown in Fig. 20 (work performed before the third year of the project). The image
is acquired, then the color is segmented, the image is warped so that the plant rows are straight,
and the algorithm slices the image and finds a histogram based on the green saturation. From
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Figure 20: Original structure of the row guidance algorithm.

there, weighted least square regression is used to find the row. The row detection confidence is
calculated based on how well the line fits with where the individual plants are at in the image.

As shown in Fig. 21, Pin the new row guidance algorithm (work performed in the third
year of the project) part of the row guidance algorithm is the same and part has been improved.
The slice image module, the “for loop” over the number of slices and the histogram creation
module are the same as in the previous one. The find row position, find confidence, update
GT position, find confidence, construct polyline and set row line bound modules have been
improved. Originally the user had to provide the row distance value in the system. However,
this had the weakness of being highly inflexible, as the row width can vary slightly depending
on where the crop emerges from the soil. The new method still takes the row distance value
into consideration, but uses it as an indication rather than an absolute. To find the individual
plants, confidences for the histograms in the slices are calculated, see Fig. 22. The higher the
confidence, the more it is expected the plant is in the crop row. After the confidences are found
for the individual plants using the histograms, the row with the highest average confidence is
used as the start row (GT, ground truth, position). The user-provided row width is then applied
for the remaining rows. In Fig. 22, the colors of the detected plant points (marked as X’s) denote
their confidence value. The polyline representing the rows is calculated and is then overlayed
onto the image, see Fig. 23. Green lines represent a high level of confidence, whereas blue lines
represent a low level of confidence.

Deep Learning – Crop emergence zone
In 2022, images uploaded using AgroIntelli’s CropEye system were used to train a model
(YOLOv5) to annotate the plant’s emergence zone. It was decided to find the plant emergence
zone instead of the emergent point since the latter will often be a very precise location, whereas
the zone allows for a degree of imprecision. However, the location of the plant compared to
the location of the emergent zone is a significant step up. 4750 images of white cabbages crop
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Figure 21: Diagram shows the structure of the new row guidance algorithm. GT = ground truth.

Figure 22: An illustration of the histogram for the different slices. Xs represent the plant points
whereas their color represents the range of confidence: green is above 90 percent, turquoise is
between 90 and 66 percent, yellow is between 66 and 33 percent, purple is below 33 percent,
and red is 0 percent. The blue lines are the row boundary lines. The origin point of the different
slices is shown as an orange circle.
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Figure 23: Image shows the process to find the crop rows (both left and right camera images
are the same). Left: The white lines represent the cut for the slices. The colored X’s represent
the confidence range (see figure above for ranges). The blue lines represent the row boundaries.
The white patches are where green was found on the image. Right: The colored X’s represent
the confidence range. The histograms represent where the patches of green are located and their
corresponding histogram.
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Figure 24: The purple hand drawn circles at the crop emergent point have been annotated after
the model has found the cabbages.

Figure 25: Example of the sugar beet emergent zone annotations.

emergence zone were annotated and used for model training, see Fig. 24. As there can be multi-
ple cabbages in an image, this resulted in 12483 white cabbage bounding boxes and 6640 white
cabbage Plant Soil Emerges Zones (PSEZ).

In addition to the cabbages, sugar beets crop emergence zones have also been annotated on
489 images, see Fig. 25. A total of 9208 sugar beet crop emergent zones were annotated from
6 different locations in EU, see Fig. 26.

Steering, visualization and mapping
The steering line is found by starting at the center of the image, then for each slice, subtracting
the left and right points that mirror each other on the corresponding line. These values are then
averaged, then multiplied by the horizontal meter per pixel value. Fig. 27, shows the steering
line as calculated, based on the plant’s positions in the rows.

As the robot navigates, based on either the FrontEye camera system or the GNSS, the actual
driven position is recorded and uploaded to the cloud, creating the map. Currently, this infor-
mation is used to to calculate the cross-track error, or the difference between the planned path
and the actual path. Ideally, the robot should drive as close as possible to the planned path. The
row guidance system will use the same recorded information. This information will be the map
(collection of paths) of where the robot has driven and, as the crop rows don’t move, can be
used for future operations.
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Figure 26: Locations of where the sugar beet images were acquired in 2022.

Figure 27: Calculated steering line visualized on the image. The green x is the starting point
and the blue x is the steering point.
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4.3.3 Performance evaluation

To check the performance of the steering line evaluation approach, the steering line will be
compared against the actual drive line. All images are recorded with metadata including GPS
location. In addition, both the planned path of the robot and the actual path of the robot is
recorded in AWS. The row guidance steering line and actual path of the robot will be visualized
in order to test if the lines are similar over time.

4.3.4 Conclusions and Future Work

Row guidance system
The DL models will be added to the row guidance framework as shown in Fig. 21. There are
several potential ways for adding these models in the framework. The Crop and Weed model
could remove all the weeds from the image, leaving the crop. Then the row guidance algorithm
would only be fed with the known locations of the crop, removing or reducing the error caused
from the weeds, provided that the DL model will be able to find the crop. This will decrease
the sensitivity of the row guidance algorithm to too many weeds. However the algorithm will
still be effected by wind and the crop that is laying down. In addition, it is possible that the
precision of the row would be affected when the plant reaches a certain size, since this could
affect the bounding boxes accuracy However this issue can be eliminated, if the locations of the
plants are recorded and mapped when they are very small.

A second, more precise approach, is to use a DL model to find both the plant and the plant
emergent zone. However, this requires that the model is robust and accurate enough to find both
the crop and the emergent zone. When the zones are known, then the precision is fairly high, as
the bounding boxes will be smaller and likely the centers will be more aligned.

DL for detecting crop emergence zone
In 2023, the crop emergence zone will be added to AgroIntelli’s Crop and Weed model (based
on approx. 50k annotated images). Additional images collected by the CropEye camera system
will be annotated and used to train and evaluate the model, hoping that the new dataset will
increase robustness and will minimize false positives and negatives.

Steering and mapping
The current idea for steering the robot is to use the nudge system in Robotti. When the farmer
is in the field and can see that the robot is too close to the crop, he is able to nudge the robot
to the left or right. Using the same system, the row guidance framework can send the nudge
information to the the steering controller, which then adjusts the robot’s trajectory as necessary.
The mapping system is currently operational, however in the future we will have to add in the
route planner website the option to run an operation based on the recorded row guidance map.
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5 Sensor information fusion

5.1 Multimodal fusion framework with robustness extensions.
5.1.1 Introduction, objectives and summary of state of the art

Human visual object recognition is often rapid, effortless and largely viewpoint or object ori-
entation independent [34]. However, with the advent of deep neural networks, computer vision
algorithms have achieved unprecedented performance and even surpassed human capabilities
on tasks including image classification, face identification and object recognition [105]. De-
spite the accuracy of deep neural networks, their generalisation property across changes in the
input distribution e.g., illumination changes and harsh conditions, is not established yet. In a
behavioural comparison of humans and well-known deep neural architectures like ResNet-152
[40], classification performance of neural networks seems to decline rapidly with decreasing
signal-to-noise ratio under image distortions [34, 35]. In the context of object detection, multi-
sensor configurations are known to provide redundancy and often enhance performance of the
detection algorithms. Moreover, efficient sensor fusion strategies minimize uncertainties, in-
crease reliability and are crucial in achieving robustness against asymmetric sensor failures.
Increasing number of sensors might enhance the performance of detection algorithms, however
this comes with a considerable computational/energy cost. This is often not desirable in mobile
robotic systems which typically have constraints in terms of computational power and battery
consumption. In such cases, intelligent choice/combination of sensors is critical. We build upon
a multi-modal fusion strategy and a data augmentation method that were proposed for object
detection in harsh lighting conditions [75, 76]. Together, these two methods resulted in a multi-
modal object detection system that can deal with harsh lighting conditions. In the third year of
the project, we have continued this work. In particular, we have extended the data augmentation
method to further improve the performance of the multimodal object detection system. That is
to say, we have worked on an extension of Random Shadows and Highlights (RSH) to polygon-
shaped masks in order to allow for robustness against a larger variety of lighting perturbations
and we have also performed more extensive evaluation.

5.1.2 Description of work performed so far

Shadows in indoor environments naturally take a shape similar to that of objects casting them.
Artificially creating shadows that resemble real-world objects requires scene modeling from a
single image or prior knowledge of objects in the image. To solve this problem, we exploit the
polygon data extracted from a large-scale object-segmentation dataset, in this case COCO [70].
It contains 886,284 instances of objects/polygons of 80 object categories. We randomly select,
translate, and rotate the polygons and create shadows and highlights to imitate real-world harsh
lighting conditions in indoors. This method is named as “Semantic Shadows and Highlights
(SSH)”. We also provide a drawing tool for creating polygons, which allows the users to draw
and create artificial shadows of any other shape they desire. On the contrary, shadows cast by
buildings in the outdoors often take the form of trapezoids. Furthermore, bright light entering
through windows or doors inside the buildings also take similar shapes. To imitate outdoor
shadows cast by buildings, we propose to create shadows of a trapezoidal shape with its base
aligned with the vertical axis of the image. This method is named as “Random Shadows and
Highlights (RSH)”.
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Table 11: Image classification results of AlexNet on CIFAR-10 dataset with augmentation prob-
ability of 0.5. The network is trained individually with each augmentation method and tested
against all others individually and combined. The combined tests include all methods except
the one being tested. “Avg Acc” is the mean of individual outputs for each method under exam-
ination against all augmentation methods.

Method
Train
Acc

Test
Acc
RGC
(0.5)

Test
Acc
RCJ
(0.5)

Test
Acc
RDI
(0.5)

Test
Acc
RSH
(0.5)

Test
Acc
SSH
(0.5)

Avg
Acc

Test
Acc
All
(0.5)

TTD

Baseline 0.991 0.764 0.644 0.574 0.622 0.564 0.634 0.258 0.171
RGC (0.5) 0.956 0.816 0.670 0.599 0.636 0.576 0.659 0.290 0.140
RCJ (0.5) 0.860 0.801 0.764 0.645 0.631 0.56 0.680 0.354 0.096
RDI (0.5) 0.777 0.791 0.695 0.704 0.623 0.559 0.674 0.373 0.073
RSH (0.5) 0.874 0.772 0.660 0.588 0.777 0.615 0.682 0.345 0.097
SSH (0.5) 0.789 0.770 0.655 0.579 0.729 0.720 0.691 0.394 0.069

Table 12: Image classification results of AlexNet on CIFAR-10 dataset with augmentation prob-
ability of 1.0. The configuration of the experiments is same as stated in Table 11

Method
Train
Acc

Test
Acc
RGC
(1)

Test
Acc
RCJ
(1)

Test
Acc
RDI
(1)

Test
Acc
RSH
(1)

Test
Acc
SSH
(1)

Avg
Acc

Test
Acc
All
(1)

TTD

Baseline 0.991 0.709 0.460 0.329 0.416 0.303 0.443 0.129 0.171
RGC (1) 0.935 0.804 0.503 0.374 0.445 0.332 0.492 0.139 0.131
RCJ (1) 0.781 0.755 0.720 0.481 0.413 0.287 0.531 0.168 0.061
RDI (1) 0.622 0.580 0.555 0.603 0.298 0.226 0.452 0.188 0.019
RSH (1) 0.794 0.719 0.496 0.338 0.740 0.423 0.543 0.168 0.054
SSH (1) 0.656 0.683 0.463 0.325 0.662 0.642 0.555 0.208 0.014

5.1.3 Performance evaluation

We have evaluated RSH and SSH and compared against alternative approaches. We have done
this in both detection and classification tasks, as shown in Table 11, Table 12, Table 13 and
Table 14. We have also set up manipulation experiments in which we are going to evaluate
the effectiveness of RSH and SSH. These experiments include a vision-based box-pushing task
(Figure 28a) and and a vision-based pick and place task with language instructions (Figure 28b).

5.1.4 Conclusions and Future Work

The utility of deep neural networks in the real world is feasible only if the models are robust
against harsh environmental conditions. In the learning phase of vision systems, it is essential
to expose the network to the irregularities that images might encounter across unconstrained
realistic scenarios. Among the most prevalent concerns in vision models is their sensitivity to
changing lighting conditions. Thus, we proposed “Random Shadows and Highlights” which
creates explicit shadows and highlights in the form of trapezoids and “Semantic Shadows and
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Table 13: Object detection results of DETR on Pascal VOC 2007 dataset with augmentation
probability of 0.5. The network is trained individually with each RSH and SSH and tested
against both individually. “Avg” is the mean of individual outputs for each method under exam-
ination with augmentation applied.

Method
mAP @ IoU = 0.5

TTD
Train Test (None)

Test w/
RSH p=0.5

Test w/
SSH p=0.5 Avg

baseline 0.970 0.807 0.799 0.737 0.768 0.163
RSH p=0.5 0.959 0.809 0.799 0.784 0.792 0.150
SSH p=0.5 0.961 0.810 0.807 0.804 0.806 0.151

Table 14: Object detection results of DETR on Pascal VOC 2007 dataset with augmentation
probability of 1.0. The configuration of the experiments is same as stated in Table 13

Method
mAP @ IoU = 0.5

TTD
Train Test (None)

Test w/
RSH p=1

Test w/
SSH p=1 Avg

baseline 0.970 0.807 0.669 0.602 0.6355 0.163
RSH p=1 0.970 0.805 0.765 0.783 0.774 0.165
SSH p=1 0.952 0.806 0.797 0.791 0.794 0.146

Highlights” which creates shadows in the form of real world objects in the existing image
datasets. These augmentation methods challenge the network in the training phase in order to
develop immunity against such harsh conditions when deployed in real world applications. For
future work, we plan to complete the evaluations in the tasks that are shown in Figure 28a and
Figure 28b. Ideally, we would also like to perform experiments with a real robotic setup for the
box pushing task. Finally, we plan to shear the polygons by utilizing the concept of perspective
projection to make even more realistic shadows. This could possibly further improve the data
augmentation method that was proposed for training the multimodal object detector for harsh
lighting conditions.

5.2 Multimodal Feature Fusion Framework for Manipulation
5.2.1 Introduction and objectives

A robot, while performing a specific task, often has access to multiple different data sources
from its sensors. Such sensors include RGB cameras, lidars, force feedback sensors, micro-
phones, infrared sensors and more. While taking advantage of such diverse data modalities
is obviously beneficial, it is a complex task. TAU has previously proposed a general feature
fusion framework suitable for these scenarios, with the primary application area being robotic
arm manipulation (pick and place, insertion, etc.). The following requirements are set for the
framework to adhere to:

• Support for input signals of modalities that are expected to be supported on the robotic
arm in an industrial setting (RGB and depth camera feeds, force sensors, self-pose mea-
surements).
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(a) Box-pushing task. (b) Pick and place task.

Figure 28: Figure (a) shows a box pushing task in which we plan to evaluate Semantic Shadows
and Highlights (SSH). The box pose is not observed directly but has to be estimated from
images. Figure (b) shows a pick and place task where we plan to evaluate the effectiveness of
SSH. Here the task is to execute language commands, such as ”Pick the red block and place it
in the green bowl”.

• Inclusion of baseline feature fusion modules, supporting arbitrary combinations of modal-
ities.

• Support for both task-specific surrogate objectives and input reconstruction objectives.

• Extensibility of the framework with respect to inputs/modalities, fusion approaches and
outputs.

• Compactness of the intermediate and final representations, for faster computation.

• Support for robustness: minimizing the impact of damaged or missing data from individ-
ual modalities during inference.

• Capability to train on real and/or synthetic data.

• Integration with the simulation environment (Webots) for collecting synthetic data.

More detailed descriptions of the framework itself have been previously provided in Deliv-
erables D4.1 and D4.2. To avoid redundancy, we do not replicate them here.

5.2.2 Description of work performed so far

Over the past year the majority of framework elements have been implemented, specifically:

• Input encoders for RGB images, depth (lidar) images, proprioception, force torque sen-
sors.

• Feature fusion modules based on concatenation, MLPs, product-of-experts.
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• Surrogate objectives supporting robotic arm insertion tasks, i.e. optical flow reconstruc-
tion, future pose prediction.

• Robustness extensions, i.e. input reconstruction decoders, cross-modality compensation
module.

• Reinforcement learning pipeline for framework training.

• Simulation environment (Webots) for collecting synthetic data and making demonstra-
tions.

However, some of the other planned steps have run into difficulties and are currently de-
laying the final integration of the framework into the OpenDR toolkit. Integration of the entire
pipeline from the DL models to the simulation environment is not complete, thus the integra-
tion with the real robotic arm (which is expected to be a complex process in itself) is pending.
Generalizations of the feature fusion module via neural architecture search (NAS), previously
described in Deliverable D4.2, do not yet yield improvements over handcrafted baseline de-
signs, in terms of task performance or computation speed. Finally, the processing speed, being
acceptable on the powerful desktop system, would currently be impractical in the embedded
environments as targeted by OpenDR.

5.2.3 Conclusions and Future Work

In the final year of the project we aim to address the shortcomings listed above, drawing on
the assistance and expertise of other partners where appropriate. In addition to debugging and
speed enhancements, we are working on extending the framework capabilities by adding new
input decoders for new and existing modalities. We plan to continue experimenting with NAS
for feature fusion optimization, ultimately producing at least one publication regarding our
experience. Finally, time permitting, we plan to investigate the active perception possibilities
for our multimodal setting and tasks.
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6 Conclusions
In the third year of the project, the consortium carried out a series of activities following the
overall objectives of the project. In the context of work package 4, we focused on objective
O1 for providing a modular, open and non-proprietary toolkit for core robotic functionalities
enabled by lightweight deep learning, and objective O2 for leveraging AI and cognition in
robotics to go from perception to action.

AU worked towards O1a by introducing a novel uncertainty estimation method called Layer
Ensembles (Section 2.2) that achieves high uncertainty quality while achieving high speed and
lower memory usage and by performing structured pruning (Section 3.2) to 3D Object Detec-
tion models for increasing their inference speed. Additionally, AU introduced a Variational
Neural Networks (VNNs) implementation in PyTorch and JAX (Section 2.3) that allows for
easy experimentation and application of VNNs to the existing projects.

AUTH worked towards towards O2a by developing a novel active perception object recog-
nition approach that provides active perception capabilities for any existing DL-based object
detector. Furthermore, AU and AUTH worked towards O1a by proposing a voxel-based 3D
Single Object Tracking method (Section 3.1) that operates with real-time speed on embedded
GPU platforms and achieves high tracking accuracy under the real-time evaluation scenario.

ALU-FR worked towards objective O2 by proposing PAPS [81], a method for amodal
panoptic segmentation (Section 2.1). PAPS enables robots to see “behind” objects by providing
pixel-wise semantic annotations for both visible and occluded regions of an image. Further-
more, ALU-FR proposed Batch3DMOT [12] (Section 3.3), an offline 3D tracking framework
that follows the tracking-by-detection paradigm and utilizes multiple sensor modalities (cam-
era, LiDAR, radar) to solve a multi-frame, multi-object tracking objective. In addition, ALU-FR
proposed PADLoC [2] (Section 4.1), an attention-based loop closure detection and point cloud
registration method for LiDAR-SLAM exploiting panoptic annotations during training time,
and by introducing the novel task of continual SLAM [112] (Section 4.2). This task combines
lifelong SLAM with online domain adaptation to effectively reflect challenges that occur when
deploying a SLAM system to the real world.

AGI worked towards building the blocks for a row guidance system, which can correct the
path and steering of the agricultural field robot based on the position of the actual crop rows
(Section 4.3). Improvements were made to the row guidance algorithm, and DL-based methods
will be fully integrated into the system in 2023 to increase the accuracy and precision. Based
on the current implementation, the robot is able to upload its actual position to build maps that
can be used in consecutive operations.

TUD developed an extension of the lightweight data augmentation method for such harsh
lighting conditions called “Semantic Shadows and Highlights” (Section 5.1). The initial results
of this method are promising and we plan to further evaluate it in robot manipulation tasks.

TAU worked towards objective O2 by further developing the multimodal feature fusion
framework (Section 5.2), incorporating the cross-modality robustness extensions, investigating
novel fusion structures by means of neural architecture search, and preparing the integration
with simulated and real production environments.
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7 Appendix

7.1 Perceiving the Invisible: Proposal-Free Amodal Panoptic Segmenta-
tion

The appended paper [81] follows.
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Perceiving the Invisible: Proposal-Free Amodal Panoptic
Segmentation

Rohit Mohan and Abhinav Valada

Abstract—Amodal panoptic segmentation aims to connect the
perception of the world to its cognitive understanding. It entails
simultaneously predicting the semantic labels of visible scene
regions and the entire shape of traffic participant instances,
including regions that may be occluded. In this work, we
formulate a proposal-free framework that tackles this task as
a multi-label and multi-class problem by first assigning the
amodal masks to different layers according to their relative
occlusion order and then employing amodal instance regres-
sion on each layer independently while learning background
semantics. We propose the PAPS architecture that incorporates a
shared backbone and an asymmetrical dual-decoder consisting of
several modules to facilitate within-scale and cross-scale feature
aggregations, bilateral feature propagation between decoders,
and integration of global instance-level and local pixel-level
occlusion reasoning. Further, we propose the amodal mask refiner
that resolves the ambiguity in complex occlusion scenarios by
explicitly leveraging the embedding of unoccluded instance masks.
Extensive evaluation on the BDD100K-APS and KITTI-360-APS
datasets demonstrate that our approach set the new state-of-the-
art on both benchmarks.

I. INTRODUCTION

The ability to perceive the entirety of an object irrespective
of partial occlusion is known as amodal perception. This
ability enables our perceptual and cognitive understanding
of the world [1]. The recently introduced amodal panoptic
segmentation task [2] seeks to model this ability in robots.
The goal of this task is to predict the pixel-wise semantic
segmentation labels of the visible amorphous regions of stuff
classes (e.g., road, vegetation, sky, etc.), and the instance
segmentation labels of both the visible and occluded countable
object regions of thing classes (e.g., cars, trucks, pedestrians,
etc.). In this task, each pixel can be assigned more than one class
label and instance-ID depending on the visible and occluded
regions of objects that it corresponds to, i.e. it allows multi-class
and multi-ID predictions. Further, for each segment belonging
to a thing class, the task requires the knowledge of its visible
and occluded regions.

The existing amodal panoptic segmentation approach [2]
and baselines [2] follow the proposal-based architectural
topology. Proposal-based methods tend to generate overlapping
inmodal instance masks as well as multiple semantic predictions
for the same pixel, one originating from the instance head
and the other from the semantic head, which gives rise to
a conflict when fusing the task-specific predictions. This
problem is typically tackled using cumbersome heuristics
for fusion, requiring multiple sequential processing steps in
the pipeline which also tends to favor the amodal instance

Department of Computer Science, University of Freiburg, Germany.
This work was funded by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR.
Supplementary material available on arXiv.

Fig. 1: Overview of our proposed PAPS architecture for amodal panoptic
segmentation. Our model predicts multiple outputs from both the semantic
and instance decoder. We then fuse the instance-agnostic semantic labels and
foreground masks obtained from the segmentation heads with class-agnostic
amodal instances that are obtained from the rest of the heads by grouping and
majority voting to yield the final amodal panoptic segmentation output.

segmentation branch. On the other hand, proposal-free methods
have been more effective in addressing this problem in the
closely related panoptic segmentation task [3]–[5] by directly
predicting non-overlapping segments. In this work, we aim to
alleviate this problem by introducing the first proposal-free
framework called Proposal-free Amodal Panoptic Segmentation
(PAPS) architecture to address the task of amodal panoptic
segmentation. Importantly, to facilitate multi-class and multi-
ID predictions, our PAPS decomposes the amodal masks of
objects in a given scene into several layers based on their
relative occlusion ordering in addition to conventional instance
center regression for visible object regions of the scene referred
to as inmodal instance center regression. Hence, the network
can focus on learning the non-overlapping segments present
within each layer. Fig. 1 illustrates an overview of our approach.

Further, amodal panoptic segmentation approaches tend to
predict the amodal masks of thing class objects by leveraging
occlusion features that are conditioned on features of the visible
regions. Although it is effective when objects are only partially
occluded, it fails in the presence of heavy occlusion as the area
of the visible region is reduced. Motivated by humans whose
amodal perception is not only based on visible and occlusion
cues but also their experience in the world, we propose the
amodal mask refiner module to model this capability using
explicit memory. This module first predicts an embedding that
represents the unoccluded object regions and correlates it with
the amodal features generated using either a proposal-free or
proposal-based method to complement the lack of visually
conditioned occlusion features. We also demonstrate that our
amodal mask refiner can be readily incorporated into a variety
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of existing architectures to improve performance.
An interesting aspect of proposal-free methods is that the

two sub-tasks, namely, semantic segmentation and instance
center regression, are complementary in nature. We leverage
this to our benefit and propose a novel cross-task module
to bilaterally propagate complementary features between the
two sub-tasks decoders for their mutual benefit. Moreover, as
rich multi-scale features are important for reliable instance
center prediction, we propose the context extractor module
that enables within-scale and cross-scale feature aggregation.
Finally, to exploit informative occlusion features that play a
major role in the amodal mask segmentation quality [2], [6],
we incorporate occlusion-aware heads in our PAPS architecture
to capture local pixel-wise and global instance-level occlusion
information. We present extensive quantitative and qualitative
evaluations of PAPS on the challenging BDD100K-APS and
KITTI-360-APS datasets, which shows that it achieves state-of-
the-art performance. Additionally, we present comprehensive
ablation studies to demonstrate the efficacy of our proposed
architectural components and we make the models publicly
available at http://amodal-panoptic.cs.uni-freiburg.de.

II. RELATED WORK

Although the amodal panoptic segmentation task [2] is
relatively new, the inmodal variant called panoptic segmen-
tation has been extensively studied. We first briefly discuss
the methods for panoptic segmentation followed by amodal
panoptic segmentation.

Panoptic Segmentation: We can categorize existing methods into
top-down and bottom-up approaches. Top-down approaches [7]–
[10] follow the topology of employing task-specific heads,
where the instance segmentation head predicts bounding boxes
of objects and its corresponding mask, while the semantic
segmentation head outputs the class-wise dense semantic
predictions. Subsequently, the outputs of these heads are
fused by heuristic-based fusion modules [9], [11]. On the
other hand, bottom-up panoptic segmentation methods [4],
[5] first perform semantic segmentation, followed by em-
ploying different techniques to group [12]–[14] thing pixels
to obtain instance segmentation. In this work, we follow
the aforementioned schema with instance center regression
to obtain the panoptic variant of our proposed architecture.
Our proposed network modules enrich multi-scale features
by enabling feature aggregation from both within-scales and
cross-scales. Additionally, our cross-task module facilitates the
propagation of complementary features between the different
decoders for their mutual benefit.

Amodal Panoptic Segmentation: Mohan et al. [2] propose
several baselines for amodal panoptic segmentation by replacing
the instance segmentation head of EfficientPS [9], a top-
down panoptic segmentation network, with several existing
amodal instance segmentation approaches. EfficientPS employs
a shared backbone comprising of an encoder and the 2-way
feature pyramid in conjunction with a Mask R-CNN based
instance head and a semantic segmentation head, whose outputs
are fused to yield the panoptic segmentation prediction. The
simple baseline, Amodal-EfficientPS [2], extends EfficientPS

with an additional amodal mask head and relies implicitly on the
network to capture the relationship between the occluder and
occludee. ORCNN [15] further extends it with an invisible mask
prediction head to explicitly learn the feature propagation from
inmodal mask to amodal mask. Subsequently, ASN [6] employs
an occlusion classification branch to model global features and
uses a multi-level coding block to propagate these features
to the individual inmodal and amodal mask prediction heads.
More recently, Shape Prior [16] focuses on leveraging shape
priors using a memory codebook with an autoencoder to further
refine the initial amodal mask predictions. Alternatively, VQ-
VAE [17] utilizes shape priors through discrete shape codes by
training a vector quantized variational autoencoder. BCNet [18]
seeks to decouple occluding and occluded object instances
boundaries by employing two overlapping GCN layers to detect
the occluding objects and partially occluded object instances.
The most recent, APSNet [2] which is the current state-of-
the-art top-down approach focuses on explicitly modeling the
complex relationships between the occluders and occludees.
To do so, APSNet employs three mask heads that specialize
in segmenting visible, occluder, and occlusion regions. It then
uses a transformation block with spatio-channel attention for
capturing the underlying inherent relationship between the three
heads before computing the final outputs. In this work, we
present the first bottom-up approach that learns the complex
relationship between the occluder and occludee by focusing
on learning the relative occlusion ordering of objects. We
also employ an occlusion-aware head to explicitly incorporate
occlusion information and an amodal mask refiner that aims
to mimic the ability of humans by leveraging prior knowledge
on the physical structure of objects for amodal perception.

III. METHODOLOGY

In this section, we first describe our PAPS architecture and
then detail each of its constituting components. Fig. 2 illustrates
the network which follows the bottom-up topology. It consists
of a shared backbone followed by semantic segmentation
and amodal instance segmentation decoders. The outputs of
the decoders are then fused during inference to yield the
amodal panoptic segmentation predictions. PAPS incorporates
several novel network modules to effectively capture multi-
scale features from within-layers and cross-layers, to enable
bilateral feature propagation between the task-specific decoders
and exploit local and global occlusion information. Further, it
incorporates our amodal mask refiner that embeds unoccluded
inmodal instance masks to refine the amodal features.

A. PAPS Architecture
1) Backbone: The backbone is built upon HRNet [19]

which specializes in preserving high-resolution information
throughout the network. It has four parallel outputs with a
scale of ×4, ×8, ×16 and ×32 downsampled with respect to
the input, namely, B4, B8, B16, and B32, as shown in Fig. 2.
We then upsample the feature maps to ×4 and concatenate the
representations of all the resolutions resulting in C4, followed
by reducing the channels to 256 with a 1 × 1 convolution.
Lastly, we aggregate multi-scale features by downsampling
high-resolution representations to multiple levels and process
each level with a 3× 3 convolution layer (P4, P8, P16, P32).



Fig. 2: Illustration of our proposed PAPS architecture consisting of a shared backbone and asymmetric dual-decoder followed by a fusion module that fuses the
outputs of the multiple heads of the decoder to yield the amodal panoptic segmentation output. The semantic decoder (yellow-green) and the instance decoder
(dark-red) boxes show the topologies of the dual-decoder employed in our architecture. The black-box shows the architecture of our proposed context extractor
module. The amodal mask refiner module exploits features from both the decoders to improve amodal masks with embedding correlation.

2) Context Extractor: The multi-scale representations from
the backbone are computed over all four scales which we refer
to as cross-scale features. The way these cross-scale features are
computed (concatenation, reduction, and downsampling) leads
to a limited exploration for multi-scale features at a given indi-
vidual scale resolution. Since rich multi-scale representations
are crucial for the instance decoder’s performance, we seek to
enhance the cross-scale features with within-scale contextual
features. To do so, we design a lightweight module called the
context extractor which is based on the concept of spatial pyra-
mid pooling and is known for efficiently capturing multi-scale
contexts from a fixed resolution. We use the context extractor
module at each scale (B4, B8, B16, B32) , and add its output to
P4, P8, P16, and P32, respectively. The proposed context extrac-
tor module shown in Fig. S.1 in the supplementary material, em-
ploys two 1×1 convolutions, two 3×3 depth-wise atrous separa-
ble convolutions with a dilation rate of (1, 6) and (3, 1), respec-
tively, and a global pooling layer. The output of this module con-
sists of 256 channels, where 128 channels are contributed by the
1× 1 convolution and four 32 channels come from each of the
two 3×3 depth-wise atrous separable convolutions and its glob-
ally pooled outputs. We evaluate the benefits of the aforemen-
tioned module in the ablation study presented in Sec. IV-D1.

3) Cross-Task Module: The sub-tasks, semantic segmenta-
tion and amodal instance center regression, are both distinct
recognition problems and yet closely related. The intermediate
feature representations of each task-specific decoder can capture
complementary features that can assist the other decoder to
improve its performance. We propose the cross-task module to
enable bilateral feature propagation between the decoders to
mutually benefit each other. Given feature inputs FI and FS

from the two decoders, we fuse them adaptively by employing
cross-attention followed by self-attention as

FR = (1− g1(FS)) · FI + (1− g2(FI)) · FS , (1)
FO = g3(FR) · FR, (2)

where g1(·), g2(·), and g3(·) are functions to compute feature
confidence score of FS and FI . These functions consist of
a global pooling layer, followed reducing the channels from
256 to 64 using a 1× 1 convolution. Subsequently, we employ
another 1× 1 convolution with 256 output channels to remap
from the lower dimension to a higher dimension and apply
a sigmoid activation to obtain the feature confidence scores.
FO is the output of the cross-task module. The cross-attention
mechanism in this module enables FI and FS to adaptively
complement each other, whereas the following self-attention
mechanism enables enhancing the highly discriminative com-
plementary features. The ablation study presented in Sec. IV-D1
shows the influence in performance due to this module.

4) Semantic Decoder: The semantic decoder takes B32, B16,
C4 feature maps and the output of cross-task module as its
input. First, the B32 feature maps are upsampled (×16) and
concatenated with B16 and are fed to the dense prediction cell
(DPC) [20]. The output of DPC is then upsampled (×8) and
passed through two sequential 3 × 3 depth-wise separable
convolutions. Subsequently, we again upsample (×4) and
concatenate it with C4. We then employ two sequential 3× 3
depth-wise separable convolutions and feed the output (FS)
to the cross-task module. Further, we concatenate FS with
the output of the cross-task module (FO) and feed it to the
multiple heads in the semantic decoder.

We employ three heads, namely, relative occlusion order
segmentation (Lroo), semantic segmentation (Lss), and occlu-
sion segmentation (Los), towards the end of our semantic
decoder. The relative occlusion order segmentation head
predicts foreground mask segmentation for ON layers. The
masks of each layer are defined as follows: All unoccluded
class-agnostic thing object masks belong to layer 0 (O0). Next,
layer 1 (O1) comprises amodal masks of any occluded object
that are occluded by layer 0 objects but not occluded by any
other occluded object. Next, layer 2 (O2) consists of amodal
masks of any occluded object, not in the previous layers that



are occluded by layer 1 objects but not occluded by any other
occluded objects that are not part of previous layers and so on.
Fig. 3 illustrates the separation of thing amodal object segments
into relative occlusion ordering layers. This separation ensures
each thing amodal object segment belongs to a unique layer
without any overlaps within that layer. We use the binary
cross-entropy loss (Lroo) to train this head. Next, the semantic
segmentation head predicts semantic segmentation of both stuff
and thing classes, and we employ the weighted bootstrapped
cross-entropy loss [21] (Lss) for training. Lastly, the occlusion
segmentation head predicts whether a pixel is occluded in the
context of thing objects and we use the binary cross-entropy loss
(Locc) for training. The overall semantic decoder loss is given as

Lsem = Lss + Los + Lroo. (3)

The predictions from all the heads of the semantic decoder are
used in the fusion module to obtain the final amodal panoptic
segmentation prediction.

5) Instance Decoder: The instance decoder employs a
context encoder at each scale (B32, B16, B8, B4) and adds
the resulting feature maps to P32, P16, P8, and P4, respectively.
Then, beginning from (×32), the decoder repeatedly uses a
processing block consisting of two sequential 3 × 3 depth-
wise separable convolutions, upsamples it to the next scale
(×16), and concatenates with the existing features of the next
scale until ×4 feature resolution is obtained (FI ). The FI is
then fed to the cross-task module. The cross-task output FO

is concatenated with FI and is processed by two sequential
3 × 3 depth-wise separable convolutions. Subsequently, the
features from the occlusion segmentation head of the semantic
decoder are concatenated to incorporate explicit pixel-wise
local occlusion information referred to as FIO features.

The instance decoder employs five prediction heads. The
inmodal occlusion-aware center prediction head consists of
two prediction branches, one for predicting the center of mass
heatmap of inmodal thing object instances (Licp) and the other
for predicting whether the heatmap is occluded (Lico). For the
former, we use the Mean Squared Error (MSE) loss (Licp)
to minimize the distance between the 2D Gaussian encoded
groundtruth heatmaps and the predicted heatmaps, for training.
For the latter, we use binary cross-entropy loss (Lico) for
training. Following, the thing semantic segmentation (Ltss)
head predicts Nthing+1 classes, where Nthing is the total number
of thing semantic classes and the ’+1’ class predicts all stuff
classes as a single class. This head is trained with the weighted
bootstrapped cross-entropy loss [21] (Ltss). Next, the inmodal
center regression (Licr) head predicts the offset from each
pixel location belonging to thing classes to its corresponding
inmodal object instance mass center. We use the L1 loss for
training this head (Licr). All the aforementioned heads take
FIO features as input.

The remaining heads of the instance decoder are referred
to as the amodal center offset (Laco) and relative occlusion
order amodal center regression (Lrooacr). The amodal center
offset head predicts the offset from each inmodal object
instance center to its corresponding amodal object instance
center. Whereas, the relative occlusion ordering amodal center
regression head, for each relative occlusion ordering layer,
predicts the offset from each pixel location belonging to thing

Fig. 3: Groundtruth examples for relative occlusion order segmentation (top-
row) and instance center regression (bottom-row) consisting of layer from O0
to O5. Best viewed at ×4 zoom.

classes of the layer to its corresponding amodal object instance
mass center. Here, the layers of relative occlusion ordering
are defined similarly as in the semantic decoder. Further,
we concatenate FIO with features of inmodal occlusion-
aware center prediction head to incorporate object-level global
occlusion features before feeding it to the aforementioned heads.
Finally, we use L1 loss to train both the heads (Laco, Lrooacr).
The overall loss for the instance decoder is

Linst = Ltss+Lico+αLicp+β(Licr+Laco+Lrooacr), (4)

where the loss weights α = 200 and β = 0.01.
Note that we learn amodal center offset instead of the amodal

center itself to have a common instance-ID that encapsulates
both the amodal and inmodal masks.

6) Amodal Mask Refiner: We propose the amodal mask
refiner module to model the ability of humans to leverage priors
on complete physical structures of objects for amodal percep-
tion, in addition to visually conditioned occlusion cues. This
module builds an embedding that embeds the features of the
unoccluded object mask and correlates them with the generated
amodal features to complement the lack of visually conditioned
occlusion features. The amodal mask refiner shown in Fig. 2
consists of two encoders, unoccluded feature embeddings, and a
decoder. We employ the RegNet [22] topology with its first and
last stages removed as the two encoders with feature encoding
resolution of ×16 downsampled with respect to the input.
The two encoders are an inmodal embedding encoder (IEenc
∈ R(H/16)×(W/16)×C ) that encodes unoccluded objects features
and a query encoder (Qenc ∈ R(H/16)×(W/16)×C ) that encodes
the amodal features, where H and W are the height and width
of the input image and C is the feature dimension which is set
to 64. Subsequently, an embedding matrix EIE ∈ RN×D embeds
the IEenc encoding to create the embedding of unoccluded object
masks. Further, to extract the mask embedding information
from EIE, we compute two key matrices, namely, KIE ∈ RN×D

matrix and KQ ∈ R1×D matrix, from IEenc and Qenc encodings,
respectively. Here, N = 128 and D = [(H/16)×(W/16)×C].

Next, we compute the inner product of KIE and KQ followed
by a softmax and take the inner product of the resulting
probability and EIE. We then rearrange this output into
(H/16)× (W/16)×C shape and concatenate it with Qenc and
feed it to the decoder. The decoder employs repeated blocks
of two 3× 3 depth-wise separable convolutions, followed by
a bilinear interpolation to upsample by a factor of 2 until the
upsampled output resolution is ×4 downsampled with respect to
the input. We refer to this output as FAMR. The resulting features
enrich the amodal features of occluded objects with similar



unoccluded object features, thereby enabling our network to
predict more accurate amodal masks.

The amodal mask refiner takes two inputs, namely, the
amodal features and the features of the unoccluded objects.
The input amodal features are obtained by concatenating the
output features (Fig. 2) of relative occlusion ordering heads of
the semantic and instance decoders. To compute the features
of the unoccluded object, we first perform instance grouping
using predictions of the inmodal occlusion-aware, inmodal
center regression, and thing semantic segmentation heads
to obtain the inmodal instance masks. We then discard all
the occluded inmodal instances to generate an unoccluded
instance mask. Next, we multiply the aforementioned mask
with the output of the second layer of the inmodal center
regression head to compute the final unoccluded object features.
Finally, the amodal mask refiner outputs FAMR which is then
concatenated with the amodal features. We employ two similar
heads as relative occlusion ordering amodal center regression
and segmentation that takes the aforementioned concatenated
features as input. We use the same loss functions and loss
weights for training the heads as described in Sec. III-A5.

7) Inference: We perform a series of steps during inference
to merge the outputs of the semantic and instance decoders
to yield the final amodal panoptic segmentation. We begin
with computing the semantic segmentation prediction and
the thing foreground mask. To do so, we duplicate the void
class logit of the thing semantic segmentation head logits
Nstuff -times, such that its number of channels transforms
from 1 + Nthing to Nstuff + Nthing. We then add it to
the logits of the semantic segmentation head and employ a
softmax followed by an argmax function to obtain the final
semantic segmentation prediction. Subsequently, we assign 0
to all the stuff classes and 1 to all the thing classes to obtain
the thing foreground mask. Next, we obtain the inmodal center
point predictions by employing a keypoint-based non-maximum
suppression [5] and confidence thresholding (0.1) to filter out
the low confidence predictions while keeping only the top-
k (200) highest confidence scores on the heatmap prediction
of inmodal occlusion-aware center prediction head. We then
obtain the amodal center points predictions by applying the
corresponding offsets from the amodal instance head to the
inmodal center point predictions. We obtain the class-agnostic
instance-IDs and the inmodal instance mask using simple
instance grouping [5] with the inmodal center prediction and
the thing foreground mask. Further, we compute semantic labels
for each instance-ID by the majority vote of the corresponding
predicted semantic labels with its inmodal instance masks.

Now, for each instance-ID, we have its semantic label,
inmodal mask, and the amodal center prediction. We compute
the relative occlusion order segmentation masks for each
layer by applying a threshold of 0.5 on the outputs of the
relative occlusion ordering segmentation head connected to
the amodal mask refiner. We then assign the instance-ID to its
corresponding relative occlusion ordering layer by checking if
the corresponding amodal center lies within the segmentation
mask of the layer in question. Finally, we again use the simple
instance grouping at each of the relative occlusion ordering
layers. For all instance-IDs belonging to a layer, we apply
the instance grouping using its amodal instance center and

regression along with the corresponding segmentation mask to
compute the amodal mask. In the end, for each thing object,
we have its unique instance-ID, semantic label, inmodal, and
amodal mask along with stuff class semantic predictions from
the semantic segmentation prediction. We obtain the visible
attribute of the amodal mask directly from the inmodal mask
and obtain the occluded attributes of the amodal mask by
removing the inmodal mask segment from the amodal mask.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the datasets that we benchmark
on in Sec. IV-A and the training protocol in Sec. IV-B. We then
present extensive benchmarking results in Sec. IV-C, followed
by a detailed ablation study on the architectural components
in Sec. IV-D and qualitative comparisons in Sec. IV-E. We use
the standard Amodal Panoptic Quality (APQ) and Amodal Pars-
ing Coverage (APC) metrics [2] to quantify the performance.

A. Datasets
KITTI-360-APS [2] provides amodal panoptic annotations

for the KITTI-360 [23] dataset. It consists of 9 sequences
of urban street scenes with annotations for 61,168 images.
The sequence numbered 10 of the dataset is treated as the
validation set. This dataset comprises 7 thing classes, namely,
car, pedestrians, cyclists, two-wheeler, van, truck, and other
vehicles. Further, the dataset consists of 10 stuff classes. These
stuff classes are road, sidewalk, building, wall, fence, pole,
traffic sign, vegetation, terrain, and sky.

BDD100K-APS [2] extends the BDD100K [24] dataset with
amodal panoptic annotations for 15 of its sequences consisting
of 202 images per sequence. The training and validation set
consists of 12 and 3 sequences, respectively. Pedestrian, car,
truck, rider, bicycle, and bus are the 6 thing classes. Whereas,
road, sidewalk, building, fence, pole, traffic sign, fence, terrain,
vegetation, and sky are the 10 stuff classes

B. Training Protocol
All our models are trained using the PyTorch library on

8 NVIDIA TITAN RTX GPUs with a batch size of 8. We
train our network in two stages, with a crop resolution of
376× 1408 pixels and 448× 1280 pixels for the KITTI-360-
APS and BDD100K-APS datasets, respectively. For each stage,
we use the Adam optimizer with a poly learning rate schedule,
where the initial learning rate is set to 0.001. We train our model
for 300K iterations for the KITTI-360-APS dataset and 70K
iterations for the BDD100K-APS dataset, while using random
scale data augmentation within the range of [0.5, 2.0] with
flipping for each stage. We use N = 8 for relative occlusion
order layers. We first train the model without the amodal mask
refiner, followed by freezing the weights of the architectural
components from the previous stage and train only the amodal
mask refiner.

C. Benchmarking Results
In this section, we present results comparing the performance

of our proposed PAPS architecture against current state-of-the-
art amodal panoptic segmentation approaches. We report the



TABLE I: Comparison of amodal panoptic segmentation benchmarking results on the KITTI-360-APS and BDD100K-APS validation set. Subscripts S and T
refer to stuff and thing classes respectively. All scores are in [%].

Model KITTI-360-APS BDD100K-APS

APQ APC APQS APQT APCS APCT APQ APC APQS APQT APCS APCT

Amodal-EfficientPS 41.1 57.6 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.4
ORCNN [15] 41.1 57.5 46.2 33.1 58.1 56.6 44.9 46.2 54.9 29.9 64.7 41.5
BCNet [18] 41.6 57.9 46.2 34.4 58.1 57.6 45.2 46.4 55.0 30.7 64.7 42.1
VQ-VAE [17] 41.7 58.0 46.2 34.6 58.1 57.8 45.3 46.5 54.9 30.8 64.7 42.2
Shape Prior [16] 41.8 58.2 46.2 35.0 58.1 58.2 45.4 46.6 55.0 31.0 64.8 42.6
ASN [6] 41.9 58.2 46.2 35.2 58.1 58.3 45.5 46.6 55.0 31.2 64.8 42.7
APSNet [2] 42.9 59.0 46.7 36.9 58.5 59.9 46.3 47.3 55.4 32.8 65.1 44.5

PAPS (Ours) 44.6 61.4 47.5 40.1 59.2 64.7 48.7 50.4 56.5 37.1 66.4 51.6

APQ and APC metrics of the existing state-of-the-art methods
directly from the published manuscript [2]. Tab. I presents the
benchmarking results on both datasets.

We observe that our proposed PAPS architecture achieves the
highest APQ and APC scores compared to APSNet and other
baselines on both datasets. The improvement of 1.7%-2.7%
in both the metrics can be attributed to the various proposed
components of our architecture. For stuff segmentation, the
complementary features from the cross-task module aid in better
distinguishing stuff and thing classes, while the high resolution
features with the long-range contextual features help in finer
segmentation of the boundaries. Consequently, we observe an
improvement of 0.7%-1.3% in the stuff components of the
metrics for both datasets. The thing components of the metrics
achieve an improvement of 3.2%-7.1% which can be attributed
to the synergy of several factors. The context extractor and the
cross-task modules provide richer multi-scale representations
along with complementary semantic decoder features. This
enables reliable segmentation of far-away small-scale instances.
Further, the incorporation of local and object-level global
occlusion information from the instance and semantic decoder
heads enables explicit amodal reasoning capabilities. We also
believe that the relative occlusion ordering layers force the
network to capture the complex underlying relationship of
objects to one another in the context of occlusions. Lastly, the
amodal mask refiner module with its transformation of amodal
features with unoccluded object mask embeddings improves
the quality of large occlusion area segmentation as observed
from the higher improvement in APC than the APQ metric.
Overall, PAPS establishes the new state-of-the-art on both the
amodal panoptic segmentation benchmarks.

D. Ablation Study

In this section, we first study the improvement due to
the various architectural components that we propose in our
PAPS and study the generalization ability of the amodal mask
refiner by incorporating it in various proposal-based methods.
We then evaluate the performance of PAPS for panoptic
segmentation and amodal instance segmentation tasks.

1) Detailed Study on the PAPS Architecture: In this section,
we quantitatively evaluate the influence of each proposed
architectural component in PAPS, on the overall performance.
Here, the addition of modules to the architecture of the base
model M1 in the incremental form is performed according
to their description in Sec. III. Tab. II presents results from
this experiment. We begin with the model M1 which employs

TABLE II: Evaluation of various architectural components of our proposed
PAPS model. The performance is shown for the models trained on the
BDD100K-APS dataset and evaluated on the validation set. Subscripts S
and T refer to stuff and thing classes respectively. All scores are in [%].

Model APQ APC APQS APQT APCS APCT

M1 45.6 46.9 55.8 30.4 65.7 42.2
M2 45.9 47.1 55.8 31.0 65.7 42.7
M3 46.1 47.2 55.9 31.3 65.8 42.9
M4 46.3 47.3 55.9 31.9 65.8 43.3
M5 46.7 47.7 56.3 32.4 66.2 43.9
M6 47.4 48.5 56.5 33.7 66.4 45.8
M7 (PAPS ) 48.7 50.4 56.5 37.1 66.4 51.6

a semantic decoder as described in Sec. III-A4 without any
cross-task module and occlusion segmentation head and is
similar to [5] with amodal capabilities. For the instance decoder,
it employs the aforementioned semantic decoder with the
heads described in Sec. III-A5 without occlusion-awareness of
center and thing semantic segmentation. In the M2 model, we
replace the instance decoder architecture with that described
in Sec. III-A5 without the cross-task module and the same
heads as the M1 model. The improvement in performance
shows the importance of multi-scale features from cross-layers
for amodal instance center regression. In the M3 model, we
add the thing segmentation head to the instance decoder whose
output is used during inference as described in Sec. III-A7.
The improvement achieved indicates that the two decoders
capture diverse representations of thing classes which further
improves the performance.

In the M4 model, we add the context extractor module.
The higher increase in APQT compared to APCT indicates
that the multi-scale features obtained from the aggregation
of within-scales and cross-scales layers are much richer in
the representation capacity, thereby improving the detection of
small far away objects. Building upon M4, in the M5 model, we
add the cross-task module. The increase in both stuff and thing
components of the metrics demonstrates that the two decoders
learn complementary features which when propagated bidirec-
tionally is mutually beneficial for each of them. In the M6
model, we add the occlusion segmentation head and occlusion
awareness to the inmodal center prediction head. We observe an
improvement of 1.3%-1.9% in thing components of the metrics
demonstrating that the incorporation of occlusion information
is integral for good amodal mask segmentation. Lastly, in the
M7 model, we add the amodal mask refiner. The substantial im-
provement of 3.4% and 5.8% in APQT and APCT , respectively,
demonstrates the efficacy of our proposed module. We note
that the improvement in APCT is higher than APQT indicating



TABLE III: Evaluation of various propsal-based amodal panoptic segmentation
approaches with our proposed amodal mask refiner. The performance is shown
for the models trained on the BDD100K-APS dataset and evaluated on the
validation set. Subscript T refer to thing classes. All scores are in [%].

Model Amodal Mask Refiner APQ APC APQT APCT

ORCNN [15] 44.9 46.2 29.9 41.4
BCNet [18] 45.2 46.4 30.7 42.1
ASN [6] 45.5 46.6 31.2 42.7
APSNet [2] 46.3 47.3 32.8 44.5

ORCNN [15] X 45.3 46.6 30.9 42.8
BCNet [18] X 46.3 47.8 33.2 46.4
ASN [6] X 46.7 48.1 34.4 47.1
APSNet [2] X 47.5 48.9 35.9 49.2

TABLE IV: Performance comparison of panoptic segmentation on the
Cityscapes validation set. − denotes that the metric has not been reported for
the corresponding method. All scores are in [%].

Network PQ SQ RQ PQT PQS AP mIoU

Panoptic FPN [25] 58.1 − − 52.0 62.5 33.0 75.7
UPSNet [11] 59.3 79.7 73.0 54.6 62.7 33.3 75.2
DeeperLab [21] 56.3 − − − − − −
Seamless [7] 60.3 − − 56.1 63.3 33.6 77.5
SSAP [4] 61.1 − − 55.0 − − −
AdaptIS [3] 62.0 − − 58.7 64.4 36.3 79.2
Panoptic-DeepLab [5] 63.0 − − − − 35.3 80.5
EfficientPS [9] 63.9 81.5 77.1 60.7 66.2 38.3 79.3

PAPS (ours) 64.3 82.1 77.3 60.1 67.3 37.2 80.8

that the increase in segmentation quality of objects with larger
occlusion areas is relatively higher than the smaller areas. This
result precisely demonstrates the utility of our proposed amodal
mask refiner, validating our idea of using embeddings of non-
occluded object masks to supplement the amodal features with
correlation for mid-to-heavy occlusion cases.

2) Generalization of amodal mask refiner: In this section,
we study the generalization ability of our proposed amodal
mask refiner by incorporating it in existing proposal-based
amodal panoptic segmentation approaches. To do so, we adapt
the amodal mask refiner by removing all downsampling layers
in the encoders and upsampling layers from its decoder, to
make it compatible with proposal-based approaches. We add
an occlusion classification branch in the amodal instance head
of all the proposal-based methods similar to ASN [6] and add
another identical amodal mask head. The output of the fourth
layer of the amodal mask head of each method is considered as
the amodal features input. For the non-occluded object features,
we multiply the output of the occlusion classification branch
with the output of the fourth layer of the inmodal mask head.
We feed the amodal features and non-occluded object features
to the amodal mask refiner, followed by concatenating its output
with the amodal features. Subsequently, we feed these concate-
nated features to the newly added amodal mask head. To train
the networks, we use the same two-stage procedure described
in Sec. IV-B and the training protocol described in [2].

Tab. III presents the results from this experiment. We observe
a considerable improvement in the performance of all the
proposal-based methods demonstrating the effectiveness and
the ease of integration into existing architectures. Moreover,
the improvement achieved for APSNet is higher than ORCNN
indicating that the performance can vary depending on the
quality of the inmodal and amodal feature representations in
the network.

TABLE V: Amodal instance segmentation results on the KINS dataset. All
scores are in [%].

Model AmodalAP InmodalAP

ORCNN [15] 29.0 26.4
VQ-VAE [17] 31.5 −
Shape Prior [16] 32.1 29.8
ASN [6] 32.2 29.7
APSNet [2] 35.6 32.7

PAPS (Ours) 37.4 33.1

3) Panoptic Segmentation Results on Cityscapes Dataset:
In this section, we evaluate the performance of our proposed
PAPS for panoptic segmentation on the Cityscapes [26] dataset.
In the architecture, we remove the amodal mask refiner,
occlusion segmentation, amodal center offset, relative occlusion
order segmentation, and amodal center regression heads as they
only contribute to obtaining the amodal masks. We train our
network with a learning rate lr = 0.001 for 90K iterations using
the Adam optimizer. We report the Panoptic Quality (PQ), Seg-
mentation Quality (SQ) and Recognition Quality (RQ) metrics
on the validation set of Cityscapes for single-scale evaluation
in Tab. IV. For the sake of completeness, we also report the
Average Precision (AP), and the mean Intersection-over-Union
(mIoU) scores. We observe that PAPS achieves the highest PQ
score of 64.3% which is 1.3% and 0.4% higher than the state-
of-the-art Panoptic-DeepLab and EfficientPS, respectively. The
improvement achieved over Panoptic-DeepLab demonstrates
the efficacy of our proposed modules and architectural design
choices.

4) Performance on KINS Dataset: We benchmark the per-
formance of our proposed PAPS architecture on the KINS [6]
amodal instance segmentation benchmark. This benchmark
uses the Average Precision (AP) metric for evaluating both
amodal and inmodal segmentation. We train our network with
a learning rate lr = 0.001 for 40K iterations using the Adam
optimizer. We use the same validation protocols as [6]. Tab. V
presents results in which our proposed PAPS outperforms the
state-of-the-art APSNet by 1.8% and 0.4% for amodal AP and
inmodal AP, respectively, establishing the new state-of-the-art
on this benchmark. The large improvement in the AmodalAP
compared to the InmodalAP indicates refining amodal masks
with unoccluded object embeddings is an effective strategy.

E. Qualitative Evaluations

In this section, we qualitatively compare the amodal panoptic
segmentation performance of our proposed PAPS architecture
with the previous state-of-the-art APSNet. Fig. 4 presents the
qualitative results. We observe that both approaches are capable
of segmenting partial occlusion cases. However, our PAPS
outperforms APSNet under moderate to heavy occlusion cases
such as cluttered cars and pedestrians. In Fig. 4(a) the faraway
cars on the right are detected more reliably by our network
along with their amodal mask segmentations demonstrating
the positive effects of within-scales and cross-scales multi-
scale features and the occlusion aware heads. In Fig. 4(b),
our model successfully predicts the amodal masks of heavily
occluded pedestrians and cars. This demonstrates the utility of
our amodal mask refiner module. By relying on the unoccluded
mask features, PAPS is able to make a coarse estimate of
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Fig. 4: Qualitative amodal panoptic segmentation results of our proposed PAPS network in comparison to the state-of-the-art APSNet [2] on (a) KITTI-360-APS
and (b) BDD100K-APS datasets. We also show the Improvement\Error Map which denotes the pixels that are misclassified by PAPS in red and the pixels that
are misclassified by APSNet but correctly predicted by PAPS in green.

the object’s amodal masks. Furthermore, PAPS achieves more
accurate segmentation of the challenging thin stuff classes such
as poles and fences.

V. CONCLUSION

In this work, we presented the first proposal-free amodal
panoptic segmentation architecture that achieves state-of-the-
art performance on both the KITTI-360-APS and BDD100K-
APS datasets. To facilitate learning proposal-free amodal
panoptic segmentation, our PAPS network learns amodal center
offsets from the inmodal instance center predictions while
decomposing the scene into different relative occlusion ordering
layers such that there are no overlapping amodal instance masks
within a layer. It further incorporates several novel network
modules to capture within-layer multi-scale features for richer
multi-scale representations, to enable bilateral propagation of
complementary features between the decoders for their mutual
benefit, and to integrate global and local occlusion features
for effective amodal reasoning. Furthermore, we proposed the
amodal mask refiner module that improves the amodal segmen-
tation performance of occluded objects for both proposal-free
and proposal-based architectures. Additionally, we presented
detailed ablation studies and qualitative evaluations highlighting
the improvements that we make to various core network
modules of our amodal panoptic segmentation architectures.
Finally, we have made the code and models publicly available
to accelerate further research in this area.
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In this supplementary material, we provide additional abla-
tion studies on the proposed architectural components and the
illustration of the context extractor module.

S.1. ABLATION STUDY

In this section, we first study the importance of the various
components of our proposed cross-task module. Subsequently,
we study the influence of the number of relative occlusion
ordering layers on the performance of our network. For all the
experiments, we train our PAPS network without the amodal
mask refiner on the BDD100K-APS dataset and evaluate it
on the validation set. We use APQ and APC metrics as the
principal evaluation criteria for all the experiments performed
in this section.

A. Evaluation of the Cross-Task Module

In this section, we evaluate our proposed architecture of the
cross-task module to enable bilateral propagation of features
between the task-specific decoders. For this experiment, we
use the PAPS architecture without the amodal mask refiner,
similar to model M6 in Sec. IV-D. Tab. S.1 presents results
from this experiment. We begin with model M61 which does
not use the cross-task module. In model M62, we concatenate
outputs of the opposite decoder as FO. For the instance decoder,
FO = FS where FS are the output features of the semantic
decoder. For the semantic decoder, FO = FI where FI are the
output features of the semantic decoder. The improvement in the
performance shows the utility of propagating features between
the task-specific decoders. In the model M63, we define FO as
the summation of the task-specific decoder features given as

FO = FI + FS . (1)

We observe a drop in performance for model M63 compared
to both model M61 and model M62 indicating that the use of
summation fails to capture complementary features and at the
same time affects learning the relevant primary features of the
decoders themselves. In model M64, we employ self-attention
given by

FR = FI + FS , (2)
FO = g3(FR) · FR, (3)

where g3(·) is the function to compute the confidence scores
of FR. This model achieves improved performance over both
model M62 and model M63 demonstrating that the attention

TABLE S.1: Ablation study on various configurations of our proposed cross-task
head. The performance is shown for the models trained on the BDD100K-APS
dataset and evaluated on the validation set. Subscripts S and T refer to stuff
and thing classes respectively. All scores are in [%].

Model APQ APC APQS APQT APCS APCT

M61 46.9 48.1 56.1 33.2 66.0 45.2
M62 47.0 48.1 56.2 33.3 66.1 45.3
M63 46.7 48.0 55.9 32.9 65.9 45.1
M64 47.1 48.2 56.3 33.4 66.3 45.4
M65 47.0 48.1 56.2 33.3 66.1 45.3
M66 47.1 48.2 56.3 33.4 66.3 45.4
M67 47.4 48.5 56.5 33.7 66.4 45.8

mechanisms are beneficial for learning complementary features.
As a next step, we employ self-attention to each individual
task-specific decoder features in model M65 and define FO as

FO = g1(FI) · FI + g2(FS) · FS , (4)

where g1(·) and g2(·) are the functions to compute the
confidence scores. Model M65 achieves a score lower than
Model M64 and similar to Model M62. This indicates that
applying self-attention to each input of the cross-task module
effectively reduces them to be similar to a summation operation.
Hence, in Model M66, we employ cross-attention in FO as
follows

FO = (1− g1(FS)) · FI + (1− g2(FI)) · FS . (5)

This model achieves a performance similar to Model M64
demonstrating that cross-attention is equally important as self-
attention. Lastly, we use our proposed cross-attention followed
by self-attention cross-task configuration (Eq. (1) and Eq. (2)),
which yields the highest overall improvement. Consequently,
from this experiment, we infer that cross-attention enables
learning of adaptive complementary decoder features, whereas
the following self-attention enables enhancement of these highly
discriminative complementary features.

B. Detailed Study on the Relative Occlusion Ordering Layers

In this section, we study the effects of the number of relative
occlusion ordering layers on the performance of our proposed
architecture. Similar to Sec. S.1-A, for this experiment we
use the PAPS architecture without the amodal mask refiner
module. Tab. S.2 shows results from this experiment. We begin
with N = 4 where N is the number of relative occlusion
ordering layers. The model achieves an improved score of
45.4% and 46.6% in APQ and APC, respectively compared to
the baselines. This indicates that with four relative occlusion
ordering layers, we can encapsulate sufficient object instances
present in a given scene. Next, we use N = 6 and obtain a



TABLE S.2: Influence on varying the number of layers of the relative occlusion
ordering layers. The performance is shown for the models trained on the
BDD100K-APS dataset and evaluated on the validation set. N is the number
of layers, subscripts S and T refer to stuff and thing classes respectively. All
scores are in [%].

N APQ APC APQS APQT APCS APCT

4 45.4 46.6 56.1 29.3 65.9 41.1
6 46.8 47.8 56.3 32.6 66.2 44.3
8 47.4 48.5 56.5 33.7 66.4 45.8
10 47.4 48.5 56.5 33.7 66.4 45.8
12 47.4 48.5 56.5 33.7 66.4 45.8

Fig. S.1: Topology of our proposed context extractor module.

significant improvement in the thing components of the metrics.
Subsequently, we train the model with N = 8 which yields a

lower performance in the metrics compared to N = 6. This
indicates that N = 6 covers the majority of object instances
in a given scene throughout the dataset. We then train the
network with N = 10 and N = 12. These models do not
achieve any improvement over the model with N = 8 layers
demonstrating that with eight relative occlusion ordering layers,
we can encapsulate the maximal number of object instances in
the dataset.

S.2. CONTEXT EXTRACTOR

Our proposed context extractor module enriches cross-scale
features with within-scale contextual features, resulting in a
rich multi-scale representation. This yields an improvement in
performance for the instance decoder of our PAPS architecture
as shown in Sec. IV-D-B. Fig. S.1 illustrates the architecture
of the context extractor module. It splits the input into
two parallel branches and employs two 1 × 1 convolutions.
One of the branches is further subdivided into two parallel
branches. Here, each branch uses a 3 × 3 depth-wise atrous
separable convolutions with a dilation rate of (1, 6) and (3, 1),
respectively. These branches are again subdivided into two
parallel branches each. In each of these two parallel branches,
one branch employs a global pooling layer. Finally, all the
outputs of the remaining parallel branches are concatenated.
Please note that each of the convolutions is followed by batch
normalization and ReLU activation function.
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7.2 Layer Ensembles
The appended paper [85] follows.
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ABSTRACT

Deep Ensembles, as a type of Bayesian Neural Networks, can
be used to estimate uncertainty on the prediction of multiple
neural networks by collecting votes from each network and
computing the difference in those predictions. In this paper,
we introduce a novel method for uncertainty estimation called
Layer Ensembles that considers a set of independent categor-
ical distributions for each layer of the network, giving many
more possible samples with overlapped layers, than in the reg-
ular Deep Ensembles. We further introduce Optimized Layer
Ensembles with an inference procedure that reuses common
layer outputs, achieving up to 19× speed up and quadratically
reducing memory usage. We also show that Layer Ensem-
bles can be further improved by ranking samples, resulting in
models that require less memory and time to run while achiev-
ing higher uncertainty quality than Deep Ensembles.

Index Terms— Deep Ensembles, Bayesian neural net-
works, uncertainty estimation, uncertainty quality

1. INTRODUCTION

Uncertainty estimation in neural networks is an important task
for critical problems, such as autonomous driving, medical
image analysis, or other problems where silent failures of
machine learning systems can lead to high-cost damages or
endanger lives. Bayesian Neural Networks (BNNs) [1, 2, 3]
provide a tool to estimate prediction uncertainty by exploiting
a distribution over the network weights and sampling a set of
models with slightly different predictions for a given input.
This difference in the predictions expresses the uncertainty of
the network, while the mean of all predictions is used as the
prediction of the network. The selection of the adopted distri-
bution affects the computational requirements and statistical
quality of the network, with Gaussian distribution resulting
in Bayes By Backpropagation (BBB) [4] and Hypermodel
[5] methods, Bernoulli distribution in Monte Carlo Dropout
(MCD) [6], and Categorical distribution in Deep Ensembles
[7].

This work has received funding from the European Union’s Horizon
2020 research and innovation programme (grant agreement No 871449
(OpenDR)).

We introduce Layer Ensembles, which consider a set of
weight options for each layer that are sampled using indepen-
dent Categorical distributions, resulting in a high number of
models that can have common layer samples. We show that
Layer Ensembles achieve better uncertainty quality than Deep
Ensembles for the same number of parameters, and they allow
to dynamically change the number of samples to keep the best
ratio between the uncertainty quality and time cost.

2. RELATED WORK

Output uncertainty estimation is usually done by approximat-
ing expectation and covariance of outputs using the Monte
Carlo integration with a limited number of weight samples,
which can be simplified to running the network few times
with different samples of random variables and then comput-
ing the mean and variance of the output vectors. Epistemic
Neural Networks (ENNs) [8] propose a framework to esti-
mate an uncertainty quality of a model by generating a syn-
thetic dataset and training a Neural Network Gaussian Process
(NNGP) [9] on it that represents a true predictive distribution.
The model of interest is then evaluated by the KL-divergence
[10] between the true predictive distribution from NNGP and
the predictive distribution of the model of interest.

Monte Carlo Dropout (MCD) [6], instead of only using
Dropout [11] layers as a form of regularization during training
to avoid overtrusting particular neurons, it also keeps these
Dropout layers during inference. This has the effect of adopt-
ing a Bernoulli distribution of weights and sampling differ-
ent models from this distribution. Bayes By Backpropagation
(BBB) [4] considers a Gaussian distribution over a network’s
weights, which is estimated using the reparametrization trick
[12] that allows to use regular gradient computation.

Variational Neural Networks (VNNs) [13] can be consid-
ered in the same group as MCD and BBB from the Bayesian
Model Averaging perspective, where sampled models can lie
in the same loss-basin and be similar, i.e., describing the prob-
lem from the same point of view, as explained in [2]. VNNs
consider a Gaussian distribution over each layer’s predictions,
that is parametrized by the outputs of the corresponding sub-
layers. Hypermodels [5] consider an additional hypermodel
θ = gν(z) to generate parameters of a base model fθ(x) using
a random variable z ∼ N (0, I) as an input to the hypermodel.



Deep Ensembles [7] have a better uncertainty quality than
all other discussed methods and can be viewed as a BNN with
a Categorical distribution over weights, with the ideal num-
ber of weight samples equal to the number of ensembles. The
addition of prior untrained models to Deep Ensembles, as de-
scribed in [7], improves the uncertainty quality of the net-
work. Deep Sub-Ensembles [14] split the neural network into
two parts, where the first part contains only a single trunk net-
work, and the second part is a regular Deep Ensemble network
that operates on features generated by the trunk network. This
reduces the memory and computational load, compared to the
Deep Ensembles, and provides a trade-off between the uncer-
tainty quality and resource requirements. Batch Ensembles
[15] optimize Deep Ensembles by using all weights in a sin-
gle matrix operation and using Hadamard product instead of
matrix multiplication that increases inference speed and re-
duces memory usage.

3. LAYER ENSEMBLES

We consider a neural network F (x,w) with N layers that
takes x as input and is parametrized by the weights w. A
Deep Ensemble network is formed by K identical networks
with N layers each, where the corresponding weights of each
network, i.e., wi, i ∈ [1,K], are trained independently. We
formulate Layer Ensembles as a stochastic neural network
F (x,w) with N layers LEi(x,w

i
q), i ∈ [1,K], q ∈ [1, N ]

and K weight options for each layer:

wi
q ∼ Categorical(K). (1)

This results in the same memory structure as for Deep Ensem-
bles, with KN weight sets for a network of N layers and K
ensembles. However, Layer Ensembles allow for connections
between the layers of different ensembles, by sampling dif-
ferent layer options to form a network in the ensemble. This
greatly increases the number of possible different weight sam-
ples, while those can contain identical subnetworks. This can
be used to speed up the inference of a set of sampled lay-
ers. Fig. 1 illustrates how the same memory structure of the
ensembles is used in Deep Ensembles (Fig. 1a) and Layer En-
sembles (Fig. 1b).

Training of Layer Ensembles is done the same way as for
Deep Ensembles, by using a regular loss function and aver-
aging over the predictions of different weight samples. The
number of weight samples for Deep Ensembles is usually
equal to the number of networks K, meaning that all the en-
sembles are used in the prediction process. The same strategy
is not required for Layer Ensembles, as each layer option can
be included in multiple networks. This means that one can
select a few layer options per inference and expect that, with
the sufficient amount of training steps, all the layer weights
will be trained.

Following [7], we consider an output of a prior untrained
Layer Ensemble network added to the output of the trained

(a) Deep Ensemble structure (b) Layer Ensemble structure

(c) Two samples of a Layer Ensemble network with common first
two layer options

Fig. 1: Example structures of (a) Deep Ensembles and (b)
Layer Ensembles for a 3-layer network with 3 ensembles
(N = 3, K = 3). While the memory structure remains iden-
tical, Layer Ensembles have many more options for sampling
that can be optimized considering the common layers in sam-
ples. Layer Ensembles with common layers earlier in the ar-
chitecture lead to faster inference (c).

network, using the same draws from the random distributions
for both untrained and trained networks. Experiments show
that the addition of prior networks improves the uncertainty
quality of Layer Ensembles by a factor of 2 for each number
of ensembles that was tested.

Layer Ensembles can be used to define Deep Ensembles
[7] and Deep Sub-Ensembles [14] as special cases by sam-
pling specific layers or number of ensembles to be used. Con-
sidering a Layer Ensemble network with N layers and K en-
sembles for each layer, we can sample KN possible models.
Sampling K layers with none of the layer options used in two
different networks corresponds to a Deep Ensemble network.
By selecting different number of ensembles per layer, we can
achieve Deep Sub-Ensembles by using one ensemble for the
first T layers and K ensembles for the remaining N − T lay-
ers, resulting in a single trunk network and in an ensembled
tail network. Experimenting with the number of ensembles
for each layer can result in interesting new methods for spe-
cific analysis problems and is a direction for future work.

3.1. Inference Optimization

Layer Ensembles can reuse outputs of identical subnetworks
processing the input x when they are used in different net-
works. Fig. 1c shows an example of two Layer Ensembles
where the first two layers are identical, and only the last layer
has different weights. Instead of computing c2(b2(a1(x)))
and c1(b2(a1(x))) independently, one can compute the com-
mon layer V = b2(a1(x)) first, and then c2(V ) and c1(V ).

Algorithm 1 implements an Optimized Layer Ensembles
(OLE) function that recursively computes the output of a
Layer Ensemble network for a set of sorted layer samples.
Layer samples are represented as a set of selected options



Algorithm 1 Optimized Layer Ensembles

Require: Network F (x), list of sorted samples S, layer in-
dex i, input x

1: function OLE(F, Si, i, x)
2: result← []
3: si+1 ← []
4: if i = size(s) then return [x] ▷ Final layer computed
5: end if
6: sl ← Si[0]
7: l← F [i][sl](x) ▷ First sampled option for layer i
8: for t ∈ [0..size(Si)] do ▷ For each sample
9: if Si[t] ̸= sl then

10: result = result ∪OLE(F, si+1, i+ 1, l)
11: sl ← Si[t]
12: ▷ Next sampled option for layer i
13: l← F [i][sl](x)
14: si+1 ← []
15: end if
16: ▷ Update sub-samples list for input l
17: si+1 ← si+1 ∪ si[t][1 :]
18: end for
19: result = result ∪OLE(F, si+1, i+ 1, l)
20: return result
21: end function
22: return OLE(F, S, 0, x)

for each layer, such as [1, 2, 2] and [1, 2, 1] for the model in
Fig. 1c. These samples are sorted in ascending order by the
first-most values, while using later indices in case of identical
previous values. This allows to have the most overlapping
samples in a sequence, giving the possibility to optimize layer
executions, as a layer option should be called only once for
the same input and used by all samples that share it. After
the current layer option is used, there is no need to keep its
output in memory anymore, as it will never be used later. The
results of the OLE function is an array of outputs for all runs
using this layer, which means that in order to run a full set
of samples the OLE function needs to be called with network
function F , samples list S, layer index i = 0, and the input to
the network x.

4. UNCERTAINTY QUALITY EXPERIMENTS

We implement Layer Ensembles inside the Epistemic Neural
Networks (ENNs) [8] framework to estimate the uncertainty
quality of this method and to compare it with Deep Ensem-
bles. ENNs consider a regression task y = f(x) + ϵ and gen-
erates a synthetic dataset DT = {(x, y)t for t ∈ [0, T − 1]},
where x is a Dx-dimensional input vector, y is an output
scalar, ϵ ∼ N (0, σ2) is a random noise, and T = Dxλ is
a dataset size. A Neural Network Gaussian Process (NNGP)
[9] is trained on the dataset to represent the true model of

the data. For each data point, a model of interest should pro-
vide a prediction µ and an uncertainty in that prediction σ2,
which is modeled by a one-dimensional Gaussian distribution
N (µ, σ2). Given the predictions from both the true NNGP
model and a model of interest M , the uncertainty quality
score Q(M) is computed as:

Q(M) =
1

T

T−1∑

t=0

KL(NM ∥ NNNGP),

NM = N (E[M(xt)],Var[M(xt)]),

NNNGP = N (E[NNGP(xt)],Var[NNGP(xt)]),

(2)

where M and NNGP are the model of interest and the true
NNGP model, respectively, and KL is a Kullback–Leibler di-
vergence function [10].

We implement Layer Ensembles inside the ENNs JAX
repository [16] and follow the same experimental parameters,
including Dx ∈ {10, 100, 1000}, λ ∈ {1, 10, 100}, and ϵ ∈
{0.01, 0.1, 1}. The experiments are repeated with all combi-
nations of (Dx, λ, ϵ) parameters and with 10 different random
seeds. The results are then averaged, computing the mean and
variance of uncertainty quality scores for each method. Fig. 4
provides a comparison between Deep Ensembles and Layer
Ensembles for different number of ensembles and number of
samples. Layer Ensembles start to achieve good uncertainty
quality with only 3 ensembles and outperform Deep Ensem-
bles for the same number of ensembles used. This means that
the memory footprint is much lower for Layer Ensembles.

4.1. Layer sample ranking

Since there are many possible layer samples for Layer En-
sembles, it is not always feasible to use all possible networks
when using Layer Ensembles. One way to decrease the com-
putational cost is to randomly select fewer layer samples, re-
sulting in slightly lower quality of uncertainty, as shown in
Fig. 4. Another option is to rank layer samples based on un-
certainty quality on the validation set and use the best layer
samples when using a particular number of samples.

Let us consider the full set of layer samples S = {sj |j ∈
[1, J ]}, where J is a number of all combinations that can be
computed by multiplying all layer-wise numbers of ensem-
bles. To reduce the computational load of layer sample rank-
ing, we introduce an iterative process of selecting best layer
samples by starting from a single layer sample with the best
mean error s1:

s1 = argmax
sj

Q(M{sj}), (3)

whereQ(·) is the uncertainty quality score function,M{sj} is
the Layer Ensemble model applied to a set of layer samples,
containing a single sample sj . Given a set of optimal layer
samples SP = {sPi |i ∈ [1..P ]} of size P , the next layer sam-
ple set is created by finding the best addition to the already



Fig. 2: Comparison of mean KL values with 1 STD range for Layer Ensembles with different number of ensembles and sampled
layers, averaged across all experiment parameters. The best layer samples are selected based on the validation set and evaluated
on the test set.

Fig. 3: Speed up and memory saved during inference of Op-
timized Layer Ensembles, compared to the regular Layer En-
sembles for different number of ensembles of a 4-layer CNN
for MNIST classification. This excludes memory used for the
ML framework and model weights.

existing set:

sP+1 = argmax
sj

Q(MSP∪sj ),

SP+1 = SP ∪ sP+1.

(4)

Fig. 2 illustrates the uncertainty quality results of each
best layer sample set of Layer Ensembles. With a number of
ensembles higher than 2, the optimal uncertainty quality is
increased up to a certain number of layer samples and starts
decreasing after that. This means that it is beneficial for both
inference speed and uncertainty quality to not use all the
available layer samples. Layer Ensembles with 5 ensembles
achieves the best uncertainty quality at 36 layer samples,
which is much lower than the number of 125 possible layer
samples. Even at 20 layer samples, the uncertainty quality
is just 6% lower, but it is still 2 times better than the Deep
Ensembles with 30 ensembles, while it uses 6 times less
memory, and it is at least 1.5× faster, as the speed can be im-
proved by Optimized Layer Ensembles inference procedure
but depends on the overlap between layer samples.

Fig. 4: Comparison of mean KL values with 1 STD range for
Deep Ensembles and Layer Ensembles with random unique
layer samples, averaged across all experiment parameters.

5. CONCLUSIONS

In this paper, we proposed a novel uncertainty estimation
method called Layer Ensembles, which corresponds to a
Bayesian Neural Network with independent Categorical dis-
tribution over weights of each layer. We showed that Layer
Ensembles use parameters more effectively than Deep En-
sembles and provide a flexible way to balance between in-
ference time and model uncertainty quality. We showed that
the inference of Layer Ensembles can be optimized by per-
forming the same computations once, which increases the
inference speed by up to 19 times and reduces memory usage
quadratically. Finally, we proposed a layer sample rank-
ing system that allows to select best layer samples based on
the combined uncertainty quality, leading to a high increase
in uncertainty quality and reducing both memory and time
requirements.
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Variational Neural Networks
Illia Oleksiienko∗, Dat Thanh Tran† and Alexandros Iosifidis∗, Senior Member, IEEE

Abstract—Bayesian Neural Networks (BNNs) provide a tool
to estimate the uncertainty of a neural network by considering
a distribution over weights and sampling different models for
each input. In this paper, we propose a method for uncertainty
estimation in neural networks called Variational Neural Network
that, instead of considering a distribution over weights, samples
outputs of each layer from a Gaussian distribution, parametrized
by the predictions of mean and variance sub-layers. In uncer-
tainty quality estimation experiments, we show that VNNs achieve
better uncertainty quality than other single-bin Bayesian Model
Averaging methods, such as Monte Carlo Dropout or Bayes By
Backpropagation methods.

Index Terms—Bayesian Neural Networks, Bayesian Deep
Learning, Uncertainty Estimation

I. INTRODUCTION

The ability to estimate the uncertainty of prediction in neural
networks provides advantages in using high-performing mod-
els in real-world problems, as it enables higher-level decision-
making to consider such information in further actions. To
do so, one needs the neural network to accompany its output
with a measurement of its corresponding uncertainty for each
input it processes. Several approaches have been introduced
to this end, with Bayesian Neural Networks (BNNs) [1]–[3]
providing an elegant framework for estimating uncertainty of
a neural network by introducing a probability distribution over
its weights and sampling different models that are meant to
describe the input from different points of view. This allows
to determine inputs for which the network predictions are
different, leading to a measurement of the network uncertainty
in its outputs. Such an approach usually comes with an
increased computational cost, but may be valuable for tasks
where prediction errors result in high losses.

The choice of the prior weights probability distribution
function influences the statistical quality of the model and the
computational resources needed to use such neural networks,
which creates a possibility to explore different approaches to
BNNs by using Gaussian [4], Bernoulli [5], Categorical [6] or
other distributions. Sampling from the posterior distribution
can be difficult, due to the complex nature of it. This leads to
methods that avoid direct computation of the posterior, such
as Markov Chain Monte Carlo (MCMC) [7], which constructs
a Markov chain of samples Si that are distributed following
the desired posterior, or Variational Inference [8], which scales
better than MCMC and aims to estimate a parametrized distri-
bution that should be close to the exact posterior. How close
the distributions are is computed using the Kullback-Leibler
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trical and Computer Engineering, Aarhus University, Denmark (e-mail:
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(KL) divergence [9], but it still requires the exact posterior.
This is overcome by computing an Evidence Lower Bound
(ELBO) instead and optimizing it with Stochastic Variational
Inference (SVI) [10].

We introduce Variational Neural Networks (VNNs) which
do not consider a distribution over weights, but define sub-
layers to generate parameters for the output distribution of
the layer. To keep computational and memory resource usage
practical, we consider a Gaussian distribution with learnable
mean and variance. This is achieved by using two instances
of the same regular layer like convolutional or linear with
different weights, and using their predictions from the inputs
as means and variances of the Gaussian distribution over
the outputs. We provide a neural network formulation that
describes both related BNNs and the proposed VNNs in a
unified manner, and show that VNNs, while being in the
same group, as Monte Carlo Dropout (MCD) [5] and Bayes
By Backprop (BBB) [4] from the Bayesian Model Averaging
(BMA) perspective [2], achieve better uncertainty quality and
retain it with the increasing data dimensionality.

II. BAYESIAN NEURAL NETWORKS

BNNs [1]–[3] consider a distribution over their weights
p(w|a) and a distribution over their hyperparameters p(a). A
predictive distribution over an output y for a data point x can
be obtained by integrating over all possible hyperparameters
and model weights, i.e.:

p(y|x) =

∫ ∫
p(y|x,w) p(w|a) p(a) da dw. (1)

Given a dataset D = (Xt, Yt), where Xt and Yt are the sets of
inputs {x} and targets {y}, the distribution of weights can be
derived from Bayes’ theorem as p(w|D, a) = p(Yt|Xt,w)p(w|a)

p(D) ,
and the corresponding predictive distribution has a form

p(y|x,D) =

∫ ∫
p(y|x,w) p(w|D, a) p(a) da dw. (2)

Classical neural networks can be viewed as BNNs with
p(a) = δ(a − â) and p(w|D, a) = δ(w − ŵa) [3], where â
are the selected model hyperparameters, ŵa are the weights,
optimized by training the model, and δ(x) is the Dirac delta
function which has values 0 everywhere except at x = 0 where
it equals to 1. In this case, the predictive distribution becomes

p(y|x,D) =

∫ ∫
p(y|x,w) p(w|D, a) p(a) da dw

=

∫ ∫
p(y|x,w) δ(w − ŵa) δ(a− â) da dw

= p(y|x, ŵâ),

(3)

which is a distribution dictated by a loss of the network.
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When training classical neural networks, hyperparameters
are considered fixed at point â and weights are optimized either
by maximum likelihood estimation (MLE), i.e.:

wmle = argmax
w

[
log p(D|w, â)

]

= argmax
w

[∑

i

log p(Yi|Xi, w, â)

]
,

(4)

or by maximum a posteriori (MAP), i.e.:

wmap = argmax
w

[
log p(w|D, â)

]

= argmax
w

[
log p(D|w, â) + log p(w)

]
,

(5)

where log p(w) is a regularization term.
Due to the complexity of neural networks, direct compu-

tation of wmle or wmap cannot be achieved, and therefore
approximate methods are used to find these values. The most
popular process to estimate the weight values is the Backprop-
agation algorithm [11], where an initial randomly selected w
is updated following the direction of negative gradient of the
loss function with respect to w.

III. RELATED WORKS

The use of BNNs in real-world applications is limited due to
the complex nature of the possible prior and predictive distri-
butions. Therefore, simplified versions are used. Assumptions
that are proposed in different methods below aim to reduce
memory, inference and training time, but they come with the
cost of reducing the statistical quality of the resulting models.
This problem is further discussed in Section V.

MCD [5] considers a neural network with Dropout [12]
added to each layer. The Dropout layer effectively turns
off random neurons of the layer by multiplying connection
weights with a random binary mask, sampled from a Bernoulli
distribution. This allows to avoid overfitting specific neurons.
After training, Dropout is replaced by an identity function
and all neurons are used for inference. Instead of replacing
Dropout with identity, MCD uses it during inference leading
to a stochastic model. The model uncertainty for an input
is computed by performing inference multiple times and
computing mean and variance of predictions. BBB [4] samples
model parameters from a Gaussian distribution and trains it
using regular Backpropagation. By doing so, the family of
models with different weights is sampled from the learned
distribution, and the uncertainty of the network is computed
as the variation in predictions of different samples.

Ensembles of neural networks [6] can also be used for
uncertainty estimation. Ensembles are trained in parallel for
the same task, but with different random seeds, which results in
different weight initialization and training order. Outputs from
members of an ensemble will vary, and this can be used to
improve performance by taking an average of their predictions,
or to estimate uncertainty by computing the variance of their
outputs. Such an approach can be viewed as a BNN with a cat-
egorical distribution over weights that randomly selects one of
the trained model weights. Hypermodels [13] use an additional
model θ = gν(z) to generate parameters for a base model

fθ(x). Linear Hypermodels set gν(z) = a+Bz, z ∼ N (0, I).
Using different samples of z, one can sample different model
parameters and estimate uncertainty in the same way as for
the aforementioned methods.

IV. VARIATIONAL NEURAL NETWORKS

As introduced in Section II, a neural network is described
by its weights w and hyperparameters α. Hyperparameters
include the structure of the network, i.e., the type and number
of layers, their size and connections, etc. Usually, we limit the
hyperparameters by defining some of them in the beginning,
e.g., by selecting that we want to use a Convolutional Neural
Network (CNN). This is a reasonable approach, as it is
impractical to iterate through all possible types and structures
of networks during training. We are using the neural network
formulation NN(x) := FΛ(x,w), where NN(x) is a neural
network applied to an input x, w are the trained weights,
F is a neural network function that incorporates structure
and other hyperparameters inside it, and Λ is a set of layer
implementations, which are used by F to process layer inputs.

In case of CNNs, Λ = {Conv2D(x,w),FC(x,w)} re-
sults in a regular CNN, where Conv2D(x,w) is a 2D
convolutional layer function and FC(x,w) is a fully con-
nected layer function. If we select Λ = {Conv2D(x,wc ∼
N (µc,Σc)),FC(x,wl ∼ N (µl,Σl))} with layer weights
sampled from a corresponding Gaussian distribution, then
the resulting network is a BBB CNN. Such neural network
formulation allows to accurately describe all the discussed un-
certainty estimation methods, as well as the proposed VNNs.

A. Variational Layer

We define a Variational Layer (VL) that takes an input x
and weights w as

VL(x,w) = αN (f(x,w)),

f(x,w) ∼ N
(
αµ(L(x, µ)), diag[(ασ(L(x, σ)))2]

)
,

w = (µ, σ),

(6)

where L(x,w) is a regular neural network layer, such as fully
connected, convolutional or a recurrent layer. L(x, µ) and
L(x, σ) represent instances of the same layer with different
values of parameters and corresponding activation functions
αµ(·) and ασ(·). The activation function αN (·) can be used
to apply nonlinearity to the randomly sampled values f(x,w).
By selecting which of αµ(·), ασ(·), αN (·) are set to identity
and which are set to actual activation functions (such as the
Rectified Linear Unit (ReLU)) one can create networks that are
described by different mathematical models. In the following,
we show how different selections can lead to specific types of
uncertainties, i.e., epistemic and aleatoric uncertainties [14].

Training of VNNs is performed by averaging outputs from
different network passes for the same sample and, thanks to
the reparametrization trick [15], the regular Backpropagation
algorithm is applied. Networks can also be trained with a
single pass, which results in the same training procedure as
for classical neural networks. The models are trained with the
usual loss functions that are suitable for the task.
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B. Output uncertainty estimation

Estimation of prediction uncertainties in VNNs and BNNs
can be done following the same formulation, but it obtained
from different characteristics of these methods. Below, we
first describe how BNNs can be reformulated by splitting the
parametrized distribution over weights into isolated parameters
and a non-parametric distribution, and then show that this
formulation can be applied to VNNs.

Following [16], we consider a neural network F (x,w) with
a parametric distribution over weights qm(w). We assume the
choice of qm(w) in a form

w = Q(m, z), w ∼ qm(w), z ∼ p(z), (7)

where p(z) is a non-parametric distribution and Q(·) applies
a deterministic transformation, parametrized by m, to a non-
parametric random variable z. Such formulation is suitable for
every uncertainty estimation method described in Section III.
For BBB models, Q(·) is defined as

Q(m, z) = µ+ σ2z, z ∼ N (0, I), m = (µ, σ), (8)

where we break down a parametric Gaussian distribution
N (µ, σI) into two parts: a parametric deterministic transfor-
mation z −→ µ+ σ2z and a non-parametric random variable
z ∼ N (0, I).

Defining an epistemic index z ∼ p(z) [16], we can formu-
late a deterministic neural network Fd(·) function that takes a
draw of a random non-parametric variable z, instead of using
F (·) with a complex distribution over w:

Fd(x,m, z) := F (x,w), w = Q(m, z), z ∼ p(z) (9)

With this formulation, a predictive distribution (2) for fixed
hyperparameters is defined by splitting w into m and z as
follows [2], [16]:

p(y|x,D) =

∫
p(y|x,w) qm(w|D) dw =

∫
p(y|x,m, z) p(z) dz,

E[y] =
∫

y p(y|x,D)dy ≈ 1

T

T∑

i

Fd(x,m, zi),

Cov[y] =

∫
(y − E[y])(y − E[y])T p(y|x,D) dy,

≈ 1

T

T∑

i

(E[y]− Fd(x,m, zi))(E[y]− Fd(x,m, zi))
T ,

(10)

where expectation and variance are computed using Monte
Carlo integration, which can be viewed as an approximation
of p(z) with

∑T
i=0

δ(z−zi)
T , zi ∼ p(z), i ∈ 1, . . . , T [2].

Variance of the outputs is computed by taking main diagonal
values of the Cov[y] representing the uncertainty of the model.

VNNs, despite not having a direct distribution over
weights, can also be formulated as a deterministic func-
tion Fd(x,w, z) with a variational index z ∼ p(z).
This is done by describing the output Gaussian distribu-
tion N

(
αµ(L(x, µ)), diag[(ασ(L(x, σ)))2]

)
of a VL as a

linear transformation of a unit Gaussian αµ(L(x, µ)) +
diag[(ασ(L(x, σ)))2]N (0, I).

C. Epistemic uncertainty

Epistemic uncertainty describes the lack of knowledge of
the model and can be improved by providing a better model
structure, better dataset or improved training procedure, while
aleatoric uncertainty describes the uncertainty in data due to
noise in data perceiving process or domain shift [17], [18].
Usually, the epistemic uncertainty in BNNs is modeled by as-
suming a distribution over weights and fixed hyperparameters.
The use of unfixed hyperparameters leads to the Hierarchical
Bayes approach [19], where the epistemic uncertainty is rep-
resented by both hyperparameters and weight distributions.

Given the fact that model parameters and structure are
usually separated, the predictive distribution equation (2) holds
only in the case where the hyperparameters’ influence is
limited to the training procedure. If the model structure is
included in hyperparameters, then:

p(y|x,D) =

∫ ∫
p(y|x,w, a) p(w|D, a) p(a) da dw, (11)

where the probability of a prediction for a selected model,
depends on both weights and hyperparameters. Following this
approach, the predictive distribution of VNN (10) can be inter-
preted as a predictive distribution, computed for a Hierarchical
BNN with a unit Gaussian distribution over hyperparameters
z and a Dirac delta distribution over weights:

p(y|x,D) =

∫ ∫
p(y|x,w, z) p(w|D, z) p(z) dz dw

=

∫ ∫
p(y|x,w, z) δ(w − ŵ) p(z) dz dw

=

∫
p(y|x, ŵ, z) p(z) dz.

(12)

This formulation shows that the use of the variational index z
models the epistemic uncertainty in VNNs.

D. Aleatoric uncertainty

Fully connected and convolutional layers can be described
as the operation L(x, λ) = Wλx + bλ, where λ = (Wλ, bλ),
Wλ and bλ are weights and biases of the layer, and a
corresponding activation function αλ(·) can be applied to the
output of L(x, λ).

Consider a Variational Layer with L(x, σ) = Σ, Σ ∈ R,
which can be directly achieved by setting Wσ = 0, bσ = Σ and
setting the corresponding activation function ασ(·) to identity.
Applying the formulation of fully connected and convolutional
layers to f(x,w) (6) and using the reparametrization trick [15],
we can reformulate it as follows:

ε ∼ N (0, I),

f(x,w) = αµ(Wµx+ bµ) + Σε = L(x, µ) + εσ,

εσ ∼ N (0,ΣI).

(13)

In this formulation, εσ models the aleatoric uncertainty [17] for
the next subnetwork, which takes outputs of the current layer
as inputs and cannot improve this uncertainty by improving
the model.
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(a) All parameters (b) Dx = 1000

Fig. 1: Comparison of mean KL value with 1 STD range for
each method averaged across different experiment parameters.

V. EXPERIMENTS

A recently proposed framework called Epistemic Neural
Networks [16] aims to provide a possibility to rank BNNs
based on their ability to accurately estimate output uncer-
tainty. This is done by first generating a synthetic dataset
DT = {(x, y)t for t ∈ [0, T − 1]} for a simple regression task
y = f(x) + ε, where y is an output scalar, x is an input data
point with Dx number of dimensions, ε is a random variable
sampled from a Gaussian distribution N (0, σ2) representing
an aleatoric uncertainty. The dataset size T is determined
as T = Dxλ, where λ is a hyperparameter, meaning that
more data points are created for a higher dimensionality of
x. The dataset is used to train a Neural Network Gaussian
Process (NNGP) [20] and an uncertainty estimation model
of interest. NNGP serves as an ideal probabilistic model for
this data, and a predictive distribution of a selected uncer-
tainty estimation model should be as close as possible to
the predictive distribution of the NNGP model. The above
process is used to create two datasets, one used for training
the uncertainty estimation model and one (test set) used to
evaluate the uncertainty estimation performance. Following
[16], random noise is added to the data belonging to the
training set, as it has been shown to increase the uncertainty
estimation performance, which is measured by computing
the KL-divergence between the true posterior N (µGP, kGP)
and a model predictive distribution N (µB , kB). Lower values
of KL-divergence represent better uncertainty quality for a
selected model, and therefore can be used to rank different
approaches for uncertainty estimation.

We implement VNNs inside the ENN’s JAX implementation
[21] to reproduce results for BBB [4], MCD [5], Ensemble [6],
Hypermodel [13] and compare them with VNN. The code is
available at [22]. We follow the original framework parameters
and repeat experiments with the following options: Dx ∈
{10, 100, 1000}, λ ∈ {1, 10, 100}, and ε ∈ {0.01, 0.1, 1}.
Each model is trained with 10 different random seeds, and
the resulting KL value is the average of individual runs. The
average KL values for all experiment parameters are given in
Fig. 1a and for the highest input dimension value Dx = 1000
are given in Fig. 1b. VNN has better uncertainty quality
than BBB and MCD, but it is outperformed by Hypermodel
and Ensemble. This can be explained by the difference in
BMA for Deep Ensembles and Variation Inference methods,
as explained in [2]. The weight probability distribution can
be split into basins, where models sampled from the same

Fig. 2: Comparison of classification accuracy on MNIST and
CIFAR-10 datasets with different model architectures.

basin are too similar and will describe the problem from the
same point of view, resulting in multiple entries of actually
identical model in the prediction voting. Deep Ensembles and
Hypermodels avoid this problem by not having a single anchor
point with small weight deviations, and therefore having high
chances of converging trained models into different basins.
This means that VNN has a higher chance than Ensemble
to have its samples in a single basin, placing it in the same
group as BBB and MCD. Additionally, with bigger data
dimensionality Dx, MCD and BBB achieve worse results,
while VNN, Ensemble and Hypermodel perform better.

We further perform experiments on image classification.
We train the same methods for image classification tasks
on MNIST [23] and CIFAR-10 [24] datasets. To show the
influence of model architecture on the performance, we use
a set of architectures {Fi} and train each method with the
selected architecture F . We select a Base architecture to
have 3 convolutional and 1 linear layer for MNIST, and 6
convolutional and 1 linear layer for CIFAR-10. Mini and Micro
Base architectures have the same layer structure as the Base
one, but a lower number of channels in each layer. MLP
architecture consists of 3 fully connected layers. We also use
Resnet-18 [25] architecture for experiments on CIFAR-10. For
each method, we train models with different hyperparameter
values and select the best two models for comparison. The
results of classification experiments are given in Fig. 2 and are
roughly following the results of uncertainty quality estimation
experiments.

VI. CONCLUSION

We proposed Variational Neural Networks that consider a
Gaussian distribution over outputs of each layer, the mean
and variance of which are generated by the corresponding
sub-layers, and evaluated their uncertainty estimation quality
within the Epistemic Neural Networks framework. Experi-
ments show that, despite having similar properties of Bayesian
Model Averaging to Monte Carlo Dropout and Bayes By
Backpropagation, where sampled models are close resulting
in similar models’ points of view, VNNs achieve better uncer-
tainty quality which is retained when data dimensionality is
increased, in contrast to Monte Carlo Dropout and Bayes By
Backpropagation methods.
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7.4 VPIT: Real-time Embedded Single Object 3D Tracking Using Voxel
Pseudo Images

The appended paper[86] follows.
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Abstract—In this paper, we propose a novel voxel-based 3D
single object tracking (3D SOT) method called Voxel Pseudo
Image Tracking (VPIT). VPIT is the first method that uses voxel
pseudo images for 3D SOT. The input point cloud is structured
by pillar-based voxelization, and the resulting pseudo image is
used as an input to a 2D-like Siamese SOT method. The pseudo
image is created in the Bird’s-eye View (BEV) coordinates, and
therefore the objects in it have constant size. Thus, only the
object rotation can change in the new coordinate system and not
the object scale. For this reason, we replace multi-scale search
with a multi-rotation search, where differently rotated search
regions are compared against a single target representation to
predict both position and rotation of the object. Experiments on
KITTI Tracking dataset show that VPIT is the fastest 3D SOT
method and maintains competitive Success and Precision values.
Application of a SOT method in a real-world scenario meets with
limitations such as lower computational capabilities of embedded
devices and a latency-unforgiving environment, where the method
is forced to skip certain data frames if the inference speed is
not high enough. We implement a real-time evaluation protocol
and show that other methods lose most of their performance on
embedded devices, while VPIT maintains its ability to track the
object.

Index Terms—3D tracking, single object tracking, voxels,
pillars, pseudo images, real-time neural networks, embedded deep
learning (DL)

I. INTRODUCTION

W ITH the rise of robotics usage in real-world scenarios,
there is a need to develop methods for understanding

the 3D world in order to allow a robot to interact with objects.
To this end, efficient methods for 3D object detection, tracking,
and active perception are needed. Such methods provide the
main source of information for scene understanding, as having
high-quality object detection and tracking outputs increases
chances for a successful interaction with surroundings.

While for 2D perception tasks mainly cameras are used,
there is a variety of sensors that can be used for 3D per-
ception tasks, ranging from inexpensive solutions like single
or multiple cameras to more costly ones like Lidar or Radar.
Lidar is currently a well-adopted choice for 3D perception
methods as it creates a set of 3D points forming a point
cloud taken by shooting laser beams in multiple directions
and counting the time needed for a reflection to be sensed.
Point cloud data, despite being sparse and irregular, contains

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 871449
(OpenDR).

much more information needed for 3D perception compared to
images, and is more robust to changes in weather and lightning
conditions. 3D object detection and tracking methods using
point clouds provide the best combination of accuracy and
inference speed, as can be seen in the KITTI leaderboard [1].

Lidars usually operate at 10-20 FPS, and therefore, a method
receiving point cloud data as input can be called real-time if
its inference speed is at the rate of the Lidar’s data generation,
as it will not be able to receive more data to process. Even
when the method cannot benefit from the FPS, higher than
the Lidar’s frame rate, perception methods are usually paired
with another method that makes use of the perception results,
as in planning tasks. This means that the saved processing time
in between Lidar’s frames can be used to analyze the results
of the tracking without affecting its performance. In case of
insufficient total frame rate, that can happen due to a slower
computing system and higher additional computational load,
tracking methods can suffer from dropped frames, that cannot
be processed because the system is busy processing a previous
data frame. This will result in worse tracking results and, in
case of high drop rate, it may make the method unusable.

3D SOT, in contrast to the multiple 3D object tracking (3D
MOT) task, focuses on tracking a single object of interest with
a given initial frame position. This task lies between object
detection and multiple object tracking tasks, as the latter one
requires objects to be detected first, and then to associate each
of them to a previously observed object. SOT methods do not
rely on object detection, but they try to find the object offset
on a new frame either by using correlation filters [2], [3], or
deep learning models that regress to the predicted object offset
[4], or use a Siamese approach to find the position with the
highest similarity [5]–[8], or use voting [9], [10].

Application of tracking methods for real-world tasks meets
a problem where, due to the model’s latency, not all data
frames can be processed [11], [12]. For single-frame tasks,
such as object detection, this problem only influences the
latency of the predictions and not their quality, but in tracking,
the connection between consecutive frames is important. This
means that dropping frames can result in wrong associations
for MOT or in a lost object for SOT. Methods like those
mentioned above do not take into consideration the limited
computational capabilities of embedded computing devices,
which are typically used in robotics applications, e.g., self-
driving cars, due to a lower power consumption that allows the
robotic system to stay active for a longer time. These devices
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have a different architecture of CPU-GPU communication than
desktop computers and high-end workstations. Thus, depend-
ing on the CPU-GPU workload balance and communication
protocol of a robotic system, some methods can be better
suited for achieving real-time operation.

In this paper, we present a novel method for 3D SOT re-
ceiving voxel pseudo images as an input, as opposed to point-
based models proposed for 3D SOT. Voxel pseudo images
are created in Bird’s-eye View (BEV) coordinates, and since
the objects in such projection do not change size, we remove
the standard multiscale search process followed by 2D SOT
methods. We propose the use of multi-rotation search, where
differently rotated search regions are compared against a single
target representation to predict both the position and rotation
of the object. We show that adopting such an approach leads
to fast tracking with competitive performance compared to the
point-based methods. This opens a possibility to adapt 2D SOT
methods for a 3D task with minor changes. Considering real-
world limitations, we follow [11] and implement a benchmark
for real-time Lidar-based 3D SOT on embedded devices,
showcasing the performance drop of the fastest methods when
implemented in a real-world scenario. We compare VPIT using
the real-time benchmark with the fastest methods P2P [9] and
PTT [10] and show that those methods lose most of their
performance on embedded devices, which indicates that other
methods that are 2× or more slower than these will not be
able to track at all.

The remainder of the paper is organized as follows: Section
II provides a description of the related works. Section III
describes the proposed method, along with the proposed train-
ing and inference processes. Section IV provides evaluation
results on high-end and embedded devices with consideration
of real-time requirements. Section V concludes the paper and
formulates directions for future work.

II. RELATED WORKS

SOT in 3D is commonly formulated as an extension of
2D SOT. In both cases, an initial position of the object of
interest is given, and the method needs to predict the position
of the object in all future frames. The main difference between
2D and 3D SOT rises from the type of data used as input.
Camera-based 3D perception methods commonly achieve poor
performance due to the increased difficulty of extracting
correct spatial information from cameras, and therefore most
of the 3D object tracking methods use point cloud data or a
combination of point clouds and camera images. Point cloud
sparsity does not allow using straightforward extensions of 2D
SOT methods based on regular CNNs.

SC3D [13] uses a Siamese approach by encoding a target
point cloud shape in the initial frame and searching for regions
in a new frame with the smallest cosine distance between target
and search encodings. After finding a new location, the new
object shape is combined with the previous one to increase
the quality of comparison in future frames. It achieves good
tracking results, but its operation is computationally expensive.
Assuming that an object should not move far away from its
current location in consecutive frames, one can define a search

region inside its neighborhood for searching it in a new frame.
This is commonly done by expanding the region around the
position of the target.

P2B [9] uses a point-wise network to process points in
target and search regions to create a similarity map and find
potential target centers. These regions are then used by a
voting algorithm to find the best position candidate.

BAT [14] is a 3D tracking method based on P2B, which
uses Box Cloud representations as point features, i.e., a
representation which depicts the distances between the points
of an object and the center and corners of its 3D bounding
box.

3D-SiamRPN [5] uses a Siamese point-wise network to
create features for target and search point clouds. It then uses
a cross-correlation algorithm to find points of the target in a
new frame. An additional region proposal subnetwork is used
to regress the final bounding box.

The F-siamese tracker [15] aims to fuse RGB and point
cloud information for 3D tracking and applies a 2D Siamese
model to generate 2D proposals from an RGB image, which
are then used for 3D frustum generation. The proposed frus-
tums are processed with a 3D Siamese model to get the 3D
object position.

Point-Track-Transformer (PTT) [10], [16] creates a trans-
former module for point-based SOT methods and employs it
based on a P2B model, leading to an increased performance.

3D Siam-2D [17] uses two Siamese networks, one that
creates fast 2D proposals in BEV space, and another one that
uses projected 2D proposals to identify which of the proposals
belong to the object of interest. The loss of information that
occurs in BEV projection affects the performance of the 2D
Siamese network. Although voxel pseudo images lie on the
BEV space, they do not have this problem, as each pixel
of this image incorporates information about the points in a
corresponding voxel via a small neural network, and not the
projection alone.

Recent works on 3D SOT focus on improving speed as
well as tracking performance, but most do not take into con-
sideration the limited computational capabilities of embedded
devices, like the NVIDIA Jetson series, which are commonly
used in robotics applications. Large delays in processing in-
coming frames can lead to dropped frames, which can quickly
lead to performance degradation of traditional trackers as
larger and larger offsets must be predicted as time progresses.
In 2D tracking, this concept has been investigated, for example
in the real-time experiments of the VOT benchmarks [18], and
more recently in [11] for streaming perception tasks in general.
In this work, we extend this notion to 3D SOT, and design
VPIT to be used efficiently and effectively on embedded
devices. Furthermore, to the best of our knowledge, VPIT is
the first tracker to use a siamese architecture on point cloud
pseudo images directly, while using varying rotations of the
target area to find the target’s rotation in subsequent frames.
VPIT can be seen as a 3D extension of 2D siamese-based
trackers [6], [19], paving the way for other 2D approaches to
be successfully extended to the 3D case, while maintaining
high tracking speed, even on embedded devices.
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III. PROPOSED METHOD

Our proposed method is based on a modified PointPillars
architecture for 3D single object tracking, which is originally
trained for 3D object detection. In the following subsections,
we first introduce our proposed modifications to the baseline
architecture to shift from detection to tracking, and then
describe the training and inference processes. Implementation
of our method is publicly available in the OpenDR toolkit1.

A. Model architecture

Point cloud data is irregular and cannot be processed
with 2D convolutional neural networks directly. This forces
methods to either structure the data using techniques such as
voxelization [20]–[23], or to use neural networks that work
well on unordered data, such as MLPs with maximum pooling
operations or Transformers [5], [9], [10], [24], [25].

Existing datasets for 3D object detection and tracking, such
as KITTI [26] and NuScenes [27], consider only a single
rotation angle: around the vertical axis. This limitation raises
from the nature of scenes in these datasets, as they present data
for outdoor object detection and tracking with objects moving
on roads. These objects are mostly rotated in Bird’s-eye View
(BEV) space, and therefore only this rotation is considered for
simplicity.

Since the rotation is limited to the BEV space, we can
perform 2D-like Siamese tracking on a structured point cloud
representation, such as PointPillars pseudo image [21]. This
image is the result of voxelization, where the vertical size of
each voxel takes up the whole vertical space, and therefore
creating a 2D map in BEV space where each pixel represents
a small subspace of a scene and points inside it. Objects in
such an image have constant size, as they are not affected by
projection size distortions, but their rotation makes the Axis-
Aligned Bounding Boxes (AABB) tracking impractical.

Siamese models use an identical transformation θ(·) to both
inputs x and z, which are then combined by some function
g(·), i.e. f(x, z) = g(θ(x), θ(z)). Siamese tracking methods
select θ(·) to be an embedding function and g(·) to be a
similarity measure function. If the input x is considered to
be a target image that we want to find inside the search image
z, the output of such model is a similarity score map, that has
high values on the most probable target object locations.

Tracking is performed by first initializing the target region
t0 with the given object location and a corresponding search
region s0 = σ(t0) that should be big enough to accommodate
for possible object position offset during the time difference
between the input frames. For the frames Fτ−1 and Fτ , the
target region from previous frame tτ−1 and the corresponding
search region sτ−1 are processed by applying the Siamese
model to create next target and search regions:

tτ = tτ−1 + δ(f(ξt(tτ−1), ξs(sτ−1))),

sτ = σ(tτ ),
(1)

where the δ(·) function transforms the similarity map into the
target position offset and ξt(·) and ξs(·) functions transform

1https://github.com/opendr-eu/opendr

the target and search regions, respectively, into an image which
is processed by the embedding function θ(·). More details
about these functions in Section III-B. This process is repeated
for each new frame to update the object location.

SiamFC [6] uses a fully convolutional network as θ(·) and
creates a set of search regions for each target to address
the possible change in size due to the projection distortion.
We follow the approach of SiamFC and use PointPillars [21]
to structure point clouds by generating voxel pseudo image,
which serves as an input to the Siamese model, that uses a
reduced PointPillars’ Region Proposal Network (RPN) as θ(·)
and a similarity function g(a, b) = a⊗b, where ⊗ indicates the
correlation operator. In practice, because most DL frameworks
perform correlation in convolutional layers, the similarity
function can be implemented as g(a, b) = conv2Dω=b(a),
where ω are the weights of the layer.

Fig. 1: Structure of PointPillars 3D object detection model.
The RPN is a 2D CNN that takes a pseudo image as input.

The Region Proposal Network (RPN) in PointPillars is
responsible for processing the input pseudo image using a
fully convolutional network with 3 blocks of convolutional
layers and 3 transposed convolutions that create same-sized
features for final box regression and classification, as can be
seen in Fig. 1. For Siamese tracking purposes, we are only
interested in feature generation and there is no need for box
regression and classification parts of the RPN. Therefore, we
select convolutional blocks of the RPN to be used as a Feature
Generation Network (FGN) θ(·). The architecture of the model
is shown in Fig. 2. The initial pipeline is similar to PointPillars
for Detection, which includes voxelization of the input point
cloud and processing it with the Pillar Feature Network to
create a voxel pseudo image. The target and search regions
of the pseudo image are processed by a Feature Generation
Network, creating features that are compared by a cross-
correlation module to find a position of the highest similarity,
which serves as a new target position.

Each of the target (t) and search (s) regions are represented
by a set of 5 values (x, y, w, h, α), where (x, y) is the position
of the region center in pseudo image space in pixels, (w, h)
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Fig. 2: Structure of the proposed Voxel Pseudo Image Tracking model. The input point cloud is voxelized and processed with
the PointPillars’ Pillar Feature Network to create a voxel pseudo image, which serves as an input to the Siamese model. The
Feature Generation Network (FGN), which is a convolutional subnetwork of the Pointpillars’ RPN, processes the target and
search regions to create corresponding features that are then compared to find a position of the best similarity.

is the size of the region and α is the rotation angle. The
ground truth bounding box Bgt is described by the 3D position
(x, y, z), size (w, h, d) and rotation α. The corresponding
target and search regions are created as follows:

t0 = κc((B
x
gt, B

y
gt, B

w
gt, B

h
gt, B

α
gt)),

s0 = σ(t0),
(2)

where t0 is the initial target region, s0 is the initial search
region and the κc(·) is a function that adds context to the
target region based on the amount of context parameter c:

κc(t) =

{
κc+(t), if c > 0,

κc−(t), otherwise,

κc+(x, y, w, h, α) = (x, y,mn,mn, α),

mn =
√

(w +m)(h+m),

m = c(w + h),

κc−((x, y, w, h, α)) = (x, y, w(1− c), h(1− c), α),

(3)

where κc+(·) adds context to the object by making a square
region that includes the original region inside, and κc−(·) adds
context by increasing each side of the region independently.
The σ(·) function creates a search region, the size of which is
defined by a hyperparameter σs indicating the search region
to target region size ratio, i.e.,:

σ(x, y, w, h, α) = (x, y, σsw, σsh, α). (4)

The predicted output for the frame τ is computed as:

Bτ = (txτ , t
y
τ , B

z
gt, t

w
τ , t

h
τ , B

d
gt, t

α
τ ). (5)

B. Training

We start from a pretrained PointPillars model on KITTI De-
tection dataset. The training can be performed on both KITTI
Detection and KITTI Tracking datasets. Training on KITTI
Detection dataset is done by considering objects separately and
creating target and search region from their bounding boxes.
For a set of ground truth boxes {Bµi

| i ∈ [1, N ]} in an input

frame µ, where N is a number of ground truth objects in this
frame, we create N training samples by considering target-
search pairs {(tµi

, sµi
) | i ∈ [1, N ]} created from these ground

truth boxes as follows:

tµi
= κc((B

x
µi
, By

µi
, Bw

µi
, Bh

µi
, Bα

µi
)),

sµi
= σa(σ(tµi

), tµi
),

(6)

where κc(·) and σ(·) functions are identical to the ones, de-
scribed before, and σa(·) represents an augmentation technique
where the center of the search region is shifted from the target
center to imitate object movement between frames:

σa(s, t) = (tx + ϵx, t
y + ϵy, s

w, sh, sα), (7)

with ϵx ∼ uniform(− sw−tw

2 , s
w−tw

2 ) and ϵy ∼
uniform(− sh−th

2 , s
h−th

2 ). In addition to the proposed
augmentation, we use point cloud and ground truth boxes
augmentations used in PointPillars, which include point
cloud translation, rotation, point and ground truth database
sampling.

For training on KITTI tracking dataset, we select the target
and search regions from the same track k and object ok, but the
corresponding point clouds and bounding boxes are taken from
the different frames, modeling the variance of target object
representation in time:

tok = κc((B
x
ft , B

y
ft
, Bw

ft , B
h
ft , B

α
ft)),

t̂ok = κc((B
x
fs , B

y
fs
, Bw

fs , B
h
fs , B

α
fs)),

sok = σa(σ(t̂ok), t̂ok),

(8)

where ft and fs are a randomly selected frames from the
track k that contain the object of interest ok. We balance
the number of occurrences of the same object by selecting
a constant number of (ft, fs) samples for each object in the
dataset.

After creating target and search regions, we apply ξt(·) and
ξs(·) functions by first taking sub-images of those regions and
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then, depending on the interpolation size parameter, applying
bicubic interpolation to have a fixed size of the image:

ν(x) = subimage(Π(x), x),

ξρ(x) =

{
bicubic(ν(x), ιρ), if ιρ > 0,

ν(x), otherwise,

(9)

where x is a region to be processed, ρ indicates that either tar-
get region t, or search region s is selected, ιr is an interpolation
size parameter, which indicates the output size of the bicubic
interpolation, and Π(x) creates an AABB pseudo image from
the input point cloud that contains the region x. These images
are processed with the Feature Generation Network, which
is the convolutional subnetwork of the PointPillars’ RPN, as
shown in Fig. 2.

The resulting features are compared using the cross-
correlation module to create a score map. A Binary Cross-
Entropy (BCE) loss is used to compare a predicted score map
Mx to the true label My as follows:

BCE(Mx,My) =
1

N

N∑

1

ln,

ln = −wn

(
Myn

logS(Mxn
) + (1−Myn

) log(1− S(Mxn
))
)
,

(10)

where S(x) = 1/(1 + e−x) and wn is a scaling weight for
each element. We follow SiamFC [6] and select the values of
wn to equalize the total weight of positive and negative pixels
on the ground truth score map.

The true label is created by placing positive values on a
score map within a small distance of the projected target
center, and zeros everywhere else. The value v(px, py) of
a pixel (px, py) in a label map depends on its distance to
the target center d(px, py) and a hyperparameter r, which
describes the radius of positive labels around the center:

v(x, y) ={
vmin

d(px,py)
r + vmax(1− d(px,py)

r ), if d(px, py) ≤ r + 1,

0, otherwise,

d(px, py) =
√
(px − cx)2 + (py − cy)2,

(11)

where (cx, cy) is the target center, [vmin, vmax] is the range of
values assigned to the pixels inside the circle of radius r, and
the pixels inside the (r, r + 1] range are assigned to values,
lower than vmin.

C. Inference

Inference is split into two parts, i.e., initialization and
tracking. The 3D bounding box of the object of interest is
given by either a detection method, a user, or from a dataset,
to create the initial target and its features, that will be used for
the future tracking. During tracking, the last target position is
used to place a search region, but instead of using only a single
search region, we create multiple search regions with identical
size and different rotations. This is done to allow to correct
for rotation changes in the object. The set of 2K + 1 search

regions {sτi | i ∈ [−K,K]} is created by altering the initial
search region sτ0 , i.e., sx,y,w,h

τi = sx,y,w,h
τ0 and sατi = sατ0+iψα,

where ψα is a rotation step between consequent search regions.
Target features are compared with all search features, and

the one with the highest score is selected for a new rotation:

sτmax = argmax
sτi

Λi max(f(ξt(tτ ), ξs(sτi))),

tατ+1 = µsατmax
+ (1− µ)tατ ,

(12)

where Λi is a rotation penalty multiplier, which is 1 for i = 0
and a hyperparameter value in [0, 1] range for all other search
regions, µ is a rotation interpolation coefficient and f is a
Siamese model.

The score map M , obtained from the Siamese model, is
upscaled with bicubic interpolation, increasing its size 16
times by default (score upscale parameter uM ). Based on the
assumption that an object cannot move far from its previous
position in consecutive frames, we use a penalty technique
for the scores that are far from the center, by multiplying
scores with a weighted penalty map. The penalty map is
formed using either Hann window or a 2D Gaussian function.
The maximum score position (x, y)max of the upscaled score
map is translated back from the score coordinates to image
coordinates as follows:

(x, y)max = argmax
(x,y)

H(f(ξt(tτ ), ξs(sτmax
)))(x,y),

(x, y)img
max = (x, y)max

s
(w,h)
τmax

Hsize
,

Hsize = uMMsize,

H(M) = ηP (Hsize) + (1− η) bicubic(M,uM ,Msize),
(13)

where (x, y)img
max is a target position offset, which represents

a prediction of the target object’s movement, H applies score
interpolation and a penalty map P (size) to the upscaled output
of the Siamese model, Msize and Hsize are the 2D sizes of the
original score map and the upscaled score map, respectively,
and η is a window influence parameter that controls how much
the Hann window or a Gaussian penalty influence the score
map.

After the current frame’s prediction is ready, the search
region is centered on a prediction, assuming that the object’s
position on the next frame should be close to its position
on the previous frame. In order to make it easier to find the
position of an object inside a search region, we apply a linear
position extrapolation for the search region by centering it not
on a previous prediction, but on a possible new prediction
position. Given a target region from the last frame tτ−1 and
the predicted target region tτ , the corresponding search region
has its position defined sx,yτ = 2tx,yτ − tx,yτ−1. This approach
increases the chances of the target to be in the center of the
search region or having a small deviation from it.

When the linear extrapolation is used, the penalty map
P (size) (Eq. 13) is created using a 2D Gaussian with a covari-
ance matrix Σ that represents the angle of the extrapolation
vector to penalize more positions that are not on the way of
the predicted object’s movement. This is done by creating a



6

(a) Gaussian
penalty

(b) Score
map

(c) Target
pseudo image

(d) Search
pseudo image

Fig. 3: An example of a directional Gaussian penalty used with
linear extrapolation, a corresponding score map and target and
search pseudo images. Cyan color on the score map represents
negative values.

Gaussian with independent variables and variances σ+ for the
desired direction and σ− for the opposite direction:

µ = 0 and Σ0 =

[
σ− 0
0 σ+

]
. (14)

Bigger σ+ allows a further offset alongside the extrapolation
vector, while bigger σ− allows a higher deviation from it. The
resulting Gaussian N (µ,Σ0) is rotated by ϕ = arctan(e),
where e is the extrapolation vector, as follows:

R =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
and Σ = RΣ−1

0 RT . (15)

The creation of such a map for a high-dimensional upscaled
score map is a computationally expensive task, and therefore,
to optimize it, the penalty maps are hashed by their size
and rotation to reuse in future frames. There is no need in
keeping high precision of rotation value, as the penalty map
will be almost identical for close ϕ values and will result in
the same basis for predictions. Keeping this in mind, we define
a rotation hash function Hr(ϕ) =

⌊
nϕ
2π

⌋
. This hash function

divides the full circle on n equal regions, and the penalty map
is taken for the closest ϕ-sector. Fig. 3 shows an example of a
Gaussian penalty created using this approach, a corresponding
score map and target and search pseudo images.

Target features are created at the first frame and then used to
find the object during the whole tracking sequence. However,
due to a high variance of object representation on different dis-
tances to Lidar, initial features may be too far from the current
representation of the object, as can be seen from Fig. 4. This
problem may be resolved by using target features from the
latest frame, but such approach leads to an error accumulation
and drifts the target region to a background object. In order to
balance between the aforementioned approaches, we introduce
a target feature merge scale mtf . Using the mtf = 0, only the
initial target features will be used through the tracking task,
while using the mtf = 1 results in the latest frame’s target
features overwriting the previous ones. Fig. 5 shows the effect
of a high merge scale value mtf = 0.5. The target region is
slowly drifting to the right starting from frame 10 and the
object is completely lost at frame 30. We use small values of
mtf in range [0, 0.01] in ablation study. This allows to keep the
target features stable and not drift out from the object, while
still having the possibility to update features if the distance to
the object changes.

(a) τ = 0 (b) τ = 40 (c) τ = 60 (d) τ = 80

Fig. 4: Target features of the same object at different frames.

(a) τ = 0 (b) τ = 10 (c) τ = 20 (d) τ = 30

Fig. 5: Merged target features of the same object at different
frames with 0.5 merge scale. Starting from frame 10, the object
representation drifts to the right and completely loses the target
at frame 30.

By default, the model’s position offset predictions are
applied directly, but we can improve prediction stability by
introducing the offset interpolation parameter ω. Given the
previous frame’s target position ζτ−1 and a prediction for the
current frame ζ̂τ , the interpolated position ζτ is defined as
follows:

ζτ = ωζτ−1 + (1− ω)ζ̂τ . (16)

Current 3D detection and tracking datasets provide anno-
tations for a rotation around the vertical axis only, which is
sufficient for current robotic and autonomous driving tasks,
but it may be too coarse for future tasks. For datasets with
rotations around all axes and not only the vertical one, an ad-
ditional regression branch can be added that, applied to a target
region, will predict other rotation angles. A similar process can
be applied to non-rigid objects in order to continuously update
their dimensions.

TABLE I: Results of 3D Car tracking on KITTI dataset.
Modality represents the type of data the tracking is performed
on (PC for point cloud, BEV for Birds-Eye-View and VPI
for voxel pseudo image). FPS values are reported on a 1080Ti
GPU by a corresponding paper. FPS values with a star notation
are obtained by running the methods’ official implementations
on a 1080ti GPU considering the full runtime of the network.

Method Modality Success Precision FPS

3DSRPN PCW [5] PC 56.32 73.40 16.7
3DSRPN PW [5] PC 57.25 75.03 20.8
SCD3D-KF [13] PC 40.09 56.17 2.2
SCD3D-EX [13] PC 76.94 81.38 1.8
3D Siam-2D [17] PC+BEV 36.3 51.0 -

BAT [14] PC 65.38 78.88 23.96*
PTT-Net [10] PC 67.8 81.8 39.51*
P2B [9] PC 56.2 72.8 30.18*

VPIT (Ours) VPI 50.49 64.53 50.45
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TABLE II: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset. The evaluation is performed with official
implementations on high-end and embedded GPU platforms with different combinations of GPU/CPU. 32C CPU and 104C
CPU correspond to 32-core and 104-core CPUs, respectively.

Method Modality Success Precision
FPS

1080Ti 2080 2080Ti TX2 Xavier
32C CPU 32C CPU 104C CPU

P2B [9] PC 56.2 72.8 30.18 26.34 38.93 6.20 10.37
PTT-Net [10] PC 67.8 81.8 39.51 33.34 50.25 8.04 13.49
VPIT (Ours) VPI 50.49 64.53 50.45 52.52 72.53 14.61 20.55

IV. EXPERIMENTS

We use KITTI [26] Tracking training dataset split to train
and test our model, with tracks 0-18 for training and validation
and tracks 19-20 for testing (as is common practice [5], [9],
[10], [13], [17]). We use Precision and Success metrics as
defined in One Pass Evaluation [28]. Precision is computed
based on the difference between ground-truth and predicted
object centers in 3D. Success is computed based on the 3D
Intersection over Union (IoU) between predicted and ground
truth 3D bounding boxes.

We use 1 feature block from the original PointPillars model
with 4 layers in a block. The model is trained for 64, 000 steps
with BCE loss, 1 ∗ 10−5 learning rate and 2 positive label
radius. During inference, rotations count of 3, rotation step
of 0.15 and rotation penalty of 0.98 are used, together with
0.85 penalty map multiplier, score upscale of 8, target/search
size of (0, 0) (original sizes are used), context amount of
0.27, rotation interpolation of 1, offset interpolation of 0.3,
target feature merge scale of 0.005 and linear search position
extrapolation.

A. Comparison with state-of-the-art

Evaluation results on 1080Ti GPU are given in Table I.
Even though we are interested in embedded devices, we first
measure FPS on a 1080Ti, since this is the most commonly
used GPU amongst the compared methods, as a relative
speed measure between them. VPIT is the fastest method
and achieves competitive Precision and Success. We evaluate
official implementations of the fastest methods (P2B, PTT,
VPIT) on different high-end and embedded GPU platforms
to showcase how the architecture of the device influences the
models’ FPS.

When computing FPS, we include all the time the model
spends to process the input and create a final result. This
excludes time spend to obtain data and to compute Success
and Precision values, but includes pre- and post-processing
steps.

As can be seen from Table II, in terms of speed, VPIT
outperforms P2B by 67% on 1080Ti GPU, 99% on 2080 GPU
and 86% on 2080Ti GPU with 104-core CPU. For embedded
devices, the difference is bigger: VPIT outperforms P2B by
135% on TX2 and by 98% on Xavier. This indicated that the
approach of VPIT is more suited to the robotic systems, where
embedded devices are the most common, and it is harder to
meet real-time requirements.

B. Real-time evaluation

Application of 3D tracking methods is usually done for
robotic systems that do not use high-end GPUs due to their
high power consumption, but instead apply the computations
on embedded devices, such as TX2 or Xavier. Following
[11] we implement a predictive real-time benchmark. Given
a time step τ , the set of inputs Sin that is visible to the
model is limited by those inputs that appeared before τ , i.e.,
Sin = (xi, τi|i ≤ τ), where (xi, τi) is a pair of an input
frame and a corresponding time step. The processing time of
the model is higher than zero, which means that the resulting
prediction pi at time τ̂i cannot be compared to the label yi
from the same frame, and therefore for each label yi from the
dataset, it will be compared to the latest prediction plpr(i). The
predictive real-time error Epr, based on a regular error E, is
computed for each ground truth label yi as follows:

Epr(yi) = E(yi, plpr(i)),

lpr(i) = argmax
j

τ̂j ≤ τi. (17)

As shown in [11], the existing model can be improved for
a predictive real-time evaluation by predicting the position
of the object at a frame i and then predicting its movement
during the time period between the frames i and i + 1 using
a Kalman Filter [29] or any other similar method. Such
optimization can be applied to any of the methods that we
compare, and therefore, to eliminate the factor of “predictive
errors” where the model’s error in prediction for the current
frame is more leaned towards the prediction for the next
frame, we introduce a non-prediction real-time benchmark.
This benchmark effectively shifts all labels one frame forward,
allowing the methods that are faster than the data FPS to be
evaluated in the same way, as in a regular evaluation protocol.
The only difference between the non-predictive and predictive
benchmarks is in the way the latest prediction is defined:

lnpr(i) = argmax
j

τ̂j ≤ τi+1. (18)

We evaluate the fastest 3D SOT methods (P2B, PTT, VPIT)
on embedded devices with both non-predictive (Table III) and
predictive (Table IV) benchmarks. We select Data FPS to be
either 10 or 20, representing the most popular 10 and 20 Hz
Lidars. The 10Hz Lidar is the easier case, as for the method to
be real-time, it needs to sustain FPS, higher than 10, compared
to 20 for the 20 Hz Lidar. During the evaluation, we compute
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TABLE III: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset in real-time settings without the predictive
requirement. The evaluation is performed with official implementations on embedded GPU platforms for 10 and 20 Hz Lidars
(Data FPS). Frame drop represents the percentage of frames that could not be processed due to the model’s latency. Regular
represents evaluation without real-time requirements.

Method Data FPS Success (non-predictive) Precision (non-predictive) FPS Frame drop
Regular TX2 Xavier Regular TX2 Xavier TX2 Xavier TX2 Xavier

P2B [9] 10 56.20 21.90 36.50 72.80 21.70 42.40 6.17 10.07 37.41% 7.00%
PTT-Net [10] 10 67.80 29.50 63.60 81.80 30.00 75.10 6.90 12.38 28.21% 0.81%
VPIT (Ours) 10 50.49 50.31 50.49 64.53 64.08 64.53 14.31 20.55 0.68% 0.00%

P2B [9] 20 56.20 10.90 16.70 72.80 7.90 15.0 5.54 9.61 70.57% 51.56%
PTT-Net [10] 20 67.80 17.90 26.50 81.80 15.70 26.60 6.61 11.88 64.14% 38.95%
VPIT (Ours) 20 50.49 38.96 47.70 64.53 45.50 59.87 14.37 20.06 30.17% 2.38%

TABLE IV: Evaluation of the fastest methods for 3D Car tracking on KITTI dataset in real-time settings with the predictive
requirement. The evaluation is performed with official implementations on embedded GPU platforms for 10 and 20 Hz Lidars
(Data FPS). Frame drop represents the percentage of frames that could not be processed due to the model’s latency. Regular
represents evaluation without real-time requirements

Method Data FPS Success (predictive) Precision (predictive) FPS Frame drop
Regular TX2 Xavier Regular TX2 Xavier TX2 Xavier TX2 Xavier

P2B [9] 10 56.20 19.10 30.30 72.80 17.80 33.70 6.17 10.07 36.31% 6.79%
PTT-Net [10] 10 67.80 24.90 50.70 81.80 23.40 59.00 7.07 12.26 26.15% 0.90%
VPIT (Ours) 10 50.49 45.82 46.68 64.53 57.76 59.28 14.61 20.55 0.57% 0.00%

P2B [9] 20 56.20 9.10 13.50 72.80 6.00 10.90 5.54 9.47 69.57% 50.31%
PTT-Net [10] 20 67.80 15.40 23.20 81.80 13.10 21.50 6.67 12.06 62.49% 37.35%
VPIT (Ours) 20 50.49 34.00 41.39 64.53 36.61 49.36 14.40 20.77 29.41% 1.56%

Fig. 6: Evaluation of the fastest models with real-time re-
quirements on embedded devices and a desktop GPU. Data
FPS represents 10 and 20 Hz Lidars. Devices are sorted in
descending order by their computational power.

how many frames could not be processed due to the model’s
latency and represent it as a Frame drop percentage.

Only VPIT on Xavier (more powerful embedded device) for
a 10Hz Lidar could not suffer from any frame drop, resulting
in the regular Success and Precision values for a non-predictive
benchmark and suffering 3.81 Success and 5.25 Precision for a
predictive benchmark. The highest Frame drop of 60−70% is
seen for P2B and PTT on TX2 for a 20Hz Lidar. In this case,
Success values of P2B and PTT are 6 and 4 times lower than
during the regular evaluation, respectively, which indicates
that these methods cannot work under the aforementioned
conditions. For every evaluation case, except the Xavier with

a 10Hz Lidar, VPIT outperforms P2B and PTT in Success,
Precision, FPS and Frame drop, but PTT still maintains the
best Success and Precision on Xavier with a 10Hz Lidar. As
can be seen from Fig. 6, Success drop of VPIT is the smallest,
while P2B and PTT lose most of their tracking accuracy on
TX2 for any Lidar and on Xavier for a 20Hz Lidar.

Evaluation of the other methods, presented in Table I, is not
needed, as their FPS is 2 or more times slower than the FPS of
P2B and PTT, which will result in a complete loss of Success
and Precision on any of the real-time benchmarks that were
discussed.

C. Ablation study

We performed experiments to determine the influence of
different hyperparameters on the Success and Precision met-
rics. We used KITTI Tracking tracks 10 − 11 for validation
and 0 − 9, 12 − 18 for training. The influence of selected
hyperparameters on Success and Precision metrics is similar,
and therefore we present only the effect on Success metric on
validation subset in Fig. 7.

Decreasing the number of feature blocks from the Feature
Generation Network, leads to better Success values. This can
be due to an increasing receptive field with each new block
that leads to over smoothing of the resulting feature maps and
makes it harder to define a precise position of an object of
interest.

Next, we follow SiamFC [6] and use target and search
upscaling with ιt = (127, 127) and ιs = (255, 255). This
results in constant-sized target and search pseudo-images,
corresponding feature and score maps, which allows imple-
menting mini-batch training and reduce the training time.
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Fig. 7: Influence of different hyperparameter values on Success metric on validation KITTI Tracking subset.

However, such approach does not work well for voxel pseudo
images, achieving 81% less Success than when using original
sizes (ιt = (0, 0) and ιs = (0, 0)).

Furthermore, following SiamFC [6], positive values of the
context amount parameter c result in square target and search
regions. In contrast to it, we also use negative c values to add
independent context to each dimension of the region, keeping
its aspect ratio. Positive context leads to better Success with
the maximum at c = 0.26, which is 10% higher than the result
for c = −0.1.

Regarding the positive label radius, r = 2 results in the
best training procedure, but this hyperparameter has a low
influence on the final Success value, as well as the target
feature merge scale mtf , window influence η, score upscale
uM , search region scale σs, rotation step ψα and rotation
penalty Λ.

Next, linear position extrapolation leads to a 30% increase in
Success compared to a conventional search region placement
and no directional penalty. With offset interpolation ω = 0.3,
the Success value increases by 24%, compared to the direct
application of the model’s prediction (ω = 1).

Finally, a pretrained PointPillars backbone creates features
that are capable of differentiating between target class and
other object types, but those features cannot be used effectively
to differentiate between different objects from the same class.
This serves as a good starting point for the SOT task, and then
training for 64000 steps results in the best model for selected
hyperparameters.

V. CONCLUSIONS

In this work, we proposed a novel method for 3D SOT
called VPIT. We focus on stepping out of the point-based
approaches for this problem and studying methods to use
structured data for 3D SOT. We formulate a lightweight
method that uses PointPillars’ pseudo images as a search space
and apply a Siamese 2D-like approach on these pseudo images
to find both position and rotation of the object of interest.

Experiments show that VPIT is the fastest method, and it
achieves competitive Precision and Success values. Moreover,
we implement a real-time evaluation protocol for 3D single
object tracking and use it for evaluation of the fastest methods
on embedded devices, that are the most popular choice for
robotic systems. Results showcase that other methods are less
suited for such devices and lose most of their ability to track
objects due to a high latency of predictions. The proposed
method allows for an easy adaptation of 2D tracking ideas to
a 3D SOT task while keeping the model lightweight.
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7.5 3D Multi-Object Tracking Using Graph Neural Networks With Cross-
Edge Modality Attention

The appended paper [12] follows.
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3D Multi-Object Tracking Using Graph Neural Networks with
Cross-Edge Modality Attention

Martin Büchner and Abhinav Valada

Abstract—Online 3D multi-object tracking (MOT) has wit-
nessed significant research interest in recent years, largely driven
by demand from the autonomous systems community. However,
3D offline MOT is relatively less explored. Labeling 3D trajectory
scene data at a large scale while not relying on high-cost human
experts is still an open research question. In this work, we
propose Batch3DMOT which follows the tracking-by-detection
paradigm and represents real-world scenes as directed, acyclic,
and category-disjoint tracking graphs that are attributed using
various modalities such as camera, LiDAR, and radar. We present
a multi-modal graph neural network that uses a cross-edge
attention mechanism mitigating modality intermittence, which
translates into sparsity in the graph domain. Additionally, we
present attention-weighted convolutions over frame-wise k-NN
neighborhoods as suitable means to allow information exchange
across disconnected graph components. We evaluate our ap-
proach using various sensor modalities and model configurations
on the challenging nuScenes and KITTI datasets. Extensive
experiments demonstrate that our proposed approach yields an
overall improvement of 3.3% in the AMOTA score on nuScenes
thereby setting the new state-of-the-art for 3D tracking and
further enhancing false positive filtering.

I. INTRODUCTION

3D multi-object tracking (MOT) is an essential component
of the scene understanding pipeline of autonomous robots.
It aims at inferring associations between occurrences of
object instances at different time steps in order to predict
plausible 3D trajectories. These trajectories are then used in
various downstream tasks such as trajectory prediction [1]
and navigation [2]. Tracking multiple objects under real-time
constraints in an online setting is challenging due to both
intermediate track prediction when facing false negatives and
robust false positive filtering. Owing to recent advances in
LiDAR-based object detection [3], the 3D tracking task has
also seen significant performance improvements.

Real-world deployment of these online methods in areas
such as autonomous driving poses several challenges. When
requiring regulatory approval, its robust behavior must be
demonstrated on large sets of reference data which is arduous
to obtain due to the lack of extensive ground truth. Therefore,
performing high-quality offline labeling of real-world traffic
scenes provides the means to test online methods on a larger
scale and further sets a benchmark for what is within the realms
of possibility for online methods. With respect to generating
pseudo ground truth, our proposed method aims at minimizing
the number of false positive trajectories at high recalls.

In this paper, we present Batch3DMOT, an offline 3D
tracking framework that follows the tracking-by-detection
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Fig. 1: Birds-eye view visualization of a 3D offline tracking scenario showing
the road surface and LiDAR point clouds recorded at different time steps. The
goal in tracking is to find plausible chains of edges connecting objects across
time that best explain the evolution of an object instance. This representation
only shows the edges accompanying a single object instance.

paradigm and utilizes multiple sensor modalities (camera,
LiDAR, radar) to solve a multi-frame, multi-object tracking
objective. Sets of 3D object detections per frame are first turned
into attributed nodes. In order to learn offline 3D tracking, we
employ a graph neural network (GNN) that performs time-
aware neural message passing with intermediate frame-wise
attention-weighted neighborhood convolutions. Different from
popular Kalman-based approaches such as AB3DMOT [4],
which essentially tracks objects of different semantic categories
independently, our method uses a single model that operates
on category-disjoint graph components. As a consequence, it
leverages inter-category similarities to improve tracking perfor-
mance. While Brasó et al. were able to solve a single-category
2D offline tracking objective using graph neural networks [5],
this work focuses on the 3D MOT task while ensuring balanced
performance across different semantic categories.

When evaluating typically used modalities such as LiDAR,
we can make a striking observation: On the one hand, detection
features such as bounding box size or orientation are consis-
tently available across time. A similar observation can be made
for camera features, even if the object is (partially) occluded.
On the other hand, sensor modalities such as LiDAR or radar
do not necessarily share this availability. Due to their inherent
sparsity, constructing a feature, e.g., for faraway objects, is
typically impractical as it does not serve as a discriminative
feature that can be used in tracking. This potential modality
intermittence translates to sparsity in the graph domain, which
is tackled in this work using our proposed cross-edge modality
attention. This enables an edge-wise agreement on whether to
include the particular modality in node similarity finding.

Our main contributions can be summarized as follows:
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• A novel multimodal GNN framework for offline 3D
multi-object tracking on multi-category tracking graphs
including k-NN neighborhood attention across semantic
graph components.

• A cross-edge attention mechanism that uses intermittent
sensor data to substantiate the differentiation between
active and inactive edges.

• Methodology and pre-processing pipeline for constructing
category-disjoint tracking graphs over multiple timesteps
as well as a novel agglomerative trajectory clustering
scheme for effective trajectory generation.

• Extensive evaluations and ablation study on the
nuScenes [6] and KITTI [7] datasets using different
detection approaches.

• The code and pre-trained models are publicly available at
http://batch3dmot.cs.uni-freiburg.de.

II. RELATED WORK

Multi-object tracking (MOT) can be categorized into online
and offline settings. Whereas online methods are limited to
using past and current data, offline methods can efficiently
leverage future data to find solutions to the global data
association problem. Besides a temporal categorization, MOT
can be applied in the 2D [8]–[10] or the 3D domain [3], [4],
[11], [12], exploiting either 2D or 3D object detections. Finally,
two commonly followed approaches involve the tracking-by-
detection paradigm [3], [5], [8] and joint object detection and
tracking [9]. In this section, we briefly review offline 2D MOT
and discuss selected 3D MOT methods, relevant to our work.

2D Multi-Object Tracking: 2D MOT has been extensively
studied by the scientific community. Often, both online and
offline methods are jointly evaluated on a single benchmark
[13]. Typically, the underlying datasets comprise largely static
scenes with various angles of view and at high frame rates show-
ing a single object category. Most offline methods formulate
MOT as a graph association problem solved using optimization
techniques from graph and network theory, e.g., min-cost flow
optimization [14], min-clique graphs [15], lifted multicuts [16],
and lifted disjoint paths [17]. Exploiting deep learning, several
methods investigate either pair-wise appearance similarities [15]
or specifically focus on learning the data association task
via end-to-end backpropagation [14]. The advent of graph
neural networks (GNNs) further allows learning higher-order
similarities on graph structures. Along the same line of research,
the offline tracker NMPTrack [5] proposes neural message
passing to effectively represent both past and future of each
detection by leveraging a time-aware prior. Inspired by this
idea, we also exploit future information via a time-aware prior.

3D Multi-Object Tracking: Compared to popular 2D datasets,
available 3D MOT datasets are more challenging since they
involve intricate sensor motion and significantly smaller frame
rates [6], [7], [13]. On the other hand, 3D instance detection
at varying depth levels allows to effectively resolve occlusion.

Conventional 3D tracking-by-detection approaches mostly
rely on bounding box information, following Bewley et al. [18]
in using a Kalman filter as a motion model and the Hungarian
algorithm for bipartite data association. While Weng et al. [4]

use 3D-IoU as the matching criterion, Chiu et al. [19] employ
the Mahalanobis distance, estimate the initial noise and state
covariance of the Kalman filter from the training set, and choose
a greedy algorithm for data association. Different from these
approaches, CenterPoint [3] is a 3D object detection model that
utilizes a keypoint detector to first predict object centers and
then perform regression of object attributes, e.g., dimension,
orientation, and velocity. Additionally, CenterPoint proposes
3D tracking based on the closest-point matching of object
velocity vectors. Combining both online and offline paradigms,
FG-3DMOT [20] casts the tracking problem as a factor graph
over 3D object detections represented as a Gaussian mixture
model in order to find probabilistic trajectory assignments.
Other models incorporate 2D object detections as they are less
prone to occlusions than their 3D counterparts [11], [21].

In addition to bounding box information, multiple works
include 2D/3D appearance features to substantiate pair-wise
affinity representation [22]. Deep learning allows to learn
semantic features via encoding: Popular methods [12], [21]
use image classification networks as encoders for representing
image data and PointNet [23] architectures for learning point
cloud features. Regarding the inclusion of appearance features,
GNN3DMOT [21] is the work most similar to ours. It concate-
nates encoded modality features before regressing an affinity
matrix used for bipartite matching. Recent state-of-the-art
approaches [21], [24] facilitate graph neural networks to capture
higher-order artefacts on graph structures. OGR3MOT [24]
follows NMPTrack [5] in using neural message passing but
solves the online 3DMOT problem while leveraging Kalman
state predictions for improved track representations.

Although the aforementioned 3D tracking methods show
remarkable results in the online setting, they are insufficient in
the scenario of offline 3D MOT due to moderate false positive
handling. The only two methods solving 3D offline track-
ing [12], [20] do not provide publicly available implementations,
nonetheless we show a comparison on the KITTI benchmark
dataset [7]. Different to these aforementioned offline approaches
we utilize a graph neural network to learn the tracking task
using higher-order node similarities. Our approach differs from
NMPTrack [5] by introducing a novel modality and node
representation scheme relevant for 3D tracking and a novel
agglomerative trajectory clustering scheme that yields high
recall and fewer false positives. Different from OGR3MOT [24],
we include multiple sensor modalities and model trajectories
based on object similarity instead of exploiting Kalman filters
for predictive track representation in online tracking.

III. TECHNICAL APPROACH

Following the tracking-by-detection paradigm, we turn a
set of detections per frame Ot = {o1, ..., on} into nodes on
a directed acyclic graph G = (V,E) that holds an ordered
set of frames. The graph consists of a set of nodes j ∈ V
that are connected via directed edges E ⊆ {(j, i) | (j, i) ∈
V 2 and j 6= i}, where edges are directed in a forward-
time manner. Instead of using detection edges, we follow
the approach of Brasó et al. [5] in collapsing them. As a
consequence, nodes always reside in a specific frame and edges



only connect nodes at different timestamps while satisfying
tj < ti. Tracking multiple objects in the offline setting entails
finding a set of edge-disjoint trajectories T = {T1, . . . , Tm}
that represents the most plausible association of detections over
time. Since our approach involves learning on graph-structured
data, both nodes and edges are attributed. We refer to the node
feature matrix as X = [h1, ...,hN ]T ∈ RN×D where hi ∈ RD

represents a single node feature. Similarly, we denote the edge
features Xe = [...,hji, ...]

T ∈ R|E|×De , where hji is the edge
feature associated with edge (j, i).

A. Feature Representation

In typical tracking scenarios such as autonomous driving,
we are confronted with a multitude of sensor modalities
such as camera, LiDAR, radar, or even thermal images.
While the detections are often derived only from a single
sensor modality such as LiDAR or camera, the entirety of
modalities can still be utilized for improved similarity finding
of detections in the tracking task. Our approach fuses 3D pose
& motion features (3D-PM) from bounding boxes with 2D
as well as 3D appearance features from (surround) cameras
(2D-A), LiDAR (3D-AL) as well as radar sensors (3D-R).
Different from tracking in the image plane, 3D bounding box
information essentially represents a more discriminative feature
in 3D tracking due to available depth information [21]. Most
importantly, this simplifies re-association after false negatives
(FN) generated by occlusions or missed detections but also
eases the identification of false positives (FP). Instead of solely
exploiting bounding box information in terms of relative node
differences for an initial edge feature [5], the 3D-PM feature
constitutes the primary node feature in the proposed approach.

1) 3D Pose and Motion Feature: We turn each 3D bounding
box in the set of detections into an explicit 3D-PM feature
without further encoding:

hPM,i = [x, y, z, w, l, h, γ, vx, vy, c,S, t]T ∈ R11+C , (1)

where x, y, z denotes the 3D object center position in ego-
vehicle coordinates. The 3D bounding box dimensions are
given by w, l, h, while the box orientation is expressed by
the yaw angle γ about the positive z-axis w.r.t. the ego-
vehicle frame. Similarly, vx, vy describe the relative object
center velocity in the x-y-plane. In addition, a one-hot class
vector c over C classes is appended to encode semantic
categories. The detection confidence score S ∈ [0, 1] provides
an additional means to differentiate between plausible and
implausible detections. Finally, a relative timestamp is included.
We choose ego-vehicle coordinates over global map coordinates
to increase generalization performance.

2) 2D Appearance Features: Each detection generates an
appearance that is potentially observed on camera. For each
detection, the 3D bounding box corners are projected into
the image plane and a convex hull of that set is computed.
A hull-enclosing rectangle defines the image patch and the
respective camera showing most of the object is selected.
Thus, the approach includes object backgrounds under the
assumption that in-between frames the background stays
approximately constant. A fully-convolutional auto-encoder
architecture utilizing residual skip connections is employed to

learn image features h2D-A,j as latent space representations. In
the case of occlusions, we still use that respective appearance
feature and overcome this issue using higher-order similarity
finding through the chosen GNN architecture.

3) 3D Appearance Features: In order to include 3D shape
information, the sparse LiDAR point cloud within and in close
proximity to the objects’ 3D bounding box is extracted while
neglecting the points’ reflectance value. In order to account
for pose estimation errors a slightly enlarged cuboid is used to
associate LiDAR points to the respective object. The masked
point cloud is encoded using a PointNet-architecture [23]
that is trained towards predicting object categories. This is
motivated by prior works that showed that PointNet works well
on segmented point clouds [21], [23]. A higher-dimensional
feature h3D-A,j (128-dim.) is taken as the 3D-AL feature used
for tracking.

4) Radar Features: In addition to LiDAR measurements,
radar detections can be used for two reasons: Firstly, they
provide a highly accurate radial velocity measurement between
the particular sensor and the object (not the actual velocity)
and secondly, they provide measurements of objects in large
distances, which are captured imperfectly with cameras or
sparse LiDAR readings. The measured radial velocity vr is
split into two orthogonal components (vx, vy) represented in
the ego-vehicle frame that are each compensated by the ego-
vehicle motion [6]. The raw set of radar reflections is clustered
and the height coordinate is neglected because the radar’s
longitudinal wave characteristic renders the height coordinate
not decisive and erroneous more often than not. We arrive at a
radar parametrization rP = (x, y, vx, vy), where x, y is the 2D
object position after transformation from the radar coordinate
frame into ego-vehicle coordinates. Since each radar detection
does not hold a height coordinate we perform 2D pillar
expansion [25] and associate radar detections to objects as soon
as the enlarged objects’ cuboid and the pillar intersect. Since
the chosen pillar representation does not represent an element
of a Euclidean group as in the LiDAR case, we follow a naive
approach and remove all coordinate-sensitive transforms in the
PointNet architecture and merely transform each object’s fea-
ture that consists of multiple radar detections in a permutation-
invariant manner to arrive at the radar appearance feature hR,j .

B. Graph Construction

The chosen approach arranges nodes on a tracking graph
over 5 frames in a sliding window manner with a stride of 1.
The tracking performance improves drastically when learning
the tracking task with actual detections instead of ground truth
annotations since FP filtering and FN handling pose major
challenges in real-world tracking. Consequently, ground truth
annotation identifiers need to be paired with actual detections in
order to construct edge labels for the learning stage. Under the
assumption that ground truth annotations generally do not show
significant intra-category overlap, we match detection results to
geometrically close annotations in the birds-eye view (BEV).

1) Initial Node and Edge Embeddings: The initial node
features only consists of the 3D-PM feature:

hi = [hPM,i]
T ∈ R11+C+96. (2)



 

 

 

 

Fig. 2: Overview of our Batch3DMOT architecture. A cross-edge modality attention mechanism fuses the features of the involved objects to construct an edge
feature (left). Message passing including inter-category neighborhood attention propagates information. Blue arrows denote time-aware message passing, and
red arrows denote frame-wise information propagation (middle). Predicted edge scores are turned into trajectory hypotheses using agglomerative trajectory
clustering (right).

Throughout this work, we found that it is more beneficial to
add modality such as h2D-A,i during the message passing stage
instead of as an initial feature as shown in Sec. IV. The edge
features are defined as

hji = [∆xji,∆vji,∆γji,∆sji,∆tji]
T ∈ R5, (3)

where ∆xji denotes Euclidean distance between the object
centers and ∆vji the L2 norm of both velocity vectors. The
smallest signed yaw difference of the two detections is given
by ∆γji while ∆sji is the log-volume-ratio and ∆tji the time
difference.

2) Graph Connectivity: When investigating the effect of
graph connectivity on the tracking result we found that it is
beneficial to only connect nodes of the same object category
rather than utilizing inter-category edges that could potentially
overcome class prediction errors from the object detection
task. This essentially renders the problem a disconnected graph
with multiple components, which generally limits information
propagation when learning. While the 2D MOT task is mostly
focused on one object category, the 3D MOT task faces both the
curse of dimensionality leading to a high number of detections
per frame and multiple object categories. As a consequence, we
found that limiting the number of possible edges represents an
essential prior to the learning problem. Based on the normalized
kinematic similarity metric

v∗ji =
1
2∆x∗

ji +
1
4∆γ∗

ji +
1
4∆v∗ji

maxq{ 1
2∆x∗

qi +
1
4∆γ∗

qi +
1
4∆v∗qi | ∀k : tq < ti}

, (4)

the k-nearest neighbors in the past of every node i are selected
for edge construction, which essentially extracts a promising
corridor based on similar position, velocity vectors, and yaw
angles, while ∆x∗

qi,∆γ∗
qi,∆v∗qi itself represent neighborhood-

normalized distances. In the following, directed edges are
constructed pointing from each of the k neighbors to node
i. Regarding the following graph learning step, edge labels
denoting the active/inactive edges are necessary. We examine
whether two nodes hold the same instance identifier and only

connect them as an active edge if they represent the closest
time-wise occurrence of the same object instance. Otherwise,
edges hold labels of value 0.

C. Message Passing Graph Neural Network

This work employs the principle of time-aware neural
message passing [5], which is extended to allow information
exchange between inter-category nodes that reside in particular
disconnected graph components. In addition, we present a novel
way to include intermittent sensor modalities across edges.

1) Cross-Edge Modality Attention: Initial node and edge
features are encoded to produce approximately evenly-sized
node and edge embeddings

fv
enc(X) = H(0)

v , fe
enc(Xe) = H(0)

e , (5)

where the two networks take the form of MLPs. In the case
of additional sensor modalities, the edge feature is augmented
using modality cross-attention between the respective nodes’
features to which edge (j,i) is incident to. Thus, each nodes’
feature is attending and is being attended in order to find an
agreement on whether to utilize the respective modality during
the edge feature update. Based on that, we define the following
queries Q, keys K and values V for both attention directions:

Qij = Xsens,i Kij = Xsens,j Vij = Xsens,j (6)

Qji = Xsens,j Kji = Xsens,i Vji = Xsens,i, (7)

where Xsens,j could represent either a LiDAR h3D-A,j or
radar feature hR,j of the respective node. We use a standard
multi-head attention mechanism per modality in order to
compute attention-weighted features using head-specific linear
transforms (WQ

u ,W
K
u ,WV

u ) to attend to multiple regions with
the respective modality feature:

MultiHead(Q,K,V) = Concat(head1, ...headh)W
O, (8)

where headu = Softmax(
QWQ

u )(KWK
u )T√

dk
)VWV

u . (9)



Fig. 3: Both graph connectivity cases: Time-aware message passing operates
on a time-directed acyclic tracking graph that holds disconnected semantic
components (left) while attention-weighted neighborhood convolution is
performed on temporary frame-wise k-NN graphs (right).

The attended modality features are then concatenated and
encoded as depicted in Fig. 2. In the case of both LiDAR
and camera we arrive at:

H∗
e,att = fatt,enc

([
X∗

3D-A,i,X
∗
2D-A,i,X

∗
3D-A,j ,X

∗
2D-A,j ,Xe

])
,

(10)
which constitutes the attention-weighted modality edge feature
used during the edge update step in message passing that is
briefly covered in the following.

2) Time-Aware Message Passing Using Inter-Category
Graph Attention: A single message passing layer consists of
an edge feature update based on the neighboring node features
h
(l−1)
i , h(l−1)

j and the current edge feature h
(l−1)
ji . In addition,

our approach involves the multi-modal attention-weighted sim-
ilarity feature h

(0)
ji,att , which is fed in each iteration to substan-

tiate the update based on appearance similar modality features:

h
(l)
ji = fe

([
h
(l−1)
i ,h

(l−1)
j ,h

(l−1)
ji ,hji,att

])
, (11)

where [·, ·, ·] represents the concatenation of the four
representations as an input to a ReLU-activated MLP fe. With
respect to updating node features, messages m

(l)
ij are crafted

based on either neighbors in the past Npast(j) or neighbors in
the future Nfut(j) of a node j. In the next step, all messages
from the future and from the past neighborhood of a node,
respectively, are aggregated using a permutation-invariant sum,
which results in node-specific past and future features:

h
(l)
j,past =

∑

i∈Npast(j)

fpast
v

([
h
(l−1)
i ,h

(l)
ji ,h

(0)
i

])

︸ ︷︷ ︸
m

(l)
ij

, (12)

h
(l)
j,fut =

∑

i∈Nfut(j)

ffut
v

([
h
(l−1)
i ,h

(l)
ji ,h

(0)
i

])

︸ ︷︷ ︸
m

(l)
ji

. (13)

The functions ffut
v and ffut

v again take the form of MLPs and
transform the recently updated edge feature h

(l)
ji , the initial

node feature h
(0)
i as well as the current node representation

h
(l−1)
i . The final node update is reached by combining the

past and future feature and feeding it to a function fv:

h
(l)
j = fv

([
h
(l)
j,past,h

(l)
j,fut

])
, (14)

which again takes the form of a ReLU-activated MLP.

In order to enable inter-category information exchange in
between message passing steps, we construct temporary frame-
wise graphs for which each node j is connected to its top-k
neighbors (without self-loops) having identical timestamps
regardless of object category. Then, a graph attention layer
(GAT) [26] propagates node features in an attention-weighted
manner to produce linear combinations of neighbor nodes:

h′
j = αiiΘh

(l)
j +

∑

i∈Nt(j)

αjiΘh
(l)
i , (15)

while i and j in this case do not represent nodes in different
frames but in an identical one (ti = tj). Attention weights
among the nodes per frame are used to elect nodes that are of
relevance to one another such as overlapping detections of dif-
ferent semantic categories, which would normally reside in two
different disconnected graph components. The attention weights

αji =
exp

(
LeakyReLU

(
aT [Whi,Whj ]

))
∑

k∈Ni
exp (LeakyReLU (aT [Whi,Whk]))

(16)

are softmax-normalized across neighborhoods while the
attention-mechanism consists of a single-layer feedforward
neural network represented by a weight vector a. A final edge
classifier MLP freg

e downprojects each edge feature to a single
Sigmoid-activated scalar that denotes the edge activation score.

3) Loss Formulation: As the approach considers multiple
semantic categories that exhibit different frequencies of occur-
rence, it faces significant category imbalance with respect to the
number of nodes per category. This directly translates to an even
more unbalanced category-specific number of edges contained
in the graph. Having chosen a disconnected graph, the nodes
incident to a particular edge are always of the same category.
Based on that, we employ a class-balanced loss formulation
that takes a binary cross-entropy and weights edges based on
category frequencies:

LCB =
1

|E|
∑

(j,i)∈E

1− β

1− βnji
yji log(p

ji
φ )+(1−yji) log(1−pjiφ ),

where β represents a hyperparameter and nji is the absolute
number of objects with respect to the node categories involved
per edge. The respective weights are estimated based on object
category frequencies in the training set [27].

D. Inference and Graph Traversal
The outputs of the GNN architecture are Sigmoid-valued

scores that represent whether an edge is likely to be ac-
tive/inactive. Instead of thresholding at an edge score of
0.5 to find active/inactive edges to turn into trajectories, we
follow the spirit of ByteTrack [8] and try to associate (nearly)
every detection with a preliminary trajectory. Based on the
assumption that the predicted edge scores show some inherent
order, i.e., FP edges exhibit lower scores than TP edges within
local neighborhoods of the graph, we propose a score-based
agglomerative trajectory clustering paradigm (Algorithm 1).
The edge score predictions of multiple overlapping batches are
averaged per edge. All edges are arranged in descending order
and empty (ordered) clusters are initialized that will later hold
output trajectories. In the following, we loop through all edges
from the highest to lowest score and check whether the edge



Algorithm 1: Agglomerative Trajectory Clustering.
1 Epred, Nmeta ← CombineBatches(GNN(X,Xe))
2 E∗

pred ← DescSortEdgesByScore(epred)
3 vis← CreateVisitedNodesDict()
4 C ← CreateEmptyClustersDict()
5 for eji, score in E∗

pred do
6 if j /∈ vis and i /∈ vis then
7 C ← CreateNewCluster(eji)
8 UpdateVisitedNodes(eji, C)
9 else

10 if j /∈ vis and i ∈ vis then
11 if i is leading node in C(i) then
12 C ← AddToCluster(eji)
13 vis← UpdateVisitedNodes(eji, C)
14 else if j ∈ vis and i /∈ vis then
15 if j is trailing node in C(j) then
16 C ← AddToCluster(eji)
17 vis← UpdateVisitedNodes(eji, C)
18 else if j ∈ vis and i ∈ vis then
19 if j is trailing C(j) and i is leading C(i) then
20 C ← JoinClusters(eji)
21 vis← UpdateVisitedNodes(eji, C)

22 return TurnClustersIntoTrajectories(C)

is constrained or unconstrained. If constrained, it is checked
whether the edge would essentially add time-wise leading or
trailing nodes to one of the temporary clusters or if it joins two
clusters. In the case of joining two clusters, an additional score-
wise threshold needs to be met. Otherwise, the edge does not
violate any tracking constraints and a new cluster is initialized.

IV. EXPERIMENTAL EVALUATION

In this section, we present quantitative and qualitative
evaluations of our proposed Batch3DMOT on the nuScenes [6]
and KITTI [7] datasets using the average multiple-object
tracking accuracy (AMOTA) and multiple-object tracking
accuracy (MOTA) metrics, respectively. Similar to existing
methods, we evaluate our model on the nuScenes test set as
well as the KITTI 2D MOT benchmark. We provide additional
experimental data in the supplementary material.

Detections and GT Matching: In this approach, we use the
detections provided by MEGVII [28] and CenterPoint [3] for
nuScenes. On the KITTI dataset, we use Point-RCNN detec-
tions [29] as also used by FG3DMOT [20] and AB3DMOT [4].
We match detections to ground truth trajectory labels to obtain
identifiers. As proposed earlier [6], [28], the L2 center distance
is often used for matching, which is beneficial for faraway
objects. Our empirical findings show that especially large
objects suffer from this heuristic since, e.g., their respective
length is not predicted correctly, which leads to considerable
object center translations and effectively renders the L2 distance
uninformative. Therefore, we follow a bi-level approach by
first selecting a close radius (L2) and then checking whether
detection and annotation exhibit a significant BEV-IoU overlap.

Implementation Details: Each batch consists of five frames
where each node is connected to its 40-nearest neighbors in the
past. Object 2D-A features are scaled to a 32×32-dimensional
RGB image. The fully-convolutional image encoder is built
upon the ResNet architecture and is trained for 80 epochs using
a learning rate (LR) of 0.002 and a batch size of 32. LiDAR
point clouds are aggregated over multiple frames, normalized,

TABLE I: Comparison of AMOTA scores on the nuScenes validation set.
Bold/underlined numbers denote best/second best model scores, respectively.

Method Overall Bicyc. Bus Car Moto. Ped. Trailer Truck

AB3DMOT [4] [28] 0.179 0.09 0.489 0.36 0.051 0.091 0.111 0.142
Prob3DMOT [19] [28] 0.561 0.272 0.741 0.735 0.506 0.755 0.337 0.580
CenterPoint [3] 0.665 0.458 0.801 0.842 0.615 0.777 0.504 0.656
ProbMM-3DMOT [22] 0.687 0.490 0.820 0.843 0.702 0.766 0.534 0.654

3D-PM-MEGVII [28] 0.623 0.368 0.759 0.789 0.655 0.796 0.378 0.617
3D-PM-CP [3] 0.708 0.540 0.837 0.849 0.728 0.813 0.497 0.689
3D-PM-C-CP [3] 0.709 0.542 0.837 0.851 0.733 0.813 0.502 0.688
3D-PM-CL-CP [3] 0.715 0.540 0.855 0.851 0.748 0.821 0.493 0.695
3D-PM-CLR-CP [3] 0.713 0.545 0.851 0.850 0.736 0.820 0.494 0.696

centered, and rotationally permuted to mimic orientation errors
in 3D object detection. In order to generate a 3D-A feature,
a minimum of five LiDAR points must exist. Otherwise, the
object does not hold a 3D-A feature. The LiDAR PointNet
is trained for 500 epochs using a batch size of 64 and a LR
of 0.001. We do not employ pre-training on other datasets
contrary to previous findings [5] since this decreased model
performance. In the case of radar, each object must hold at
least two radar detections to generate a feature. The radar
network is trained for 1000 epochs using a batch size of 256
and a LR of 0.0002. The GNN models are trained for 100
epochs using a batch size of two (10 frames in total) and
LRs between 4e−5 and 1e−4, which largely depends on the
detections used and the number of edges contained in the graph.
We perform 6 message passing steps with intermediate frame-
wise neighborhood convolutions (20 k-NN), which we ablate
in the experiments presented in the supplementary material
in Sec. S.2.C. We estimate the class-balancing factors based
on the absolute frequencies of ground truth annotations in the
training set and find the hyperparameter β = 0.8 empirically.
While the modality attention modules use two attention heads,
it proved to be sufficient to use a single head in the frame-wise
neighborhood attention mechanism. Our evaluations show that
training feature encoders and the GNN model in an end-to-end
manner or using transfer learning decreases the performance.

A. Quantitative Results and Ablation Study

We report our results on the nuScenes validation set in Tab. II.
Additionally, we also present the category-specific AMOTA
scores in Tab. I. While there is no existing offline method
on the nuScenes benchmark, we compare against a strong set
of state-of-the-art online trackers. The main baselines include
AB3DMOT [4], Prob3DMOT [19], two online Kalman filter-
based methods, and CenterPoint [3] which performs closest-
point matching of predicted velocity vectors. These methods
currently represent the naive choice when generating pseudo
ground truth due to their inherent simplicity and robustness as
well as high tracking accuracy in terms of the AMOTA score.
Nonetheless, we argue that there is room for improvement
by examining multiple frames in a batch-manner. In our
case, we chose a batch length of 5 frames for three reasons:
1) Typical birth and death memory matching time thresholds
used in bipartite association [4] are in a similar range. 2) We
expect an object to reappear after 2-3 frames of false negative
detections while neglecting long-term occlusions. 3) With
an increasing number of objects per batch, the number of
edges increases exponentially, which makes the graph learning
problem significantly more complex. Based on these factors,



TABLE II: Ablation study on the nuScenes validation set. All results shown are derived using CenterPoint detections [3].

Method PM C L R AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN ↓ IDS ↓ FRAG ↓
CenterPoint [3] X 0.664 0.567 0.562 0.698 13187 20446 562 424
OGR3MOT [24] X 0.693 0.627 0.602 – – – 262 332

w/o MP layers X 0.519 0.960 0.471 0.592 7206 33801 7065 2648
60 k-NN X 0.578 0.728 0.493 0.633 12159 27187 4497 1646
Connected graph comp. X X X 0.646 0.842 0.599 0.702 7621 23011 1233 761
TA-NMP [5] X X 0.668 0.698 0.589 0.714 11106 21806 1810 769
w/o Aggl. Traj. Clust. X 0.683 0.682 0.592 0.699 11030 20260 1271 434
Stacked modalities X X X 0.689 0.678 0.602 0.688 9525 20954 938 536
w/o 2D-A attention X X 0.698 0.657 0.602 0.700 9951 20641 886 403
w/o CB Loss X 0.702 0.617 0.607 0.723 11467 18516 758 418
w/o Neigborhood GAT X 0.703 0.644 0.604 0.716 11465 18691 767 416

Batch3DMOT-3D-PM X 0.708 0.630 0.612 0.719 11102 18640 688 383
Batch3DMOT-3D-PM-C X X 0.709 0.622 0.608 0.716 11307 18722 664 375
Batch3DMOT-3D-PM-CL X X X 0.715 0.598 0.612 0.726 11175 18494 598 357
Batch3DMOT-3D-PM-CLR X X X X 0.713 0.592 0.611 0.726 11196 18520 622 385

(a) Ground Truth Trajectories (b) Kalman Filter-Based Tracking [22] (c) Batch3DMOT (Ours)

Fig. 4: Comparison of FP filtering on the nuScenes validation set. The Kalman filter-based tracking approach [22] shows mediocre FP filtering, while our
proposed Batch3DMOT using only 3D-PM features for pseudo ground truth generation shows superior FP filtering.

we see the grounds for comparison with the chosen baselines.
We ablate on the number of frames to consider in Sec. S.2.A.
of the supplementary material.

Tab. II shows that an increase from 40 to 60 k-nearest
neighbors per node results in a stark decrease in tracking
accuracy (-12.8%). The best choice of k can only be found
empirically, however 10e3 serves as a suitable maximum
number of edges per batch. Fig. S.2 (b) in the supplementary
material presents the tracking performance for 10 and 20 nearest
neighbors. Independently, we observe a considerable decrease
in tracking performance when connecting nodes of different
semantic categories (-6%). Phrasing the offline 2D MOT GNN
by Braso et al. [5] as an offline 3D MOT method provides
an additional baseline. It uses identical edge features but the
2D-A feature as the sole node feature, which performs worse
than our architecture, but achieves similar recalls. Moreover,
reducing our model to a node similarity network (no message
passing) results in an AMOTA score of 0.519. Furthermore,
we observe a slight decrease in AMOTA when the frame-
wise neighborhood GAT aggregations are removed (-0.5% wrt.
best performing model). Modality intermittence is especially
severe when stacking all the modalities as a node feature
(Tab. II), which ultimately motivated our modality attention
mechanism. Furthermore, we also observe that the class-
balancing scheme slightly enhances the tracking result. Finally,
we test-wise replace our agglomerative trajectory clustering
with a bidirectional depth-first-search algorithm that iterates
from high score to low score edges, which performs worse
than our proposed agglomerative clustering paradigm. We
provide a more extensive parameter study in Sec. S.2 of the

supplementary material.
We observe the highest AMOTA tracking score for the

3D-PM-CL model on the validation set (see Tab. II), which
demonstrates the efficacy of the proposed modality attention
module (see Tab. II). Including 2D-A features leads to a small
performance increase compared to the pose-only variant (3D-
PM). Here, occlusions are the limiting factor that restricts
a larger improvement in performance, which is supported
by a large accuracy increase when including LiDAR. The
PointNet architecture succeeds effectively at extracting local
object information. The 3D-PM-CLR architecture exhibits a
slight accuracy decrease compared to the CL-counterpart, which
can be attributed to the severe sparsity and quality of the
radar detections in nuScenes. Additionally, we present the
category-specific AMOTA scores in Tab. I. On the nuScenes
test set, the 3D-PM-CL model outperforms the pose-and-motion
variant (Tab. III). Batch3DMOT achieves an AMOTA score of
0.689, which outperforms the state-of-the-art online method
OGR3MOT [24] by 3.3% using the same detections. Note that
EagerMOT uses both 2D and 3D detections which the other
methods do not. We also report the performance on the KITTI
test set for the car category in Tab. IV and observe that our
model achieves competitive results as FG-3DMOT [20], while
using only 5 frames.

B. Qualitative Results

Fig. 4 illustrates the accumulation over 40 frames of a
scene on the nuScenes dataset. We observe that our proposed
Batch3DMOT method removes a large number of detections
that essentially represent FPs when compared with the trajectory



TABLE III: Comparison of the 3D MOT performance on the nuScenes test set evaluated on the official benchmarking server.

Method Detections PM C L AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN↓ IDS↓ FRAG↓
AB3DMOT [4] MEGVII [28] X 0.151 1.501 0.154 0.276 15088 75730 9027 2557
Prob3DMOT [19] MEGVII [28] X 0.550 0.798 0.459 0.600 17533 33216 950 776
ProbMM3DMOT [22] CP [3] X X 0.655 0.617 0.555 0.707 18061 23323 1043 717
CenterPoint [3] CP [3] X 0.650 0.535 0.536 0.680 17355 24557 684 553
OGR3MOT [24] CP [3] X 0.656 0.620 0.554 0.692 17877 24013 288 371
EagerMOT [11] CP [3] + Cascade RCNN X X 0.677 0.550 0.568 0.727 17705 24925 1156 601

Batch3DMOT (Ours) CP [3] X 0.683 0.633 0.568 0.679 15290 22692 994 562
Batch3DMOT (Ours) CP [3] X X X 0.689 0.604 0.570 0.704 15580 22353 718 427

We do not highlight methods that use different sets of detections [4], [11], [19] but still report them in this table for completeness.

TABLE IV: Comparison of the 2D MOT performance on the KITTI test set.
Method MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓
DSM [12] 0.762 0.834 0.600 0.831 296 868
AB3DMOT [4] 0.838 0.853 0.669 0.114 9 224
FG-3DMOT (online) [20] 0.837 0.846 0.680 0.099 9 375
FG-3DMOT (offline) [20] 0.880 0.850 0.755 0.119 20 117

Batch3DMOT (5 frames) [29] 0.886 0.868 0.767 0.088 19 74

ground truth. We also observe that our approach works espe-
cially well on still-standing objects, while Prob3DMOT [19]
yields a higher number of FPs. Additional insight into low-
and high-confidence model predictions is presented in Sec. S.1,
Sec. S.3, and Fig. S.3 of the supplementary material. Fig. 4
meets the requirements with respect to generating pseudo-
groundtruth. This is further exemplified in Sec. S.1.B of the
supplementary material by training on pseudo-labeled test-data
and in Sec. S.1.C for training an online 3D Kalman filter from
data statistics that include weak pseudo-labeled annotations.

V. CONCLUSION

In this work, we proposed a framework for addressing the
offline 3D MOT task using a multi-modal graph neural network
including a novel agglomerative trajectory construction scheme.
We presented extensive results on two challenging datasets
demonstrating that our approach achieves state-of-the-art perfor-
mance. We also showed the benefits of our proposed cross-edge
modality attention in mitigating the effect of modality intermit-
tence. Our method was able to improve tracking accuracy com-
pared to current online methods using the same detections and
shows enhanced false positive filtering. In future work, we plan
to extend our approach to also cope with long-term occlusions.
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In this supplementary material, we (i) portray applications
that delineate the usability of generated pseudo-labels, (ii)
we present additional ablation experiments on main model
parameters and (iii) give qualitative insights into low and high
confidence model predictions.

S.1. GENERATING PSEUDO TRAJECTORY LABELS

In this section, we describe different methodologies to
demonstrate whether the proposed model can approximately
meet demands deriving from reference-data generation.

A. Trajectory Postprocessing

Since the proposed model does not include an update step
fusing predictions and measurements, the predicted trajectories
are estimates based on original detections. In order to yield
smoother trajectories serving as labels, we further process them
in a series of steps described below:

• Trajectory interpolation regarding missing timesteps.
• Yaw angle projection into γ ∈ [−π, π] range to prevent

further interpolation errors.
• Compute an intra-track BEV-IoU as a measure for still-

standing objects (e.g. parking cars), which is computed
as the product of all BEV-IoUs of pairs of boxes.

• Yaw correction on still-standing objects that suffer from
orientation error of approx. ±π: For intra-track BEV-
IoUs greater than 0.7, we cluster yaw angles into two
regimes (track-wise). All angles contained in the track
are overwritten using the mean yaw angle of the majority
class.

• Due to the chosen batch-size of 5 trajectories the tra-
jectories suffer from ID switches occasionally, which is
convenient to detect for still-standing objects. For pairs of
trajectories where each track shows an intra-track BEV-
IoU > 0.7 we check for a BEV-IoU > 0.6 of the involved
mean object poses of the two still-standing instances. If
that threshold is met, the two trajectories are joined under
one ID.

• Lastly, we interpolate trajectories using a weighted running
average scheme in order to yield smoother object motion,
which should ultimately guarantee a more suitable pseudo-
ground truth.

Based on these trajectories, we conducted two additional
experiments outlined in the following.

Department of Computer Science, University of Freiburg, Germany.
Project page: http://batch3dmot.cs.uni-freiburg.de

TABLE S.1: Comparison of different training sets used to estimate Kalman
filter covariance matrices of Prob3DMOT [22] using CenterPoint [3] object
proposals. Results are shown in terms of the AMOTA scores on the nuScenes
validation set.

Training Set Overall Bicyc. Bus Car Moto Ped. Trailer Truck

nusc-train 0.614 0.387 0.791 0.780 0.528 0.698 0.494 0.622
nusc-train + pseudo-test 0.624 0.436 0.808 0.779 0.549 0.693 0.457 0.645

pseudo-train + pseudo-test 0.611 0.377 0.822 0.768 0.540 0.695 0.447 0.625

B. Pseudo-Label Training

For testing the efficacy of our model predictions, we employ
a pseudo-label training scheme that is exemplified for the
nuScenes dataset. We use the additional data samples in the
test split, which does not contain openly accessible annotations.
We employ the 3D-PM-CL instance (see Table II) optimized
on the training set to yield pseudo-labels for the test-split.
The postprocessing steps outlined in the previous section are
applied to yield refined trajectories. Using a combination of the
training split and pseudo-labels of the test-split (or a subset),
a new 3D-PM model is trained. In general, we assume that
the unlabeled test split is created by the same data generation
process as the labeled share of the training dataset.

We propose a method to filter high confidence predictions
from the test-split. Leveraging high-confidence model predic-
tions allow to capitalize on strengths of the model instead
of its weaknesses. While we do not know whether a scene
itself is more or less complex, we can analyze whether the
model was confident about its predictions. A batch of 5
frames yields a set of edge scores, each normalized in [0, 1].
As each edge prediction does not represent a statement in
comparison to another randomly chosen edge, each edge stands
for itself. Thus, the problem of edge score prediction essentially
boils down to a case of binary classification. We record the
predicted edge scores per batch, construct a histogram (see
Fig. S.1(a)) and normalize scores in order to construct a
synthetic probability distribution. Computing the normalized
entropy of the distribution as

H = −
∑

(j,i)∈E

z(j,i) log z(j,i)

log |E| , (1)

provides a measure of tracking uncertainty. A uniform edge
score distribution leads to an entropy of H = 1 and non-
uniform distributions lead to H < 1. In terms of tracking, we
observe that confident model predictions generally show smaller
entropies (their distributions are less uniform) and vice versa
(see Fig. S.3). Note that the histograms depicted in Fig. S.1
are log-scaled. By computing an average scene entropy using



TABLE S.2: Comparison of different pseudo-label training schemes utilizing the 3D-PM model architecture on the nuScenes validation set.

Training Set AMOTA↑ AMOTP↓ MOTA↑ Recall↑ FP↓ FN↓ IDS↓ FRAG↓
nusc-train 0.708 0.630 0.612 0.719 11102 18640 688 383

nusc-train + pseudo-test 0.709 0.605 0.611 0.717 11470 18566 626 369
nusc-train + pseudo-test-entropy 0.711 0.611 0.607 0.726 11323 18460 663 386

pseudo-train + pseudo-test 0.708 0.592 0.606 0.712 11958 18543 683 365
pseudo-test 0.705 0.592 0.605 0.722 12330 18317 724 376

Fig. S.1: Log-scaled edge score histograms displaying absolute frequencies over respective edge scores including the normalized entropy of the corresponding
normalized probability distribution: Low confidence (left), high confidence (right). Orange bars represent edges with GT label 1, blue bars represent inactive
edges with GT label 0.

the respective batch entropies, the set of unlabeled scenes can
be categorized into relatively certain and uncertain predictions.
The low-confidence (high entropy) model prediction given in
Fig. S.1 shows a large number of false positive predictions
(blue-colored edge scores in [0.6, 1.0]), which is reflected in
the cluttered tracking result depicted in Fig. S.3 (left). On the
contrary, the high-confidence tracking prediction produces a
less-cluttered set of trajectores as given in Fig. S.3 (right). This
is further detailed in Sec. S.3.

As means to demonstrate our findings, we report the
performance of the 3D-PM model when adding either unfiltered
(nusc-train + pseudo-test) or entropy-filtered data (nusc-train +
pseudo-test-entropy) to the human-annotated training set. The
entropy-filtered data contains only scenes that show a scene-
entropy higher than the mean scene entropy. As presented in
Table S.2 the entropy-filtering induces a 0.2% improvement
compared to the unfiltered case. Additionally, we also trained
the same 3D-PM architecture using only trajectory labels
that originate from the 3D-PM-CL instance (pseudo-train
+ pseudo-test), which produced a similar outcome as the
human-annotations case (nusc-train). Most notably, we do
not observe any performance decline as an effect of adding
weaker annotations.

We show that we can even train the 3D-PM model architec-
ture using only pseudo-labels from the test split which contains
150 scenes. We observe an AMOTA of 0.705 (pseudo-test)
and a recall of 0.722 (see Table S.2). Therefore, the model
shows a slight decrease in performance of about half a percent,
however, using only 20% of the data samples that are weaker
than human-annotations.

C. Training an Online Kalman Filter Tracking Model

In addition to the pseudo-label training scheme, the experi-
ments presented in this section use Kalman filter covariance
matrix estimation introduced for Prob3DMOT [22] using
the model generated pseudo-labels. The postprocessing steps
outlined in Sec. S.1 are adopted in the same manner as in the
experiment described above. We use a conjunction of pseudo-
labeled nuScenes test data and human-annotations on the
nuScenes train set to estimate the state uncertainty covariance
Σ, the observation noise covariance R, and process uncertainty
covariance Q used by Prob3DMOT [22].

The results are presented in Table S.1. We observe a
notable 1% gain in overall tracking accuracy compared to
the standard case when using both the original training set
and the pseudo-labels (nusc-train + pseudo-test). Especially
the Bicycle, Motorcycle and Truck classes show performance
improvements. We observe only a small overall decrease (-
1.3%) when using pseudo-labels generated for both training
(pseudo-train) and test set (pseudo-test). This demonstrates
the efficacy of using pseudo-labels for training Kalman filters,
based on data statistics. Analogous to the previous experiment,
we do not observe significant performance decreases due to
weaker annotations.

S.2. ADDITIONAL ABLATION STUDY

In this section, we present an additional ablation study on
the main hyperparameters of the proposed model. The most
influential parameters in the Batch3DMOT framework are the
number of frames, the number of nearest neighbors, and the
GNN depth (the number of message passing steps). In order
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Fig. S.2: Additional ablation study on the main Batch3DMOT model parameters. All chosen parameters stay constant apart from the one varied while its effect
is measured using the AMOTA tracking score on the nuScenes validation set. The investigated model is the Batch3DMOT-3D-PM variant.

to identify suitable parameters (see Sec. IV), we perform a
parameter study on these variables. All experiments originate
from model trainings on the nuScenes train set and evaluated on
the validation split. In each study, we only vary the parameter
being ablated and keep all the other hyperparameters fixed.

A. Number of Frames

The number of frames per batch determine whether the
FN detections based on occlusions or FP detections due to,
e.g., noisy readings or misjudgement, can be recovered from.
Empirically, we find that a number of 5 frames is sufficient for
stable tracking (especially in case of the 2Hz framerate used in
nuScenes) and still provide the grounds for comparison against
3D Kalman filter tracking models. Note that the Batch3DMOT
framework only performs linear one-step interpolation of output
trajectories to arrive at the results. Thus, the model itself is
not capable of overcoming occlusions based on intermediate
prediction-update steps as used in Kalman filtering settings.
Analogously, the chosen frame rate should allow stable offline
tracking with the exception of long-term occlusion handling.
The study presented in Fig. S.2 (c) shows a gradual increases
in tracking accuracy (measured in terms of AMOTA) until a
number of 5 and 6 frames is reached under 40 nearest neighbors.
For 7 frames, we observe a stark decline, presumably due to
the overall number of edges rising above the critical threshold
as discussed in Sec. IV.

B. Number of Nearest Neighbors

We investigate a variation of the number of nearest neighbors
(NN) leading to a edges connected in the graph construction
stage. This analysis only concerns the case of semantic category-
disjoint edges. Based on the findings presented in Fig. S.2 (b),
an increase in the number of neighbors higher than 40 generally
leads to a performance decrease. As outlined in Sec. IV, we
observe a maximum number of edges that guarantees learning
success, which is exceeded in this case. On the contrary, we do
not observe a performance decrease when only connecting the
20 NN over 5 frames using the proposed kinematic similarity
metric (Eq. (4)), which effectively shows the efficacy of the
metric. In our case, we choose 40 NN so as to overcome
potential ±π orientation flips and velocity misjudgements

stemming of noisy 3D object proposals. For 10 NN, we
observe a 2.1% performance decline compared to 20 and 40
NN (AMOTA 0.708). In general, using 20 NN over 6 frames
allows further performance improvement.

C. Number of Message Passing Steps

The GNN depth is a crucial parameter determining the degree
of information exchange across the proposed tracking graph. As
depicted in Fig. S.2 (c), executing at least one message passing
step increases tracking accuracy from AMOTA 0.519 to 0.670.
Further incremental increases lead to slight improvements of
the tracking performance with a maximum at 6 message passing
steps (AMOTA 0.708). Compared to the other two parameters,
the GNN depth bears less potential for further optimization.

S.3. QUALITATIVE INSIGHTS

The low-confidence and high-confidence scenes shown in
Fig. S.1 are also depicted in an accumulated BEV manner
over 40 frames in Fig. S.3. The left column illustrates the
detections, predicted trajectories and ground truth trajectories
of the low-confidence scene shown in Fig. S.1 (left). The right
column of Fig. S.3 depicts the results for a high-confidence
scene.

In accordance with the edge score histogram (Fig. S.1 right),
we observe a much less cluttered tracking result in (Fig. S.3 (b)
right). On the contrary, the low confidence scene (Fig. S.3
left) exhibits a higher number of (presumably) false positive
detections contained in the predicted trajectories. Therefore, we
attribute the significant portion of incorrectly predicted edge
scores with ground truth label of 0 in the range [0.6, 1.0] (see
Fig. S.1 left).

These findings provide a qualitative understanding of the
efficacy of the introduced entropy-filtering system. Due to the
unavailability of ground truth edge labels in the test split, it is
infeasible to separately assess the prediction quality of either
active (orange regime) or inactive (blue regime) edges in a
segregated manner as shown in Fig. S.1.



Low-confidence scene (H = 0.817771) High-confidence scene (H = 0.731216)

a) Accumulated 3D object proposals of CenterPoint [3] across 40 frames before matching.

b) Accumulated, non-interpolated trajectory predictions of Batch3DMOT-3D-PM-CL across 40 frames (Car category) for two levels of confidence.
Each color denotes a particular tracking ID. Low confidence (left) and high confidence (right).

c) Accumulated ground truth trajectory predictions across 40 frames (Car category). Each color denotes a particular tracking ID.

Fig. S.3: Qualitative tracking results for two exemplary low confidence (left) and high confidence (right) scenes from the nuScenes validation split: Input 3D
object proposals (a), unrefined predicted trajectories (b) and ground truth trajectories (c).
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PADLoC: LiDAR-Based Deep Loop Closure Detection
and Registration using Panoptic Attention

José Arce1, Niclas Vödisch1, Daniele Cattaneo1, Wolfram Burgard2, and Abhinav Valada1

Abstract—A key component of graph-based SLAM systems is
the ability to detect loop closures in a trajectory to reduce the
drift accumulated over time from the odometry. Most LiDAR-
based methods achieve this goal by using only the geometric
information, disregarding the semantics of the scene. In this work,
we introduce PADLoC, a LiDAR-based loop closure detection and
registration architecture comprising a shared 3D convolutional
feature extraction backbone, a global descriptor head for loop
closure detection, and a novel transformer-based head for point
cloud matching and registration. We present multiple methods for
estimating the point-wise matching confidence based on diversity
indices. Additionally, to improve forward-backward consistency,
we propose the use of two shared matching and registration heads
with their source and target inputs swapped by exploiting that
the estimated relative transformations must be inverse of each
other. Furthermore, we leverage panoptic information during
training in the form of a novel loss function that reframes the
matching problem as a classification task in the case of the
semantic labels and as a graph connectivity assignment for the
instance labels. We perform extensive evaluations of PADLoC
on multiple real-world datasets demonstrating that it achieves
state-of-the-art performance. The code of our work is publicly
available at http://padloc.cs.uni-freiburg.de.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
core task of autonomous mobile robots. Typically, SLAM
approaches consist of two steps: alignment of consecutive
measurements, e.g., from wheel odometry, followed by loop
closure detection and registration. Reliable loop closure de-
tection enables a robot to recognize places it has seen before
to optimize its world representation and belief of its current
position, reducing the drift over time. Thus, it is considered
a fundamental component of SLAM systems. Many SLAM
systems have been proposed for different sensor modalities
including cameras [1] and LiDARs [2]. While vision-based
methods fail in challenging lighting conditions such as illumi-
nation changes, LiDAR-based approaches are more robust to
such alterations and provide a more accurate representation of
the environment. In this work, we address the joint problem of
loop closure detection and map registration for LiDAR-based
SLAM. A high-level overview of our approach is depicted
in Fig. 1.

Similar to other fields, learning-based approaches have
started to replace handcrafted methods due to their better
generalization ability and faster runtime [3], [4]. Typically,
deep neural networks predict point correspondences which are
then used in differential singular value decomposition (SVD)

1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Engineering, University of Technology Nuremberg, Germany.
This work was funded by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR and the DFG
Emmy Noether Program.

Current scan

Previous scans
Point cloud registration

Loop closure detection

Fig. 1. We propose PADLoC that jointly detects loop closures for LiDAR-
based SLAM and simultaneously performs point cloud registration. In addition
to geometric information, we leverage panoptic segmentation annotations
during training to facilitate more robust point matching.

to compute the transformation between two point clouds [5],
[6]. Motivated by the success of transformers in natural
language processing and computer vision tasks, attention-
based architectures were recently introduced for point cloud
registration [6], [7], [8] to encode context across points. While
existing works do not consider the semantic meaning of the
different inputs to a transformer cell, i.e., queries, keys, and
values, we explicitly take advantage of the internal structure
by feeding in abstract features and raw points separately.

Although geometric information suffices for classical point
cloud registration such as Iterative Closest Point (ICP) [9],
they can be further stabilized by integrating semantic infor-
mation [2], [10], [11]. Inspired by recent semantic mapping
approaches [10], [12] and methods that exploit panoptic infor-
mation for vision-based loop closure detection [13], we lever-
age panoptic segmentation of point clouds in this work. Unlike
related methods, our approach requires panoptic labels only
while training but not during deployment, making it more ver-
satile. We evaluate the loop closure detection and point cloud
registration performance on three real-world autonomous driv-
ing datasets, namely, KITTI [14], Ford campus [15], and an
in-house dataset recorded in Freiburg, Germany. We compare
against both state-of-the-art handcrafted and deep learning-
based methods and demonstrate that PADLoC achieves state-
of-the-art performance. We also present several ablation stud-
ies on the different components of our approach validating our
architectural design choices.

The main contributions of this work are as follows:
1) We propose PADLoC, a transformer encoder architecture

for point cloud matching and registration. Unlike existing
methods, we use separate inputs as keys, values, and
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queries effectively, exploiting the transformer structure.
2) We define a novel loss function that leverages panoptic

information for registration. We further propose formu-
lating both geometric and panoptic registration losses as
bidirectional functions that greatly improve performance.

3) We study the effect of multiple weighting methods in
SVD to enhance point matching.

4) We extensively evaluate our proposed approach and
compare it to other point cloud matching and registra-
tion methods, using two openly available datasets and
in-house data recorded in Freiburg, Germany.

5) We release our code and the trained models at
http://padloc.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we first provide an overview of LiDAR-
based loop closure detection techniques for SLAM, followed
by various methods for point cloud registration, and finally
describe approaches that leverage semantic segmentation for
either task.

Loop Closure Detection: Traditionally, handcrafted methods
for LiDAR loop closure detection can be categorized into
local feature-based and global feature-based methods. Inspired
by the success of local feature-based methods in images,
approaches from the first category design similar descriptors
and adapt them to 3D point cloud data. 3D keypoint descriptors
such as Fast Point Feature Histograms (FPFH) [16] and
Normal-Aligned Radial Features (NARF) [17] are used to
extract local features, which are then aggregated in a bag-of-
word model to detect loop closures. More recently, HOPN [18]
exploits a bird’s-eye view (BEV) representation and normal
information to increase robustness to noise and viewpoint
changes. Global feature-based approaches, on the other hand,
summarize the whole point cloud into a single fingerprint,
which is then compared against the fingerprints from past
frames to detect loops. The M2DP [19] descriptor projects
the point cloud into multiple 2D planes and combines density
information computed on each plane into a global descriptor.
Scan Context [20] combines a polar coordinate representation
with partitioning to generate an image as a global descriptor.
Subsequent works extended this method by adding additional
information such as intensity [21] and semantic data [22].
Recently, many deep learning-based approaches have been
proposed to overcome some of the limitations of handcrafted
methods. PointNetVLAD [23] is built on top of the Point-
Net [24] architecture and generates a compact descriptor.
OverlapNet [25] projects the point cloud into a range image
and predicts the overlap and the yaw misalignment between a
pair of frames. To increase viewpoint robustness and to reduce
inference time, OverlapTransformer [26] adapts OverlapNet
by including a transformer module. In this work, we build
upon LCDNet [5] that uses learning-based feature extraction
to generate global descriptors. LCDNet significantly improves
loop closure in challenging conditions, such as reverse loops
and, unlike other methods, does not require an ad-hoc function
to compare two global descriptors.

Point Cloud Registration: Standard techniques for point cloud
registration can be broadly classified into two main categories.
The first category comprises the Iterative Closest Point (ICP)
algorithm [9] and its variants [10], [27]. These methods require
an initial guess on the transformation and then iteratively al-
ternate between finding matches between points by exploiting
some heuristics and estimating the transformation based on
these matches. Methods of the second category use a two-
stage approach. They first extract local point features, e.g.,
FPFH [16], and then regress the transformation using robust
estimators such as RANSAC [28]. While methods of the first
category are prone to get stuck in local minima if the provided
initial guess is not accurate enough, approaches of the second
category are sensitive to noise and incorrect matches. Many
deep learning-based approaches have also been proposed to
solve the point cloud registration task. PointNetLK [29] is
a pioneering work that combines an architecture inspired by
PointNet [24] and a modified Lucas-Kanade algorithm to
iteratively improve the registration. Inspired by the success
of transformers in other fields, Deep Closest Point [6] uses an
attention-based module to predict soft matches between two
point clouds, which are fed to a differentiable SVD layer to
infer a rigid transformation. Following the same idea, both
GeoTransformer [7] and REGTR [8] directly learn to predict
point correspondences using both self and cross-attention. Our
previous work LCDNet [5] combines a state-of-the-art feature
extraction architecture with a place recognition head and a
relative pose head for simultaneous loop closure detection and
point cloud registration. In this work, we adapt LCDNet [5]
by integrating a transformer-based registration and matching
module.

Semantic-Aided Mapping and Localization: Only a handful
works have proposed to leverage semantic information for
large-scale mapping and localization [10], [30], and partic-
ularly for loop closure detection. Based on semantic segmen-
tation, SuMa++ [10] filters dynamic objects from a LiDAR-
based map and extends the ICP algorithm with additional
semantic constraints. While SuMa++ does not utilize semantic
information for loop closure detection, RINet [31] explicitly
addresses LiDAR-based place recognition via a rotation in-
variant global descriptor combining semantic and geometric
information. For the same task, Kong et al. [11] propose
to build a graph representation of point clouds, which are
enriched by both semantic and instance segmentation and
perform graph similarity matching. SA-LOAM [2] integrates
a semantic-aided variant of ICP into the popular LOAM
pipeline for point cloud registration. To address loop closure,
it uses a similar graph representation as Kong et al. [11].
SV-Loop [13] is a loop closure detection method for vision-
based SLAM. It separately proposes loop closure candidates
based on raw images and panoptic segmentation maps, which
are then fused to extract the most feasible candidates. In our
approach, we exploit panoptic annotations of point clouds
while predicting both loop closure detection and point cloud
registration. Additionally, we only utilize them during the
training process but not for deployment, making the method
more versatile.



III. TECHNICAL APPROACH

In this section, we introduce our novel PADLoC architecture
for joint loop closure detection and point cloud registration.
First, we detail the overall approach comprising the modules
shown in Fig. 2. We then describe the loss functions that we
employ, including our proposed loss that leverages panoptic
annotations of point clouds.

A. Model Architecture

In this section, we describe the individual components
of the PADLoC architecture. We build upon our previously
proposed LCDNet [5], where instead of using a differentiable
approximation of the optimal transport to obtain point matches,
we propose to leverage the cross-attention matrices of trans-
formers. The learnable keys, queries, and values weights yield
a better latent representation of the features, and thus more
reliable matches. As depicted in Fig. 2, the overall PADLoC
architecture consists of three modules: feature extraction, loop
closure detection, and point cloud registration. During training,
we employ a triplet-based training scheme by feeding in an
anchor point cloud along with a positive sample of a loop
closure and a negative sample.

Feature Extraction: The feature extraction backbone converts
raw input scans into a high-dimensional embedding that is
used as a common input for both loop closure detection and
point cloud registration. It effectively exploits global and local
contexts and is built upon the PV-RCNN architecture [32].
In detail, a point cloud P, comprising 3D coordinates and
reflectance values, is discretized into a voxel grid which is then
passed through four sparse 3D convolutional layers to generate
the feature maps at different resolutions. The final feature map
is then stacked to form a BEV feature map. Additionally, the
original point cloud is downsampled using the Farthest Point
Sampling (FPS) algorithm to uniformly select n keypoints.
The feature vector of each sampled keypoint is assembled
by combining the feature maps from each convolutional layer
in a neighborhood of the sampled keypoint using the Voxel
Set Abstraction module [32]. The raw input of each sampled
keypoint is also appended to each feature vector, along with
the corresponding entry in the BEV feature map. Finally, these
intermediate features are fed through a multilayer perceptron
to obtain the final feature vector for each sampled point.
This module thus outputs the sampled keypoints Q and the
corresponding features F.

Loop Closure Detection: The global descriptor module of
PADLoC further encodes the previously extracted features to
perform loop closure detection. For this task, we employ the
NetVLAD layer [33] to convert the feature vectors F of the
anchor, the positive, and the negative points to their respective
final descriptor D. In detail, NetVLAD learns k clusters
along with corresponding descriptors, which are aggregated
in a single descriptor v for the entire point cloud. The final
descriptors D of length g are then obtained via a context gating
layer. This learnable pooling operation with weights WG and
bias bG is defined as

D = σ
(
WG · v + bG

)
⊙ v, (1)

where σ(·) refers to the logistic sigmoid function and ⊙
denotes the element-wise multiplication.

During inference, the descriptors are stored in such a man-
ner that allows for efficient querying of the nearest neighbor
in descriptor space. If the distance between the descriptor of
the current scan and its nearest neighbor is below a predefined
threshold, they are considered to form a loop closure. To avoid
matching consecutive scans, we introduce a small temporal
distance between the current scan and potential neighbors.

Point Matching: The matching module shown in Fig. 3 predicts
soft correspondences M̂ t

s between keypoints Qs and Qt of a
source point cloud s and a target point cloud t, respectively.
Additionally, it outputs projected target coordinates Q̂t which
are linear combinations of the original target coordinates with
a one-to-one pairing with the points of the source set and a
confidence weight ŵM for each of these matches. Inspired
by the success of transformers in related tasks, we propose
a novel architecture that performs cross-attention directly on
the encoder part, obviating the need for a decoder by feeding
independent inputs for the queries, keys, and values.

Q̂t = WQ · TEL
(
Fs,Ft,Qt

)
+ bQ, (2)

where TEL(q, k, v) is a transformer encoder layer, as defined
in [34], but applied to independent query q, key k, and value v
inputs. WQ ∈ R3×f and bQ ∈ R3 are learnable weights and
biases used to reduce the dimensionality of the output from
the size f of the features F to 3D space. We directly use the
encoder’s attention matrix as our matching M̂ t

s , since it already
encodes the similarity between the features of the two sets of
points. Moreover, each row in the attention matrix represents
the probability distribution of matching the corresponding
point from the source set to all of the points from the target
set, given that it is non-negative and adds up to one due to the
use of the softmax function.

From the matching matrix M̂ t
s , we compute a confidence

weight for every pair of point correspondences by penalizing
the dispersion of the distributions represented by each row.
We propose using a diversity metric for that purpose, such as
the Shannon Entropy (E), the order-r Hill number (Dr), or the
Berger-Parker index (BP), defined as

E(p) = −
∑

i

pi · log(pi), (3)

Dr(p) =
(∑

i

pri

) 1
1−r

, (4)

BP(p) = max(p), (5)

where p is a vector of probabilities.

The weights ŵM are obtained using either of the afore-
mentioned metrics by normalizing their output to a [0, 1]
range, where the two extreme weights of 0 and 1 respectively
correspond to a uniform and an infinitely sharp distribution.

Point Cloud Registration: To obtain the final relative transfor-
mation Ĥt

s from a source point cloud to a target point cloud,
we perform a weighted version of the Kabsch-Umeyama algo-
rithm that finds the optimal translation and rotation between



Anchor points

shared

shared

Feature extraction

Registration &
matching module

Registration &
matching module

shared

Global descriptor

Global descriptor

Global descriptor

shared

shared

Loop closure
detection

Point cloud
registration

Positive points

Negative points

Registered loop closure

Fig. 2. Overview of our proposed PADLoC architecture for joint loop closure detection and point cloud registration. It consists of a shared feature extractor
(green) followed by a global descriptor head (blue) for loop closure detection and a registration and matching module (orange) to estimate the 6-DoF transform
between two point clouds (red). To train the global descriptor, we use a triplet loss (purple) that compares the anchor point cloud with a positive and negative
sample. For the registration module, we leverage losses (purple) based on both geometric and panoptic information.
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Fig. 3. The matching module consists of a transformer encoder that takes
the extracted features of the source keypoints Fs as query, the features of
the target keypoints Ft as key, and the corresponding target keypoints Qt as
value. It outputs both soft correspondences M̂ t

s and projected target points
Q̂t along with confidence weights ŵM . The latter is fed together with the
source keypoints Qs to a registration module that performs weighted SVD
to estimate the final transform Ĥt

s.

two sets of points by minimizing the root mean square error of
the point pairs. First, the correspondences between the sampled
source keypoints Qs and the projected target keypoints Q̂t are
weighted by the matching confidences ŵM . Subsequently, the
optimal translation is computed as the difference between the
weighted centroids of the two point clouds. Finally, the optimal
rotation is obtained via SVD of the weighted covariance matrix
of the two sets of keypoints. This approach is fully differen-
tiable and thus allows end-to-end training by measuring the
error of the predicted transformation with respect to the ground
truth relative pose.

B. Loss Functions

Our total loss function consists of a weighted sum of
the triplet loss LTri for loop closure detection as well as a
geometric loss LGeo and the newly proposed panoptic loss
LPan for point cloud registration. The following paragraphs
describe these losses in greater detail.

Triplet Loss: For the loop closure detection task, we use the
triplet loss. It enforces a small distance between the descriptors

of an anchor point cloud and a positive point cloud, i.e., a loop
closure LiDAR scan while increasing the distance between the
descriptors of the anchor and a negative point cloud, i.e., a
LiDAR scan taken at a different place.

LTri = max {d(Da,Dp)− d(Da,Dn) +m, 0} , (6)

where the descriptors of the anchor, the positive, and the
negative sample are denoted by Da, Dp, and Dn, respectively.
d(·) is a given distance function and m refers to the desired
separation margin.

Geometric Loss: We formulate our geometric loss LGeo as
a sum of a pose loss LPos and an auxiliary matching loss
LMat . For the pose loss, we compare the predicted relative
transformation Ĥp

a from the anchor to the positive sample with
the ground truth transformation Hp

a by applying both to the
coordinates of the same sampled point cloud Qa. Then we
compute the mean absolute error in the Euclidean space.

LPos = mean
(
abs

(
Ĥp

a ·Qa −Hp
a ·Qa

))
(7)

We further evaluate the geometric correspondence between
the sampled anchor Qa and positive points Qp leveraging the
predicted matching matrix M̂a

p . In detail, we transform the
anchor points with the ground truth transformation Ha

p and
project the positive sample with M̂a

p .

LMat = mean
(
abs

(
Hp

a ·Qa − M̂a
p ·Qp

))
(8)

Panoptic Loss: In addition to the geometric point correspon-
dences, we propose to leverage panoptic information to register
two point clouds. In detail, we formulate a novel panoptic loss
LPan as the sum of semantic misclassification losses LSem

and LMes as well as a multi-matched object loss LMmo .
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Fig. 4. The multi-matched object loss penalizes matching an object in
the anchor point cloud to multiple objects in the positive sample. Unlike
the semantic misclassification losses, the multi-matched object loss does
not consider the semantic class, as depicted in (a). By exploiting a graph
representation shown in (b) of the point cloud, it enforces that all points of
the same object are matched to points of another object.

We treat the matching process as a classification task, where
the projected positive points are assigned a semantic class.
While a cross-entropy loss is commonly used in classification
problems, due to the fact that the proposed class logits are
not the output of either a logistic or softmax activation, we
empirically found that a mean absolute error resulted in a
more stable training process. First, we use the semantic labels
to construct one-hot encoded matrices Ka and Kp for the
anchor and positive samples, respectively. Using the predicted
matching matrix M̂a

p , we define the semantic loss as

LSem = mean
(
abs

(
Ka − M̂a

p ·Kp
))

. (9)

Additionally, to allow flexibility in the semantic misclassi-
fication, we define a mapping from the semantic class labels
to a set of super-classes, e.g., both car and truck belong to the
vehicle class. Further details can be found in Sec. IV-A. Anal-
ogously to the semantic loss, we construct one-hot encoded
matrices Ja and Jp and define the meta-semantic loss as

LMes = mean
(
abs

(
Ja − M̂a

p · Jp
))

. (10)

In our novel multi-matched object loss, we further exploit
the instance labels to encourage the network to match entire
objects consistently from one point cloud to the other. This is
done by penalizing matches of points from a single object in
the anchor to multiple objects in the positive sample. Unlike
the previously introduced semantic misclassification losses, the
multi-matched object loss does not consider the semantic class
of objects, as depicted in Fig. 4 (a).

Since instance labels may not be consistent throughout a
driving sequence, it is not feasible to purely rely on the IDs.
Therefore, we construct adjacency matrices Oa and Op of a
graph representation of the point clouds, where nodes represent
points and edges connect points of the same instances of a
semantic class. The predicted matching matrices M̂a

p and M̂p
a

can then be considered as weighted, directed, bipartite graphs
between the two sets of points (see Fig. 4 (b)). Finally, we
formulate the multi-matched object loss as

LMmo = mean
(
(1−Oa)⊙

(
M̂a

p ·Op · M̂p
a

))
, (11)

where ⊙ denotes the element-wise multiplication.

Reverse Losses: Finally, we add a second instance of the regis-
tration module that processes the swapped source s and target
t inputs and predicts the inverse relative transformation. Both
the geometric and the panoptic losses can be reformulated
accordingly. The total loss is then formulated by averaging
the results of both the original and the reverse versions.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed PADLoC architec-
ture with respect to multiple handcrafted and learning-based
methods. We perform several experiments and present both
the loop closure detection and the point cloud registration
results. Finally, we evaluate the design choices in PADLoC
by performing multiple ablation studies.

A. Implementation Details

We perform experiments on two publicly available au-
tonomous driving datasets, namely the KITTI odometry bench-
mark [14] and the Ford campus vision and LiDAR dataset [15].
Additionally, we also present results on a more challenging
in-house dataset recorded in Freiburg, Germany. For training,
we leverage the ground truth panoptic annotations from the
SemanticKITTI dataset [37]. In particular, we train all models
on sequences {00, 05, 06, 07, 09} and, if not specified
otherwise, evaluate on sequence 08. We consider a loop
closure between two point clouds if their poses are within
a 4m distance and took place at a minimum of 50 frames
apart to avoid consecutive scans. Unless otherwise specified,
we use n = 4096 keypoints, set the feature size to f = 640,
the descriptor length to g = 256, and the number of clusters
k = 64. To improve the invariance of the model with respect
to the inputs’ position and orientation, we augment the data
during training by applying a random rigid transformation to
the input point clouds with a uniform translation of ±1.5m in
the x and y axes and ±0.25m along z, and a uniform rotation
of ±3° for the roll and pitch angles and ±180° for the yaw. We
train all our models on a server with 4 NVIDIA RTX A6000
GPUs for 150 epochs with a batch size of b = 8. We use the
Adam optimizer with an initial learning rate of λ = 0.004,
halved after epochs 40 and 80, and with a weight decay of
5× 10−6.

The total loss function is computed as a weighted sum of the
components described in Sec. III-B, with weights wTri = 1.0,
wPos = 1.0, wMat = 0.05, wSem = 0.125, wMes = 0.5,
and wMmo = 10.0. We use a triplet margin of m = 0.5
and the the L2 distance as the distance function in Eq. 6.
For the semantic super-classes, we follow the definitions of
Cityscapes [38] and group the semantic labels into flat, human,
vehicle, construction, object, nature, and void. Based on the
ablation study presented in Sec. IV-D, we use the Berger-
Parker index to compute the confidence weights.

B. Loop Closure Detection

To evaluate the loop closure detection performance, we
compare PADLoC with the handcrafted methods M2DP [19],
Intensity Scan Context (ISC) [21], Scan Context [35], and



TABLE I
COMPARISON OF LOOP CLOSURE DETECTION AND POINT CLOUD REGISTRATION PERFORMANCE

KITTI Seq. 08 [14] Ford Seq. 01 [15] Freiburg (in-house)

Method AP ↑ rerr [°] ↓ terr [m] ↓ AP ↑ rerr [°] ↓ terr [m] ↓ AP ↑ rerr [°] ↓ terr [m] ↓

H
an

dc
ra

ft
ed

M2DP [19] 0.05 — — 0.89 — — 0.60 — —
Scan Context∗ [35] 0.65 3.11 — 0.97 16.68 — 0.74 52.70 —
LiDAR-Iris∗ [36] 0.64 1.84 — 0.90 1.66 — 0.73 46.24 —
ISC∗ [21] 0.31 6.27 — 0.62 6.15 — 0.38 51.02 —
ICP (pt2pt) [9] — 160.63 2.41 — 9.56 2.79 — 89.43 2.37
ICP (pt2pl) [9] — 160.73 2.49 — 9.16 2.62 — 89.25 2.25

L
ea

rn
in

g DCP [6] — 46.06 2.59 — 12.14 3.42 — 45.70 2.30
OverlapNet∗ [25] 0.32 65.45 — 0.79 9.44 — 0.59 70.91 —
LCDNet [5] 0.76 0.37 0.19 0.97 1.82 1.44 0.65 10.08 0.91
PADLoC (ours) 0.81 0.37 0.16 0.98 1.50 1.33 0.67 9.30 1.41

Comparison of the average precision (AP) for loop closure detection as well as rotation error rerr and translation error terr for point cloud
registration of PADLoC with previous methods. All learning-based models are trained on the KITTI odometry benchmark dataset. PADLoC
uses panoptic annotations from the SemanticKITTI dataset. Methods denoted with ∗ only estimate the yaw between two point clouds instead
of a full 6-DoF transformation. Bold and underlined values denote the best and second best scores, respectively.

LiDAR-Iris [36], as well as with the learning-based ap-
proaches LCDNet [5], OverlapNet [25], and Deep Closest
Point (DCP) [6]. For DCP, we combine the feature extraction
module of PADLoC with a full transformer-based matching
module based on the authors’ code release. For the other
methods, we directly use the official code published by the
respective authors. To compute the results on OverlapNet, we
download the model weights provided on the project website
that are trained on KITTI. We re-train the other learning-
based methods on sequences {00, 05, 06, 07, 09} of the
KITTI odometry benchmark [14], where PADLoC leverages
the ground truth panoptic annotations from the SemanticKITTI
dataset [37]. We evaluate all methods on sequence 08 of
the KITTI dataset, sequence 01 of the Ford dataset, and an
in-house dataset recorded in Freiburg, Germany.

When evaluating PADLoC, we generate a descriptor Di for
every scan i in a sequence and compute its similarity with that
of all frames prior to the 50 previous scans. If a scan j with the
closest descriptor to that of scan i has a similarity higher than
a threshold τ , then the pair (i, j) is considered to form a loop
closure. If the distance between the two ground truth poses
is within 4m for the KITTI dataset and 10m for the Ford
and Freiburg datasets, then it is considered as a true positive.
Otherwise, it is considered a false positive. Conversely, if the
pose distance is within 4m/10m, but the similarity between
the descriptors is below the threshold τ , then we regard it
as a false negative. By changing the value of τ , we obtain
precision-recall pairs that are then used to compute the average
precision (AP).

In Table I, we report the average precision (AP) of PADLoC
and the aforementioned baseline methods. Notably, PADLoC
achieves the highest performance across the entire board for
the evaluation sequences of both KITTI and Ford datasets. For
our in-house Freiburg dataset, PADLoC yields the highest AP
compared to the other learning-based approaches. Although
the proposed transformer-based registration head and the
panoptic losses do not directly influence the loop closure de-
tection module, by sharing the same feature extractor between
the two branches and training for the two tasks jointly, the

better feature representation learned using our novel module
and losses also improve the loop closure detection performance
compared to LCDNet, which achieved the second best AP on
both KITTI and Ford. Qualitative results of these methods
on the KITTI dataset are visualized in Fig. 5. Compared to
OverlapNet, both LCDNet and PADLoC correctly detect a
higher number of loop closures, whereas PADLoC is able to
further reduce the number of false positives. In Fig. 6, we
plot the corresponding precision-recall curves that are used
to compute the AP scores. We observe that PADLoC can
maintain a higher precision for increased recall than LCDNet.

C. Point Cloud Registration

To evaluate the point cloud registration performance, we
compare PADLoC with the same handcrafted and learning-
based methods described in Sec. IV-B, except for M2DP
that does not perform point cloud registration. Since these
handcrafted methods only estimate the yaw between two
point clouds instead of the full 6-DoF transformation, we
additionally compare with the Iterative Closest Point algo-
rithm (ICP) [9], using both point-to-point and point-to-plane
distances. Following the standard experimental setup [5], for
LCDNet, DCP, and PADLoC, we perform point cloud regis-
tration with RANSAC using the extracted features before the
respective matching layers.

As a measure of registration accuracy, we compute the
rotation error rerr in degrees and the translation error terr in
meters of all positive pairs. We then average the errors over the
entire sequence and present the results in Table I. We observe
that PADLoC yields the smallest rotation error compared to
all the handcrafted and learning-based methods on each of the
evaluation sequences in the datasets. Additionally, it yields the
smallest translation error on both the KITTI and Ford datasets,
as well as the second lowest translation error on our in-house
Freiburg dataset. LCDNet achieves the second best perfor-
mance in most evaluations while achieving the lowest transla-
tion error on the Freiburg dataset. This result shows that while
the feature extraction architecture and the training scheme
play an important role, leveraging the cross-modal attention
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Fig. 5. Qualitative loop closure detection results on KITTI sequence 08. The ground truth path corresponds to true negatives. While LCDNet reduces both
false positives and false negatives compared to OverlapNet, the proposed PADLoC further decreases false positives.
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Fig. 6. Precision-recall curves for loop closure detection of learning-based
methods evaluated on sequence 08 of the KITTI dataset.

matrices from the transformer architecture and the panoptic
information during training further improves the point cloud
registration performance. While LiDAR-Iris achieves the low-
est rotation error across all the handcrafted methods, it only es-
timates the yaw angle instead of the full 6-DoF transformation.

D. Ablation Studies

In this section, we present ablation studies to analyze
the major design choices in the PADLoC architecture. As
the RANSAC-based point cloud registration described in
Sec. IV-C is applied only during inference and does not impact
the training stage, all the experiments reported in this section
do not exploit RANSAC.

Confidence Weighting: We investigate the effect of different
weighting schemes on the performance of both loop closure
detection and point cloud registration tasks. In Table II, we
present the average precision (AP) as well as the registration
errors rerr and terr for the six weighting methods. In par-
ticular, uniform weights corresponding to unweighted SVD,
column sum representing the method used in LCDNet [5],
where weights are the sums along the columns of the matching
matrix, and the diversity metrics from Sec. III-A, i.e., the Shan-
non Entropy, the order-r Hill number with r ∈ {2, 4}, and the
Berger-Parker index. We observe that both the Hill numbers
and the Berger-Parker index outperform the other confidence

TABLE II
ABLATION STUDY ON CONFIDENCE WEIGHTS

Method AP ↑ rerr [°] ↓ terr [m] ↓
Uniform 0.73 4.63 3.76
Column sum 0.76 6.34 3.62
Shannon 0.50 21.86 3.99
Hill (r=2) 0.89 2.45 2.00
Hill (r=4) 0.84 2.47 2.12
Berger-Parker 0.81 2.35 1.43

Average precision (AP) of loop closure detection as
well as the mean error of point cloud registration, eval-
uated on KITTI sequence 08 for different weightings
used in SVD.

TABLE III
INFLUENCE OF THE LOSS FUNCTIONS

LGeo LPan LRev AP ↑ rerr [°] ↓ terr [m] ↓
✓ 0.70 3.09 1.62
✓ ✓ 0.78 3.36 1.71
✓ ✓ ✓ 0.81 2.35 1.43

Average precision (AP) of loop closure detection and the
mean error of point cloud registration, evaluated on KITTI
sequence 08 for the different loss functions.

weighting methods. Due to the substantially smaller translation
error of the Berger-Parker index, improving the registration by
more than 0.5m, we use this method in our final design.

Effect of Losses: To demonstrate the efficacy of our proposed
panoptic loss LPan and the impact of formulating all losses
in a bidirectional manner (LRev ), we consecutively add them
to the original geometric loss LGeo . We present the results for
both the loop closure detection and point cloud registration
tasks in Table III. We observe that adding the proposed
panoptic losses increases the average loop closure detection
precision by further constraining which points can be matched
together based on their semantic and instance labels. Further-
more, by including the second matching and registration head,
along with its corresponding reverse losses as illustrated in
the bottom row, the added bidirectional consistency constraint
yields the highest AP and the smallest registration errors.

V. CONCLUSION

In this paper, we proposed the novel PADLoC architec-
ture for LiDAR-based joint loop closure detection and point



cloud registration. PADLoC is composed of a common fea-
ture extractor, a global descriptor as well as a transformer-
based registration and matching module. Unlike previous
approaches, we feed different inputs as value, query, and key
to the transformer encoder exploiting its internal structure. We
further introduced a new loss function that leverages ground
truth panoptic annotations by penalizing matching points from
different semantic classes as well as across multiple objects,
and validated its positive impact. Through extensive experi-
mental evaluations, we demonstrated the efficacy of PADLoC
compared to both handcrafted and learning-based methods.
In particular, we show that we can take advantage of the
principles behind attention mechanisms to design transformer-
based models with lower complexity than full encoder-decoder
architectures, which yield more accurate results. Future work
will focus on exploiting panoptic information in an online
manner and applying the matching approach of PADLoC to
point cloud registration tasks in other domains.
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[3] B. Bešić and A. Valada, “Dynamic object removal and spatio-temporal
RGB-D inpainting via geometry-aware adversarial learning,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 170–185, 2022.

[4] N. Gosala and A. Valada, “Bird’s-eye-view panoptic segmentation using
monocular frontal view images,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 1968–1975, 2022.

[5] D. Cattaneo, M. Vaghi, and A. Valada, “LCDNet: Deep loop closure
detection and point cloud registration for LiDAR SLAM,” IEEE Trans-
actions on Robotics, pp. 1–20, 2022.

[6] Y. Wang and J. Solomon, “Deep Closest Point: Learning representations
for point cloud registration,” in Int. Conf. on Computer Vision, 2019, pp.
3522–3531.

[7] Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, and K. Xu, “Geometric
transformer for fast and robust point cloud registration,” in Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition, 2022, pp.
11 143–11 152.

[8] Z. J. Yew and G. H. Lee, “REGTR: End-to-end point cloud correspon-
dences with transformers,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, June 2022, pp. 6677–6686.

[9] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” Int. Journal of Computer Vision, vol. 13, no. 2, pp. 119–
152, 1994.

[10] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and
C. Stachniss, “SuMa++: Efficient LiDAR-based semantic SLAM,” in
Int. Conf. on Intelligent Robots and Systems, 2019, pp. 4530–4537.

[11] X. Kong, X. Yang, G. Zhai, X. Zhao, X. Zeng, M. Wang, Y. Liu,
W. Li, and F. Wen, “Semantic graph based place recognition for 3D
point clouds,” in Int. Conf. on Intelligent Robots and Systems, 2020, pp.
8216–8223.

[12] N. Radwan, A. Valada, and W. Burgard, “VLocNet++: Deep multitask
learning for semantic visual localization and odometry,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 4407–4414, 2018.

[13] Z. Yuan, K. Xu, B. Deng, X. Zhou, P. Chen, and Y. Ma, “SV-Loop:
Semantic-visual loop closure detection with panoptic segmentation,”
in 2021 IEEE 6th International Conference on Signal and Image
Processing (ICSIP), 2021, pp. 245–250.

[14] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2012, pp. 3354–
3361.

[15] G. Pandey, J. R. McBride, and R. M. Eustice, “Ford campus vision and
lidar data set,” The International Journal of Robotics Research, vol. 30,
no. 13, pp. 1543–1552, 2011.

[16] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Int. Conf. on Robotics and Automation,
2009, pp. 3212–3217.

[17] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,” in
Int. Conf. on Robotics and Automation, 2011, pp. 2601–2608.

[18] L. Luo, S.-Y. Cao, Z. Sheng, and H.-L. Shen, “LiDAR-based global
localization using histogram of orientations of principal normals,” IEEE
Transactions on Intelligent Vehicles, pp. 1–1, 2022.

[19] L. He, X. Wang, and H. Zhang, “M2DP: A novel 3D point cloud
descriptor and its application in loop closure detection,” in Int. Conf. on
Intelligent Robots and Systems, 2016, pp. 231–237.

[20] G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor for
place recognition within 3D point cloud map,” in Int. Conf. on Intelligent
Robots and Systems, 2018, pp. 4802–4809.

[21] H. Wang, C. Wang, and L. Xie, “Intensity Scan Context: Coding inten-
sity and geometry relations for loop closure detection,” in Int. Conf. on
Robotics and Automation, 2020, pp. 2095–2101.

[22] L. Li, X. Kong, X. Zhao, T. Huang, W. Li, F. Wen, H. Zhang, and
Y. Liu, “SSC: Semantic scan context for large-scale place recognition,”
in Int. Conf. on Intelligent Robots and Systems, 2021, pp. 2092–2099.

[23] M. Angelina Uy and G. Hee Lee, “PointNetVLAD: Deep point cloud
based retrieval for large-scale place recognition,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2018.

[24] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2017.

[25] X. Chen, T. Läbe, A. Milioto, T. Röhling, J. Behley, and C. Stachniss,
“OverlapNet: A siamese network for computing lidar scan similarity
with applications to loop closing and localization,” Autonomous Robots,
2021.

[26] J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen, “OverlapTransformer:
An efficient and yaw-angle-invariant transformer network for LiDAR-
based place recognition,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 6958–6965, 2022.

[27] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest
point,” in Computer graphics forum, vol. 32, no. 5. Wiley Online
Library, 2013, pp. 113–123.

[28] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[29] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “PointNetLK: Robust
& efficient point cloud registration using PointNet,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2019.

[30] A. L. Ballardini, D. Cattaneo, and D. G. Sorrenti, “Visual localization
at intersections with digital maps,” in Int. Conf. on Robotics and
Automation, 2019, pp. 6651–6657.

[31] L. Li, X. Kong, X. Zhao, T. Huang, W. Li, F. Wen, H. Zhang, and
Y. Liu, “RINet: Efficient 3D lidar-based place recognition using rotation
invariant neural network,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4321–4328, 2022.

[32] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “PV-
RCNN: Point-voxel feature set abstraction for 3D object detection,” in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
2020, pp. 10 526–10 535.
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7.7 Continual SLAM: Beyond Lifelong Simultaneous Localization and
Mapping through Continual Learning

The appended paper [112] follows.
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Continual SLAM: Beyond Lifelong Simultaneous
Localization and Mapping through
Continual Learning

Niclas Vödisch1, Daniele Cattaneo1, Wolfram Burgard2, and Abhinav Valada1

Abstract Robots operating in the open world encounter various different environments
that can substantially differ from each other. This domain gap also poses a challenge for
Simultaneous Localization and Mapping (SLAM) being one of the fundamental tasks for
navigation. In particular, learning-based SLAM methods are known to generalize poorly
to unseen environments hindering their general adoption. In this work, we introduce the
novel task of continual SLAM extending the concept of lifelong SLAM from a single
dynamically changing environment to sequential deployments in several drastically differ-
ing environments. To address this task, we propose CL-SLAM leveraging a dual-network
architecture to both adapt to new environments and retain knowledge with respect to previ-
ously visited environments. We compare CL-SLAM to learning-based as well as classical
SLAM methods and show the advantages of leveraging online data. We extensively eval-
uate CL-SLAM on three different datasets and demonstrate that it outperforms several
baselines inspired by existing continual learning-based visual odometry methods. We
make the code of our work publicly available at http://continual-slam.cs.uni-freiburg.de.

1 Introduction

An essential task for an autonomous robot deployed in the open world without prior
knowledge about its environment is to perform Simultaneous Localization and Mapping
(SLAM) to facilitate planning and navigation [11, 27]. To address this task, various
SLAM algorithms based on different sensors have been proposed, including classical
methods [28] and learning-based approaches [3, 18]. Classical methods typically rely
on handcrafted low-level features that tend to fail under challenging conditions, e.g.,
textureless regions. Deep learning-based approaches mitigate such problems due to their
ability to learn high-level features. However, they lack the ability to generalize to out-

1Department of Computer Science, University of Freiburg, Germany,
2Department of Engineering, University of Technology Nuremberg, Germany
This work was funded by the European Union’s Horizon 2020 research and innovation program under
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Fig. 1: While lifelong SLAM considers the long-term operation of a robot in a single dynamically
changing environment, domain adaptation techniques aim toward transferring knowledge gained in one
environment to another environment. The newly defined task of continual SLAM extends both settings
by requiring omnidirectional adaptation involving multiple environments. Agents have to both quickly
adapt to new environments and effectively recall knowledge from previously visited environments.

of-distribution data, with respect to the training set. For visual SLAM, such out-of-
distribution data can correspond to images sourced from cities in different countries or
under substantially different conditions. In the following, we use the term environment
to refer to a bounded geographical area. While different environments can share the
same fundamental structure, e.g., urban areas, their specific characteristics prevent the
seamless transfer of learned features, resulting in a domain gap between cities [1].

In the context of this work, lifelong SLAM [31] considers the long-term operation of
a robot in a single environment (see Fig. 1). Although this environment can be subject
to temporal changes, the robot is constrained to stay within the area borders [14], e.g.,
to obtain continuous map updates [15] within a city. Recent works attempt to relax
this assumption by leveraging domain adaptation techniques for deep neural networks,
including both regularization [33] and online adaptation of the employed model [19, 20,
23]. While a naive solution for adapting to a new environment is to source additional data,
this is not feasible when the goal is to ensure the uninterrupted operation of the robot.
Moreover, changes within an environment can be sudden, e.g., rapid weather changes,
and data collection and annotation often come at a high cost. Therefore, adaptation
methods should be trainable in an unsupervised or self-supervised manner without the
need for ground truth data. As illustrated in Fig. 1, the setting addressed in domain
adaptation only considers unidirectional knowledge transfer from a single known to a
single unknown environment [1] and thus does not represent the open world, where the
number of new environments that a robot can encounter is infinite and previously seen
environments can be revisited. To address this gap, we take the next step by considering
more complex sequences of environments and formulate the novel task of continual
SLAM that leverages insights from both continual learning (CL) and lifelong SLAM.
We propose a dual-network architecture called CL-SLAM to balance adaptation to new
environments and memory retention of preceding environments. To assess its efficacy,
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we define two metrics, adaptation quality and retention quality, and compare CL-SLAM
to several baselines inspired by existing CL-based VO methods involving three different
environments. We make the code of this work publicly available at http://continual-slam.
cs.uni-freiburg.de. The supplementary material can be found at https://arxiv.org/abs/
2203.01578.

2 Related Work

Visual Odometry / SLAM: Visual odometry (VO) and vision-based SLAM estimate
camera motion from a video. Allowing for self-supervised training, monocular VO can be
tackled jointly with depth estimation based on photometric consistency. SfMLearner [34]
uses an end-to-end approach consisting of two networks to predict depth from a single
image and camera motion from two consecutive images. The networks are trained in
parallel by synthesizing novel views of the target image. Monodepth2 [6] extends the
loss function to account for occluded and static pixels. Other works such as DF-VO [32]
eliminate the need for a pose network by leveraging feature matching based on optical
flow. While these methods show superior performance [20], computing a gradient of the
predicted pose with respect to the input image is not possible using classic point matching
algorithms. To reduce drift, DeepSLAM [18] combines unsupervised learning-based VO
with a pose graph backend taking global loop closures into account. In this work, we use
a trainable pose network with velocity supervision [8] to resolve scale ambiguity. Similar
to DeepSLAM, we detect loop closures and perform graph optimization.
Continual Learning: Traditionally, a learning-based model is trained for a specific task
on a dedicated training set and then evaluated on a hold-out test set sampled from the
same distribution. However, in many real-world applications, the data distributions can
differ or even change over time. Additionally, the initial task objective might be altered.
Continual learning (CL) and lifelong learning [31] address this problem by defining a
paradigm where a model is required to continuously readjust to new tasks and/or data
distributions without sacrificing the capability to solve previously learned tasks, thus
avoiding catastrophic forgetting. Most CL approaches employ one of three strategies.
First, experience replay includes rehearsal and generative replay. Rehearsal refers to
reusing data samples of previous tasks during adaptation to new tasks, e.g., the replay
buffer in CoMoDA [16]. Minimizing the required memory size, the most representative
samples should be carefully chosen or replaced by more abstract representations [7]. Sim-
ilarly, generative replay constructs artificial samples by training generative models [30].
Second, regularization [21] prevents a CL algorithm from overfitting to the new tasks
to mitigate forgetting, e.g., knowledge distillation. Third, architectural methods [13] pre-
serve knowledge by adding, duplicating, freezing, or storing parts of the internal model
parameters. They further include dual architectures that are inspired by mammalian
brains [25], where one model learns the novel task and a second model memorizes previ-
ous experience. In this work, we combine architectural and replay strategies by leveraging
a dual-network architecture with online adaptation incorporating data rehearsal.
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Online Adaptation for Visual Odometry and Depth Estimation: Recently, Luo et al. [23]
employed a subtask of CL for self-supervised VO and depth estimation, opening a new
avenue of research. Online adaptation enables these methods to enhance the trajectory and
depth prediction on a test set sourced from a different data distribution than the originally
used training set. Both Zhang et al. [33] and CoMoDA [16] primarily target the depth
estimation task. While Zhang et al. propose to learn an adapter to map the distribution of
the online data to the one of the training data, CoMoDA updates the internal parameters
of the depth and pose networks based on online data and a replay buffer. The work in
spirit most similar to ours is done by Li et al. [19]. They propose to substitute the standard
convolutional layers in the depth and pose networks with convolutional LSTM variants.
Then, the model parameters are continuously updated using only the online data. In
subsequent work, Li et al. [20] replace the learnable pose network by point matching
from optical flow. Note that all existing works purely focus on one-step adaptation, i.e.,
transferring knowledge gained in one environment to a single new environment. In this
paper, we introduce continual SLAM to take the next step by considering more complex
deployment scenarios comprising more than two environments and further alternating
between them.

3 Continual SLAM

Problem Setting: Deploying a SLAM system in the open world substantially differs
from an experimental setting, in which parameter initialization and system deployment
are often performed in the same environment. To overcome this gap, we propose a new
task called Continual SLAM, illustrated in Fig. 1, where the robot is deployed on a
sequence of diverse scenes from different environments.

Ideally, a method addressing the continual SLAM problem should be able to achieve
the following goals: 1) quickly adapt to unseen environments while deployment, 2) lever-
age knowledge from previously seen environments to speed up the adaptation, and
3) effectively memorize knowledge from previously seen environments to minimize the
required adaptation when revisiting them, while mitigating overfitting to any of the en-
vironments. Formally, continual SLAM can be defined as a potentially infinite sequence
of scenes S = (𝑠1 → 𝑠2 → . . . ) from a set of different environments 𝑠𝑖 ∈ {𝐸𝑎, 𝐸𝑏 , . . . },
where 𝑠 denotes a scene and 𝐸 denotes an environment. In particular, S can contain
multiple scenes from the same environment and the scenes in S can occur in any possible
fixed order. A continual SLAM algorithm A can be defined as

A : < 𝜃𝑖−1, (𝑠1, . . . , 𝑠𝑖) > ↦→ < 𝜃𝑖 >, (1)
where (𝑠1, . . . , 𝑠𝑖) refers to the seen scenes in the specified order and 𝜃𝑖 denotes the
corresponding state of the learnable parameters of the algorithm. During deployment,
the algorithm A has to update 𝜃𝑖−1 based on the newly encountered scene 𝑠𝑖 . For instance,
given two environments 𝐸𝑎 = {𝑠1

𝑎, 𝑠
2
𝑎} and 𝐸𝑏 = {𝑠1

𝑏}, which comprise two and one
scenes, respectively, examples of feasible sequences are

S1 = (𝑠1
𝑎 → 𝑠1

𝑏 → 𝑠2
𝑎), S2 = (𝑠2

𝑎 → 𝑠1
𝑎 → 𝑠1

𝑏), S3 = (𝑠1
𝑏 → 𝑠2

𝑎 → 𝑠1
𝑎), (2)
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where the scene subscripts denote the corresponding environment and the superscripts
refer to the scene ID in this environment. As described in Sec. 1, the task of continual
SLAM is substantially different from lifelong SLAM or unidirectional domain adaptation
as previously addressed by Luo et al. [23] and Li et al. [19, 20].

To conclude, we identify the following main challenges: 1) large number of different
environments, 2) huge number of chained scenes, 3) scenes can occur in any possible
order, and 4) environments can contain multiple scenes. Therefore, following the spirit of
continual learning (CL), a continual SLAM algorithm has to balance between short-term
adaptation to the current scene and long-term knowledge retention. This trade-off is also
commonly referred to as avoiding catastrophic forgetting with respect to previous tasks
without sacrificing performance on the new task at hand.
Performance Metrics: To address the aforementioned challenges, we propose two novel
metrics, namely adaptation quality (AQ), which measures the short-term adaptation
capability when being deployed in a new environment, and retention quality (RQ),
which captures the long-term memory retention when revisiting a previously encountered
environment. In principle, these metrics can be applied to any given base metric 𝑀𝑑

that can be mapped to the interval [0, 1], where 0 and 1 are the lowest and highest
performances, respectively. The subscript 𝑑 denotes the given sequence, where the error
is computed on the final scene.
Base Metrics: For continual SLAM, we leverage the translation error 𝑡err (in %) and
the rotation error 𝑟err (in °/m), proposed by Geiger et al. [5], that evaluate the error as
a function of the trajectory length. To obtain scores in the interval [0, 1], we apply the
following remapping:

�̂�err = max
(
0, 1 − 𝑡err

100

)
, �̂�err = 1 − 𝑟err

180
, (3)

where we clamp �̂�err to 0 for 𝑡err > 100%. The resulting �̂�err and �̂�err are then used as the
base metric 𝑀 to compute AQtrans / RQtrans and AQrot / RQrot, respectively.
Adaptation Quality: The adaptation quality (AQ) measures the ability of a method to
effectively adapt to a new environment based on experiences from previously seen envi-
ronments. It is inspired by the concept of forward transfer (FWT) [22] in traditional CL,
which describes how learning a current task influences the performance of a future task.
Particularly, positive FWT enables zero-shot learning, i.e., performing well on a future
task without explicit training on it. On the other hand, negative FWT refers to sacrificing
performance on a future task by learning the current task. In our context, a task refers
to performing SLAM in a given environment. Consequently, the AQ is intended to re-
port how well a continual SLAM algorithm is able to minimize negative FWT, e.g., by
performing online adaptation.

To illustrate the AQ, we consider the simplified example of a set of two environments
{𝐸𝑎, 𝐸𝑏} consisting of different numbers of scenes. We further assume that the algorithm
has been initialized in a separate environment 𝐸𝑝 . Since the AQ focuses on the cross-
environment adaptation, we sample one random scene from each environment 𝑠𝑎 ∈ 𝐸𝑎

and 𝑠𝑏 ∈ 𝐸𝑏 and hold them fixed. Now, we construct the set of all possible deployment
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sequences D =
{(𝑠𝑝 → 𝑠𝑎), (𝑠𝑝 → 𝑠𝑏), (𝑠𝑝 → 𝑠𝑎 → 𝑠𝑏), (𝑠𝑝 → 𝑠𝑏 → 𝑠𝑎)

}
, where

𝑠𝑝 ∈ 𝐸𝑝 is the data used for initialization. The AQ is then defined as:

AQ =
1
|D|

∑︁
𝑑∈D

𝑀𝑑 . (4)

Retention Quality: To further account for the opposing challenge of the continual SLAM
setting, we propose the retention quality (RQ) metric. It measures the ability of an
algorithm to preserve long-term knowledge when being redeployed in a previously en-
countered environment. It is inspired by the concept of backward transfer (BWT) [22] in
CL settings, which describes how learning a current task influences the performance on
a previously learned task. While positive BWT refers to improving the performance on
prior tasks, negative BWT indicates a decrease in the performance of the preceding task.
The extreme case of a large negative BWT is often referred to as catastrophic forgetting.
Different from classical BWT, we further allow renewed online adaptation when revisit-
ing a previously seen environment, i.e., performing a previous task, as such a setting is
more sensible for a robotic setup. It further avoids the necessity to differentiate between
new and already seen environments, which would require the concept of environment
classification in the open world.

To illustrate the RQ, we consider a set of two environments {𝐸𝑎, 𝐸𝑏} consisting of
different numbers of scenes. We further assume that the algorithm has been initialized
on data 𝑠𝑝 of a separate environment 𝐸𝑝 . We sample two random scenes from each envi-
ronment, i.e., 𝑠1

𝑎, 𝑠2
𝑎, 𝑠1

𝑏 , and 𝑠2
𝑏 . To evaluate the RQ, we need to construct a deployment

sequence 𝑆 that consists of alternating scenes from the two considered environments. In
this example, we consider the following fixed sequence:

𝑆 = (𝑠𝑝 → 𝑠1
𝑎 → 𝑠1

𝑏 → 𝑠2
𝑎 → 𝑠2

𝑏). (5)
We then consider all the subsequences D of 𝑆 in which the last scene comes from an
environment already visited prior to a deployment in a scene of a different environment.
In this example, D =

{(𝑠𝑝 → 𝑠1
𝑎 → 𝑠1

𝑏 → 𝑠2
𝑎), (𝑠𝑝 → 𝑠1

𝑎 → 𝑠1
𝑏 → 𝑠2

𝑎 → 𝑠2
𝑏)
}
.

The RQ is then defined as the sum over all differences of the base metric in a known
environment before and after deployment in a new environment, divided by the size of
D. For instance, given the sequence in Eq. 5:

RQ =
1
2

(
𝑀𝑠𝑝�𝑠1

𝑎�𝑠1
𝑏
�𝑠2

𝑎
− 𝑀𝑠𝑝�𝑠1

𝑎�𝑠2
𝑎
+ 𝑀𝑠𝑝�𝑠1

𝑎�𝑠1
𝑏
�𝑠2

𝑎�𝑠2
𝑏
− 𝑀𝑠𝑝�𝑠1

𝑎�𝑠1
𝑏
�𝑠2

𝑏

)
. (6)

4 Technical Approach

Framework Overview: The core of CL-SLAM is the dual-network architecture of the
visual odometry (VO) model that consists of an expert that produces myopic online
odometry estimates and a generalizer that focuses on the long-term learning across
environments (see Fig. 2). We train both networks in a self-supervised manner where
the weights of the expert are updated only based on online data, whereas the weights of
the generalizer are updated based on a combination of data from both the online stream
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Fig. 2: Online adaptation scheme of our proposed CL-SLAM that is constructed as a dual-network
architecture including a generalizer (left) and an expert (right). While the expert focuses on the short-
term adaptation to the current scene, the generalizer avoids catastrophic forgetting by employing a replay
buffer comprising samples from the past and the present. Note that both subnetworks contain a single
PoseNet, shown twice to reflect pose estimation at different steps. The predicted odometry 𝑂𝑡−1�𝑡 is
sent to the SLAM framework as shown in Fig. 3.

and a replay buffer. We use the VO estimates of the expert to construct a pose graph (see
Fig. 3). To reduce drift, we detect global loop closures and add them to the graph, which
is then optimized. Finally, we can create a dense 3D map using the depth predicted by
the expert and the optimized path.
Visual Odometry: We generate VO estimates following the commonly used approach
of using a trainable pose network [2, 6, 8, 18] for self-supervised depth estimation with a
stream of monocular images. The basic idea behind this approach is to synthesize a novel
view of an input image using image warping as reviewed in the supplementary material.

In this work, we use Monodepth2 [6] to jointly predict the depth map of an image and
the camera motion from the previous timestep to the current. To recover metric scaling of
both depth and the odometry estimates, we adapt the original loss function with a velocity
supervision term as proposed by Guizilini et al. [8]. As scalar velocity measurements are
commonly available in robotic systems, e.g., by wheel odometry, this does not pose an
additional burden. Our total loss is composed of the photometric reprojection loss L𝑝𝑟 ,
the image smoothness loss L𝑠𝑚, and the velocity supervision loss L𝑣𝑒𝑙:

L = L𝑝𝑟 + 𝛾L𝑠𝑚 + 𝜆L𝑣𝑒𝑙 . (7)
Following the common methodology, we compute the loss based on an image triplet

{It−2, It−1, It} using depth and odometry predictions Dt−1, Ot−2�t−1, and Ot−1�t. We
provide more details on the individual losses in the supplementary material.
Loop Closure Detection and Pose Graph Optimization: In order to reduce drift over
time, we include global loop closure detection and pose graph optimization (see Fig. 3).
We perform place recognition using a pre-trained and frozen CNN, referred to as LoopNet.
In particular, we map every frame to a feature vector using MobileNetV3 small [10],
trained on ImageNet, and store them in a dedicated memory. Then, we compute the
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Fig. 3: Full SLAM framework of our proposed CL-SLAM. Global loop closures are detected with a
pre-trained CNN. Visual odometry estimates between both consecutive frames and loop closure frames
are generated by the PoseNet and added to a pose graph, which is optimized upon the detection of a new
loop closure. Finally, a dense 3D map can be created using the predicted depth and the optimized path.

cosine similarity of the current feature map with all preceding feature maps:
simcos = cos( 𝑓current, 𝑓previous). (8)

If simcos is above a given threshold, we use the PoseNet to compute the transformation
between the corresponding images. During deployment, we continuously build a pose
graph [17] consisting of both local and global connections, i.e., consecutive VO estimates
and loop closures. Whenever a new loop closure is detected, the pose graph is optimized.
Online Adaptation: In this section, we describe the dual-network architecture of the VO
predictor in CL-SLAM that effectively addresses the trade-off between short-term adap-
tation and long-term memory retention, a problem also known as catastrophic forgetting.
Subsequently, we detail the training scheme including the utilized replay buffer.
Architecture: The dual-network architecture consists of two instances of both the Depth-
Net and the PoseNet. In the following, we refer to these instances as expert and generalizer.
We build upon the architecture of Monodepth2 [6]. The DepthNet has an encoder-decoder
topology, comprising a ResNet-18 [9] encoder and a CNN-based decoder with skip con-
nections, and predicts disparity values for each pixel in the input image. The PoseNet
consists of a similar structure using a separate ResNet-18 encoder followed by additional
convolutional layers to generate the final output that represents translation and rotation
between two input images. Further implementation details are provided in Sec. 5.
Training Scheme: Before deployment, i.e., performing continual adaptation, we pre-train
the DepthNet and the PoseNet using the standard self-supervised training procedure
based on the loss functions described in Sec. 4. When deployed in a new environment,
we continuously update the weights of both the expert and the generalizer in an online
manner, following a similar scheme as Kuznietsov et al. [16]:

(1) Create an image triplet composed of the latest frame It and the two previous frames
It−1 and It−2. Similarly, batch the corresponding velocity measurements.

(2) Estimate the camera motion between both pairs of subsequent images, i.e., Ot−2�t−1
and Ot−1�t with the PoseNet.
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(3) Generate the depth estimate Dt−1 of the previous image with the DepthNet.
(4) Compute the loss according to Eq. 7 and use backpropagation to update the weights

of the DepthNet and PoseNet.
(5) Loop over steps (2) to (4) for 𝑐 iterations.
(6) Repeat the previous steps for the next image triplet.

Upon deployment, both the expert and the generalizer are initialized with the same
set of parameter weights, initially obtained from pre-training and later replaced by the
memory of the generalizer. As illustrated in Fig. 2, the weights of the expert are updated
according to the aforementioned algorithm. Additionally, every new frame from the online
image stream is added to a replay buffer along with the corresponding velocity reading.
Using only the online images, the expert will quickly adapt to the current environment.
This behavior can be described as a desired form of overfitting for a myopic increase
in performance. On the other hand, the generalizer acts as the long-term memory of
CL-SLAM circumventing the problem of catastrophic forgetting in continual learning
settings. Here, in step (1), we augment the online data by adding image triplets from
the replay buffer to rehearse experiences made in the past, as depicted in Fig. 2. After
deployment, the weights of the stored parameters used for initialization are replaced
by the weights of the generalizer, thus preserving the continuous learning process of
CL-SLAM. The weights of the expert are then discarded.

5 Experimental Evaluation

Implementation Details: We adopt the Monodepth2 [6] architecture using separate
ResNet-18 [9] encoders for our DepthNet and PoseNet. We implement CL-SLAM in
PyTorch [29] and train on a single NVIDIA TITAN X GPU. We pre-train both sub-
networks in a self-supervised manner on the Cityscapes dataset [4] for 25 epochs with a
batch size of 18. We employ the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999 and an initial
learning rate of 10−4, which is reduced to 10−5 after 15 epochs. Further, we resize all
images during both pre-training and adaptation to 192× 640 pixels. Additionally, during
the pre-training phase, we mask all potentially dynamic objects using bounding boxes
generated by YOLOv5m [12], which was trained on the COCO dataset. We observe
that on Cityscapes this procedure yields a smaller validation loss than without masking.
We set the minimum predictable depth to 0.1 m without specifying an upper bound. To
balance the separate terms in the loss, we set the disparity smoothness weight 𝛾 = 0.001
and the velocity loss weight 𝜆 = 0.05.

During adaptation, we utilize the same hyperparameters as listed above. Inspired by
the findings of McCraith et al. [26], we freeze the weights of the encoders. Based on the
ablation study in Sec. 5.2, we set the number of update cycles 𝑐 = 5. To enhance the
unsupervised guidance, we use the velocity readings to skip new incoming images if the
driven distance is less than 0.2 m. We construct the training batch for the generalizer by
concatenating the online data with a randomly sampled image triplet of each environment
except for the current environment as this is already represented by the online data. Finally,
we add the online data to the replay buffer.
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Table 1: Path accuracy on the KITTI dataset

Online adaptation to KITTI Trained on KITTI seq. {0, 1, 2, 8, 9} No training

KITTI CL-SLAM CL-SLAM DeepSLAM [18] VO+vel [6, 8] ORB-SLAM
sequence (w/o loops) (w/o loops)

𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err

4 – – 4.37 0.51 5.22 2.27 10.72 1.69 0.62 0.11
5 4.30 1.01 4.41 1.33 4.04 1.40 34.55 11.88 2.51 0.25
6 2.53 0.63 3.07 0.73 5.99 1.54 15.20 5.62 7.80 0.35
7 2.10 0.83 3.74 1.91 4.88 2.14 12.77 6.80 1.53 0.35
10 – – 2.22 0.34 10.77 4.45 55.27 9.50 2.96 0.52

Translation error 𝑡err in [%] and rotation error 𝑟err in [°/100m]. Sequences 4 and 10 do not contain
loops. CL-SLAM is pre-trained on the Cityscapes dataset. The paths computed by ORB-SLAM
use median scaling [34] as they are not metric scale. The smallest errors among the learning-based
methods are shown in bold.

Datasets: To simulate scenes from a diverse set of environments, we employ our method
on three relevant datasets, namely Cityscapes [4], Oxford RobotCar [24], and KITTI [5],
posing the additional challenge of adapting to changing camera characteristics.
Cityscapes: The Cityscapes Dataset [4] includes images and vehicle metadata recorded
in 50 cities across Germany and bordering regions. Due to the unsupervised training
scheme of our VO method, we can leverage the included 30-frame snippets to pre-train
our networks despite the lack of ground truth poses.
Oxford RobotCar: The Oxford RobotCar Dataset [24] focuses on repeated data recordings
of a consistent route, captured over the period of one year in Oxford, UK. Besides RGB
images, it also contains GNSS and IMU data, which we use for velocity supervision. To
compute the trajectory error, we leverage the released RTK ground truth positions.
KITTI: The KITTI Dataset [5] provides various sensor recordings taken in Karlsruhe,
Germany. We utilize the training data from the odometry benchmark, which includes
images and ground truth poses for multiple routes. We further leverage the corresponding
IMU data from the released raw dataset to obtain the velocity of the vehicle.

5.1 Evaluation of Pose Accuracy of CL-SLAM

Before analyzing how CL-SLAM addresses the task of continual SLAM, we compare
its performance to existing SLAM framework. In particular, in Table 1 we report the
translation and rotation errors on sequences 4, 5, 6, 7, and 10 of the KITTI Odometry
dataset [5] following Li et al. [18]. Since the IMU data of sequence 3 has not been released,
we omit this sequence. We compare CL-SLAM to two learning-based and one feature-
based approach. DeepSLAM [18] uses a similar unsupervised learning-based approach
consisting of VO and graph optimization but does not perform online adaptation. VO+vel
refers to Monodepth2 [6] with velocity supervision [8], i.e., it corresponds to the base VO
estimator of CL-SLAM without adaptation and loop closure detection. Both learning-
based methods produce metric scale paths and are trained on the sequences 0, 1, 2, 8, and
9. Further, we report the results of monocular ORB-SLAM [28] after median scaling [34].
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Table 2: Translation and rotation error for computing the AQ and RQ metrics

Used Previous Current Bfixed Bexpert Bgeneral CL-SLAM
for scenes scene 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err

AQ

𝑐𝑡 𝑘1 130.74 26.35 2.50 0.37 7.21 1.26 2.50 0.37
𝑐𝑡 𝑟1 170.76 13.37 28.94 5.63 29.05 5.49 28.94 5.63

𝑐𝑡 � 𝑟1 𝑘1 – – 3.66 0.73 14.14 1.79 3.24 0.54
𝑐𝑡 � 𝑘1 𝑟1 – – 32.56 6.08 34.79 6.64 30.13 5.87

RQ

𝑐𝑡 � 𝑘1 � 𝑟1 𝑘2 164.77 25.07 45.20 5.62 8.48 1.79 4.85 1.59
𝑐𝑡 � 𝑘1 � 𝑟1 � 𝑘2 𝑟2 200.14 28.94 15.91 4.93 16.02 4.98 20.50 4.77

𝑐𝑡 � 𝑘1 𝑘2 – – 15.82 2.50 9.37 2.21 7.48 1.63
𝑐𝑡 � 𝑘1 � 𝑟1 𝑟2 – – 14.89 4.62 12.24 4.38 16.41 4.58

The previous scenes denote the scenes that have been used for previous training of the algorithm, the
current scene denotes the evaluation scene to compute both errors 𝑡err in [%] and 𝑟err in [°/100m]. 𝑐𝑡
refers to the Cityscapes training set. 𝑟𝑖 and 𝑘𝑖 are sequences from KITTI and the Oxford RobotCar
dataset. Bold and underlined values indicate the best and second best scores on each sequence.

CL-SLAM outperforms DeepSLAM on the majority of sequences highlighting the
advantage of online adaptation. Note that CL-SLAM was not trained on KITTI data but
was only exposed to Cityscapes before deployment. To show the effect of global loop
closure detection, we report the error on sequences 5 to 7 both with and without graph
optimization enabled. Note that sequences 4 and 10 do not contain loops. Compared
to ORB-SLAM, CL-SLAM suffers from a higher rotation error but can improve the
translation error in sequences 6 and 10. The overall results indicate that general SLAM
methods would benefit from leveraging online information to enhance performance.

5.2 Evaluation of Continual SLAM

Experimental Setup: In order to quantitatively evaluate the performance of our proposed
approach, we compute both the adaptation quality (AQ) and the retention quality (RQ)
by deploying CL-SLAM and the baseline methods on a fixed sequence of scenes. In
particular, we use the official training split of the Cityscapes dataset to initialize the
DepthNet and PoseNet, using the parameters detailed in Sec. 5. The pre-training step is
followed by a total of four scenes of the Oxford RobotCar dataset and the KITTI dataset.

(𝑐𝑡 → 𝑘1 → 𝑟1 → 𝑘2 → 𝑟2), (9)
where 𝑐𝑡 refers to the Cityscapes training set.

Following the setup of Li et al. [19], we set 𝑘1 and 𝑘2 to be sequences 9 and 10 of the
KITTI Odometry dataset. Note that we omit loop closure detection for this evaluation to
prevent graph optimization from masking the effect of the respective adaptation technique.
From the Oxford RobotCar dataset, we select the recording of August 12, 2015, at
15:04:18 GMT due to sunny weather and good GNSS signal reception. In detail, we set
𝑟1 to be the scene between frames 750 and 4,750 taking every second frame to increase
the driven distance between two consecutive frames. Analogously, we set 𝑟2 to be the
scene between frames 22,100 and 26,100. We use a scene length of 2,000 frames in order
to be similar to the length of KITTI sequences: 1,584 frames for 𝑘1 and 1,196 for 𝑘2.
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Table 3: Comparison of the
Adaptation Quality (AQ)

↑ AQtrans ↑ AQrot

Bfixed 0.000 0.890
Bexpert 0.831 0.982
Bgeneral 0.787 0.979
CL-SLAM 0.848 0.983

AQtrans refers to adaptation quality
with respect to the translation error,
AQrot is based on the rotation error.
Bold and underlined values denote
the best and second best scores.
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Fig. 4: The translation error on the initial frames of KITTI
sequence 4. Bfixed is trained on the different environments
indicating the domain gap between them. CL-SLAM over-
comes this issue by performing online adaptation.

Baselines: We compare CL-SLAM to three baselines that are inspired by previous works
towards online adaptation to a different environment compared to the environment used
during training. As noted in Sec. 3, continual SLAM differentiates from such a setting
in the sense that it considers a sequence of different environments. First, Bexpert imitates
the strategy employed by Li et al. [19], using a single set of network weights that is
continuously updated based on the current data. This corresponds to only using the
expert network in our architecture without resetting the weights. Second, Bgeneral follows
CoMoDA [16] leveraging a replay buffer built from previously seen environments. This
method corresponds to only using the generalizer network. Finally, we compute the error
without performing any adaptation, i.e., Bfixed utilizes network weights fixed after the
pre-training stage. To further illustrate forward and backward transfer and to close the gap
to classical CL, we provide results on an additional baseline Boffline in the supplementary
material. This baseline is initialized with the same network weights as CL-SLAM but
does not perform online adaptation to avoid masking backward transfer. In reality, it
resembles data collection followed by offline training after every new environment.
Adapting to New Environments: In the initial part of the evaluation sequence (Eq. 9),
the algorithm has to adapt to unseen environments. In accordance to the definition of the
AQ in Sec. 3, we construct four sequences listed in the upper four rows of Table 2. Next,
we deploy CL-SLAM and the baselines, initialized with the same set of model weights
pre-trained on Cityscapes, on each of these sequences and compute the translation and
rotation errors. Note that we do not apply median scaling since the PoseNet in our work
produces metric estimates due to the velocity supervision term. Further note that for
the first deployment after pre-training, Bexpert corresponds to CL-SLAM. We observe
that Bexpert yields smaller errors than Bgeneral. This indicates the importance of online
adaptation without diluting the updates with data from unrelated environments, if a high
performance on the current deployment is the desideratum, and, thus, supports using the
expert network in our approach. To compute the AQ score, after remapping using Eq. 3
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Fig. 5: Comparison of the trajectory on 𝑘2 after
previous deployment on 𝑘1 and 𝑟1 predicted by
CL-SLAM and the baseline methods. The hexagon
indicates the starting point.

Fig. 6: Relative translation error of the first 150
frames along 𝑘2. Compared to Bexpert, CL-SLAM
reduces the error more quickly due to initialization
with the weights of its generalizer network.

we sum the errors and divide by the number of sequences:

AQ =
1
4
(
𝑀𝑐𝑡�𝑘1 + 𝑀𝑐𝑡�𝑟1 + 𝑀𝑐𝑡�𝑟1�𝑘1 + 𝑀𝑐𝑡�𝑘1�𝑟1

)
. (10)

Comparing the AQ (see Table 3) for all experiments further endorses the previous
findings in a single metric. Notably, continual adaptation is strictly necessary to obtain
any meaningful trajectory.

Finally, we discuss the effect of consecutive deployments to different environments.
In Fig. 4, we plot the translation error of the VO estimates on KITTI sequence 4 without
online adaptation, separately trained on the considered datasets, and with adaptation,
pre-trained on Cityscapes. As expected, without adaptation, the error is substantially
higher if the system was trained on a different dataset showing the domain gap between
the environments. By leveraging online adaptation, CL-SLAM reduces the initial error
and yields even smaller errors than training on KITTI without further adaptation. Having
established the existence of a domain gap, we analyze how the deployment to the current
environment effects the future deployment to another environment, resembling the con-
cept of forward transfer (FTW) in continual learning (CL). In detail, Table 2 reveals that
the performances of all adaptation-based methods decrease when deploying them to an
intermediate environment, e.g., (𝑐𝑡 → 𝑘1) versus (𝑐𝑡 → 𝑟1 → 𝑘1), where the effect is
most pronounced for Bgeneral. In CL, such behavior is referred to as negative FWT.
Remembering Previous Environments: In the subsequent phase of the evaluation se-
quence (Eq. 9), the algorithm is redeployed in a new scene taken from a previously en-
countered environment. In accordance to the definition of the RQ in Sec. 3, we construct
four sequences listed in the lower four rows of Table 2. Note that the first two sequences
are part of the original evaluation sequence (Eq. 9) and the other two sequences are used
as a reference to measure the effect of mixed environments.
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Following the same procedure as in the previous section, we compute the translation
and rotation errors. The resulting scores (see Table 2) demonstrate the benefit of em-
ploying a replay buffer to leverage previously learned knowledge, Bgeneral yields smaller
errors than Bexpert on the majority of sequences. To compute the RQ, we follow Eq. 6:

RQ =
1
2
[ (
𝑀𝑐𝑡�𝑘1�𝑟1�𝑘2 − 𝑀𝑐𝑡�𝑘1�𝑘2

) + (
𝑀𝑐𝑡�𝑘1�𝑟1�𝑘2�𝑟2 − 𝑀𝑐𝑡�𝑘1�𝑟1�𝑟2

) ]
. (11)

Comparing the RQ scores in Table 4 clearly shows that the drop in performance when
mixing environments is less pronounced for Bgeneral. Our proposed CL-SLAM leverages
this advantage due to its generalizer, while the expert still focuses on the current scene,
achieving the highest RQ across the board.

To bridge the gap to classical CL, we also qualitatively compare the consecutive
deployment to scenes from the same environment with introducing an intermediate scene
from another environment, e.g., (𝑐𝑡 → 𝑘1 → 𝑘2) versus (𝑐𝑡 → 𝑘1 → 𝑟1 → 𝑘2). In
CL, an increase/decrease in performance is known as positive/negative backward transfer
(BWT). Whereas we observe positive BWT for Bgeneral and CL-SLAM on the KITTI
dataset, the sequence with final deployment on RobotCar suffers from negative BWT. A
possible explanation for this inconsistent behavior is structural differences between the
sequences of the same dataset inducing small domain gaps within a dataset that require a
potentially more fine-grained scene classification. However, by always performing online
adaptation independent of previous deployments, CL-SLAM circumvents such issues.

In Fig. 5, we visualize the generated trajectories in 𝑘2 given previous deployment in
𝑘1 and 𝑟1 from our method and the evaluated baselines. Although Bexpert can reproduce
the general shape of the trajectory, it requires a warm-up time causing an initial drift,
visible up to frame 40 in Fig. 6. On the other hand, Bgeneral can leverage the experience
from 𝑘1 due to the rehearsal of the KITTI data from its replay buffer during the pre-
vious deployment in 𝑟1. By following this idea, our proposed CL-SLAM combines the
advantages of both baseline strategies.

Table 4: Comparison of the
Retention Quality (RQ)

↑ RQtrans ×10−3 ↑ RQrot ×10−3

Bfixed – –
Bexpert -152.0 -9.5
Bgeneral -14.4 -0.5
CL-SLAM -7.3 -0.4

RQtrans refers to the retention quality with re-
spect to the translation error, RQrot is based
on the rotation error. Bfixed does not perform
adaptation, hence computing the RQ is mean-
ingless. Bold and underlined values denote the
best and second best scores.

Table 5: Ablation study on the number
of adaptation cycles

𝑐𝑡 → 𝑘1 𝑐𝑡 → 𝑘2

Updates Relative FPS 𝑡err 𝑟err 𝑡err 𝑟err

1 1.00 34.37 6.70 86.36 11.71
2 0.56 31.37 5.83 39.72 7.16
3 0.40 24.21 4.21 11.15 4.63
4 0.30 3.24 0.54 13.51 2.03
5 0.24 2.50 0.37 11.18 1.74
6 0.20 2.84 0.40 12.97 1.51

Translation error 𝑡err in [%] and rotation error 𝑟err
in [°/100m] for varying number of weight updates 𝑐
performed during online adaptation. We use 𝑐 = 5
in CL-SLAM. Bold and underlined values denote
the best and second best scores.
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Number of Update Cycles: We perform a brief ablation study on the number of update
cycles performed during online adaptation, i.e., how often steps (2) to (4) are repeated for
a given batch of data (see Sec. 4). For this, we deploy CL-SLAM to both KITTI sequences
𝑘1 and 𝑘2 and compute the translation and rotation error. As shown in Table 5, using
five update cycles yields the most accurate trajectory while resulting in a 75% reduction
in speed compared to a single cycle. However, please note that in this work, we do not
focus on adaptation speed but on showing the efficacy of the proposed dual-network
approach to balance the common continual learning trade-off between quick adaptation
and memory retention.

6 Conclusion

In this paper, we introduced the task of continual SLAM, which requires the SLAM
algorithm to continuously adapt to new environments while retaining the knowledge
learned in previously visited environments. To evaluate the capability of a given model
to meet these opposing objectives, we defined two new metrics based on the commonly
used translation and rotation errors, namely the adaptation quality and the retention
quality. As a potential solution, we propose CL-SLAM, a deep learning-based visual
SLAM approach that predicts metric scale trajectories from monocular videos and de-
tects global loop closures. To balance short-term adaptation and long-term memory
retention, CL-SLAM is designed as a dual-network architecture comprising an expert
and a generalizer, which leverages experience replay. Through extensive experimental
evaluations, we demonstrated the efficacy of our method compared to baselines using
previously proposed continual learning strategies for online adaptation of visual odome-
try. Future work will focus on transferring the proposed design scheme to more advanced
visual odometry methods, e.g., using point matching via optical flow. We further plan
to address the currently infinite replay buffer to mitigate the scaling problem, e.g., by
storing more abstract representations or keeping only the most representative images.
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A Supplementary Material

A.1 Technical Approach: Visual Odometry

As elaborated in the main paper, we generate VO estimates following the commonly
used approach of using a trainable pose network [1, 3, 4, 5] for self-supervised depth
estimation with a stream of monocular images. In this section, we first review the basic
idea behind this approach and then describe the losses that we employ in more detail.

The core intuition is that given a source image Is and the camera motion Os�t, it is
possible to generate a reconstructed view Îs�t for a target image It using image warping.
In detail, a 2D pixel pt can be projected to the 3D point Pt using the camera matrix K
and depth information dt at this pixel. In monocular depth estimation, dt is predicted by
a neural network. Next, the camera motion Os�t is used to transform Pt to Ps, which can
be projected onto the plane of image Is yielding the 2D pixel p̂s:

p̂s ∼ KOt�s dtK−1pt︸   ︷︷   ︸
Pt

. (12)

Repeating this procedure for every pixel in It, we obtain a mapping pt ↦→ p̂s to
reproject image coordinates:

Îs�t (pt) = Is(p̂s). (13)

Finally, using bilinear interpolation over these coordinates, the reconstructed view
Îs�t can be generated and compared to the target image It to compute a loss value.

Our total loss is composed of the photometric reprojection loss L𝑝𝑟 , the image
smoothness loss L𝑠𝑚, and the velocity supervision loss L𝑣𝑒𝑙:

L = L𝑝𝑟 + 𝛾L𝑠𝑚 + 𝜆L𝑣𝑒𝑙 . (14)

Photometric Consistency: To minimize the photometric error between the true target
image and the reconstructed view, we compute the structural dissimilarity L𝑠𝑖𝑚 [2]:

L𝑠𝑖𝑚 (I, Î) = 𝛼
1 − 𝑆𝑆𝐼𝑀 (I, Î)

2
+ (1 − 𝛼) | |I − Î| |1, (15)

where 𝑆𝑆𝐼𝑀 denotes the structure similarity image matching index [6]. To mitigate the
effect of objects that are present in the target image It but not in the source images,
Godard et al. [3] proposed to take the pixel-wise minimum over L𝑠𝑖𝑚 (It, Îs�t) for all
source images:

L𝑝 = min
𝑠

L𝑠𝑖𝑚 (It, Îs�t). (16)

To further suppress the signal from static scenes or objects moving at a similar speed
as the ego-robot, the same authors introduced the concept of auto-masking. The idea is to
compute the loss only on those pixels, where the photometric error L𝑠𝑖𝑚 (It, Îs�t) of the
reconstructed image is smaller than the error L𝑠𝑖𝑚 (It, Îs) of the original source image:
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𝜇𝑚𝑎𝑠𝑘 =
[
min
𝑠

L𝑠𝑖𝑚 (It, Îs�t) < min
𝑠

L𝑠𝑖𝑚 (It, Is)
]
, (17)

where 𝜇𝑚𝑎𝑠𝑘 has the same width and height as It.
The total photometric reprojection loss L𝑝𝑟 is defined as:

L𝑝𝑟 = 𝜇𝑚𝑎𝑠𝑘 · L𝑝 . (18)

Image Smoothness: To regularize the depth prediction in image regions with less texture,
we use an edge-aware smoothness term [2] computed for the predicted depth map Dt. It
encourages the DepthNet to generate continuous depth values in continuous image areas.

L𝑠𝑚 = |𝜕𝑥S∗
t |𝑒−|𝜕𝑥It | + |𝜕𝑦S∗

t |𝑒−|𝜕𝑦It | , (19)

where 𝜕𝑖 indicates the partial derivative with respect to axis 𝑖 and S∗
t = St/S̄t denotes the

inverse depth (disparity) St = Dt
−1 normalized with its mean.

Velocity Supervision: To enforce metric scaling of the predicted odometry, we leverage
the speed or velocity measurements from the robot. While such a rough measurement
can be obtained inexpensively, e.g., by wheel odometry, it teaches the network to predict
scale-aware depth and pose estimates. The velocity supervision term L𝑣𝑒𝑙 [4] imposes a
loss between the magnitude of the predicted translation 𝑇𝑡�𝑠 and the distance traveled by
the robot based on the velocity reading 𝑣𝑡�𝑠:

L𝑣𝑒𝑙 =
∑︁
𝑠

��� | |𝑇𝑡�𝑠 | |2 − |𝑣𝑡�𝑠 |Δ𝜏𝑡�𝑠

���, (20)

where Δ𝜏𝑡�𝑠 denotes the time between images Is and It.

A.2 Additional Experimental Evaluation

In Table 6, we provide the results of an additional baseline that we call Boffline. It does
not leverage online adaptation but is initialized with the same network parameters as CL-
SLAM. Note that in a practical setting, to some extent this corresponds to data collection
followed by offline training with a replay buffer for every new environment. Although
such a setup does not completely align with the core idea of continual SLAM, Boffline
aims to close the gap to classical continual learning by not performing re-adaptation
to previously seen environments, i.e., conducting a previously learned task, to avoid
masking backward transfer.

Analogously to the adaptation-based methods, the performance of Boffline on 𝑘1 de-
grades with an intermediate deployment to 𝑟1, which is referred to as positive forward
transfer (FWT) in classical continual learning (CL). Unlike the other methods, Boffline
yields smaller errors on 𝑟1 if it was previously deployed to 𝑘1, known as positive FWT. A
possible explanation for this inconsistent behavior is structural differences between the
sequences of the same dataset inducing small domain gaps within a dataset that require
a potentially more fine-grained scene classification.
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Table 6: Translation and rotation error for computing the AQ and RQ metrics

Previous Current Boffline CL-SLAM
scenes scene 𝑡err 𝑟err 𝑡err 𝑟err

𝑐𝑡 𝑘1 130.74 26.35 2.50 0.37
𝑐𝑡 𝑟1 170.76 13.37 28.94 5.63

𝑐𝑡 � 𝑟1 𝑘1 182.62 38.38 3.24 0.54
𝑐𝑡 � 𝑘1 𝑟1 52.23 8.49 30.13 5.87

𝑐𝑡 � 𝑘1 � 𝑟1 𝑘2 23.77 4.76 4.85 1.59
𝑐𝑡 � 𝑘1 � 𝑟1 � 𝑘2 𝑟2 105.54 25.64 20.50 4.77

𝑐𝑡 � 𝑘1 𝑘2 69.48 7.45 7.48 1.63
𝑐𝑡 � 𝑘1 � 𝑟1 𝑟2 153.77 35.21 16.41 4.58

The previous scenes denote the scenes that have been used for previous
training of the algorithm, the current scene denotes the evaluation scene
to compute both errors 𝑡err in [%] and 𝑟err in [°/100m].
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Fig. 7: A modified version of Fig. 5 including the additional baseline Boffline. Comparison of the trajectory
on 𝑘2 after previous deployment on 𝑘1 and 𝑟1 predicted by CL-SLAM and the baseline methods.
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