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Executive Summary
This document presents the status of the work performed between M24 and M36 for WP5–Deep
robot action and decision making. WP5 consists of four main tasks, that are Task 5.1–Deep
Planning, Task 5.2–Deep Navigation, Task 5.3–Deep Action and Control, and Task 5.4–Human
Robot Interaction.

After a general introduction that provides an overview of the individual chapters with a link
to the main objectives of the project, the document dedicates a chapter to each tasks. Each
chapter (i) provides an overview on the state of the art for the individual topics and existing
toolboxes, (ii) details the partners’ current work in each task with initial performance results,
and (iii) describes the next steps for the individual tasks. Finally, a conclusion chapter provides
a final overview of the work and the planned future work for each individual task.
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1 Introduction
This document describes the work done during the third year of the project in the four major
research areas of WP5 namely deep planning, deep navigation, deep action and control, and
human-robot interactions.

The next sections (Sections 1.1-1.5) provide a summary of the work done so far on these
three main topics and the link with the project objectives. The rest of the document is structured
as follows. Chapter 2 details our work on deep planning. Chapter 3 describes our work on deep
navigation. Chapter 4 presents our work on deep action and control. Chapter 5 presents our
work on human robot interaction. Finally, Chapter 6 concludes this deliverable.

More details related to the implementations of the proposed methods in the OpenDR Toolkit
can be found in D7.3 (WP7). Details related to evaluation and benchmarking of the proposed
methods can be found in D8.2 and D8.3 (WP8).

1.1 Deep Planning (T5.1)

1.1.1 Objectives

Conventional robot motion planning is based on solving individual sub-problems such as per-
ception, planning, and control. On the other hand, end-to-end motion planning methods intend
to solve the problem in one shot with less computational cost. Deep learning enables us to
learn such end-to-end policies, particularly integrated with Reinforcement learning. AU intro-
duces end-to-end motion planning methods for UAV navigation trained with Deep reinforce-
ment learning.

1.1.2 Innovations and achieved results

AU proposed a novel end-to-end path planning algorithm based on deep Reinforcement learn-
ing for aerial robots deployed in dense environments. The learning agent is finding an obstacle-
free way around the provided rough global path by only depending on the observations from a
forward-facing depth camera. A novel deep reinforcement learning framework is proposed to
train the end-to-end policy with the capability of safely avoiding obstacles. Webots open-source
robot simulator is utilized for training the policy, introducing highly randomized environmental
configurations for better generalization. The training is performed without dynamics calcu-
lations through randomized position updates to minimize the amount of data processed. The
trained policy is first comprehensively evaluated in simulations involving physical dynamics
and software-in-the-loop flight control. The proposed method is proven to have 38% and 50%
higher success rate compared to both deep reinforcement learning-based and artificial potential
field-based baselines, respectively. The generalization capability of the method is verified in
simulation-to-real transfer without further training. Real-time experiments are conducted with
several trials in two different scenarios, showing a 50% higher success rate of the proposed
method compared to the deep reinforcement learning-based baseline.

1.1.3 Ongoing and future work

There are two possible future directions to improve the presented end-to-end planner. Firstly,
AU plans to study the theoretical properties of deep planners, such as stability or convergence.
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Secondly, AU intends to combine imagination and curiosity with the current deep planning
framework for smoother and shorter path plans.

1.2 Deep Navigation (T5.2)

1.2.1 Objectives

Learning based approaches have shown to be well suited to solve navigation tasks across diverse
environments and platforms, including autonomous vehicles, video games and robotics. Partic-
ularly deep learning and reinforcement learning approaches have shown to work well with the
complex, high-dimensional inputs of real-world environments. Navigation tasks involve both
long-horizon goals that require long-term planning as well as local, short-term decision making
such as traversing unknown terrain or avoiding static and dynamic obstacles. As a result both
the decomposition of the problem into different components and levels of abstraction as well as
the combination of traditional optimization and planning approaches with learned modules are
very promising approaches.

1.2.2 Innovations and achieved results

Within this year, ALU-FR has extend its previous approach to mobile navigation and manipu-
lation to complex obstacle environments. By generalizing the objective function, extending the
control of the reinforcement learning agent and incorporating obstacle sensing into the observa-
tion space, the approach becomes applicable to a much wider range of tasks and environments.
The approach is demonstrated to achieve high success rates on two real world robots across
a large range of unseen and demanding tasks. This work has furthermore won the best paper
award at the 2022 IROS Workshop on Mobile Manipulation and Embodied Intelligence. ALU-
FR has proposed a novel multi-object search approach. The proposed method unifies short- and
long-term reasoning within a single model and time scale. We demonstrate its effectiveness
on an HSR robot in our office buildings. The approach is currently being integrated into the
OpenDR toolkit. Lastly, ALU-FR has a developed an approach for active localization. The
method combines differentiable particle filters with reinforement learning and a hard attention
mechanism to actively localize itself in photorealistic environments. AUTH has also developed
a data-efficient deep reinforcement learning approach that can improve inertial-based UAV lo-
calization, enabling more effective low-cost navigation (Section 3.4).

1.2.3 Ongoing and future work

We are currently extending our work on mobile navigation and manipulation towards task-level
reasoning and learned end-effector motions. At the same time, we are extending our work
on exploration and object search to more complex environments, in which the agent has to
interact with doors or drawers to explore its environment. Simultaneously, we are working on
integrating the developed approaches into the OpenDR toolkit.
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1.3 Deep Action and Control (T5.3)

1.3.1 Objectives

OpenAI Gym [9] is the standard for training and evaluation of reinforcement learning algo-
rithms. However, developing Gym environments for robot control tasks is an inefficient process
that requires expertise, since it is all but trivial to synchronise actions and observations while
having asynchronous input and output streams for sensors and actuators that run at different
frequencies. In order to facilitate this process TUD to developed EAGERx, a framework that
bridges the gap between OpenAI gym and robots, both in simulation and reality. The EAGERx
framework aims to separate everything that is engine-specific from everything that is engine-
agnostic, such that that environments can be reused for different simulators and even when
switching from simulated to real robots.

In order to close the sim2real gap, the challenges of asynchronous control must be ad-
dressed. The TUD proposes an accurate delay simulation framework that supports simulating
stochastic delays in a deterministic manner (i.e. seeded) that is invariant to the speed of simula-
tion, unlike existing frameworks [3, 29, 40].

Learning-based grasping models typically require a vast amount of training data and training
time to train an effective grasp pose detector. Alternatively, small non-generic grasp models
have been proposed that are tailored to specific objects by, for example, directly predicting
the object’s location in 2/3D space, and determining suitable grasp poses by post processing.
In both cases, data generation is a bottleneck, as it has to be separately collected for each
individual object. Moreover, some approaches require CAD models to generate data and train a
model, which are not always available. In this work, TAU has developed a light-weight grasping
pipeline that can generate a grasp detection model and execute a grasping action, based in few
input images. Object grasp annotation is requested from the operator, and data augmentation is
then automatically generated.

Off-policy reinforcement learning is an important research direction as the reuse of old expe-
rience promises to make these methods more sample efficient than their on-policy counterparts.
This is an important property for many applications such as robotics where interactions with the
environment are very time- and cost-intensive. Many successful off-policy methods make use
of a learned Q-value function. Accurate estimates of the Q-values are of crucial importance.
Unfortunately, learning the Q-function off-policy can lead to bias. To overcome these problems
ALU-FR proposes Adaptively Calibrated Critics (ACC) that uses the most recent high variance
but unbiased on-policy rollouts to alleviate the bias of the low variance temporal difference
targets.

In model-based reinforcement learning (RL) the agent learns a predictive world model to
derive the policy for the given task through interaction with its environment. Learning a world
model is in principle a supervised learning problem. However, in contrast to the standard super-
vised learning setting, in model-based RL the dataset is not fixed and given at the beginning of
training but is gathered over time through the interaction with the environment which raises ad-
ditional challenges. A typical problem in supervised learning is overfitting on a limited amount
of data. This is well studied and besides several kinds of regularizations a common solution is to
track model performance on a validation set that is not used for training. For neural networks a
typical behavior is that too few updates lead to underfitting while too many updates lead to over-
fitting. For learning a world model on a dynamic dataset there unfortunately is no established
method to determine if the model is under- or overfitting the training data available at the given
point in time. ALU-FR proposed a method that dynamically adjusts the update-to-data (UTD)
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ratio to balance under- and overfitting based on the performance on an held-out validation set.

1.3.2 Innovations and achieved results

TUD continued the development of the EAGERx framework. The framework now has a con-
sistent interface with an interactive GUI, unit tests with code coverage > 95%, and is ac-
companied by extensive documentation including a set of 10 interactive tutorials to make it
easy for new users to get started. Our documentation, tutorials, and source-code are available
at https://github.com/eager-dev/eagerx. Furthermore, support for various robots was
added and several dissemination activities were undertaken, such as parcipating in two tutorials
(ICRA, CCTA) and a summer school.

Also, TUD presented a way of modelling delays in a graph of nodes such that delays can
be accurately simulated. This model circumvented the false trade-off between simulation speed
that was showed experimentally.

TAU proposed an approach that can utilize state of the art RGB object detection models to
develop a real-time robot object grasping pipeline. From few images, annotated by a person, a
full dataset is generated that can detect object grasps. Evaluation considers different objects and
object detectors with respect to the industrial task of Diesel engine assembly. A collaborative
robot (Franka Emika) and standard gripper were utilized for hardware.

ALU-FR developed ACC, a new general algorithm that reduces the bias of value estimates
in a principled fashion with the help of the most recent unbiased on-policy rollouts. As a
practical implementation, ACC is applied to learn a bias-controlling hyperparameter of the TQC
algorithm and the resulting algorithm achieves state of the art results on the OpenAI continuous
control benchmark suite as well as on several robotics tasks.

Further, ALU-FR proposed the Dynamic Update-to-Data ratio (DUTD) algorithm that can
be applied to most model-based RL algorithms. DUTD detects under- and overfitting of the
world model online by evaluating it on hold-out. With this information the UTD ratio is adjusted
dynamically to optimize world model performance. DUTD makes tuning the UTD hyperparam-
eter obsolete. Exemplarily, DUTD is applied to a state-of-the art model-based RL method and
the results show that it leads to an improved overall performance and higher robustness.

1.3.3 Ongoing and future work

As future work, TUD will make the EAGERx framework compatible with Jax [8] such that EA-
GERx environments can be run on acceleration hardware. This will greatly improve the speed
with which users can train RL agents. Also, we will add a ROS 2 communication backend.
Finally, we are preparing a publication that we expect to submit in the beginning of next year.

Also, the TUD will continue the development of a novel phase-synchronized communica-
tion protocol that uses the delay model to render delays within the graph to be deterministic (i.e.
zero-jitter). We expect this protocol to reduce the effect of jitter on the sim2real performance in
RL tasks.

The develop grasping approach by TAU demonstrates that new objects can be grasped by
training a light-weight grasp detection model. The current approach utilizes RGB images and
depth is assumed to be known. Future work will tackle this by introducing depth sensing of the
area around a detected object.

The ACC algorithm was evaluated on simulated environments. A promising direction for
future work is to apply it on robots in the real-world.
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DUTD in its current form can be applied to model-based RL algorithms. To further allow
its application to model-free RL algorithms future work will explore non-supervised objectives
that can be used for evaluation on the validation set.

1.4 Human Robot Interaction (T5.4)

1.4.1 Objectives

The interaction between human and robot can serve several functions. When considering a
collaborative scenario, the robot can assist a person by taking heavy, dirty or repetitive tasks,
relieving the person to a more supervisory or coordinating role. In addition, robots can learn
to interact with humans but also from interactions with humans. In both cases understanding
human intentions and behavior is crucial, which can by enabled by motion capturing and other
ways of instrumenting the human partner. Typically, the human state and intentions are very
ambiguous and uncertain (e.g., forces that are crucial for successful completion cannot be es-
timated from video) and simulations of the human partner and its behavior are unlikely to be
very realistic, compounding the uncertainties. Fusing information from multiple modalities will
allow the robot to disambiguate. For DRL of human-robot interaction tasks require approaches
that can deal with large uncertainties by making optimal use of fused, multimodal perception.
Learning from demonstrations, for example, often relies on kinesthetic teach-in, videos, VR,
or textual instructions. The objectives of this task are therefore to utilize the OpenDR toolkit
towards human-robot interaction and enable efficient and effective collaboration.

1.4.2 Innovations and achieved results

TUD has studied human-robot interaction in the context of language-conditioned interactive
imitation learning. We have developed the PARTNR algorithm that identifies ambiguities in the
action outputs of vision-based pick and place models. By identifying these ambiguities, we can
reduce the number of demonstrations needed from the human, since demonstrations are only
asked in case the output is too ambiguous. Furthermore, we improve the trustworthiness of the
system by allowing users to specify a desired sensitivity level. In this way, the user can balance
between unnecessary queries and execution failures. TAU has studied human-robot collabora-
tion in the context of manufacturing, where a small collaborative robot assists an operator in
assembly tasks. Several DL-based vidual perception modules were selected, as suitable for ef-
fective interaction and for scene understanding. These included human detection, human action
recognition and object detection/pose recognition. For human detection and action recognition
pretrained models were utilized which achieves suitable performance in experiments. For ob-
ject detection, a custom dataset was generated, which included eight object and target classes,
as part of the industrial assembly task. All perception was integrated in a robot control frame-
work based on ROS and provided in the OpenDR toolkit for replication (and extension) of
our work. Results demonstrate that DL-based perception models can be easily trained and de-
ployed to robotic environments and achieve reliable detection and recognition results. Results
also demonstrated that multiple perception models can be utilized simultaneously, enabling the
fusion of different sensors or utilizing different detection modules in parallel.

OpenDR No. 871449



D5.3: Third report on deep robot action and decision making 12/147

1.4.3 Ongoing and future work

As ongoing work, TUD is developing the language-conditioned interactive imitation learning
algorithm PARTNR. Initial results look promising and will be extended to more evaluation
environments and evaluated as future work. This includes multiple simulated benchmark tasks
as well as a real-world participant study. Furthermore, we are currently integrating a tool related
to the PARTNR algorithm in the OpenDR toolkit.

As ongoing work from TAU, the human-robot collaboration scenario has utilized the tools
developed in WP3 (human detection and human action recognition) and WP4 (object detection
and pose estimation). Initial results with individual modules look promising. Future work
will include the fusion of different perception modules to achieve more robust and different
recognition. For example, multiple sensor measurements and modalities (human detection plus
action recognition) can be utilized to recognize the state of a person collaborating with a robot,
such the recognition action relevant to the industrial task at hand.

1.5 Connection to Project Objectives
The work performed within WP5, as summarized in the previous subsections, perfectly aligns
with the project objectives. More specifically, the conducted work progressed the state-of-the-
art towards meeting following objectives of the project:

O2.c To provide lightweight deep learning methods for deep robot action and decision making,
namely:

O2.c.i Deep reinforcement learning (RL) and related control methods.

* The zero-jitter communication protocol proposed by TUD in Chapter 4 will
reduce the effect of timing and delays on the sim2real performance.

* The EAGERx toolkit presented by TUD in Chapter 4 enables users to use a
single pipeline for both the real and simulated environment. Hence, this re-
duces the chance for mismatches between the two implementations. Therefore,
EAGERx facilitates the application of deep RL methods in practice.

* ALU-FR contributed to this objective as described in Chapter 3. ALU-FR de-
veloped several reinforcement learning approaches that can remain lightweight
and can run directly on robot’s onboard CPUs. Further, the Adaptively Cali-
brated Critic estimates algorithm presented by ALU-FR allows for improved
value estimates which is a fundamental problem in model-free RL. Lastly,
ALU-FR proposed a method that improves the overall data efficiency of model-
based RL algorithms by dynamically adjusting the update-to-data ratio. This
makes such approaches more applicable to robots in the real-world.

O2.c.ii Deep planning and navigation methods that can be trained in end-to-end fashion.

* AU contributed to this objective as described in Chapter 2. An end-to-end plan-
ner for a quadrotor UAV is provided for collision avoidance in dense environ-
ments. The DRL agent, informed by the global trajectory, generates actions as
local position plans based on depth images. The efficiency and efficacy of the
planner are evaluated over several cluttered field scenarios.
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* AUTH contributed to this objective as described in Chapter 3. AUTH developed
an end-to-end trainable model that can increase the precision of interial-based
localization and navigation for UAVs.

* ALU-FR contributed to this objective as described in Chapter 3. ALU-FR ex-
tended and generalized its mobile navigation and manipulation tool, making it
applicable to a very wide range of tasks in complex and human-centered obsta-
cle environments. ALU-FR furthermore developed an object-search approach
that unifies short- and long-term reasoning in a single model and an active lo-
calization approach that scales to continuous action spaces and large maps.

O2.c.iii Enable robots to decide on actions based on observations in WP3, as well as to learn
from observations.

* TUD has contributed to this objective as described in Chapter 4 with the graph
structure of environments in the EAGERx toolkit. This functionality allows the
user to use the perception algorithms in WP3 as nodes.

* TUD has contributed to this objective as described in Chapter 4. Perception
methods are known to be computationally expensive. Hence, they may intro-
duce unwanted communication delays that may affect the performance of con-
trol methods that rely on the output of these methods. The zero-jitter communi-
cation protocol discussed by TUD mitigates the effect of delays on the sim2real
performance of reinforcement learning policies, hence enabling robots to de-
cide on action based on the outputs of methods in WP3.

* TAU has contributed to this objective as described in Chapter 4. An object
grasping model has been developed, extended and evaluated that takes as input
few images of an object, annotations by a person and generates the required
training data to train a object grasping model. Several grasp detection methods
are evaluated for grasping object relevant in the agile production use case.

* ALU-FR contributed to this objective as described in Chapter 3. ALU-FR ex-
tended its mobile navigation and manipulation approach to incorporate sensed
obstacle maps of the environment. For object-search, ALU-FR proposed an ap-
proach that learns based on semantic maps of the environment, enabling data-
efficient learning. Lastly, for active localization ALU-FR proposes an approach
that can handle a wide variety of sensors as inputs for its decision making.

O2.c.iv Enable efficient and effective human robot interaction

* TUD has contributed to this objective as described in Chapter 5, by developing
the PARTNR algorithm that identifies ambiguities and thereby improves the
data efficiency of vision-based imitation learning methods.

* TAU has contributed to this objective as described in Chapter 5, where human
detection and human action recognition tools from WP3 are utilized to enable
collaboration between human and robot, in agile production scenario. In addi-
tion, object detection tools from WP4 are utilized to detect eight objects and
targets, for robot pick-and-place actions and robot-to-human hand-over tasks.
All tools are integrated into a single experimental scenario enabling that sensor
information can be fused.
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2 Deep Planning

2.1 Safe End-to-end Path Planning of Aerial Robots in Dense Environ-
ments

2.1.1 Introduction and objectives

Autonomous aerial robots are increasingly deployed in applications that require safe path plan-
ning in dense environments, such as a greenhouse covered with dense plants, search & rescue
operation in an unstructured collapsed building, or navigation in a forest. Traditionally, au-
tonomous navigation is solved under separate problems such as state estimation, perception,
planning, and control [32]. This approach may lead to higher latency combining individual
blocks and system integration issues. On the other hand, recent developments in machine learn-
ing, particularly in reinforcement learning (RL) and deep reinforcement learning (DRL), enable
an agent to learn various navigation tasks end-to-end with only a single neural network policy
that generates required robot actions directly from sensory input. These methods are promising
to solve navigation problems computationally faster since they do not deal with the integration
of subsystems that are tuned for their particular goals.

This study attempts to address the end-to-end planning problem of a quadrotor UAV in
dense indoor environments. The quadrotor deployed with a depth camera is required to find
its way around the global trajectory. We propose a DRL-based safe navigation methodology
for quadrotor flight. The learned DRL policy, utilizing the depth images and the knowledge
of a global trajectory, generates safe waypoints for the quadrotor. We develop a Webots-based
simulation environment where the DRL agent is trained with obstacle tracks where the obstacle
locations, shapes, and sparsity are randomized for every episode of policy training for better
generalization. Furthermore, we introduce safety boundaries to be considered during training
besides collision checks. The safety boundaries enable the agent to prevent risky situations that
make the method more robust to uncertainties.

The contributions of this study are fourfold:

• A novel DRL simulation framework is proposed for training an end-to-end planner for
quadrotor flight, including a faster training strategy using non-dynamic state updates and
highly randomized simulation environments.

• The impact of continuous/discrete actions and proposed safety boundaries in RL training
are investigated.

• We open-source the Webots-based DRL framework, including all training and evaluation
scripts.

• The method is evaluated with extensive experiments in Webots-based simulation environ-
ments and multiple real-world scenarios, transferring the network from simulation to real
without further training.

2.1.2 Description of work performed so far

The details of this work are found in the corresponding publication that is listed below, and can
be found in Appendix AU-Appendix:
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• H. I. Ugurlu, H. X. Pham and E. Kayacan “Sim-to-Real Deep Reinforcement Learning for
Safe End-to-End Planning of Aerial Robots.” Robotics 2022, 11, 109.

In this study, a novel end-to-end path planning algorithm based on deep Reinforcement
learning is proposed for aerial robots deployed in dense environments. The learning agent is
finding an obstacle-free way around the provided rough global path by only depending on the
observations from a forward-facing depth camera. A novel deep reinforcement learning frame-
work is proposed to train the end-to-end policy with the capability of safely avoiding obsta-
cles. Webots open-source robot simulator is utilized for training the policy, introducing highly
randomized environmental configurations for better generalization. The training is performed
without dynamics calculations through randomized position updates to minimize the amount of
data processed. The trained policy is first comprehensively evaluated in simulations involving
physical dynamics and software-in-the-loop flight control. The proposed method is proven to
have 38% and 50% higher success rate compared to both deep reinforcement learning-based
and artificial potential field-based baselines, respectively. The generalization capability of the
method is verified in simulation-to-real transfer without further training. Real-time experiments
are conducted with several trials in two different scenarios, showing a 50% higher success rate
of the proposed method compared to the deep reinforcement learning-based baseline.

2.1.3 Future work

One possible future research direction is on the theoretical properties of deep planners, such
as stability or convergence. The deep learning-based methods are criticized for not having
theoretical guarantees compared to conventional methods. Hence, the research of theoretical
methods to prove the capabilities of deep planners is gaining more attention. Another future
direction is combining the strengths of model-based (such as MPC) and model-free (such as
DRL) methods to obtain an advantage of both. Further, it is also possible to work on model-
learning based approaches. Besides that, One issue in the convergence of the neural network
learning based approach could be converging to local-maxima in term of reward-maximization,
however, using methods such as curiosity (as an intrinsic reward) it is possible to find global-
maxima by enhancing the state exploration.

3 Deep Navigation

3.1 N2M2: Learning Navigation for Arbitrary Mobile Manipulation Mo-
tions in Unseen and Dynamic Environments

3.1.1 Introduction and objectives

We have previously introduced our approach for mobile navigation and manipulation [22], de-
veloped within the first years of Open. In this work, we extend our method to incorporate obsta-
cle avoidance, extend the control of the reinforcement learning agent to the torso and velocity
of the target motions and generalize the reward function. This results in a powerful approach
that is applicable to a much wider range of tasks in complex environments and across a wide
variety of kinematically diverse robots.
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3.1.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix A. The work furthermore won the best paper award of the IROS Workshop on Mobile
Manipulation and Embodied Intelligence, 2022.

• [23] D. Honerkamp, T. Welschehold and A. Valada, “N2M2: Learning Navigation for
Arbitrary Mobile Manipulation Motions in Unseen and Dynamic Environments”, in IROS
Workshop on Mobile Manipulation and Embodied Intelligence, Oct. 2022,
DOI: 10.48550/ARXIV.2206.08737.

We extend and generalize our previous work as follows: First, we extend the observations
of reinforcement learning agent to its surroundings by incorporating the obstacle maps into
its observation space. This modality promises to generalize well to unseen scenes due to its
geometric nature and can be constructed from a variety of sensors, making it applicable across
robots. Secondly, we extend the agent’s control to the torso lift joints and to the norm of the
end-effector velocities. This increases its flexibility to navigate complex obstacle maps and
to slow down the target end-effector motions whenever the base of the robot has to maneouver
more extensively. Lastly, we devise a training scheme in a procedurally generated obstacle map.

In extensive experiments on three simulated and two real-world robotic platforms we demon-
strate that the resulting approach and solve a wide variety of complex tasks involving articulated
objects in cluttered environments. In this, the approach generalizes to unseen tasks, motions and
environments, demonstrating its robustness and flexibility.

3.1.3 Future work

In current work, we are extending this work to jointly or iteratively learn the desired end-effector
motions as well as to incorporate 3D obstacle avoidance. This will further scale its capabilities
and reduce human inputs to a bare minimum.

3.2 Learning Long-Horizon Robot Exploration Strategies for Multi-Object
Search in Continuous Action Spaces

3.2.1 Introduction and objectives

Recent advances in vision-based navigation and exploration have shown impressive capabilities
in photo realistic indoor environments. However, these methods still struggle with long-horizon
tasks and require large amounts of data to generalize to unseen environments. In this work, we
present a novel reinforcement learning approach for multi-object search that combines short-
term and long-term reasoning in a single model while avoiding the complexities arising from
hierarchical structures. In contrast to existing multi-object search methods that act in granular
discrete action spaces, our approach achieves exceptional performance in continuous action
spaces.

3.2.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix B:
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• [35] F. Schamlstieg, D. Honerkamp, T. Welschehold and A. Valada, “Learning Long-
Horizon Robot Exploration Strategies for Multi-Object Search in Continuous Action
Spaces”, in Proceedings of the International Symposium on Robotics Research (ISRR),
Sept. 2022, DOI: 10.48550/ARXIV.2205.11384.

Our approach learns to predict the direction of the path towards the closest target object.
It then learns a policy that observes this prediction, enabling it to express long-term intentions
while taking short-term actions based on the full context. As a consequence, the policy can
incorporate expected inaccuracies and uncertainties in the predictions and balance strictly fol-
lowing its intentions with short-term exploration and collision avoidance. We perform extensive
experiments and show that it generalizes to unseen apartment environments with limited data.
Furthermore, we demonstrate zero-shot transfer of the learned policies to an office environment
in real world experiments.

3.2.3 Future work

In the future, we aim to further exploit the ability of the approach to learn different actions
at a high control frequency, such as controlling the camera of the robot. Furthermore, we are
currently extending this work to a hierarchiecal approach which extends to more complex tasks
in which the robot has to interact with objects such as door, drawers or cabinets to move around
the environment and find the target objects.

3.3 Active Particle Filter Networks: Efficient Active Localization in Con-
tinuous Action Spaces and Large Maps

3.3.1 Introduction and objectives

Accurate localization is a critical requirement for most robotic tasks. The main body of existing
work is focused on passive localization in which the motions of the robot are assumed given,
abstracting from their influence on sampling informative observations. While recent work has
shown the benefits of learning motions to disambiguate the robot’s poses, these methods are
restricted to granular discrete actions and directly depend on the size of the global map. We
propose Active Particle Filter Networks (APFN), an approach that only relies on local infor-
mation for both the likelihood evaluation as well as the decision making. To do so, we couple
differentiable particle filters with a reinforcement learning agent that attends to the most rel-
evant parts of the map. The resulting approach inherits the computational benefits of particle
filters and can directly act in continuous action spaces while remaining fully differentiable and
thereby end-to-end optimizable as well as agnostic to the input modality.

3.3.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix C:

• [21] D. Honerkamp, S. Guttikonda and A. Valada, “Active Particle Filter Networks:
Efficient Active Localization in Continuous Action Spaces and Large Maps”, in IROS
2022 Workshop Probabilistic Robotics in the Age of Deep Learning, Oct. 2022, DOI:
10.48550/ARXIV.2209.09646.
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We present an approach that couples probabilistic and learning-based methods through
learned particle filters and deep reinforcement learning (RL) to generalize to continuous action
spaces and arbitrary sensor modalities independent of map size. Particle filters enable efficient
representation of multi-modal beliefs over large maps. These mechanisms can be made fully
differentiable enabling us to learn the components of a particle filter end-to-end, thereby ex-
tending it to abstract observations such as pixels or depth maps. Importantly, these networks
only need to process local information for each particle. We then train a reinforcement learning
agent that selects actions to minimize the overall localization error, following the same principle
of processing only local information over the most likely hypotheses through a hard attention
mechanism. In contrast to previous work, this enables us to process hypotheses over contin-
uous poses while at the same time breaking the dependency on processing the full map with
a neural network. We demonstrate the benefits of our approach with extensive experiments in
photorealistic indoor environments built from real-world 3D scanned apartments.

3.3.3 Future work

In future work, we aim to extend the approach to simultaneously control sensors such as actu-
ated cameras, which promises to benefit even more from active perception. Another promising
avenue is the extension of learning-based localization and attention mechanisms to dynamic
environments and noisy, partial or incorrect maps in which it becomes important to selectively
filter out uncertain or incorrect observations. Lastly, the trade-off between active localization
and other task objectives is an exciting direction for future work.

3.4 Improving Inertial-based UAV Localization using Data-efficient Deep
Reinforcement Learning

3.4.1 Introduction and objectives

Unmanned Aerial Vehicles (UAVs) are increasingly used in various applications, ranging from
precision agriculture [33] and search and rescue missions [5] to indoor surveillance [7]. A
common point between these applications, along with virtually every UAV-based application,
is the need for precise UAV localization. UAV localization is critical both for mission control
purposes, i.e., some tasks are related to the location of a UAV, as well as for safety purposes,
i.e., avoid flights over restricted areas. Several different approaches have been developed for
UAV localization, with each one relying on different sensors and providing a different level of
accuracy.

Perhaps among the most well known localization approaches is using satellite-based radio-
navigation systems, such as the Global Positioning System (GPS) [37, 18]. Despite its low cost
the accuracy of1.2.4 GPS and related systems is usually low. Indeed, according to the offi-
cial GPS documentation, GPS-enabled devices are normally accurate to within a 4.9 meters (16
feet), which is unacceptable for many applications. At the same time, there are several locations
where there is no GPS coverage [1], while such approaches cannot be used indoors. The use
of real-time kinematic positioning can further reduce the errors introduced in satellite-based
radio navigation [19], yet it typically requires the use of extra base stations, which increases
the cost and reduces the flexibility of UAVs. Light detection and ranging approaches [25, 15],
also known as LIDAR, can be also used to provide accurate localization, especially when cou-
pled with simultaneous localization and mapping (SLAM) approaches [39]. However, such
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approaches involve the use of very expensive sensors and they have greater computational and
energy demands.

On the other hand, the use of Inertial Measurement Units (IMUs) [4], which is a combination
of accelerometers, gyroscopes, and magnetometers can provide very low-cost solutions that also
do not rely on any kind of external hardware or communication (e.g., satellites, base stations,
etc.). The localization is accomplished by utilizing IMU data for dead reckoning, called Inertial
Navigation System (INS) [6]. The recent demand for smaller sensors that can be integrated
into cutting-edge technologies, has prompted engineers to build a Micro Electro-Mechanical
System (MEMS) which can provide low-cost and low-footprint sensors that can be very easily
integrated with virtually any UAV and provide real-time measurements. Despite the cost and
flexibility benefits of such systems, they also come with accuracy limitations. IMU sensors
monitor the linear acceleration and rotational velocity of the body with just a very small degree
of inaccuracy every time. However, over long periods these errors can accumulate leading to
significant position drifts that can comprise their application, especially when used as a sole
localization sensor in mission critical applications.

These limitations have fueled research on methods for improving inertial-based navigation
for UAVs [10, 12, 20]. Many recent approaches built upon Deep Learning (DL)-based models
that allow for significantly improving the localization process. However, despite these improve-
ments, these approaches suffer from a significant drawback. They mostly rely on supervised
learning (either regression-based or classification-based), which in turn requires a large number
of samples to be collected and annotated to train the corresponding methods. At the same time,
such approaches are typically linked to the hardware used for data collection and their perfor-
mance deteriorates when deployed on different hardware, requiring collecting data again and
re-training the models. Furthermore, even when using the same hardware, manufacturing toler-
ances might lead to sensors that have different noise characteristics, which make the application
of supervised learning approaches challenging.

Deep Reinforcement Learning (DRL) can overcome these limitations [11], since it enables
autonomous agents to learn just by interacting with the environment. Indeed, DRL methods
have shown to achieve remarkable results in a variety of tasks in recent years, often outperform-
ing humans [31, 36]. However, directly applying DRL for improving inertial-based navigation
for UAVs is not directly feasible since: a) a feedback signal is still required in order to measure
the quality of the learned policy and b) a large number of episodes are typically required for
learning. Even though the first limitation can be easily addressed, e.g., by using visual cues to
provide a feedback signal, the low-data efficiency of DRL approaches still pose a significant
limitation that prohibits such approaches from being deployed in practice.

3.4.2 Description of work performed so far

Based on the aforementioned observations, in this work we propose a pipeline that can allow
for easing these limitations, enabling data-efficient DRL on UAVs for inertial-based navigation.
The proposed method employs a two-stage pipeline. In the first stage, a backbone is trained us-
ing supervised learning in a simulator. Acquiring ground truth annotations in a simulator is easy
and cheap, so this approach can enabled us to train a backbone that can capture the dynamics
of the behavior of IMUs without targeting a specific sensor. Then, the employed DL model is
fine-tuned using DRL on a real UAV. Since this can be an especially data-intensive process, we
further propose: a) a data augmentation method that can generate multiple simulated episode
trajectories just from one real episode and b) a regularizer than can provide additional feedback
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when fine-tuning the learned policy based on the sign of the measured reward signal. For acquir-
ing a reward signal, we propose a simple, yet efficient visual landmark-based approach that can
be used even with low-resolution cameras. As we demonstrated through extensive experiments
on regressing the 2D position of a UAV, the proposed method can indeed lead to significant
performance improvements over the employed baseline approaches.

The technical report, along with the full results, are provided in Appendix E:

E D. Tsiakmakis, N. Passalis, and A. Tefas. “Improving Inertial-based UAV Localization
using Data-efficient Deep Reinforcement Learning”, Technical Report (AUTH), 2022.

3.4.3 Future work

This work has demonstrated that the proposed method can indeed allow for improving inertial-
based navigation, focusing on cases where the IMUs used in UAVs can have different charac-
teristics requiring UAV-specific fine-tuning using a very small number of real episodes. These
results highlight the potential of such methods for other navigation tasks as well. At the same
time, using more accurate approaches for calculating the reward signal, is expected to further
increase the accuracy of the developed method. Finally, significant improvements in data effi-
ciency were obtained by employing data augmentation approaches, hinting into another inter-
esting research direction.

4 Deep action and control

4.1 EAGERx

4.1.1 Introduction and objectives

Reinforcement learning (RL) methods have received much attention due to impressive results.
Despite significant interest in RL in recent years, many works with RL in robotics are done in
simulation only. While RL promises learning-based control of near-optimal behaviors in theory,
successful real-world learning can elude practitioners due to various implementation challenges

Prior works on real-world robot learning used a variety of environmental instrumentation
in an effort to obtain state information, define reward functions, and define manually designed
reset routines between episodes [17, 28]. Furthermore, real-world learning is not only pro-
hibitively expensive, but it can also introduce issues related to safety, such as damages to the
equipment or human operators. Therefore, learning a control policy may also be done in sim-
ulation. Simulators void the need for environmental instrumentation because they can provide
perfect state information and allow for arbitrary state resets. Moreover, learning in simulation
can be faster than real-time, inexpensive, and safer.

To this end, we developed a novel robotics framework called EAGERx (Engine Agnostic
Graph Environments for Robotics). EAGERx can be used to built complex distributed robotic
systems as graph structures of interconnected nodes similar to ROS. We circumvent the false
trade-off between simulation speed and accuracy with a novel algorithm that synchronizes inter-
node communication. EAGERx further narrows the sim2real gap with native support for essen-
tial features such as domain randomization and delay simulation. Moreover, its graph structure
allows users to easily extend the simulator with custom models for physical phenomena that
are inaccurately modeled (e.g. motor dynamics, friction models). The framework promotes
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code reuse and enables users to easily define new tasks, switch from one sensor to another, and
switch from simulation to reality by being agnostic to the physics-engine. A single RL pipeline
that works with both simulated and real robots eliminates the chance for unintended mismatches
when two separate software implementations are used. EAGERx is compatible with established
RL packages such as Stable Baselines [34], because it follows the OpenAI Gym API.

4.1.2 Description of work performed so far

Last year, we redeveloped EAGERx to be reactive for synchronized communication. Also, we
performed initial experiments for a simple task (manipulator reference tracking) in order to
validate the core functionalities of the toolkit. Finally, we presented a first rudimentary version
of an interactive GUI that could visualize the constructed graph.

This year, we focused a lot on improving the user-friendliness and maintainability of EA-
GERx. The framework now has a consistent interface with an interactive GUI 1, unit tests with
code coverage > 95%, and is accompanied by extensive documentation (> 80 pages) including
a set of interactive tutorials to make it easy for new users to get started. Our documentation,
tutorials, and source-code are available at https://github.com/eager-dev/eagerx.

Figure 1: The graphical user interface allows users to easily inspect the environment they cre-
ated. The graphical user interface is based on the PyQtGraph library [2].

We continued developing EAGERx such that different communication backends could be
used. This allows users to install EAGERx via a simple “pip install eagerx” command, and
alleviates the need for a full installation of ROS. This also clears the way for ROS2 support.
This also allowed the 10 tutorials to be set up as interactive python notebooks, which was
previously difficult due to dependency on ROS.

Last year, we have disseminated EAGERx in tutorial sessions (ICRA, CCTA with over 800
attendees) and presented the framework at the summer school “Continuous Engineering and
Deep Learning for Trustworthy Autonomous Systems” at the Aristotle University of Thessa-
loniki.

Finally, we added support for several robots in Pybullet (quadrupeds, manipulators, pendu-
lum) and the real-world (manipulators, pendulum). In the experimental setup shown in Figure
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2, we trained a box-pushing policy in Pybullet, that successfully transferred to the real-world.
This demonstrates the effectiveness of EAGERx in solving complex robotic learning tasks.

Figure 2: Policies trained in simulation and zero-shot evaluated on real systems using EAGERx.
Here we trained a box-pushing policy in pybullet (right), that successfully transferred to the
real-world (left).

4.1.3 Future work

As future work, we will make the EAGERx toolkit compatible with Jax such that EAGERx
environments can be run on acceleration hardware. This will greatly improve the speed with
which users can train RL agents. Also, we will add a ROS 2 communication backend. Finally,
we are preparing a publication that we expect to submit in the beginning of next year.

4.2 Zero-Jitter Communication Protocol for Improved Sim2Real Policy
Transfer

4.2.1 Introduction and objectives

The transfer of simulated robot learning to the real world is termed “sim2real” and recent works
have shown promising results on real-world problems [26, 38]. Nevertheless, a gap in perfor-
mance is often observed between simulation and reality due to unaccounted differences between
the simulator and reality. These differences may arise due to inaccurate modeling of physical
phenomena, such as friction, collision, and deformation and are collectively called the “sim2real
gap”. RL methods are notorious for exploiting (or even overfitting on) these differences to max-
imize the simulated rewards. Prior work [38] has shown that a randomization of the dynamic
properties of a simulator during training can mitigate the negative effect of simulator inaccura-
cies. This technique is also referred to as domain randomization.

A subtle but important challenge in sim2real is that of asynchronous control [24]. The
Markov decision process (MDP) formulation in RL assumes synchronous execution: the ob-
served state remains unchanged until the action is applied. While robotic systems are typically
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simulated synchronously, sensing and acting happen simultaneously and asynchronously in the
real-world. Consequently, the sim2real performance may drop dramatically in the presence of
asynchronous control, because the agent may always use the current observations in simulation,
while observations turn out to be systematically outdated in the real-world due to computation
and communication delays.

Computation and communication delays can be naturally included by simulating the robotic
system asynchronously. However, such delays are usually inherent to the system and indepen-
dent from the simulation speed. Consequently, the effect of delays on the simulated behavior
may unintentionally increase ten fold when the simulation runs ten times faster than real-time.
Hence, asynchronous simulation introduces a false trade-off between speed and accuracy if
no form of input/output synchronization between asynchronous components is ensured in the
simulated robotic system.

Existing robotic learning frameworks [3, 29, 40] are often built on-top of ROS and its scal-
able publisher-subscriber software architecture that allows easy switching between simulation
and reality. While these frameworks use most of the components that comprise the real-world
robotic system to close the sim2real gap, they unintentionally instigate the previously men-
tioned trade-off between simulation speed accuracy when asynchronous components are also
included.

To this end, we present a way of modelling delays in a graph of nodes such that delays can
be accurately simulated that circumvents the false trade-off between simulation speed. We also
propose a novel communication protocol that minimizes the effect of jitter (varation in delays)
on the sim2real performance by leveraging the delay model.

4.2.2 Description of work performed so far

We were able to show the effect of asynchronous simulation on the simulated accuracy in a
simple simulation experiment of a pendulum. Figures 3 and 4 show that the synchronized
simulation is fully deterministic irrespective of the real-time factor, in contrast to the variability
in the asynchronous case that increases with the real-time factor.

By modelling the delays within a graph of nodes as an inter-connection of computation and
communication delays we are able to infer the phase shift for every node. This is shown in
Figure 5. This allows us to propagate delays through the network, irrespective of the real-time
factor.

4.2.3 Future work

As future work, we will use the modeled delays in a novel phase-synchronized communication
protocol that renders all delays to be deterministic (i.e. zero-jitter). We expect this protocol to
reduce the effect of jitter on the sim2real performance in RL tasks.

4.3 Single demonstration grasping

4.3.1 Introduction and objectives

Collaborative robots have gained popularity in industry as they are designed to be safe, partic-
ularly where human and robot share the workspace. Accompanied by intuitive programming
interfaces, robot tasks can be programmed efficiently. Despite the benefits, the application of
cobots in industrial settings are mainly limited to offline tasks where the actions and targets
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Figure 3: The variation in angle sin(θ) of a simulated pendulum as a function of the real-time
factor. The pendulum is simulated at 15 Hz and driven by a voltage sequence that is identical
over episodes. Commands and angle measurements are send and received asynchronously in
async mode. We measure the variation in angle sin(θ) difference with respect to a synchronized
simulation at t = 2.0 seconds over 5 episodes. The synchronized simulation is fully determin-
istic irrespective of the real-time factor, in contrast to the variability in the asynchronous case
that increases with the real-time factor.

Figure 4: The real-time factor of the simulation. The realized real-time factor for synchronous
simulations naturally plateaus in order to stay synchronized. The realized real-time factor for the
asynchronous simulations is higher, but this apparent gain in speed is deceiving. Figure 3 reveals
that the increased speed comes at a cost of higher variability. The asynchronous components
are increasingly out of sync even though all asynchronous components may realize their target
real-time factor.

are defined to the system beforehand. For example, in the majority of pick and place tasks,
object poses are fixed, and the robotic arm should reach a predefined grasp pose. Although
there is great interest in the generation of object grasp models from visual data, limitations still
exist, for example, in terms of object type coverage, grasp success, training complexity, model
inference time, etc. In particular, while grasp models have reported high success rate, this typi-
cally only holds for the task at hand, i.e., bin picking with generic household items. Evaluating
such grasping model on objects that exhibit different properties (e.g., industrial parts) might re-
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Figure 5: Here is a schematic overview of how delays can be modeled within a graph of inter-
connected nodes.

sult in unsuccessful grasp attempts and an overall lower accuracy. In addition, grasp modelling
requires vast amounts of training data and considerable training time on high-performance com-
puting clusters. Consequently, state of the art grasping models can be large in size and slow to
execute.

4.3.2 Description of work performed so far

The details of this work can found in the publication listed below, and can be found in Ap-
pendix F:

• A. Mehman Sefat, A. Angleraud, E. Rahtu and R. Pieters “SingleDemoGrasp: Learning
to Grasp From a Single Image Demonstration”, in IEEE Conference on Automation Sci-
ence and Engineering (CASE), 2022, pp. 390-396,
DOI: 10.1109/CASE49997.2022.9926463.

In this work, we aimed to tackle this issue by investigating visual learning-based approaches
for object grasp detection, with human annotation of a desired object grasp pose. For this, dif-
ferent variants of the R-CNN architecture from Detectron2 are evaluated for the fast generation
of a grasping model. Single or multiple image demonstrations with human annotations of an
object grasp are collected and utilized to generate an augmented object training dataset, from
which a detection model is trained. Object grasp detection results (object grasp position and
orientation on a plane) are transformed to a 3D grasp pose and given as input for robot mo-
tion planning. Four different networks are developed and evaluated in simulation (Webots) with
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eight different objects. The grasp detection model with best performance was then implemented
and evaluated in real robot experiments (Franka robot with standard gripper).

4.3.3 Future work

The presented work demonstrates that the grasping pipeline can generate suitable data in order
to train a light-weight model and successfully grasp objects with a robot. Even though the
objects used are relevant for the agile production use case, a relatively small set of objects was
evaluated. In addition, the depth information for grasping was assumed to be known. Future
work will include depth sensing to enable the grasping of objects that are located on surfaces
with uknown height.

4.4 Adaptively Calibrated Critic Estimates for Deep Reinforcement Learn-
ing

4.4.1 Introduction and objectives

Accurate value estimates are important for off-policy reinforcement learning. Algorithms based
on temporal difference learning typically are prone to an over- or underestimation bias build-
ing up over time. Especially when a nonlinear function approximator is used to model the
Q-function, there are many potential sources of bias. Different heuristics were proposed for
their mitigation, such as the double estimator in the case of discrete action spaces or taking the
minimum of two estimates in the case of continuous actions. While these methods success-
fully prevent extreme overestimation, due to their coarse nature, they can still induce under- or
overestimation bias to a varying degree depending on the environment.

4.4.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix G.

• [13] Dorka, N., Welschehold, T. Boedecker, J., & Burgard, W., “Adaptively Calibrated
Critic Estimates for Deep Reinforcement Learning”, arXiv preprint arXiv:2111.12673
(2022).

We propose a general method called Adaptively Calibrated Critics (ACC) that uses the most
recent high variance but unbiased on-policy rollouts to alleviate the bias of the low variance
temporal difference targets. We apply ACC to Truncated Quantile Critics [27], which is an al-
gorithm for continuous control that allows regulation of the bias with a hyperparameter tuned
per environment. The resulting algorithm adaptively adjusts the parameter during training ren-
dering hyperparameter search unnecessary and sets a new state of the art on the OpenAI gym
continuous control benchmark among all algorithms that do not tune hyperparameters for each
environment. ACC further achieves improved results on different tasks from the Meta-World
robot benchmark. Additionally, we demonstrate the generality of ACC by applying it to TD3
[16] and showing an improved performance also in this setting.
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4.4.3 Future work

In future we plan to evaluate the effectiveness of ACC applied to algorithms that work with
discrete action spaces and when learning on a real robot where tuning of hyperparameters is
very costly.

4.5 Dynamic Update-to-Data Ratio: Minimizing World Model Overfit-
ting

4.5.1 Introduction and objectives

Early stopping based on the validation set performance is a popular approach to find the right
balance between under- and overfitting in the context of supervised learning. However, in re-
inforcement learning, even for supervised sub-problems such as world model learning, early
stopping is not applicable as the dataset is continually evolving. For learning a world model
on a dynamic dataset there unfortunately is no established method to determine if the model
is under- or overfitting the training data available at the given point in time. Additionally, in
model-based RL a poorly fit model can have a dramatic effect onto the learning result as from it
the agent derives the policy, which influences the future collected experience which again influ-
ences the learning of the world model. So far, in model-based RL this is commonly addressed
with some form of regularization and by setting an update-to-data (UTD) ratio that specifies
how many update steps the model does per newly collected experience, similar to selecting the
total number of parameter updates in supervised learning. Analogously to supervised learning,
a higher UTD ratio is more prone to overfit the data and a lower one to underfit it. State-of-
the-art methods set the UTD ratio at the beginning of the training and do not base the selection
on a dynamic performance metric. Unfortunately, tuning this parameter is very costly as the
complete training process has to be traversed several times. Furthermore, a fixed UTD ratio is
often sub-optimal because different values for this parameter might be preferable at different
stages of the training process.

4.5.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix H.

• [14] Dorka, N., Welschehold, T. & Burgard, W., “Dynamic Update-to-Data Ratio: Min-
imizing World Model Overfitting”, In Decision Awareness in Reinforcement Learning
Workshop at ICML 2022.

We propose a new general method that dynamically adjusts the UTD ratio during training
based on underand overfitting detection on a small subset of the continuously collected experi-
ence not used for training. We apply our method to DreamerV2, a state-of-the-art model-based
reinforcement learning algorithm, and evaluate it on the DeepMind Control Suite and the Atari
100k benchmark. The results demonstrate that one can better balance under- and overestimation
by adjusting the UTD ratio with our approach compared to the default setting in DreamerV2 and
that it is competitive with an extensive hyperparameter search which is not feasible for many
applications. Our method eliminates the need to set the UTD hyperparameter by hand and
even leads to a higher robustness with regard to other learning-related hyperparameters further
reducing the amount of necessary tuning.
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4.5.3 Future work

In future work we plant to explore non-supervised objectives for model-free RL algorithms that
can be used for evaluation on the validation set. This would allow the usage of DUTD to adjust
the UTD ratio of such algorithms.

5 Human robot interaction

5.1 PARTNR

5.1.1 Introduction and objectives

Several recent works show impressive results in mapping language-based human commands and
image scene observations to direct robot executable policies (e.g., pick and place poses). How-
ever, these approaches do not consider the uncertainty of the trained policy and simply always
execute actions suggested by the current policy as the most probable ones. This makes them
vulnerable to domain shift and inefficient in the number of required demonstrations. We extend
previous works and present the PARTNR (Pick and place Ambiguity Resolving by Trustworthy
iNteractive leaRning) algorithm that can detect ambiguities in the trained policy by analyzing
multiple modalities in the pick and place poses using topological analysis. PARTNR employs
an adaptive, sensitivity-based, gating function that decides if additional user demonstrations are
required. User demonstrations are aggregated to the dataset and used for subsequent training.
In this way, the policy can adapt promptly to domain shift and it can minimize the number of
required demonstrations for a well-trained policy. The adaptive threshold enables to achieve the
user-acceptable level of ambiguity to execute the policy autonomously and in turn, increase the
trustworthiness of our system. We demonstrate the performance of PARTNR in a table-top pick
and place task.

5.1.2 Description of work performed so far

Our submission for the Robot Learning Workshop at NeurIPS 2022 was accepted and can be
found in Appendix J [30]. Additional material is available at partnr-learn.github.io.

5.1.3 Future work

In the future, we plan to evaluate PARTNR with the original CLIPort baseline as well and to
further address the epistemic uncertainty of the model, e.g., through an ensemble approach.
Also, we wish to extend the method with sequence prediction and feedback control. Finally,
we plan to monitor the human cognitive load in a real-world participant study. Also, we will
finalize the integration of this tool within the OpenDR toolkit.

5.2 Sensor-based Human-Robot Collaboration

5.2.1 Introduction and objectives

Collaborative robots (co-bots) can improve the safety, work efficiency and productivity of in-
dustrial processes by acting as flexible and reconfigurable tool to human operators. Within
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Industry 4.0, co-bots have a core role to contribute to the transition from traditional manufac-
turing to digital manufacturing. Co-bots can be easily programmed and reconfigured, and are
safe for interaction, due to their small form-factor and incorporated sensor systems that can
detect collisions. Co-bots are also to be found in high-payload form, where protective covering
can be complemented by sensor-based safety features. Human-robot collaboration is typically
possible in two ways: 1. Off-line programming of robot tasks by demonstration (also known
as hand-guiding or kinesthetic teaching), and 2. On-line interaction between human and cobot,
enabled by external sensor systems. While off-line programming is an established method of
collaboration, on-line interaction still typically requires great efforts in development and its suc-
cess depends highly on the sensor system. That is, if the external sensor system is not robust
or has high latency, this reflects negatively on the performance of the collaboration. The prac-
tical requirements and tools needed, however, are often underestimated or given little attention,
resulting in great interest from industry and SMEs, but not many practical implementations.
To be realistic, successful integration of perception tools in human-robot collaboration requires
considerable effort towards the selection of suitable detection tools, the preparation of suitable
data for training, and the actual training of a detection model.

5.2.2 Description of work performed so far

The details of this work can found in the draft publication listed below, and can be found in
Appendix I:

• A. Ekrekli, A. Angleraud, K. Samarawickrama, G. Sharma, R. Pieters “Sensor-based
Human-Robot Collaboration for Industrial Tasks”, in preparation, 2023.

In this work we address the current limitations in perception models and situational aware-
ness for industrial human-robot collaboration. Perception and situational awareness of robot
systems can be enhanced, such that fluent and responsive collaboration between human and
robot is possible. We believe that perception models, based on deep learning, are ideal for this,
as they can be accurate, reliable and fast to execute. These can then provide the required sensory
input for interaction, such as the human body and its pose, human actions or gestures, and the
pose of objects and targets in the scene. Developing and integrating such models for robotics
in industry are hard tasks, often requiring expertise from many different areas. Therefore, we
additionally provide a general HRC software framework, based on ROS, which can be utilized
to replicate our developments. The framework is build around OpenDR and has the perception
tools integrated for a practical and industrially relevant use case in agile production. The visual
perception tools are human skeleton detection, human action recognition and the detection and
pose estimation of objects and targets in the scene.

5.2.3 Future work

In future work we will aim to extend the approach to sensor fusion of multiple perception
modalities, to increase robustness and include redundancy for perception. This should lead to
more reliable perception of the human state, as well as provide robust situational awareness.

OpenDR No. 871449



D5.3: Third report on deep robot action and decision making 30/147

6 Conclusions
This document presented the work performed on WP5. After a short introduction on the work
done on the individual tasks, the document provided a detailed overview of the individual tasks,
as detailed below.

Chapter 2 presented the status of the work performed for Task 5.1–Deep Planning. AU
presented an end-to-end planner trained with DRL for safe navigation in cluttered obstacle
environments. The end-to-end planning algorithm is trained and tested in comprehensive sim-
ulations developed in Webots. While the training of the policy network is handled without
dynamics and control to save time, it is successfully sim-to-real transferred for physical eval-
uations. Moreover, safety boundaries for training are introduced, which successfully prevents
the quadrotor from being in hazardous situations. The method is also deployed in real-world
indoor environments successfully. The end-to-end planner outperforms a baseline implemen-
tation based on the artificial potential field method, which has a lower success rate, especially
in cluttered obstacle settings. This shows that SCDP has learned to make better long-term de-
cisions. The real-world experiments demonstrate that the proposed UAV planner trained solely
with simulation can directly work in a real environment.

Chapter 3 detailed the status of the work performed for Task 5.2–Deep Navigation. ALU-
FR introduced a more general version of its approach for mobile manipulation, which largely
extends the tasks and environments this approach can solve. The resulting approach has been
recognized with the best paper award of the IROS Workshop on Mobile Manipulation and
Embodied Intelligence, 2022. ALU-FR furthermore developed a novel multi-object search ap-
proach that unifies short- and long-term reasoning in a single model. This approach is currently
being integrated into the OpenDR toolkit. Lastly, ALU-FR has developed an active localiza-
tion methods that combines differentiable particle filters with reinforcement learning to scale to
large maps and continuous action spaces.

Chapter 4 highlighted the work performed for Task 5.3–Deep Action and Control. First,
TUD introduced the progress made on the EAGERx toolkit. The framework now has a con-
sistent interface with an interactive GUI, unit tests with code coverage > 95%, and is accom-
panied by extensive documentation including a set of 10 interactive tutorials to make it easy
for new users to get started. Our documentation, tutorials, and source-code are available at
https://github.com/eager-dev/eagerx. Second, TUD also presented a delay simulation
framework that allows delays to be accurately simulated in simulators that run faster than real-
time. Furthermore, a novel communication protocol was proposed that reduces the effect of
jitter on the sim2real performance. TAU has made improvements to the SingleDemoGrasp tool,
which can generate the required training data from a single or object image demonstrations.
The general code quality is improved and made consistent with the toolkit. In addition, the tool
now includes data annotation and augmentation functionalities as part of the toolkit, and the
functionality to utilize different visual detection modules from the Detection 2D tool.

Finally, Chapter 5 highlighted the work performed for Task 5.4–Human Robot Interaction.
The chapter covered the following topics. TUD developed an interactive imitation learning
algorithm named PARTNR that exploits an ambiguity measure to improve data-efficiency and
trustworthiness. This work was accepted for the 5th Robot Learning Workshop at NeurIPS
2022. We are currently working on the integration of a tool in the OpenDR toolkit related to
this work. Also, we plan to perform more extensive evaluation both in simulation as on the
real system. TAU has developed a collaborative scenario between human and robot, which
is inspired by the Agile Production use case. Perception tools from the OpenDR toolkit are
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utilized to enable the robot to act as assistant to the human, by functionalities such as automated
pick-and-place and robot to human hand-overs. The visual perception tools utilized are human
skeleton detection, human action recognition and the detection and pose estimation of objects
and targets in the scene. Performance of the tools is tested for different input image sizes. As
developing and integrating such models for robotics in industry are hard tasks, often requiring
expertise from many different areas, we additionally provide basic HRC software templates,
which can be utilized to replicate our developments.
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N2M2: Learning Navigation for Arbitrary
Mobile Manipulation Motions in Unseen and

Dynamic Environments
Daniel Honerkamp, Tim Welschehold, and Abhinav Valada

Abstract—Despite its importance in both industrial and service
robotics, mobile manipulation remains a significant challenge
as it requires a seamless integration of end-effector trajectory
generation with navigation skills as well as reasoning over
long-horizons. Existing methods struggle to control the large
configuration space, and to navigate dynamic and unknown
environments. In previous work, we proposed to decompose
mobile manipulation tasks into a simplified motion generator
for the end-effector in task space and a trained reinforcement
learning agent for the mobile base to account for kinematic
feasibility of the motion. In this work, we introduce Neural
Navigation for Mobile Manipulation (N2M2) which extends this
decomposition to complex obstacle environments and enables it to
tackle a broad range of tasks in real world settings. The resulting
approach can perform unseen, long-horizon tasks in unexplored
environments while instantly reacting to dynamic obstacles and
environmental changes. At the same time, it provides a simple
way to define new mobile manipulation tasks. We demonstrate
the capabilities of our proposed approach in extensive simulation
and real-world experiments on multiple kinematically diverse
mobile manipulators. Code and videos are publicly available at
http://mobile-rl.cs.uni-freiburg.de.

Index Terms—Mobile Manipulation, Robot Learning, Embod-
ied AI, Reinforcement Learning

I. INTRODUCTION

WHILE recent progress in control and perception has
propelled the capabilities of robotic platforms to au-

tonomously operate in unknown and unstructured environ-
ments [1]–[4], this has largely focused on pure navigation
tasks [5], [6]. In this work, we focus on autonomous mobile
manipulation which combines the difficulties of navigating un-
structured, human-centered environments with the complexity
of jointly controlling the base and arm. Mobile Manipulation is
commonly reduced to sequential base navigation followed by
static arm manipulation at the goal location. This simplification
is restrictive as many tasks such as door opening require the
joint use of the arm and base and is inefficient as it dismisses
simultaneous movement and requires frequent repositioning.

Mobile manipulation requires a range of capabilities includ-
ing collision-aware navigation, object interactions, manipu-
lation, exploration of unknown environments, and long-term
reasoning. As a result, approaches from a variety of areas such
as planning, optimal control, and learning have been proposed.
Inverse reachability map (IRM) approaches seek good base

All authors are with the Department of Computer Science, Univer-
sity of Freiburg, 79110 Germany (e-mail: honerkamp@cs.uni-freiburg.de,
twelsche@cs.uni-freiburg.de valada@cs.uni-freiburg.de).

Fig. 1. Mobile manipulation tasks in unstructured environments typically
require the simultaneous use of the robotic arm and the mobile base. While
it is comparably simple to find end-effector motions to complete a task
(green), defining base motions (blue) that conform to both the robot’s and
the environment’s constraints is highly challenging. We propose an effective
approach that learns feasible base motions for arbitrary end-effector motions.
The resulting model is flexible, dynamic and generalizes to unseen motions
and tasks.

positioning for the robot base given the task constraints [7],
[8] but often require expert knowledge and can be overly
restrictive. Planning approaches [9]–[11] come with asymptotic
optimality guarantees, but scale unfavorably with the size of the
configuration space, can have long planning times, and often
require frequent re-planning in dynamic environments. Model
predictive control (MPC) formulations explicitly define and op-
timize over a range of collision and desirability constraints, and
recently achieved strong results in mobile manipulation [12],
[13]. However, they are computationally expensive, often
do not optimize past a limited horizon, and can struggle
when objectives oppose each other. Learning-based methods
efficiently learn directly from high-dimensional observations
and are well suited to handle unexplored environments [14]–
[16]. Nevertheless, they either restrict the action space [14],
[17] or rely on expert demonstrations [15] to cope with the high-
dimensional action space and long-horizon nature of mobile
manipulation. Furthermore, the learned behavior is often task-
specific, requiring re-training for each novel task.

In this work, we formulate mobile manipulation as a goal
conditional reinforcement learning (RL) problem in which the
RL agent observes the end-effector motion and goal, and aims
to ensure that these motions remain kinematically feasible.
Fig. 1 depicts a high-level overview of our approach. We
extend our formulation introduced in [18] to unstructured
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obstacle environments and increase the agent’s freedom to
control the velocity of the end-effector motions and torso joints.
This provides a very simple and yet effective way to define
new tasks, as the RL agent takes care of all the complexities
regarding collision-free navigation and kinematic feasibility.
The resulting approach, which we term N2M2 (Neural Nav-
igation for Mobile Manipulation), efficiently learns to solve
long-horizon tasks, lasting thousands of steps, generalizes to
unseen tasks and environments in a zero-shot manner, and
reacts instantaneously to changes in the environment without
any planning times. Lastly, the approach is directly applicable to
a wide range of kinematics including both holonomic and non-
holonomic robotic bases. We show that with appropriate action
regularization, our hybrid approach can be trained without
a complex simulator and directly transfers to the real world.
We demonstrate these capabilities in both extensive simulation
and real-world experiments on multiple mobile manipulators,
across a wide range of tasks and environments.

This paper makes the following main contributions:
1) We formulate the fulfillment of kinematic feasibility

constraints for mobile manipulation tasks in the presence
of obstacles as a reinforcement learning problem.

2) We propose a reactive approach to learn complementary
mobile manipulator base motions for arbitrary end-effector
motions on unstructured obstacle maps.

3) We develop a procedurally generated training task and
an approach to generate end-effector motions that can be
used across a variety of mobile manipulators with largely
varying kinematics and driving models.

4) We demonstrate the capabilities of our approach in
extensive simulated and real-world experiments on unseen
environments, obstacles, and tasks.

5) We make the code publicly available at http://mobile-rl.
cs.uni-freiburg.de.

The remainder of the paper is organized as follows: Sec. II
discusses existing literature and approaches for mobile manip-
ulation. Sec. III describes the technical details of our method,
Sec. IV then evaluates its capabilities and compares it to
previous approaches. Lastly, Sec. V discusses limitations and
future work and concludes.

II. RELATED WORK

Mobile manipulation tasks require the composition of a
vast range of capabilities spanning perception, control and
exploration. In the following, we discuss previous methods
from planning, optimal control, and learning to tackle these
challenges.

Sequential navigation and manipulation: Due to the difficulties
of planning in the conjoint space of the mobile manipulator
base and arm, many existing approaches restrict themselves to
sequential movements of the base followed by static manip-
ulations with the arm. This decomposition has been popular
across approaches based on reachability [8], planning [1], [19],
[20], impedance control [21], and reinforcement learning [14],
[22].

Planning: To ensure kinematic feasibility in mobile manipu-
lation tasks, planning-based approaches plan trajectories for

the robot in joint space and as such only explore kinematically
feasible paths [11], [23]. Sampling-based approaches such
as rapidly exploring random trees (RRT) and their variants
have shown to perform well in high-dimensional spaces and
come with certain optimality guarantees. However, increasing
their configuration spaces and environments can result in
long planning times or far from optimal solutions. Operation
in unobserved or dynamic environments can trigger costly
re-planning if the environment changes [24], [25]. While
certain constraints such as fixed orientations or task space
regions [26] can be incorporated well to plan motions such as
opening a door [20], the incorporation of arbitrary (end-effector)
constraints is difficult and often requires expert knowledge
and task-specific adaptations. In contrast, our approach can
near-instantly react to dynamic changes, offers a natural way
to incorporate unexplored environments, and can be directly
applied to arbitrary end-effector motions.

Inverse Reachability maps [7] can be used to seek good
positioning for the robot base given the task constraints [8],
subsequently the task is solved stationary. Combinations with
planning methods exist [27], but it remains a hard problem
to integrate kinematic feasibility constraints in task space
mobile motion planning. Welschehold et al. [28] treat the
kinematic feasibility of arbitrary gripper trajectories as an
obstacle avoidance problem based on a geometric description
of the inverse reachability. They analytically modulate the base
velocity such that the base stays within feasible regions and
orientations relative to the end-effector.

Optimal Control approaches have demonstrated promising
results on complex manipulation tasks that require conjoint
movements of arm and base. Model predictive control (MPC)
based approaches have demonstrated strong performance on
whole-body control tasks such as door opening [13], [29],
obstacle avoidance [12], and articulated objects [30]. Con-
straints are explicitly incorporated into the objective function
and optimized over a (usually fixed) rollout horizon. While
efficient implementations can incorporate horizons of up to
several seconds in near real-time, these approaches still require
significant compute. Moreover, they also require simplified
collision objects to achieve this and often do not take into ac-
count consequences beyond the rollout horizon. In contrast, our
approach learns a value function reflective of the full episode
horizon and can perform fast inference with a single forward
pass, without reliance on highly optimized implementations.
Furthermore, it does not rely on explicit representations of
the environment and offers direct extensions to arbitrary input
modalities and partially observed environments.

Haviland et al. [31] propose a reactive controller for both
holonomic and non-holonomic bases, however, they do not
demonstrate any collision avoidance. Redundancy resolution
methods specify desirable aspects of different solutions through
additional constraints or parameters [32]. In contrast, our
approach directly learns to resolve redundancies with regard
to long-term optimality, removing the need to specify explicit
desirability of different choices.

Task and motion planning (TAMP) combines low-level motion
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planning and high-level task reasoning and has resulted in ap-
proaches that generalize to many robots and environments [33]–
[35]. At the same time, it can be computationally demanding,
depends on the specification of symbolic actions, and does
not generally incorporate uncertainties or partial observability
as it requires full information about the 3D structure of the
environment. In contrast, we assume that we can generate the
desired end-effector motions, but may act in unexplored or
dynamically changing environments.

Obstacle Avoidance: Learning-based methods have shown to be
effective for learning obstacle avoidance from high dimensional
sensor inputs such as color images [36], [37], LiDAR [38],
[39], depth images [40] or a combination thereof [41]. These
approaches have demonstrated the ability to avoid dynamic
obstacles such as pedestrians [39], [41], [42]. Sensors such as
LiDAR and depth sensors have also shown good transfer from
simulation into the real world [40], [42]. Several approaches
have explored the use of 2D obstacle maps to learn a local
planner component to avoid pedestrians based on a 2D
LiDAR [39] or to predict a collision map from a 2D obstacle
map based on a laser scan and binary collision events [38].
Optimal control approaches have successfully used voxel map
representations [43] and signed distance fields [12], [30], [44].

Reinforcement Learning: Recently mobile manipulation has
also been tackled as a reinforcement learning task. Relmo-
gen [14] learns subgoals for arm and base, but relies on
sequential execution of each and pre-specified pushing motions.
Kindle et al. [17] learn to directly control both arm and
base, however, they restrict the arm movements to a plane.
Jauhri et al. [22] learn a base positioning and a discrete
decision on whether to use the arm. While these approaches
learn effective policies for specific tasks, they cannot easily
be applied to novel tasks. In contrast, we address the problem
of enabling arbitrary end-effector trajectories, providing a
straightforward technique to define novel tasks with arbitrary
motion constraints in task space and the capability for zero-shot
generalization to such unseen tasks at test time.

Recently several approaches and benchmarks for complex
long-horizon tasks have been proposed. Most similar to our
tasks is MoMaRT, which uses imitation learning to control a
Fetch robot in simulation and in mostly seen environments [15].
In contrast, we focus on generalization to completely unseen
environments as well as the real-world. ManipulaTHOR focus
on the higher-level task aspects, using a strongly simplified
robot arm and magic grasping action [45]. Rearrangement-
style benchmarks define tasks as moving the environment from
an initial to a goal state [46]. BEHAVIOR [47] and Habitat-
2.0 [48] instantiate a large number of tasks in simulation. These
approaches often abstract from the actual kinematics with
actions such as ”magical” grasping actions that immediately
succeed [45], [47], [48] or explicitly provided lower-level
motion primitives [47], [49]. In contrast, we assume that the
agent is aware of the high-level task goals in form of access
to an end-effector motion, but has to learn to achieve them
with the actual robotic kinematics. Secondly, these approaches
achieve limited success even when training separate agents
specific to each task. We provide an approach that generalizes

Fig. 2. N2M2: We decompose mobile manipulation tasks into two components:
an end-effector (EE) motion generation and a conditional RL agent that controls
the base, the torso lift joint and the velocity of the end-effector motions. The
agent receives a local map of the environment (shown in grey) together with
the robot state and the next end-effector motions. Given the agent’s actions,
an inverse kinematics solver then solves for the remaining arm joints.

to unseen tasks without any re-training or finetuning. A very
interesting aspect will be to incorporate and combine our work
with the higher-level task focus of these benchmarks.

We formulate our approach as goal conditional RL prob-
lem [50], [51] which conditions its policy on a goal state to
arrive at this goal. Hierarchical methods [52]–[54] abstract
complex long-horizon tasks into a high-level policy propos-
ing subgoals and goal-conditional low-level policies. While
adapting these methods for mobile manipulation can improve
sample efficiency [55], it still has to deal with the complexity
and non-stationarity of learning hierarchical policies.

Articulated Objects have been a particular focus for mobile
manipulation. Mittal et al. [30] estimate the articulation param-
eters of unseen objects, then use this to generate keyframes for
the end-effector. Kineverse constructs articulation models for
complex kinematics and demonstrates how these can be used
to generate motions [56]. These works provide simple ways
to generate end-effector motions for a wide variety of objects,
complementing our approach and making it even more broadly
applicable.

III. NEURAL NAVIGATION FOR MOBILE MANIPULATION

Mobile manipulation in real-world environments is a complex
long-horizon task that combines navigation and control in a
high-dimensional action space while respecting constraints
imposed by the task, the hardware, and the environment. At
the core, we decompose the mobile manipulation problem
into an end-effector motion and base velocities learned by a
reinforcement learning agent with the goal to ensure that these
concurrent end-effector and base motions are kinematically
feasible. We extend the formulation introduced by [18] to
enable the reinforcement learning agent to simultaneously avoid
collisions with the environment and further expand its control
to the velocity of the end-effector motions and the height
adjustment of the robot torso. We then generalize the objective
and training scheme to learn policies that avoid configuration
jumps and generalize to unseen environments while remaining
applicable to a diverse set of mobile manipulation platforms.
The resulting approach enables it to solve a very broad range
of tasks in unstructured real-world environments. An overview
of the proposed approach is depicted in Fig. 2.
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A. End-effector Motions

Defining tasks such that they can be achieved by algorithms
while remaining generally applicable yet simple to specify
for humans is a hard problem. Much of the recent work has
focused on addressing this challenge through imitation learning
or definition of task-specific goal states. In the domain of mobile
manipulation, outcomes often depend on specific end-effector
operations. As such we define tasks by end-effector motions.
This is on one hand very expressive: a wide variety of tasks
can be expressed this way. On the other hand, it provides a
simple interface for humans to define and generate novel tasks
quickly and unambiguously, as it requires only to reason about
motions in simple cartesian space, instead of a whole-body
control problem. We provide a wide variety of example tasks
in Sec. IV. Further, this definition is not overly restrictive in
terms of methodology as various types of motion generators
for the end-effector can be employed, such as dynamic system
based imitation learning, planning based systems, or even a
reinforcement learning system.

In particular, we only assume access to an arbitrary end-
effector motion generator fee that, given a current (partial
or fully known) map mglobal of the environment, the current
end-effector pose eet and velocities vee,t, and the current end-
effector goal g, outputs feasible next-step velocities vee,t+1

for the end-effector. We define feasible as any motion that
does not violate the constraints of the robot’s hardware or the
(collision) constraints resulting from obstacles in the world.
We can define this as a function

vee,t+1 = fee(eet, vee,t,mglobal, g). (1)

B. Learning Base Control for Kinematic Feasibility

We formulate mobile manipulation tasks as a goal con-
ditional reinforcement learning problem in which the RL
agent observes end-effector motion and goal, and aims to
ensure that these motions remain kinematically feasible [18].
The agent controlling the robot’s base is operating in a
Partially Observable Markov Decision Process (POMDP)
M = (S,A,O, T (s′|s, a), P (o|s), r(s, a)) where S,O and
A are the state, observation and action spaces, T and P
describe the transition and observation probabilities, and r
and γ are the reward and discount factor. The agent’s objective
is to learn a policy π(a|o) that maximises the expected return
Eπ[

∑T
t=1 γ

tr(st, at)]. In the goal conditional setting [50],
the agent then learns a policy π(a|o, g) that maximises the
expected return r(s, a, g) under a goal distribution g ∼ G
as Eπ,G [

∑T
t=1 γ

tr(st, at, g)]. At each step, an arbitrary end-
effector motion generator produces the next step velocities vee
for the end-effector. The reinforcement learning agent receives
an observation o consisting of these velocities vee, the resulting
desired EE pose, and an end-effector goal pose g in the robot’s
base frame together with the current robot state consisting
of the joint configurations and a binary local obstacle map
mlocal centered and oriented around the base and outputs base
velocities vb ∼ π(a|o, g). In practice we do not let the agent
observe the final end-effector goal which can often be far away,
but we repeatedly apply the end-effector motion generator fee

to generate an intermediate goal roughly 1.5m ahead of the
agent.

The objective of the agent is to ensure that these end-effector
motions remain feasible. Given the desired end-effector motion
and the agent’s base commands, we use inverse kinematics
(IK) to solve for the remaining degrees of freedom in the arm.
To achieve this objective, we extend our previous work [18]
in several dimensions. First, we generalize the kinematic
feasibility reward as

rik = −||êexyz − eexyz||2 − crot ∗ drot(êe, ee), (2)

where ee and êe are the achieved and desired end-effector poses
with position and orientation components eexyz and eeo, drot
calculates a rotational distance of the quaternions drot = 1.0−
〈 ˆeeo, eeo〉2 and crot is a constant scaling both components into
a similar range. This allows us to explicitly trade-off precision
in the achieved pose with adhering to executable arm motions
within the IK solver to address the configuration jumps observed
in [18]. We use the flexible BioIK solver and regularise the IK
solver with a minimum displacement goal, consisting of the
squared distances of each joint, weighted by the reciprocals
of the maximum joint velocities [57]. While this restricts the
arm joints to stay close to the last time step, for robots with
flexible arms there may still be several possible configurations
for a given end-effector motion. Moreover, the selected arm
configuration can be important to fulfill the remaining motions.
To increase the RL agent’s control over what configuration
the arm goes into, we extend its control to the torso lift joint.
This joint is often very slow and as a consequence requires
substantial look-ahead to change significantly in height. We
extend the agent’s action space with a learned torso velocity
and use the IK solver only for the remaining arm joints.

An episode terminates early if the gripper deviates too much
from the desired pose for more than 20 steps. We optimize this
as an infinite horizon task, correcting for the (non-markovian)
early terminations [58] and taking into account that robots are
expected to act in the real world in which they will have to
continue reaching new goals after fulfilling the current task.
To do this we continue to bootstrap the value functions in the
final episode states. Lastly, we replace the regularization of the
agent’s actions’ norm with a regularisation of the acceleration,
incentivizing smooth instead of small actions:

racc = ||at − at−1||2. (3)

To ensure the environment remains Markovian, we extend the
observation space with the agent’s previous actions. In our
experiments, we find this regularisation to be essential for the
transfer to the real world.

C. Obstacle Avoidance

To perceive the environment, we equip the agent with a
local occupancy map of its surroundings. Occupancy maps
provide several advantages: (i) They can be constructed from
and integrate several sensors, such as LiDAR, RGB-D, and
range sensors, ensuring applicability across different robots
with different sensors. (ii) They offer a geometric abstraction
over sensors such as RGB images, that we hypothesize is easier
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to generalize to unseen objects and environments at test time.
(iii) They can be constructed in either 2D or as 3D voxel maps.
In the following, we rely on a 2D representation which as we
will show in the experiments is sufficient for a large range of
real-world tasks while keeping computational costs low and
during training can be generated without having to rely on a
complex simulator.

The agent receives a robot-centered map mlocal with a side
length of three meters. This map is processed by a map encoder
before being concatenated with the robot’s proprioceptive
state and the goal observation. The map encoder receives
two versions of the local map: a coarse one at a resolution
of 0.1m and a fine-grained version with a side length of
0.75m at a resolution of 0.025m, enabling precise navigation.
The concatenation of the two maps is passed through three
convolutional layers each followed by a maxpool and ReLU
activation and then flattened into a vector. We then extend the
reward with a collisions penalty of rcoll = −10.

D. Controlling Motion Velocities

While we can express discretized motions as a time-stamped
sequence of poses in SE3, many real-world tasks do not depend
on a particular execution speed. Furthermore, in cluttered
environments, the robot base has to frequently evade obstacles,
potentially requiring significantly longer paths than the end-
effector. As a consequence, we propose to also learn to control
the norm of the velocity of the end-effector motions. We extend
the agent’s action space by an additional action aee that controls
the norm of the end-effector velocity after observing the desired
next motion by scaling it to ||vee|| = aee. To incentivize fast
motions whenever possible, we add the following reward:

rvel = −(vee,max − aee)2, (4)

where vee,max is the maximum velocity the end-effector is
allowed, which we set equal to the maximum base velocity.

To prevent the agent from finding fast movement through
difficult poses as a valid strategy to minimize collisions or ik
failures, we furthermore transform the penalties for collisions
and ik failures from a reward per time step into a reward per
distance by multiplying them with the normalization term

nvel =
aee

vee,max
. (5)

E. Overall Objective

Combining the objectives, the overall reward function is

r = nvel(λikrik + rcoll) + λvelrvel + λaccracc. (6)

We optimize this objective with model-free reinforcement
learning, namely soft-actor critic (SAC) which has shown
to effectively learn robust policies for continuous control
tasks [59].

F. Training Environment

To generalize to unseen motions and obstacles, the agent
has to be exposed to a wide variety of motions, poses, and
obstacles. We introduce a procedurally generated environment

that uses elementary shapes to generate obstacles and a simple
yet effective obstacle-avoiding end-effector motion generator.
As we will demonstrate in our experiments, the resulting policy
generalizes to unseen geometries and motions at test time.

Task: In each episode, we randomly arrange elementary shapes,
namely rectangles and ellipses, on an empty map. Each obstacle
is placed on a regular grid, offset by a random number drawn
from a normal distribution, and placed in a random orientation.
The obstacle’s width, breadth, and height are drawn from a
uniform distribution. An example of such a map is depicted in
Fig. 3. Given the obstacle map, we set a goal reaching task
by sampling a random start pose, random initial joint values,
and a random goal position within a distance of 0.5m to 5m
from the start.

While procedurally generated environments have proven
very powerful to learn robust policies, they come with their
challenges. In particular, we have to ensure that the generated
task is solvable. For this, we follow a simple heuristic and
reject any goal for which no valid path can be found in a
map with an inflation radius of 0.4m. While more elaborate
methods such as curricula [60] and adversarial environment
generation [61] have shown promising results, we found it not
just simpler but also more effective to directly randomize and
maximize the diversity of the environment and goals. During
training, we simply integrate the robot kinematics over time,
allowing us to generate data very quickly and without relying
on a complex simulator. We will refer to this as analytical
environment throughout the remainder of the paper.

End-Effector Motions: For training, we propose an instance of a
simple obstacle-aware motion generator that remains agnostic to
the robot. In Sec. IV, we evaluate how well the behavior learned
on these motions generalizes to arbitrary, unseen motions. To
ensure that the desired motions are in general feasible, we
use two heuristics and develop a refined A*-based planner to
implement them as soft constraints:

(i) Avoid end-effector collisions: A minimum distance dee
of the end-effector from tall obstacles. This can be
implemented by inflating the obstacle map, as is common
practice in robot navigation. We ignore obstacles that are
smaller than the maximum height the end-effector can
reach (minus a small margin) max z, meaning the end-
effector motion is allowed to pass over obstacles where
kinematically possible.

(ii) Ensure the base can follow the end-effector motions: we
first plan a path from the initial base pose to the end-
effector goal in a map that is inflated by the radius of
the robot base. We then define a maximum distance dbase
that the end-effector is allowed to deviate from this base
path. We set this value to the range of the robot’s arm.
We implement this by inflating the base path by dbase
and adding the inverse of this to the weights.

Together, this results in the following weights w of the A*-
planner, consisting of the inflated end-effector path and the
inverse of the inflated base path:

w = c ∗ 1[inflate(mglobal,z+, dee)

+ (1− inflate(mbasepath, dbase))], (7)
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Fig. 3. Depiction of the training and testing environments. Left: procedurally generated training task. Middle left: generated weights and path of the end-effector
planner according to Eq. (7). The darker the image, the higher the cost. Center: articulated object environment. The starting the area of the robot is shown in
green, the spawn area of the obstacles is shown in orange (except for door and spline tasks), the starting area for the door task is shown in pink. For the p&p
task, the robot has to grasp a cereal box on the bottom table and place it onto a table randomly spawned in the cyan area. Middle right: bookstore map. Right:
dynamic obstacle task.

where c is a constant, mglobal,z+ is a map with only the
obstacles larger than max z over which the end-effector cannot
pass, and mbasepath is a map consisting only of the shortest
path from the initial base pose to end-effector goal obtained by
A*. An example of the resulting weights is shown in Fig. 3.

We then generate dense waypoints with A* and inter-
polate them with a linear dynamic system to produce the
actual end-effector motions. We linearly interpolate the
height over the found path from the current height towards
max(next obstacle z + height margin, goal z). Rotations
are obtained via spherical linear interpolation (slerp) from start
to goal orientation. As we demonstrate in the experiments,
this results in an effective and yet simple method capable of
generating motions for complex, real-world floor plans. Note
that while more sophisticated methods could generate easier
to achieve motions in crowded maps, our main interest here
is to generate diverse motions for the RL agent. The task
is deemed successful if the agent gets within 2.5 cm and a
rotational distance of 0.05 of the end-effector goal, has no base
collisions or self-collisions, and does not deviate more than
10 cm or a rotational distance of 0.05 from the desired motion.
We early terminate the episode if the agent violates any of
these constraints for more than 20 steps.

IV. EXPERIMENTAL EVALUATIONS

We evaluate our approach across different robotic platforms,
different environments, and a wide variety of tasks. In these
experiments, we aim to answer the following questions:

• Do agents trained with our proposed approach generalize
to unseen end-effector motions?

• Does our approach generalize across robotic platforms
with different kinematic abilities?

• Does the agent learn robust obstacle avoidance that
generalizes to (i) occupancy maps generated by real-world
LiDAR scans and (ii) unseen obstacles?

• Does our approach scale to complex, real-world based
obstacle environments?

• Can the agent react to dynamic obstacles and changing
environments?

• Does our approach transfer to direct execution in the real
world?

TABLE I
VELOCITY AND POSE CONSTRAINTS.

Parameter EE-
Motion

PR2 TIAGo HSR

Max. velocity (m/s) 0.2 0.2 0.2 0.2
Max. rotation (rad/s) 0.3 1.0 1.0 1.0
Goal height (m) - [0.2, 1.55] [0.2, 1.5] [0.2, 1.4]
Restr. height (m) - [0.4, 1.0] [0.4, 1.1] [0.4, 1.1]

A. Experimental Robotic Platforms

We train agents for three different robotic platforms differing
considerably in their kinematic structure and base motion
abilities. The PR2 robot consists of an omnidirectional base,
a height-adjustable torso, and a 7-DOF arm, giving it high
mobility and kinematic flexibility. But with a base diagonal of
0.91m it is comparably large, limiting its maneuverability in
narrow spaces. The Toyota HSR robot has an omnidirectional
base as well, but the arm is limited to 5-DOF including the
height-adjustable torso. As a result, it cannot reach all poses
in SE3 unless it coordinates movements with its base. The
TIAGo robot is equipped with a height-adjustable torso similar
to the PR2 as well as a flexible 7-DOF arm. But it uses
a differential drive, restricting its mobility compared to the
PR2. All three robots are equipped with a base LiDAR sensor,
covering 270, 240, and 220 degrees on the PR2, HSR, and
TIAGo, respectively. The TIAGo additionally has three range
sensors pointing backward, each with a field of view of 29 deg
and a range of one meter. In the simulation, we also equip the
PR2 and HSR with the same range sensors. The action space
for these platforms is continuous, consisting of either one (diff-
drive) or two (omni) directional velocities vb,{x,y}, and an
angular velocity vb,θ. This action space is completed with two
more actions, one controlling the velocity of the end-effector
motion and the other controlling the torso lift joint. Except for
the HSR for which we do not find a benefit in learning the
torso over solving for it with the IK as it only has limited DoF.
Tab. I lists the constraints we set across the different platforms
in the analytical environment.

B. Baselines

We compare our proposed approach against a range of
methods from planning, optimal control, and machine learning.
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MPC: As the main baseline, we compare against a recent
model-predictive control approach [30]. The method uses the
SLQ algorithm to minimize the deviation to the desired end-
effector trajectory with additional soft constraints for self-
collision, joint velocity, and joint position limits. To ensure
a fair comparison, we change all robot collision meshes to
simplistic geometries, reduce the number of self-collision
constraints to a bare minimum (avoiding end-effector – torso
and end-effector – head collisions), and set all unused joints
as fixed. Collision avoidance is incorporated as a hinge-loss
function based on a signed distance field. We provide it with a
groundtruth 2D signed distance field at a resolution of 2.5 cm
from the obstacle map and model the base collisions as a
cylinder centered on the robot base. For the rectangular base of
the PR2, we define four more small cylinders at the corners of
the base and implement the derivatives with regard to position
and orientation. We follow the authors and run the algorithm
at a control frequency of 30Hz with a time horizon of four
seconds. The agent has to follow the same end-effector motions
as our approach. As the original code is not publicly available,
we reimplement it based on the same optimization library1.
E2E: An end-to-end reinforcement learning agent which does
not rely on an IK solver but directly learns to control the
whole robot by extending the action space to include the
joint velocities for the arm. It receives the same desired end-
effector motions and reward signal but directly acts in the full
configuration space of the robot to achieve these motions.
LKF: The original learning kinematic feasibility approach [18]
uses a binary indicator as a reward and does not take into
account obstacles. In a range of ablation studies, we extend it
until we reach our approach.
RRTConnect: For comparison with classical planning ap-
proaches, we evaluate RRTConnect [10]. However, as general
motion constraints over time cannot easily be defined in
the sampling space, we omit these constraints. The planning
algorithm only receives the same start and goal poses as the
learning agent and is allowed to freely move to the target pose.
As such it has much more freedom to achieve the goal, but
at the same time is limited in applicability to goal reaching
and pick&place tasks. We use the planner implementations
provided by the MoveIt motion planning library [62]. While
samplers can in principle support arbitrary constraints such as
non-holonomic bases, current ROS1 implementations do not
support it. As Tiago is not yet ROS2 compatible, we do not
evaluate it on this platform.
Bi2RRT∗: A bidirectional RRT∗ algorithm developed for mobile
manipulation with the PR2 which achieves efficient sampling
by using a two-tree variant of Informed RRT∗ [11]. As for
RRTConnect, we omit the motion constraints. We use the
authors’ implementation.

C. Evaluation Setup

As the main focus of this work are the base motions,
we provide the EE-planner with a groundtruth map of the
environment for all tasks except those involving dynamic
environments. However, the RL agent is always restricted to

1https://github.com/leggedrobotics/ocs2

TABLE II
HYPERPARAMETERS FOR THE DIFFERENT APPROACHES.

RL

tau 1e−3 buffer size 10e5
lr 1e−4 lr end 1e−6
gamma 0.99 steps 10e6
ent coef learned train intensity 0.1
batch size 256 hidden layers [512, 512, 256]
action noise 0.04 frame skip 8 (Tiago)
λik 50 crot 2
λvel 0.1 λacc 0.05

MPC

time horizon {4 sec, 6 sec} frequency 30 Hz
µ collision {500, 1000, 5000} δ collision {0.001, 0.01, 0.1}
µ joint limit {0.01, 0.1} δ joint limit {0.001, 0.01}
min step {0.01, 0.03}

RRTConnect

max waypoint {0.1, 0.2, 0.4} range {default, 1, 10}
plan attempts {1, 10} time limit 200 sec

Bi2RRT∗

extend step {0.1, 0.2, 0.4} time limit 200 sec

Notes: For the planner and MPC baselines we perform a grid search on
the obstacle task over these values and then report the results of the best
parameters on all tasks.

the local map (groundtruth in the analytical environment, based
on its sensors in all other environments). The planner baselines
receive access to the full 3D groundtruth planning scene. Only
for the planner baselines, we additionally simplify all complex
collision meshes in the bookstore map with simple geometries
to reduce the impact of collision checking on the planning
times. We tune the MPC and planner baselines for each robot
via grid search on the rnd obstacle task, then evaluate the best
set of parameters on all tasks. For our approach we use a single
set of parameters across all robots without any further platform-
specific tuning. Hyperparameters for all methods are reported
in Tab. II. The approaches were evaluated on an AMD Ryzen 9
5900X or AMD EPYC 7452 CPU. As the PR2 Gazebo physics
no longer matches the real robot2, we update it to roughly fit
the actual hardware by setting the wheel, and rotation joint
efforts to 25 and the wheel controller’s proportional gains to
200.

Metrics: A task is deemed successful if the end-effector
reaches the goal without any collisions and never deviates
more than 10 cm or a rotational distance drot of 0.05 from the
desired motion. In the analytical environment, we also count
configuration jumps as a failure, where we define a jump as
exceeding any of the robot’s maximum joint velocities. In the
analytical environment, we only track base collisions, in the
Gazebo simulator we check all collisions with the robot body.
We evaluate each task over 50 episodes. For learning-based
methods, we additionally average over five models trained with
different random seeds.

2https://github.com/PR2/pr2 controllers/issues/402
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TABLE III
SUCCESS RATES FOR EXPERIMENTS IN THE ANALYTICAL ENVIRONMENT.

A∗-slerp Imitation Learning Spline Avg

Agent rnd
obstacle

p&p bookstore
p&p

dynamic
obstacle

dynamic
p&p

cabinet drawer door spline

PR
2 MPC 54.0 70.0 8.0 64.0 54.0 62.0 76.0 32.0 96.0 57.3

E2E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2M2 86.0 97.6 70.0 84.4 81.6 97.2 97.6 98.4 80.8 88.2

H
SR

MPC 64.0 72.0 48.0 60.0 60.0 68.0 68.0 66.0 98.0 67.1
E2E 25.2 38.8 10.4 17.6 13.2 52.4 14.4 43.2 38.0 28.1
N2M2 63.2 92.0 68.0 82.0 88.0 93.2 87.2 88.0 84.0 82.4

Ti
ag

o MPC 46.0 68.0 0.8 40.0 30.0 62.0 52.0 32.0 86.0 46.3
E2E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2M2 61.2 91.6 42.0 54.4 50.4 81.6 89.2 62.4 56.0 65.4

Notes: Evaluation on unseen tasks from three different motions systems, an A∗-based system, an imitation system learned from human demonstrations and
spline interpolation of random waypoints. The last column reports the average across all tasks. We evaluate all models on three different robotic platforms, the
PR2, HSR, and TIAGo.

D. Generalisation to Arbitrary Motions

To evaluate the generalization to arbitrary motions, we
generate a range of tasks from different motion systems:
A∗-slerp refers to the A∗-based motions used during training,
as described in Sec. III-F. A∗-fwd uses the same end-effector
path but generates different desired end-effector orientations:
Instead of spherical interpolation, it generates motions in which
the end-effector always points in the direction of movement.
Only when close to the goal, it uses slerp to achieve the desired
final end-effector orientation. From these motions, we construct
the training task, labeled rnd obstacle, and a pick&place (p&p)
task in which the agent has to grasp a cereal box from one
table and place it down on another table.
An imitation learning system learned from a human teacher [63].
The motions are encoded in a dynamic system following a
demonstrated hand trajectory to manipulate a certain object.
In particular, we use motions to grasp and open a cabinet,
grasp and open a drawer and grasp a door handle, push it
down and open the door inwards while driving through it. This
task is particularly challenging as it requires to avoid both
the door frame and the moving door, resulting in a highly
constrained and narrow navigation task. With 0.89m, the door
frame is more narrow than the PR2 base-diagonal of 0.91m.
The moving door makes the environment dynamic as it changes
the free space.
Spline interpolation draws five random waypoints in SE(3) with
a distance of 1m to 3m from the previous and connects them
using cubic splines and spherical interpolation. This results in
arbitrary motions over a total distance of 5m to 15m.

With these motions, we extend the suite of mobile ma-
nipulation tasks introduced by [18], while also removing all
restrictions on the initial start pose. The task objects are
situated in a virtual room and the robot spawns in a random
pose and configuration within an area in the center of the
room. To evaluate the obstacle avoidance capabilities, we place
random obstacles in the path of the agent. We allow the end-
effector motions to directly pass over these obstacles, leading
to challenging poses and decisions on how to position the base.
The task setup and start area are shown in Fig. 3.

We first evaluate the agents in the analytical environment,
abstracting from low-level execution and sensors. The results
are shown in Tab. III. MPC solves a significant amount of
episodes across all the robots. In particular, it performs very
well on the obstacle-free spline task. But it frequently gets stuck
around obstacles, only making progress once time progresses
and the desired end-effector pose moves far enough away for
the tracking cost term to dominate. This results in a violation of
one of the constraints: either large deviations from the desired
pose, base collisions, or joint limits as it is unable to trade
them off optimally in these situations. Due to the difficulties
in balancing these soft constraints, in the door opening task,
the MPC controller frequently drives over the door frame with
the PR2. The E2E model is able to solve a reasonable number
of tasks on the HSR. But as the action space increases with
the 7-DoF arms of the PR2 and TIAGo, it is no longer able to
succeed in any of the tasks. This matches the fact that recent
reinforcement learning based mobile manipulation approaches
have to restrict the action space to learn. In contrast, our hybrid
approach scales effectively with the configuration space of the
robot and is able to use the full flexibility of the PR2, achieving
the best results on this platform with far above 90% success
on many tasks. We achieve similar success rates on the HSR,
demonstrating the agent’s ability to use the base to complement
its limited arm. The most difficult platform is the TIAGo. While
our approach does very well on p&p and the imitation learning
tasks, performance is significantly lower on the rnd obstacle
and spline tasks. We hypothesize that the differential drive
induces a much harder exploration problem. In particular, it is
much harder to move from one mode of operation to another:
e.g. in front of an obstacle, the base has to decide to either turn
left or right. But once it has made a decision, it cannot easily
change the path without violating the end-effector motion. As
such it becomes much harder to escape local optima in the
behaviour policy. To better learn long-horizon policies for this
robot, we start training with a lower base control frequency
of 0.0125Hz and then linearly increase it to 10Hz over the
course of training. Across all tasks and robots, our approach
significantly outperforms the other methods. Also note that,
given the procedural generation of the environment, it may not
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Fig. 4. Example motions produced by N2M2on the different tasks and robots. The base and ee-trajectories are marked in yellow and green, respectively. From
left to right: p&p, cabinet, drawer, door, spline and bookstore. From top to bottom: PR2, HSR, TIAGo.

be possible to achieve a perfect score on the rnd obstacle task,
as some end-effector motions may not be possible to fulfill
kinematically for some of the robots.

Qualitatively, we find that the agent produces reasonable
behavior such as seeking robust poses in the center of its
workspace or moving backward until reaching an open space
to turn. Examples are shown in Fig. 4 and in the accompanying
video.

E. Ablation: Individual Components

To evaluate the impact of our contributions, we perform
extensive comparisons with the original LKF approach. As it
cannot avoid obstacles, we train these approaches on a random
goal reaching task in an empty map and compare the ability to
follow the motions on a subset of the previous tasks without
obstacles. Note that results are not directly comparable to those
reported in [18], as our task definitions are generally more
challenging as they remove restrictions on initial poses and
include the torso joint of the PR2. We report both the same
success rates as before as well as a success rate that does not
penalize configuration jumps as used in [18], which we label
w/jumps.

The results are shown in Tab. IV. Row by row we add our
contributions. We first switch to the BioIk solver with minimal
displacement regularisation and the generalized L2 kinematic
feasibility reward function. This largely increases the success
rate by removing most configuration jumps. For the PR2 and
TIAGo, we then additionally learn the torso lift velocities,
which have a similarly large impact on the success rate. This
is because most jumps occurred in the torso lift joints which
move much slower than the arm joints. Furthermore, for many
goals, it is important to plan ahead and to start moving the
torso early on in the episode to achieve large height differences.
Next, we also learn to control the velocity of the end-effector
motions. This slightly increases success rates, even in the
absence of obstacles. We found the impact of this term even
more important in the presence of obstacles as the base has to

maneuver much more. Lastly, we add the occupancy map and
train in the new procedurally generated training task. With this
we arrive at our approach, which achieves the best average
performance on all robots, highlighting the importance of all
components.We hypothesize that this last increase stems from
the fact that the new obstacle task largely increases the difficulty
and variety of the motions during training.

F. Scaling to Human-Centered Maps

To further evaluate the generalization to complex objects with
unseen geometries and the ability to navigate narrow human-
centered environments, we evaluate the agents in a realistic
bookstore environment [64] shown in Fig. 3. We define a set
of ten feasible object locations across the whole map and
draw random pairs of locations to pick up an object from and
place it down. The robot starts in the center of the map, again
in a random start configuration. The resulting tasks are very
long horizon, taking on average 1,300-1,500 steps at a control
frequency of 10Hz and require passing through passages as
narrow as 0.85m. The results are reported in Tab. III. Our
approach is the only method to successfully complete this
task on all robots. While success rates are lower than in p&p,
both the PR2 and HSR succeed in the majority of episodes.
Success rates are somewhat lower on the TIAGo with 42.0%.
Difficulties of this task are on one hand the sheer length of each
task. On the other hand, the robot has to repeatedly pass through
very narrow passages. This is particularly challenging as the
agent at the same time has to strictly adhere to the end-effector
motions. As our focus is the learned base behavior, we do not
adapt the end-effector orientations to the environment, even
though the pick & place task does not require specific motions
while carrying the object. This highlights a large potential to
further improve the success rates by learning or adapting the
end-effector motions to the specific task. We leave this for
future work.
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TABLE IV
SUCCESS RATES FOR EXPERIMENTS IN THE ANALYTICAL ENVIRONMENT without OBSTACLES.

Linear A∗-slerp Imitation Spline Avg

Agent rnd goal p&p cabinet drawer spline
success w/jumps success w/jumps success w/jumps success w/jumps success w/jumps success

PR
2

LKF 0 80 0 46 0 86 0 64 0 42 0.0
+ bioik, l2, jumps 38 94 8 22 36 82 22 68 0 92 20.8
+ learn-torso 92 92 50 50 72 74 74 74 82 82 74.0
+ ee-velocity 90 90 72 72 82 82 98 98 66 66 81.6
+ collision: N2M2 88 88 100 100 98 98 100 100 72 72 91.6

H
SR

LKF 72 74 90 92 76 84 80 84 64 80 76.4
+ bioik, l2, jumps 66 72 94 96 82 92 78 84 82 92 80.4
+ ee-velocity 72 74 90 92 90 92 86 92 80 94 83.6
+ collision: N2M2 72 72 98 98 98 98 92 96 86 96 89.2

Ti
ag

o

LKF 14 50 4 76 4 80 0 72 0 4 4.4
+ bioik, l2, jumps 48 76 42 74 36 92 44 92 20 70 38.0
+ learn-torso 64 64 96 96 80 80 90 90 48 48 75.6
+ ee-velocity 66 66 86 86 94 94 92 92 50 50 77.6
+ collision: N2M2 76 76 90 90 88 88 86 86 56 56 79.2

Notes: LKF denotes the previous Learning Kinematic Feasibility approach [18]. Each row adds parts of our contributions to the row above it until we arrive at
our proposed model. w/jumps denotes success rates ignoring configuration jumps. Evaluated over a single seed.

G. Dynamic Obstacles

To evaluate the reactiveness of the trained agents, we
construct two tasks with dynamic obstacles. The obstacles move
with a random velocity between 0.1m s−1 and 0.15m s−1. We
re-plan the end-effector motion at every time step in MPC-
fashion, which easily runs in real-time as all the complexities
are shifted to the RL agent. This is again a zero-shot transfer:
the agent has never seen moving obstacles during training. In
the dynamic obstacles task, we uniformly spawn 16 dynamic
obstacles in an empty room and draw a random goal for the
end-effector, as shown in Fig. 3.

We exclude goals on the very edges of the robot’s workspace
where its maneuverability is very low, see ”Restr. height” in
Tab. I. The dynamic p&p task uses the same setup as p&p, but
we replace the static obstacles with three dynamic obstacles.
The results are included in Tab. III. We find that our agent
is able to very quickly react to these obstacles. Success rates
for the PR2 and HSR are close to those of static obstacle
tasks. The TIAGo has more difficulties: the differential drive
does not allow it to easily move away from obstacles that
move into the side of its base. As it has never seen dynamic
obstacles, it has no incentive to anticipate these situations and
to proactively place its base accordingly. Additional fine-tuning
on dynamic obstacles might be able to induce it with such a
sense of foresight. While the MPC approach is able to react
to the dynamic obstacles, its success rate drops further down
to 30-64% versus the 50.4-88% of our approach.

H. Comparison to Planners

Planning-based methods are very general and widely used
for manipulation tasks. While the specification of arbitrary
motion constraints such as defined by the imitation learning
motions is difficult as discussed in Sec. II, these approaches
are a powerful baseline for a subset of our tasks: goal-reaching
and pick&place in static environments. We compare with two
sampling-based planners on the rnd obstacle, pick&place, and

bookstore tasks. We remove the end-effector motion constraints
and instead solely specify the task with three goal poses: in
front of the object, the grasp pose, and the location to place
it down. Note that this is a significantly simpler task as the
end-effector is completely unconstrained in -etween the goals.
In the second evaluation, we incorporate an additional simple
pose constraint to hold the object upright after grasping it that
we label as (upright).

Tab. V compares the success rates, planning time, and the
resulting length of the end-effector trajectory relative to our
approach, which still has to fulfill all motion constraints. We
find that they perform well in the obstacle and pick&place
tasks, even outperforming our approach on the HSR. At the
same time, success rates decrease on the PR2. This can be
attributed to the larger joint space and the larger base, making
the spaces narrower. In contrast, our approach performs better
on the PR2 and is able to make use of its flexibility, indicating
good scaling with robot complexity. Already adding the simple
upright constraint decreases performance on p&p by 6ppt for
the PR2. The more restricted HSR completely fails to sample
successful paths under this constraint. Moving to the complex
bookstore map, performance drops significantly below our
approach with success rates of 22% to 42% versus 70%. While
planning times are quite low on the other tasks, they now
increase to almost 2 minutes for the PR2. Qualitatively, the
planners can produce somewhat unnatural paths, such as waving
the whole arm when going from the goal directly in front of
the pick object to the pick object. In contrast, our approach
seeks out base poses that enable good reactiveness and that
are robust to noise in the base movements.

These results highlight two aspects: on one hand the difficulty
of the bookstore map, on the other hand the general applicability
of our approach and its beneficial scaling with the size of
the configuration space: while having to follow much more
restrictive motion constraints, it remains competitive with
unrestricted state-of-the-art methods and even outperforms
them as both robot and map complexity increase. At the same
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TABLE V
EVALUATION OF THE PLANNER BASELINES.

rnd obstacle p&p bookstore p&p

Agent success planning
time

rel ee path success planning
time

rel ee path success planning
time

rel ee path

PR
2

RRTConnect 74.0 3.1 sec 1.25 78.0 0.9 sec 1.04 22.0 119.6 sec 0.97
RRTConnect (upright) – – – 72.0 3.3 sec 0.98 22.0 124.6 sec 0.97
Bi2RRT* 62.5 41.5 sec 1.38 84.0 8.6 sec 1.17 8.0 115.3 sec 1.12
N2M2 86.0 0.1 sec 1.00 97.6 0.1 sec 1.00 70.0 0.1 sec 1.00

H
SR

RRTConnect 82.0 0.5 sec 0.83 100.0 1.0 sec 0.99 42.0 12.2 sec 0.89
RRTConnect (upright) – – – 0.0 n.d. n.d. 0.0 n.d. n.d.
N2M2 63.2 0.1 sec 1.00 92.0 0.1 sec 1.00 68.0 0.1 sec 1.00

Notes: Motions for the planners are unconstrained while N2M2has to follow the full end-effector motion. (upright) adds a constraint to keep the object upright
after picking it up. rel ee path denotes the length of the ee-path relative to N2M2. Planning time and rel ee path are only computed over successful episodes.

time, it is directly applicable to dynamic scenes, partially
observable environments, and arbitrary end-effector motions
as demonstrated in Sec. IV-D.

I. Executability

To evaluate if the produced motions are readily executable,
we transfer the learned policies to the Gazebo physics simulator.
The agent’s actions are sent to the robot’s low-level base and
arm controllers at an average frequency of around 30Hz to
70Hz. We construct an occupancy map by integrating the
LiDAR and range sensor data into a binary costmap. For the
dynamic obstacle tasks, the end-effector motions are generated
based on an additional global costmap built from the robot’s
sensor data. The MPC baseline relies on velocity controllers
for the whole robot. We use default velocity controllers of
the PR2 and a pseudo velocity controller of the HSR, which
underneath utilizes the position controllers. TIAGo does not
provide any velocity controllers for the arm, as such we were
unable to evaluate the MPC approach on this robot. While our
agent can only rely on its sensors, we still provide the MPC
approach with the ground-truth signed distance field to reduce
complexity. For the dynamic obstacle tasks and the bookstore
map, we inflate the local map passed to the RL agent by 3 cm
to allow the agent to more quickly react to the obstacles. For
the narrow door opening task, we scale the actions of the PR2
by a factor of 0.5.

The results for all tasks are shown in Tab. VI. In contrast
to the analytical environment, the agents have to generalize
to unseen physics and low-level controllers, asynchronous
execution as well as noisy and partial occupancy maps.
Furthermore, any arm collision is now recorded as a failure.
Nonetheless, the performance of our approach closely matches
the analytical environment with small drops of 9ppt, 0.3ppt,
and 2.6ppt in average performance. Looking more closely, the
differences stem almost exclusively from the door opening
(PR2, TIAGo) and the bookstore (PR2) tasks. In the door
opening task we find that the imprecisions induced by the
low-level controllers and asynchronous execution cause the
PR2 to slightly touch the door frame in a number of episodes.
As this is a very high-precision task for its large base, the
unseen physics and accelerations can quickly have an impact.
For most episodes, success depends on only a few centimeters.

Failures on the TIAGo stem largely from collisions between
the elbow and the door frame. The robot commonly approaches
the door with its arm in one of two configurations. In one of
these configurations, the elbow is unable to avoid the door
frame, leading to several failures. As the agent does not take
into account arm collisions during training, the learned policy
has no means yet to avoid this failure mode. We leave full 3D-
collision avoidance to future work. Similar to the door task, the
drop in performance in the bookstore map for the PR2 can be
attributed to a larger number of collisions in narrow pathways
due to the differences in physics and accelerations compared
to the training environment as well as a small number of arm
collisions with bookshelves. Overall, performance remains high
across the large majority of tasks. This is in contrast with the
MPC approach which is significantly impacted by these factors.
The approach struggles with unseen physics and imperfect
execution of motions, leading to collisions and large deviations
from the desired motions on both robots. Once the error terms
become too large, the approach is unable to recover good
behavior, resulting in large and abrupt constraint violations.

J. Real-World Experiments

We transfer the agents to the real world and evaluate them
on the HSR and PR2 robots. For the PR2, we construct an
environment consisting of two rooms connected by a door in
the hall it is located in. We directly evaluate the HSR in our
office building, a common human-centered environment not
adapted to the robot’s capabilities. Maps of both environments
are shown in Fig. 5. Due to their low success rates in the
analytical environment and the gazebo environment, both the
MPC and E2E baselines pose an increased risk of damaging
the robot if executed in the real world. We therefore refrained
from running them in our real world experiments.

We mark goal poses for the end-effector with AR-markers
and use the robots’ head cameras to detect them. If the marker
is initially out of sight, the robot receives an initial guess of
the target pose. To easily specify goals, we use a pre-recorded
map and Adaptive Monte Carlo Localization (AMCL) for
localization. We also give the end-effector planners access to
this map, in the form of a static layer in the sensed global
costmap. For each episode, we move the robot into a random
start pose and draw random initial joint values. We scale the

45



12

PR2 HSR

Floorplan

Dynamic
P&P

Door

Cabinet

Drawer

Fig. 5. Real world experiments on the PR2 (left) and HSR (right) robots. From top to bottom: environment map, pick&place while avoiding static and dynamic
obstacles (table locations marked in orange), opening and driving through a door, opening a cabinet and opening a drawer with static obstacles constraining the
base.
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TABLE VI
SUCCESS RATES FOR EXPERIMENTS IN THE GAZEBO ENVIRONMENT.

A∗-slerp Imitation Learning Spline Avg

Agent rnd
obstacle

p&p bookstore
p&p

dynamic
obstacle

dynamic
p&p

cabinet drawer door spline

PR
2 MPC 26.0 12.0 0.0 38.0 2.0 0.0 2.0 0.0 18.0 10.9

E2E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2M2 81.6 87.6 48.8 93.2 74.4 94.0 96.8 60.4 75.6 79.2

H
SR

MPC 12.0 14.0 0.0 30.0 2.0 0.0 4.0 0.0 42.0 11.6
E2E 29.6 27.2 19.6 27.2 2.8 39.2 8.4 1.2 7.2 18.0
N2M2 64.0 92.4 54.4 91.2 78.8 95.6 90.4 85.6 91.6 82.7

Ti
ag

o MPC n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
E2E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2M2 56.0 85.2 54.8 71.2 51.2 78.8 82.4 30.0 56.0 62.8

Notes: Evaluation of zero-shot transfer to the Gazebo physics simulator on unseen tasks from three different motions systems, an A∗-based system, an imitation
system learned from human demonstrations and spline interpolation of random waypoints. The last column reports the average across all tasks. We evaluate all
models on three different robotic platforms, the PR2, HSR, and TIAGo. MPC is not evaluated on the TIAGo as it does not posses velocity controllers.

TABLE VII
SUCCESS RATES IN THE REAL WORLD EXPERIMENTS.

A∗ Imitation Learning Spline Total

Metric p&p
static

p&p
dy-
namic

cabinet drawer door spline

PR
2

Success 12 12 28 25 23 24 124
Base coll. 2 2 0 0 0 0 4
Arm coll. 0 0 2 0 3 0 5
Grasp fail 1 1 0 3 4 0 9
IK fail 0 0 0 2 0 6 8
Nr. episodes 15 15 30 30 30 30 150

H
SR

Success 11 12 23 24 24 16 110
Base coll. 0 2 0 0 1 0 3
Arm coll. 1 0 0 0 1 0 2
Grasp fail 0 0 6 3 0 0 9
IK fail 3 1 1 2 4 4 15
Safety stop 0 0 0 1 0 0 1
Nr. episodes 15 15 30 30 30 20 140

Notes: The PR2 is evaluated in an environment consisting of two rooms
connected by a door. The HSR is directly evaluated in our offices. Each cell
denotes the number of episodes. The last column sums over all tasks.

agents’ actions by a factor of 0.5 to ensure safe execution of
the motions. For the PR2, we also inflate the local occupancy
map by 1 cm for the door opening task and 3 cm for all the
other tasks. Results for all the tasks are reported in Tab. VII.
The experiments are shown in Fig. 5 and in the accompanying
video.

Pick&Place: We define positions for several tables, marked
orange in Fig. 5, as possible pick up and place locations,
then draw random pairs of these locations for each episode.
We then randomly arrange 2 to 4 obstacles within the map.
These obstacles include a large wall segment with a curved
star footprint, bins, and a chair for the PR2, and chairs and
roll-containers for the HSR. In the second experiment, on top
of these static obstacles, we incorporate dynamic obstacles in
the form of humans and wheeled objects moved by the authors.
For the HSR, we use the A∗-fwd planner. We also inflate the
local map by 1.5 cm and include the map as a static layer
in the local map, as the robot does not have any sensors in

the back. For the dynamic obstacles, we increase the global
map inflation from 0.4m to 0.5m for both robots to obtain
smoother trajectories for the end-effector motion generated by
the A∗-planner.

Both robots achieve high success rates of 76.6% – 80%
for both the static and dynamic obstacles. They demonstrate
well-planned movements around obstacles and behavior such
as backing out of confined starting poses if necessary. When
confronted with dynamic obstacles, they react quickly and
are able to evade obstacles that move directly into their base
without breaking the end-effector motion. Secondly, the learned
behavior is robust to frequently changing end-effector motions
as the A∗-planner adapts to dynamic changes in the shortest
path.

Spline: For the spline interpolation, we draw waypoints from
within a single room of the environment. Both robots are able
to follow these motions with success rates of 80%. The main
source of failures is too large deviations from the desired end-
effector motion when having to follow motions at very large
heights (PR2) or unusual orientations (HSR). As an additional
difficulty, the HSR’s gripper frequently moves so low as to
be detected as an obstacle by its base LiDAR. However, the
learned policy proved robust to this disturbance.

Cabinet and drawer: For the imitation system motions, we
construct tasks with the same objects as in simulation. As
the imitation learning system does not incorporate obstacle
avoidance into the end-effector motions, we restrict obstacles
to objects with a low height, such that the motions can pass
over them and choose start poses in the same room as the
target object. We rearrange two obstacles every 3 to 5 episodes,
deliberately placing at least one of them such that it constrains
the opening motion. The PR2 achieves very high success
rates of 93.3% and 83.3% on the cabinet and drawer tasks
respectively. The HSR succeeds in 76.6% and 80% of all the
episodes. Its main failure source is the precision of the grasp,
grasping slightly in front of the handle, thereby not opening the
object. In one episode, the HSR joints hit a safety limit while
being in contact with the drawer which led the controllers to
be stopped by the software.
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Door: For the PR2, we use the same door and motions as
in the simulation. For the HSR, we use a door within our
office, with an even smaller frame width of 0.83m. As the
door’s opening radius differs, the learned imitation motions do
not directly apply to it. Instead, we sample eight waypoints
and interpolate them with the spline interpolator to construct
an opening motion for the end-effector. As its arm is not
strong enough to press down the handle, we do not lock the
door’s spring for the HSR. The PR2 succeeds in 76.6% of all
episodes and performing better than in Gazebo. In general, the
real hardware seems more reactive than in the simulator. The
HSR achieves success rates of 80%. Failure cases for the PR2
include collisions of the elbow with the door itself, slipping
off the handle, and not being able to unlock the door lock. The
HSR in a few cases maneuvers to the right of the handle, such
that it is not able to pass through the door frame without moving
the non-continuous arm roll joints into another configuration
(which would require violating the motion constraints). In these
situations, it prefers to stay in place until it terminates because
the deviations to the desired motion become too large, rather
than to produce unsafe behavior such as collisions. The HSR
agent proved robust to weird and irregular occupancy maps
produced by the glass door.

Across all the tasks, we observe that the learned behaviors
directly transfer to the real world with average success rates
of 82.6% and 78.6% on the PR2 and HSR respectively. The
agents learned to efficiently avoid obstacles and cause very few
base collisions. They rather fail the arm motions than drive
into an obstacle. The produced motions are robust to noise
such as localization error, which could be significant whenever
the number of unmapped obstacles are large. Although the
overall motions are smooth, at higher speeds the arm motions
can sometimes become a bit shaky. This has several reasons:
the low-level base and arm controllers are independent and as
such cannot take into account each other’s errors. Secondly,
the hardware introduces several additional noise sources that
are not present in the simulation. These include asynchronous
control, localization errors, calibration errors, unseen obstacle
geometries, and artifacts in the occupancy maps. We found
that the acceleration regularization introduced in Sec. III is
essential for the smoothness. Finetuning on the real system is
a promising avenue to further increase the precision and the
feasible velocities on the real systems. The HSR’s main failure
source are the IK failures. A number of these occurred due to
conflicts between the head and arm. Unlike in training in the
real world, the head moved to focus the camera on the target
object. Thereby leading to different self-collision constraints.

V. CONCLUSION

We introduced N2M2, which extends the formulation of
kinematic feasibility for mobile manipulation to complex un-
structured environments. We generalized its objective function
and extended the agent’s control to the velocity of the end-
effector motions and prevent configuration jumps by learning
the torso joints and introducing a regularization to the inverse
kinematics. We then introduced a procedurally generated
training environment that uses strong randomization and simple
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Fig. 6. Average success rates across different robots and environments. Given
the low success rates in the analytical environment and the simulated gazebo
environment leading to an increased risk of damaging the robot, we did not
evaluate the MPC and E2E baselines in the real world.

elements to produce diverse scenarios. The result is a powerful
approach that can successfully act in unseen human-centered
real-world environments. In extensive experiments across a
variety of robots, physics, and environments, we demonstrated
that this approach successfully generalizes in a zero-shot man-
ner to novel tasks, unseen objects and geometries, and dynamic
obstacles. By leveraging a hybrid combination of inverse
kinematics and reinforcement learning, the agent solves tasks
with a vast continuous configuration space in which previous
state-of-the-art approaches struggle. Our method outperforms
these approaches both in the analytical environment and in
the transfer to unseen environments on all robotic platforms.
Fig. 6 summarizes the success rates across the different robots
and environments.

In this work, we have focused on achieving arbitrary motions
and used simple robot-agnostic end-effector motion generators.
We purposefully abstracted from optimizing the motions or
goals themselves to demonstrate the system’s capabilities to
achieve challenging motions. In the future, we plan to jointly
or iteratively optimize the robot’s behaviors and the generated
end-effector motions. A particularly exciting direction is to
incorporate this work into hierarchical approaches that learn
to produce motions or subgoals for the end-effector to achieve
high-level goals. Such an approach will benefit from the ability
to abstract from complex base behavior to reason in a much
simpler space of end-effector motions. This can be done both
within a learning-based paradigm or on the motion planning
level of task-and-motion planning based pipelines.

Further work includes the incorporation of partially observ-
able and 3D obstacle avoidance for the robot arm. The flexibility
of the RL approach means that this can be incorporated based
on voxel maps or directly learned from camera inputs. The
development of joint low-level controllers and finetuning of
the learned policies in the real world are promising avenues
for further improvements in precision and velocities. Lastly,
we find that the current reinforcement learning methods still
face difficulties to explore certain high-dimensional continuous
action spaces, as exhibited by the TIAGo robot. Methods
to alleviate this problem will be important for robotics. A
particularly interesting direction for mobile manipulation is the
combination of value learning methods with efficient Monte-
Carlo rollouts, combining the best of MPC and learning based
approaches.
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Learning Long-Horizon Robot Exploration
Strategies for Multi-Object Search in
Continuous Action Spaces

Fabian Schmalstieg∗, Daniel Honerkamp∗, Tim Welschehold, and Abhinav Valada

Abstract Recent advances in vision-based navigation and exploration have shown im-
pressive capabilities in photorealistic indoor environments. However, these methods still
struggle with long-horizon tasks and require large amounts of data to generalize to un-
seen environments. In this work, we present a novel reinforcement learning approach
for multi-object search that combines short-term and long-term reasoning in a single
model while avoiding the complexities arising from hierarchical structures. In contrast
to existing multi-object search methods that act in granular discrete action spaces, our
approach achieves exceptional performance in continuous action spaces. We perform
extensive experiments and show that it generalizes to unseen apartment environments
with limited data. Furthermore, we demonstrate zero-shot transfer of the learned policies
to an office environment in real world experiments.

1 Introduction

Exploration and navigation of unmapped 3D environments is an important task for a wide
range of applications across both service and industrial robotics. Research in Embodied
AI has made substantial progress in integrating high-dimensional observations in a range
of navigation and exploration tasks [22, 4, 8]. Recent work has introduced several tasks
around multi-object search and exploration [11, 25]. These tasks are particularly chal-
lenging in unmapped environments, as they require balancing long-term reasoning about
where to go with short-term control and collision avoidance. Without prior knowledge
of a floor plan, there is often no obvious optimal policy.

Furthermore, the combination of complex observation space and long horizons re-
mains an open problem with success rates quickly decreasing as the distance to the goal
or the number of objects in the task increases.

∗These authors contributed equally.
All authors are with the Department of Computer Science, University of Freiburg, Germany,
This work was funded by the European Union’s Horizon 2020 research and innovation program under
grant agreement No 871449-OpenDR.
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2 Fabian Schmalstieg, Daniel Honerkamp, Tim Welschehold, Abhinav Valada

Fig. 1 Starting in an unexplored map and given a set of target objects, the robot faces the complex
decision on how to most efficiently find these objects. Our approach continuously builds a semantic map
of the environment and learns to combine long-term reasoning with short-term decision making into a
single policy by predicting the direction of the path towards the closest target object, shown in green.
Note that the agent does not receive the path consisting of the waypoints or the location of the objects.

Previous work has in particular focused on constructing rich map representations and
memories for these agents [11, 25, 24] and demonstrated their benefits while acting in
granular discrete action spaces. The long-horizon nature of these tasks poses a significant
challenge for learning-based methods, as they struggle to learn longer-term reasoning
and to explore efficiently over long horizons. This problem is strongly exacerbated in
fine-grained continuous action spaces. A common strategy to mitigate this challenge is
to instead learn high-level waypoints which are then fed to a low-level controller [5, 7].
While this can simplify the learning problem by acting in a lifted MDP with a much
shorter horizon length, it limits the ability of the agent to simultaneously learn to control
other aspects such as its camera or arms at a higher control frequency. During inference,
high-level actions can be taken at arbitrary frequencies by executing them in a model
predictive control style manner but the agent is bound to a low control frequency during
training.

In this work, we present a novel approach to reason about long-horizon exploration
while learning to directly act in continuous action spaces at high control frequencies and
demonstrate its effectiveness in multi-object search tasks.

Our approach learns to predict the direction of the path towards the closest target
object. It then learns a policy that observes this prediction, enabling it to express long-term
intentions while taking short-term actions based on the full context. As a consequence,
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Learning Long-Horizon Robot Exploration 3

the policy can incorporate expected inaccuracies and uncertainties in the predictions
and balance strictly following its intentions with short-term exploration and collision
avoidance. Figure 1 illustrates the task and our approach.

To jointly learn this behavior with a single model, we introduce a learning curriculum
that balances groundtruth and learned intentions. In contrast to many learning-based
navigation approaches building on complex features from color or depth images that
make generalization to unseen environments hard and data intensive [15], we learn purely
from structured, semantic map representations that have more universal features and are
therefore more independent of the specific training environment and show only minimal
sim-to-real gap. We perform extensive experimental evaluations and demonstrate that
our proposed approach achieves strong generalization to unseen environments from a
very small number of training scenes and directly transfers to the real world. Lastly, the
combination of these simple inputs and expressive navigation intentions ensures good
interpretability of the agent’s decisions and failures. To the best of our knowledge, this is
the first real-world demonstration of learning-based multi-object search tasks.

To summarise, this paper makes the following contributions:
• We present a novel search agent that unifies long-horizon decision making and

frequent low-level control into a single time-scale and model.
• We propose the first multi-object search task in continuous action space.
• We demonstrate that our approach is capable to learn from very limited training data

and achieves strong generalization performance in unseen apartment environments
and zero-shot transfer to the real world.

• We make the code publicly available at http://multi-object-search.cs
.uni-freiburg.de.

2 Related Work

Embodied AI tasks: Navigation in unmapped 3D environments has attracted a lot of
attention in recent work on embodied AI, covering a range of tasks. In PointGoal naviga-
tion [22, 4], the agent at each step receives the displacement vector to the goal that it has to
reach. Whereas, in AudioGoal navigation [6, 27], the agent at each step receives an audio
signal emitted by a target object. Conversely, in ObjectGoal navigation [29, 5, 20, 10],
the agent receives an object category that it has to navigate to.

Extending the ObjectGoal task, Beeching et al. [2] propose an ordered 𝑘-item task in a
Viz Doom environment, in which the agent has to find 𝑘 items in a fixed order. Similarly
in the MultiOn task [25] the agent has to find 𝑘 objects in realistic 3D environments.
Fang et al. [11] propose an object search task in which the agent has to find 𝑘 items
in arbitrary order. Here the target object locations are defined by the given dataset, i.e.
are in a fixed location in each apartment. In contrast, we use a random distribution over
the target locations, strongly increasing the diversity. While all of these works focus on
discrete actions (move forward, turn left, turn right, stop), we show that our approach
can directly learn in the much larger continuous action space and demonstrate the direct
transfer to the real world.
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Object search and exploration: Approaches for multi-object search and navigation tasks
fall into two categories: implicit memory agents and agents that explicitly construct a map
of the environment as a memory. Agents without an explicit map include direct visual
end-to-end learning from RGB-D images as well as FRMQN [19] and SMT [11] which
store an embedding of each observation in memory, then retrieve relevant information
with an attention mechanism. On the other side of the spectrum, we have agents that
project the RGB-D inputs into a global map, building up an explicit memory. They
then commonly extend this representation with semantic object annotations [13, 2].
Wani et al. [25] provide a comprehensive comparison of these methods. While they train
separate agents for each number of target objects, we train a single agent that generalizes
to different numbers of target objects.

SGoLAM [16] combine a mapping and a goal detection module. Then either employ
frontier exploration if no goal object is in sight or if a goal is detected, they use a D*-
planner to move closer to the goal. They achieve strong results without any learning
component. Closely related to object search, previous work has also focused on pure
exploration of realistic apartments. This includes frontier based approaches [26] as well
as reinforcement learning with the aim to maximise coverage [8].

Learning long horizon goals: Multi-object search and exploration with an embodied
agent combine long-horizon thinking with short-horizon control to navigate and avoid
collisions. This can pose a challenge for learning-based approaches. This has previously
been mitigated by learning higher-level actions at a lower control frequency such as
learning to set waypoints or to directly predict task goals [18], which then get passed
down to a lower-level planner for navigation [5, 7]. While this shortens the horizon of
the MDP the agent is acting in, it makes it difficult to learn to simultaneously control
other aspects at a lower time scale, such as controlling a camera joint or a manipulator
arm. Our approach directly learns at a high control frequency and as such can directly be
extended to integrate such aspects. In our experiments, we furthermore demonstrate that
direct prediction of the goal locations does not generalize well for multi-object search.
The long horizon problem is further exacerbated in continuous control tasks. While most
existing work focuses on granular discrete actions [11, 25, 5, 16], our approach succeeds
in a continuous action space.

Mapping: Spatial maps built with Simultaneous Localization and Mapping (SLAM) have
been used for tasks such as exploration [28, 3] and FPS games [2]. Both occupancy and
semantic maps have commonly been used in embodied AI tasks [25, 16] and several
works have presented approaches to build such maps in complex environments [4, 5]. In
our approach, we assume access to a method to build such maps.

3 Learning Long-Horizon Exploration

In this section, we first define the multi-object search task and formulate it as a
reinforcement-learning problem in Section 3.1. We then introduce our approach for
learning a novel predictive task and an effective method to jointly learn low- and high-
level reasoning in Section 3.2.
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3.1 Problem Statement

In each episode, the agent receives a list of up to 𝑘 object categories, drawn randomly
from a total set of 𝑐 categories. It then has to search and navigate to these objects which
are spawned randomly within an unmapped environment. An object is considered found
if the agent has seen it and navigates up to a vicinity of 1.3 m of the target object. In
contrast to MultiOn [25], we require a single agent to learn to find variable numbers of
target objects and focus on unordered search, meaning the agent can find these objects
in any order it likes. On one hand, this provides the agent with more freedom. On the
other hand, the optimal shortest-path policy is non-trivial, even in a mapped environment,
making this a very challenging task to solve optimally.

This can be formulated as a goal-conditional Partially Observable Markov Decision
Process (POMDP) M = (S,A,O, 𝑇 (𝑠′ |𝑠, 𝑎), 𝑃(𝑜 |𝑠), 𝑅(𝑠, 𝑎, 𝑔)), where S, A and O are
the state, action and observation spaces, 𝑇 (𝑠′ |𝑠, 𝑎) and 𝑃(𝑜 |𝑠) describe the transition
and observation probabilities and 𝑅(𝑠, 𝑎, 𝑔) is the reward function. At each step, the
agent receives a visual observation 𝑜 from an RGB-D and semantic camera together
with a binary vector 𝑔 indicating which objects it must find. Its aim is to learn a policy
𝜋(𝑎 |𝑜, 𝑔) that maximises the discounted, expected return E𝜋 [

∑𝑇
𝑡=1 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑔)], where
𝛾 is the discount factor. The agent acts in the continuous action space of a LoCoBot robot,
controlling the linear and angular velocities of its differential drive. During training, these
actions are executed at a control frequency of 10 Hz. The agent receives a sparse reward
of 10 whenever it finds a target object. It furthermore receives a dense time penalty
of −0.0025 per step, a distance reward for getting closer to the next target object, and a
collision penalty of -0.1. An episode ends after successfully finding all objects, exceeding
600 collisions or exceeding 3500 steps.

3.2 Technical Approach

We propose a reinforcement learning approach that consists of three components: a map-
ping module, a predictive module to learn long-horizon intentions, and a reinforcement
learning policy. The full approach is depicted in Figure 2.

Mapping: The mapping module uses the 128 × 128 pixels depth and semantic camera to
project the points into a local top-down map. From this, it then updates an internal global
map which is further annotated with the agent’s trace and encoded into a standard RGB
image. In each step, the agent then extracts an egocentric map from it and passes two
representations of this map to the encoder: a coarse map of dimension 224 × 224 × 3 at
a resolution of 6.6 cm and a fine-grained map of dimension 84 × 84 × 3 at a resolution
of 3.3 cm. Meaning they cover 14.8 m × 14.8 m and 2.77 m × 2.77 m, respectively. After
the agent has segmented an object correctly, it updates the object’s annotation to a
fixed color-coding to mark the corresponding object as “found”. The coarse map is then
encoded into a 256-dimensional feature vector and the fine map into a 128-dimensional
feature vector using a convolutional neural network, before being concatenated into the
feature embedding 𝑓𝑡 . The coarse map is passed through a ResNet-18 [12] pre-trained on
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Fig. 2 Our proposed model architecture. The mapping module aggregates depth and semantic infor-
mation into a global map. The predictive module learns long-horizon relationships which are then
interpreted by a reinforcement learning policy. During training, the agent receives a state vector with
either the groundtruth direction to the closest object 𝛼𝑡 or its prediction �̂�𝑡 . At test time it always
receives its prediction. It furthermore receives its previous predictions �̂�𝑡−18:𝑡−2, the variances of its x-
and y-position 𝑣1 and 𝑣2, the circular variance of its predictions 𝑣3, a collision flag 𝑑1, the sum over the
last 16 collisions 𝑑2, its previous action 𝑎𝑡 , and a binary vector 𝑔 indicating the objects the agents have
to find.

ImageNet [9], while the local map is encoded by a much simpler three-layer CNN with
32, 64, and 64 channels and strides 4, 2, and 1.

Learning Long-horizon Reasoning: While directly learning low-level actions has shown
success in granular discrete environments [11, 25], this does not scale to continuous
environments as we show in Section 4. We hypothesize that this is due to being unable to
explore the vast state-action space efficiently. To learn long-horizon reasoning within a
single model, we introduce a predictive task to express the agent’s navigation intentions.
In particular, the agent learns to predict the direction of the shortest path to the currently
closest target object. It does so by estimating the angle to a waypoint generated by an
𝐴∗ planner in a distance of roughly 0.4 m − 0.55 m from the agent (varying due to the
discretized grid of the planner) as illustrated in Figure 1. The plan is generated in a map
inflated by 0.2 m to avoid waypoints close to walls or obstacles.

The prediction is parameterized as a neural network �̂� = 𝑓𝑝𝑟𝑒𝑑 ( 𝑓𝑡 , 𝑠𝑟𝑜𝑏𝑜𝑡,𝑡 , 𝑔) that
takes a shared feature encoding 𝑓𝑡 from the map encoding, the robot state 𝑠𝑟𝑜𝑏𝑜𝑡,𝑡 without
the groundtruth vector 𝛼𝑡 nor the prediction �̂�𝑡 and the goal objects 𝑔 and predicts a vector
of probabilities over the discretized angles to this waypoint. In particular, we discretize
the angle into 12 bins and normalize the outputs with a softmax function.

This task is used both in the form of an auxiliary task to shape representation learning,
propagating gradients into a shared map encoder, as well as a recursive input to the agent,
allowing it to guide itself as the agent observes the previous step’s predictions both as an
overlay in the ego-centric map and the robot state.

The predictive module minimizes the cross-entropy between the predictions and a
one-hot encoding of the groundtruth angle 𝜶 given by
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L𝑝𝑟𝑒𝑑 =
1
𝑁

𝑁∑︁
𝑖=1

𝜶𝑖 log �̂�𝑖 . (1)

The discrete distribution enables the agent to cover multi-modal hypotheses, for ex-
ample when standing on a floor with several unexplored directions. As a result, the
prediction can vary more smoothly over time in contrast to commonly used uni-modal
distributions such as a Gaussian, which can fluctuate rapidly if the most likely direction
changes to another door.

Policy: The policy receives the concatenated features 𝑓𝑡 of the flattened map encodings,
the robot state, and a history of its predictions. The policy is then learned with Proximal
Policy Optimization (PPO) [23]. The actor and critic are parameterized by a two-layer
MLP network with 64 hidden units each and a gaussian policy. The total loss L given by

L = L𝑝𝑝𝑜 + _L𝑝𝑟𝑒𝑑 , (2)

is jointly minimized with the Adam optimizer [17].

Training: During training we have the choice to provide the policy either with the
groundtruth direction or its prediction: Providing it with the groundtruth vector results
in strong coupling between the agent’s navigation and the maximum value of the vector,
which points to the waypoint corresponding to the closest next object. Hence, when
deploying the agent with the auxiliary prediction, the agent blindly follows its predictions.
Instead, we want to learn a policy that can, on one hand, react to suboptimal intentions
and on the other hand can learn more optimal paths than simply finding the closest object.
For such behavior, it is desirable to train the policy directly with its predictions.

To avoid instabilities from initially very suboptimal predictions, we introduce a learn-
ing curriculum that balances observing the groundtruth and the agent’s predictions.

The curriculum starts with a probability of 16% to observe an entire episode with
the prediction and otherwise receives the groundtruth. Once the agent has exceeded a
success rate of 50%, we linearly increase this probability by 2% every 4 episodes up to
a maximum of 72%. This curriculum enables the robot to react to prediction errors and
correct its navigation accordingly. To avoid learning a simple mapping from groundtruth
to prediction during training, this 𝜶 is never observed by the predictive module and only
passed to the policy.

In specific situations where it is hard to assess a global strategy, the agent sometimes
predicts alternating auxiliary angles. We hypothesize that the reason for these highly
alternating predictions is that the training episodes run purely with predictions, suffer
from suboptimal predictions and navigation and will therefore accumulate more errors
contributing to the overall loss. We test this by disabling the gradient flow from the
predictive head back into the rest of the network for the episodes with predictions. We
observe that this leads to a lower prediction loss. But at the same time the predictions
can no longer shape the policy’s representations and thus, the agent at times struggles
with “imperfect” episodes, when deployed. This is reflected, in a tremendous drop in
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the success rate when executing prediction episodes. We conclude that the gradient flow
from all episodes is a crucial component.

With the focus on structured map inputs and the learning curriculum enables, we are
able to train the agent in the comparatively small number of 4,500,000 steps.

4 Experimental Evaluations

To demonstrate the effectiveness of our approach, we perform extensive evaluations in
simulation and the real world. With these experiments we aim to answer the following
questions:

• Does the learned behavior generalize to unseen environments?
• Does the agent learn to efficiently use the long-term prediction? Does this lead to

more efficient exploration than using alternative approaches?
• Does the learned behavior generalize to the real world?

4.1 Experimental Setup

We train a LoCoBot robot in the iGibson environment. The LoCoBot has a differential
drive and is equipped with an RGB-D camera with a field of view of 79 degrees and a
maximum depth of 5.6 m. The action space consists of the linear and angular velocities
for the base. We construct tasks of finding 1-6 target objects, matching the hardest setting
in previous work [25]. We use the same eight training scenes as the iGibson challenge∗

and use the remaining seven unseen apartments for evaluation.
As larger datasets such as Matterport3D or Gibson currently do not support semantic

camera observations, we leave evaluations on these to future work. The PPO agent is
based on an open-source implementation [21].

Evaluation Metrics: We focus on two metrics: the ability to find all target objects, defined
by the success rate, and the optimality of the search paths, measured by the success
weighted by Path Length (SPL) [1]. We evaluate each scene for 75 episodes, which
results in a total of 600 episodes for the train and 525 for the test set for each approach.
For the learning based approaches we evaluate the best performing checkpoint on the
training scenes. We report the mean over two training seeds for our approach.

Baselines: To test the effectiveness of learning long-range navigation intentions, we
compare our approach against a range of action parametrizations as well as a recent
non-learning based state-of-the-art approach.
Map-only represents the standard end-to-end reinforcement learning approach and con-
ceptually matches competitive baselines from previous work. It receives the same map
and robot state inputs as our agent and acts directly in the action space of the differential
drive, but does not learn to predict long-horizon intentions.

∗ http://svl.stanford.edu/igibson/challenge2020.html

59



Learning Long-Horizon Robot Exploration 9

Table 1 Hyperparameters used for training. One sensitive parameter is ppo epoch in combination with
the clip parameter. Setting the parameter too high causes some behaviour which is similar to catastrophic
forgetting.

Parameter Value Parameter Value

clip param 0.1 𝛾 0.99
ppo epoch 4 lr 0.0001
num mini batch 64 max grad norm 0.5
value loss coef 0.5 optimizer Adam
entropy coef 0.005

Goal-prediction Instead of predicting the direction to the next waypoint towards the tar-
get, we also evaluate directly predicting the location of the next target object. The agent
learns to predict the angle and distance of the next closest target object relative to its
current base frame.
SGoLAM [16] combines non-learning based approaches to achieve very strong perfor-
mance on the CVPR 2021 MultiOn challenge. It explores the map with frontier explo-
ration until it localizes a target object, then switches to a planner to navigate to the target.
We reimplement the author’s approach for continuous action spaces, closely following
the original implementation where possible. While the original implementation relies on
two threshold values, namely 𝜖 and 𝛿, for goal localization, we directly use the semantic
camera which finds objects more reliably. Due to this, our implementation improves the
performance of SGoLAM.

4.2 Simulation Experiments

To test the ability to learn long-horizon exploration, we first evaluate the approaches on
the seen apartments. Table 2 reports the results for all approaches across different numbers
of target objects. While the map-only approach that purely learns raw continuous actions
finds around three quarters of the single objects, the success rates quickly deteriorate
with more target objects. We hypothesize that this is due to the agent getting lost in the
vast continuous action space, being unable to meaningfully explore the space. Directly
predicting the goal locations slightly improves the performance, but still fails in the
majority of cases with five or more objects. This indicates that the agent is not able to
meaningfully predict goal locations, as there are a large number of valid hypotheses while
the environment is still largely unexplored.

SGoLAM achieves a better performance, yielding an overall success rate of 65.3%.
Note that this approach does not rely on a learning component, therefore it has not
encountered any of these apartments before. In contrast to the other learning-based
approaches, our agent is able to consistently solve this task even for six target objects.
In terms of path optimality measured by the SPL in Table 2, we observe a similar
case across the approaches. While outperforming the other approaches, both ours and
SGoLAM achieve low absolute values. However, note that a perfect SPL would require
to directly follow the shortest path to all objects and as such is not achievable without
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Table 2 Evaluation of seen environments, reporting the success rate (top) and SPL (bottom).

Model 1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

Su
cc

es
s Map-only 75.0 70.6 54.7 53.3 40.3 37.2 55.1

Goal prediction 78.1 72.3 58.1 54.4 46.7 43.0 58.7
SGoLAM 82.0 77.9 62.8 60.5 58.0 51.0 65.3
Ours 95.4 90.7 89.0 87.6 85.1 83.4 88.5

SP
L

Map-only 33.5 31.0 26.8 24.9 20.8 21.3 26.3
Goal prediction 31.4 29.8 25.9 23.1 18.3 22.3 25.1
SGoLAM 41.6 34.5 32.0 33.7 36.6 38.1 36.0
Ours 46.4 40.9 42.9 44.2 49.2 53.1 46.1

Table 3 Evaluation of unseen environments, reporting the success rate (top) and SPL (bottom).

Model 1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg
1-6

Su
cc

es
s Map-only 74.2 64.5 61.0 60.7 57.9 32.5 58.4

Goal prediction 74.7 69.8 66.7 61.9 56.1 44.0 62.2
SGoLAM 89.8 85.3 79.9 75.0 74.3 71.1 79.2
Ours 93.1 89.4 86.4 82.1 82.5 81.1 85.7

SP
L

Map-only 30.1 27.0 28.6 29.8 29.4 18.4 27.2
Goal prediction 29.9 21.9 20.1 21.0 19.7 21.4 22.3
SGoLAM 47.7 44.0 43.7 46.2 47.5 49.8 46.4
Ours 45.3 40.0 38.5 43.2 46.8 49.6 43.9

knowledge of the object positions. Additionally, one needs to bare in mind that the SPL
metric is not guaranteed to find the most efficient path as it computes the path in a greedy
manner.

Subsequently, we evaluate all the agents in unseen environments and present the results
in Table 3. Interestingly, all learning-based approaches achieve similar performance as
on the seen apartments, indicating that the semantic map modality generalizes well to
unseen apartments. This is particularly impressive as it only has access to eight training
scenes. On the other hand, SGoLAM performs better than in the train split, indicating
that the test split might be less challenging. While the gap between the best baseline,
SGoLAM, and our approach shrinks, it remains considerable with an average difference
in success rates of 6.5%. In terms of SPL it even performs slightly better. This may be
due to the path planner, which, once an object is in sight, executes the optimal path to
this object. While SGoLAM achieves very strong performance in apartments with a lot
of open areas, its performance drops severely in more complex apartments with many
corridors, rooms next to each other, and generally long-drawn layouts. In contrast, our
approach maintains a more even performance across the different apartment layouts.

Qualitatively, we find that the agent learns efficient navigation behaviors. Figure 3
and the accompanying video show example trajectories in unseen apartments. The agent
efficiently looks around rooms and learns maneuvers such as a three-point turn. Where
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Table 4 Real world multi-object search experiments on the HSR Robot.

Model 2-obj 3-obj 4-obj 6-obj Total

Success 6 6 5 5 22
Collision 4 3 5 4 16
Timeout 0 1 0 1 2
Total Episodes 10 10 10 10 40

Fig. 3 Example trajectories of our agent (top) and SGoLAM (bottom) in unseen apartments. The maps
show the following categories: black: unexplored, blue: free space, green: walls, red: agent trace, grey:
(found) target objects, other colors: miscellaneous objects.

confident, it reliably follows its own long-horizon predictions, while deviating if it points
into walls, if the predictions are low confidence or if it is possible to explore a lot of
additional space with little effort. While SGoLAM randomly picks points on the frontier,
often resulting in multiple map crossings and getting lost in very small unexplored spaces,
our approach continuously explores and learns to leave out small spots that are unlikely
to contain a target object. We further observe an inverse development between the SPL
and the success rate with regard to the number of objects for both our approach and
SGoLAM. This increase in the SPL most likely stems from a higher number of routes
that can be taken which are close to the optimal path. With fewer objects in the scene,
large parts of the exploration increase the SPL without finding an object. Nevertheless,
this exploration is essential as there is no prior knowledge of the object locations.

4.3 Real World Experiments

To test the transfer to the real world, we transfer the policy onto a Toyota HSR robot.
While the HSR has an omnidirectional drive, we restrict its motion to match that of the
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Fig. 4 From top left to bottom right: Floorplan of the real world environment. The HSR robot in the
office environment. Example episodes in the real world environment, the (found) target objects are shown
in grey. Bottom right: failure case, the agent moves repeatedly back and forth between two rooms until
it reaches the timeout.
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LoCoBot’s differential drive in simulation. We run the experiments in our office building,
representing a common office environment. We use rooms covering roughly a size of
320 square meters, excluding small corners that cannot be navigated safely. We assume to
have access to an accurate semantic camera. For this, we use the robot’s depth camera to
construct a map of the explored environment and overlay it with a previously semantically
annotated map. In each episode, we randomly spawn 1-6 virtual target objects in this
map by adding them to the semantic overlay. The actions are computed on the onboard
CPU and executed at roughly 7 Hz. We define a maximum episode length of 6 minutes,
roughly matching simulation. The robot is equipped with bumper sensors in its base that
stop it upon any collision, in which case we deem the episode unsuccessful. Figure 4
shows the real-world setup.

We make the following adaptations for the real world: To minimize collisions, we
inflate the map by 5 cm and scale the actions of the agent by a factor of 0.55. Secondly,
we reduce the temperature of the softmax activation of the long-horizon predictions
to 0.1. We find that this increases the agent’s confidence in its own predictions and
leads to more target-driven exploration. We evaluate the agent for a total of 40 episodes,
spread across different numbers of target objects. The results from this experiment are
presented in Table 4. We observe that the agent successfully transfers to the real world,
bridging differences in the robot’s motion model, sensors, and environment layouts.
Overall it solves 55% of all episodes successfully with almost no decrease as the number
of target objects increases. We find two main difficulties in the real world: while generally
navigating smoothly, the agent occasionally collides with door frames or small objects
such as posts. This may be caused by the mismatch in the robot’s motions and controllers
as well as due to the training environments consisting of mostly clean edges and little
unstructured clutter. Secondly, in a very small number of episodes, the agent gets stuck
moving back and forth between close spots, as the long-horizon prediction keeps changing
back and forth. These results suggest a potential to further increase the success in the real
world by finetuning the learned agent on the real robot, in particular to further reduce the
number of collisions. Example trajectories from this experiment are shown in Figure 4
and in the accompanying video.

5 Conclusion

In this paper, we proposed a novel reinforcement learning approach for object search that
unifies short- and long-horizon reasoning into a single model. To this end, we introduced a
multi-object search task in continuous action space and formulated an explicit prediction
task which allows the agent to guide itself over long-horizons. We demonstrated that
our approach significantly outperforms other learning-based methods which struggle
to perform efficient long-term exploration in this continuous space. By focusing on
structured semantic map inputs, our approach learns complex exploration behaviors in
comparably few steps and generalizes effectively to unseen apartments. Moreover, we
successfully transferred the approach to the real world and find that the agent bridges the
sim-real gap and exhibits the potential for further improvement if given the chance to
adapt to the motion model of the real robot.
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In the future, we aim to further exploit the ability of the approach to learn different
actions at a high control frequency. Particular, we will investigate the ability to incorporate
control of the head camera which should further improve the agent’s success rates.
Furthermore, we are interested in the application to mobile manipulation in which the
agent has to simultaneously navigate and control its arms [14]. A third promising direction
is the ability of learning-based approaches to incorporate data-driven knowledge such
as correlations between semantic classes in real-world environments. Training on much
larger environments will provide exciting avenues to exploit this.
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Active Particle Filter Networks: Efficient Active Localization in
Continuous Action Spaces and Large Maps

Daniel Honerkamp, Suresh Guttikonda, and Abhinav Valada

Abstract— Accurate localization is a critical requirement for
most robotic tasks. The main body of existing work is focused
on passive localization in which the motions of the robot are
assumed given, abstracting from their influence on sampling
informative observations. While recent work has shown the
benefits of learning motions to disambiguate the robot’s poses,
these methods are restricted to granular discrete actions and
directly depend on the size of the global map. We propose Active
Particle Filter Networks (APFN), an approach that only relies
on local information for both the likelihood evaluation as well as
the decision making. To do so, we couple differentiable particle
filters with a reinforcement learning agent that attends to the
most relevant parts of the map. The resulting approach inherits
the computational benefits of particle filters and can directly act
in continuous action spaces while remaining fully differentiable
and thereby end-to-end optimizable as well as agnostic to the
input modality. We demonstrate the benefits of our approach
with extensive experiments in photorealistic indoor environ-
ments built from real-world 3D scanned apartments. Videos and
code are available at http://apfn.cs.uni-freiburg.de.

I. INTRODUCTION

The ability of a robot to accurately localize itself is
a core requirement across almost all robotic tasks from
navigation [1], [2] to mobile manipulation [3], [4], [5].
Accordingly, a broad body of research has been devoted to
this topic. The by far most common approach is to first define
an initial guess of the robot’s pose, then manually move the
robot until the localization algorithm has roughly converged
and continue to constantly localize the robot while it executes
its tasks. This is known as passive, local localization.

Most localization algorithms rely on a form of feature
matching between the current observations and a given (2D)
map of the environment. As such their performance strongly
depends on the current observations, which in turn are
decided by the robot’s motions which decide what parts
of the map will be observed. But the ability to sample
informative observations has remained largely unexplored. In
this work, we investigate the benefits of active localization,
in which the robot can actively seek observations that are
most informative of its current pose in the environment.
Furthermore, the agent can counteract the strengths and
weaknesses of particular localization modules by actively
avoiding ambiguous situations and failure modes of the
localization module.

Previous work has extended Adaptive Markov Localiza-
tion to active control by greedily maximizing information
theoretic quantities [6], [7], but for the most part, remained
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work was funded by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR.

Fig. 1: To localize itself, a robot has to match its observations with a given
map of the environment. To distinguish ambiguous poses requires to find
observations that maximally disambiguate among the true pose given the
robot’s belief over its current pose. To do so, certain trajectories through the
apartment reveal clearly more information than others. We propose Active
Particle Filter Networks which combines learned particle filters with active
decision making to sample the most informative observations.

restricted to analytical observation models and structured
observations. More recently, learning-based methods have
shown the benefits of active decision making for localiza-
tion [8], [9], though have remained constrained to simple
environments [8] or discrete actions and small maps [9],
having to process the global map at every possible orientation
of the agent at each step.

We present an approach that couples probabilistic and
learning-based methods through learned particle filters [10]
and deep reinforcement learning (RL) to generalize to con-
tinuous action spaces and arbitrary sensor modalities inde-
pendent of map size. Particle filters [11] enable efficient
representation of multi-modal beliefs over large maps. These
mechanisms can be made fully differentiable [10], [12],
enabling us to learn the components of a particle filter end-
to-end, thereby extending it to abstract observations such as
pixels or depth maps. Importantly, these networks only need
to process local information for each particle. We then train a
reinforcement learning agent that selects actions to minimize
the overall localization error, following the same principle
of processing only local information over the most likely
hypotheses through a hard attention mechanism. In contrast
to previous work, this enables us to process hypotheses over
continuous poses [8], [9] while at the same time breaking
the dependency on processing the full map with a neural
network.
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We evaluate our approach in extensive photorealistic
scenes of real-world 3D scanned apartments from the gibson
dataset [13] in the iGibson simulator [14] and find substan-
tial improvements in localization error over the baselines,
demonstrating the benefits of the learned policy.

To summarize, this work makes the following main con-
tributions:
• We leverage the combination of probabilistic principles

with learned methods to achieve a very flexible and fully
differentiable approach for active localization which
does not depend on a specific sensor modality.

• We break the dependency of learning-based approaches
on action granularity and map size, enabling the ap-
proach to work in continuous action spaces and arbitrary
map sizes.

• We demonstrate the benefits of this approach in large
photo-realistic indoor environments built from real-
world 3D scanned apartments.

• We make the code publicly available at http://
apfn.cs.uni-freiburg.de.

II. RELATED WORK

Localization is a well studied field with a long-standing
history. In the following, we discuss both passive and active
localization methods which have been tackled using classical
and learning-based techniques.

Passive Localization: A large number of established local-
ization approaches rely on Bayesian filtering-based tech-
niques. These include methods based on Kalman filters [15]
which are restricted to modeling unimodal (Gaussian) be-
liefs, Multi-Hypothesis Kalman filters that use mixtures of
Gaussians [16] and non-parametric particle filters which can
model arbitrary distributions. Particle filters are widely used
in methods such as Monte Carlo Localization and Adap-
tive Monte Carlo Localization (AMCL) [11]. Though these
methods usually rely on structured observations and analytic
observation models and therefore are most commonly used
with LiDAR observations. While there are approaches that
incorporate depth or camera images [17], [18], construct-
ing observation models for them is extremely challenging.
Recently, fully differentiable versions of particle filters have
been introduced [10], [12]. These fully differentiable versions
enable the use of arbitrary modalities through end-to-end
optimization. LASER extends MCL with learned circular
features and rendering in latent space [19]. Learning-based
methods have also been proposed to extract explicit features
such as room layout edges [20] or to estimate odometry
directly from visual inputs [21], [22].

Active Localization: Active localization has received com-
parably little attention in the past. Active versions of both
Markov Localization [6], [7] and Kalman filters [23] have
been proposed. These methods inherit the need for structured
observations or expert-specified observation models and as
such cannot easily incorporate contextual clues or high-
dimensional observations. Their objectives are to maximize
information theoretic quantities such as the reduction in

entropy of the belief. Chaplot et al. [8] introduce a learnable
Bayesian filtering approach in combination with reinforce-
ment learning. While they are able to learn good active
policies, the model relies on access to observations from
across the environment to compute features ahead of time
and at each step has to process the full map for every
possible discrete orientation. As a consequence, the approach
does not easily generalize to different map sizes at test
time and does not scale well to large maps or continuous
actions. Gottipati et al. [9] introduce a hierarchical likelihood
model in which the full map only has to be processed at
a coarse resolution and only likely areas are processed at
higher resolutions. Nonetheless, the dependency on the map
size remains and only discrete actions can be evaluated. For
both approaches, the dimensionality of the reinforcement
learning agent’s inputs scales linearly with the discretization
of the rotation actions. In contrast, our approach never has to
process the full map with a neural network and can directly
evaluate continuous poses and actions.

Active SLAM: In simultaneous localization and mapping both
information gain objectives [24], [25] and reinforcement
learning based approaches [26], [27] have been used to
control a robot while performing both the mapping and lo-
calization. In contrast to active localization, these approaches
do not have access to the prior knowledge of the map to steer
the robot towards informative states [28].

III. ACTIVE PARTICLE FILTER NETWORKS

We propose Active Particle Filter Networks (APFN) con-
sisting of two modules: a learned particle filter network main-
taining a distribution over the current belief of the robot’s
pose and a reinforcement learning agent taking decisions
based on the current observations and belief. An overview
of our approach is depicted in Figure 2.

In the following, we will define the active localization task
that we aim to solve and then introduce our approach.

A. Problem Statement

We assume a mobile robot that receives exteroceptive
sensor readings senst and proprioceptive odometry measure-
ments mt, placed randomly in an environment. Given a map
M of the environment, we seek the sequence of actions a1:T
that minimizes the pose error of the robot over a fixed time
horizon T . We may be given an initial guess of the initial
pose of the robot (local localization) or have to start from a
uniform belief over the full map (global localization).

B. Localization Module

The robot starts with an initial belief b0, either uniformly
distributed over the map or based on an initial guess. Given
the current observation ot = [senst,mt], we then use a
differentiable particle filter network (PF-net) [10] to update
the current belief over the robot’s pose. PF-net uses neural
networks to present the observation and transition model of a
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Fig. 2: Overview of the proposed Active Particle Filter Networks. Given the robot’s observations, the PF-net updates the belief over the current pose of
the robot, modeled as a particle distribution. This distribution is then projected into a belief map over the environment. The RL agent attends to the local
regions across the most likely hypotheses as well as the raw robot observations and produces actions at to move the robot’s base, which then result in the
next sensory observations for the PF-net.

particle filter. By using a soft-resampling, where new particle
weights w

′k
t of K particles are sampled from a distribution

q(k) = αwkt +
(1− α)
K

(1)

the gradients are non-zero for values of α 6= 1, enabling
us to optimize through the whole network. The observation
model calculates the likelihood fkt of a particle based on an
encoding of the current sensor readings and particle-centric
local map which is extracted from the global map through
a differentiable spatial transformer module [29]. As a result,
the likelihood of each particle can be evaluated based on
local information without the need to process the full global
map.

This provides a number of advantages for active local-
ization: (i) the network is fully differentiable and thereby
can be jointly optimized with deep reinforcement learning
algorithms, (ii) it is flexible to arbitrary robot sensors, making
it applicable to a wide range of robotic platforms and (iii) it
can handle continuous actions and arbitrary map sizes.

The model is trained end-to-end to minimize the mean
squared pose error

Lpfnet =
∑

t

(x̂t − x∗t )2 + (ŷt − y∗t )2 + β(φ̂t − φ∗t )2, (2)

where x̂, ŷ, φ̂ and x∗, y∗, φ∗ are estimated and ground-truth
pose of the robot and β is weighting term. We follow the
architecture of the original work [10] which uses convolu-
tional encoders for both the raw observations and the local
maps, then process the concatenated features with a stack of
locally fully-connected and fully-connected layers.

C. Active Localization

We aim to learn a policy to move the agent such that, given
the current belief about the robot’s pose and the localization

module, it can best disambiguate the true pose. The agent
is operating in a Partially Observable Markov Decision Pro-
cess (POMDP) M = (S,A,O, T (s′|s, a), P (o|s), r(s, a))
where S,O and A are the state, observation and action
spaces, T and P describe the transition and observation
probabilities, and r and γ are the reward and discount
factor. The agent’s objective is to learn a policy π(a|·) that
maximises the expected return Eπ[

∑T
t=1 γ

tr(st, at)].

Belief Representation: As the ground truth robot pose is
not directly observable, the agent has to act based on its
current belief over the state. The PF-net provides us with a
multi-modal belief bt over the global map, represented by the
particle state. We transform this into a spatial, permutation
invariant representation by projecting the particles into a
belief map of dimension H × W × 4 where H and W
are the height and width of the global map and the first
channel is the occupancy map, the second channel is the
aggregated weights for all particles in a given cell and the
third and fourth channel are the weighted sine and cosine of
all particles in a given cell. The sine and cosine are used to
circumvent the non-linearity in the angles.

Agent: We propose a reinforcement learning agent that ob-
serves both its current belief together with the low-level robot
observations and learns a policy π(at|bt, ot; l) where l is the
localization module. This allows it to improve the localiza-
tion in two ways: (i) actively sample the most informative
sensor readings and (ii) take into account the localization
module’s strengths and weaknesses, e.g. avoid observations
where the localization module does not perform well.

While the belief stretches the full map, we find that within
very few steps the particles concentrate on a small number
of most likely regions. As such we apply the principle of
local information to break the dependency on the full map.
To do so, we extract local maps around the modes of the
particle distribution from the belief map. The agent then
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Parameter PF-net RL

Train steps 400,000 1,000,000
batch size 8 256
lr 2.5e−3 3e−4
resample false true
α – 0.5
β 0.36 0.36
T 25 50
particles 30 500
initial distribution tracking semi-global
initial std translation 0.3 0.3
initial std angular π/6 π/6
transition noise translation 0.0 0.01
transition noise angular 0.0 π/36
control frequency 1.7Hz 1.7Hz
τ – 0.005
γ – 0.99
replay buffer size – 50,000
entropy coefficient – learned
λcollision – 0.1

TABLE I: Training hyperparameters for the PF-net (left) and the reinforce-
ment learning agent (right).

observes a stack of k local belief maps, each centered and
oriented according to a mode of the distribution. This is
akin to a hard attention mechanism, which can be made
fully differentiable if desired [30]. In practice, we find that
just using the mean position and orientation of the particles
works well, but extending this to cover the top k modes is
straightforward. In contrast to previous work, this allows us
to process and generalize to arbitrary map sizes and arbitrary
continuous poses and actions.

The agent is trained to directly minimize the prediction
error of the localization network. At each step, it receives a
reward

r = −Lpfnet − λcollision ∗ 1collision, (3)

where Lpfnet is the prediction loss of the PF-net, 1collision
is a binary collision indicator and λcollision is a weighting
constant. The agent has a fixed number of environment steps
to localize itself, after which the episode terminates.

Training: While the approach is fully differentiable and can
be optimized end-to-end, we find it beneficial to pretrain
the localization network for better stability. Though joint
finetuning may be able to further improve results. For
pretraining we use a goal-reaching agent (see Section IV-A
for details) to collect a dataset of 4,000 episodes of
length 25 and then perform supervised training following
Karkus et al. [10], using a tracking task with only 30
particles. We train the RL agent with soft-actor critic (SAC)
[31], which has been shown to produce strong policies in
continuous control and robotics tasks. Hyperparameters for
all components are reported in Table I.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approach, we perform
extensive experiments in photorealistic indoor environment.
With these experiments we aim to answer the following
questions:

• Does the PF-net localization module scale to complex,
photorealistic indoor environments and generalize to
unseen apartments in these settings?

• Does our proposed approach learn to localize itself in
both seen and unseen apartments and across different
tasks from local to global localization?

• Is the learned policy able to find trajectories that achieve
better localization than alternative control policies?

A. Experiment Setup

To evaluate our approach, we train a LoCoBot robot in the
photorealistic iGibson simulator [14]. The LoCoBot robot
has a differential drive and is equipped with an RGB-D
camera with a field-of-view of 90° and a maximum depth
of 10m as well as a LiDAR with a range of 240°. The
action space consists of the linear and angular velocities for
the base. We use a subset of 45 apartment scenes from the
gibson dataset [13], split into 38 training and 7 unseen test
apartments. The test apartments are completely unseen by
both the PF-net and the RL agent.

Baselines: To evaluate the policy of the reinforcement learn-
ing agent, we compare our approach against the following
baselines:

• Avoid: A simple heuristic policy that drives forward
until its depth camera recognizes a close object. We
divide the depth image into four horizontal quarters and,
depending on in which quarter of the depth image the
close object is, drive backwards or turn away from the
obstacle.

• Goalnav: A policy that navigates towards a random
target in the environment. It uses a path-planner based
on access to the ground truth traversability map and
robot pose to reach this goal.

• Turn: An agent that always turns in place at maximum
angular velocity.

Tasks: We focus on three localization tasks, ranging from
local to global localization. These are

• Tracking: the initial particles are sampled from a multi-
variate Gaussian distribution with a standard deviation
of 0.3m and 30° and centered at a random pose sampled
with the same standard deviations around the ground
truth robot pose. The PF-net uses 300 particles.

• Semi-global localization: We uniformly sample 500
particles from a box of 3.3×3.3m around the initial
guess.

• Global localization: We sample 3,000 particles uni-
formly across the traversable area of the whole map.

Metrics: We report the root mean squared positional error in
centimeters and root mean squared angular error in radians,
referred to as position and orient in the tables. All metrics
are averaged over 50 episodes.
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Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Modality position orient position orient position orient position orient position orient position orient

LiDAR 20.8 0.13 27.2 0.21 111.4 0.33 18.9 0.12 23.7 0.16 141.2 0.38
RGB-D 24.8 0.15 30.2 0.20 126.6 0.30 24.5 0.16 29.2 0.18 144.1 0.34

TABLE II: Passive localization results on the iGibson dataset for different localization tasks. We report the average root mean squared positional error in
centimeter (position) and the root mean squared orientation error of the robot’s yaw in radians (orient). Evaluated with the pretraining settings for T = 25
timesteps.

Task seen unseen

Tracking Semi-Global Global Tracking Semi-Global Global

Agent position orient position orient position orient position orient position orient position orient

Goalnav 16.8 0.12 18.2 0.12 99.3 0.24 14.9 0.11 21.4 0.15 113.3 0.21
Avoid 15.8 0.13 22.4 0.15 152.0 0.32 15.8 0.12 33.5 0.19 162.9 0.29
Turn 11.8 0.80 14.6 0.09 103.1 0.30 13.9 0.10 19.8 0.12 115.9 0.31
APFN (ours) 13.4 0.10 11.7 0.08 74.8 0.16 11.1 0.08 16.3 0.11 63.3 0.17

TABLE III: Active localization results in the iGibson simulator in seen and unseen apartments. The localization module is based on LiDAR occupancy
maps. We report the average root mean squared positional error in centimeter (position) and the root mean squared orientation error of the robot’s yaw in
radians (orient).

Fig. 3: Examples for the tracking (top), semi-global (mid) and global (bottom) localization tasks. Left: the initial particle distribution, second from left:
the global map and trajectory of the agent. Green arrows denote the estimated poses and red the ground truth poses at each step. Circles denote the final
estimated and ground-truth poses. Third from left to right: the local belief map observed by the RL agent, the current observations: occupancy grid, RGB
and depth.

B. Passive Localization

The original PF-net model has focused on evaluation in
the simpler, static House3D dataset [32]. We implement
a version of this model based on the author’s code for
the iGibson simulator and evaluate it on scenes from the
photorealistic gibson dataset, which are based on real-world
3D scans of apartments. We report the results for passive
localization for different modalities based on the goalnav
agent that collected the training data in Table II. LiDAR

scans are converted to occupancy maps in which 0 is free
space, 1 unexplored, and 2 occupied.

We find that the PF-net performs well in these more
complex scenes, achieving a positional error of around 20-
25 cm for tracking, which, for both modalities, is actually
lower than the 40−49 cm error reported on the House3D
dataset [10]. Moreover, the network generalizes well to un-
seen apartments, showing no significant generalization gap.
Even though the field-of-view of the RGB-D camera is much
smaller than what the LiDAR can sense, both modalities
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achieve relatively similar performance, highlighting that the
network is able to extract rich information in the complex
pixel observations.

C. Active Localization

For active localization, we focus on the best performing
LiDAR modality. The RL agent observes the robot state con-
sisting of current forward and angular velocities, a collision
flag, and the remaining steps in the episode together with
the occupancy map from the LiDAR and the local belief
map. To ensure it can learn full obstacle avoidance, it also
receives the RGB-D observations. The policy consists of
a shared feature encoder, made up of three convolutional
networks, one for RGB-D and one for the occupancy map.
Each network consists of layers with (channels, kernel size,
stride) of [(32, (3, 3), 2), (64, (3, 3), 2), (64, (3, 3), 1), (64,
(2, 2), 1)]. These features are then concatenated with the
robot state and passed to the actor and critic, consisting of a
two-layer MLP with 512 neurons. All intermediate layers are
followed by ReLU activations. All pixel-based observations
are of size 56 × 56. While we train the PF-net on ground
truth odometry data, during the policy training we add zero-
centered Gaussian noise with standard deviation of 1 cm and
5° to the transitions. We train the policy with 500 particles
and at test time evaluate with varying numbers of particles
as defined for the different tasks.

Table III reports the results for the active localization
tasks for both seen and unseen apartments. First of all, we
find large differences in localization performance across the
different motion models. This highlights the strong depen-
dence on the robot’s movements and confirms the importance
of active decision making for globalization. We find that
the reinforcement learning agent consistently achieves the
best localization across all tasks. The only exception is
the positional error in the tracking task, in which the turn
policy achieves a very low positional error, but suffers from
a large angular error. Note that in this task the initial
particle distribution is already fairly accurate, as such it may
actually be beneficial to remain in place. Moreover, the agent
successfully generalizes to unseen apartments. Note that
these apartments have not been seen by both the RL agent
and the localization module. To succeed in these apartments,
the agent has to learn general movement patterns and the
ability to seek out informative regions. Lastly, we find that
differences in localization performance are particularly large
in the global localization task with our approach reducing the
positional error by over 60% in comparison to other motions.
This is expected as in global localization we have the least
amount of prior information about the robot’s pose.

Qualitatively we find that the reinforcement agent per-
forms targeted movements through the room with frequent
rotations which reveals a large area of the apartments and
is aligned with the strong performance of the turn baseline.
Examples of the agent’s trajectories and inputs are shown in
Figure 3 and in the accompanying video.

V. CONCLUSION

In this work, we introduce Active Particle Filter Networks
which combines probabilistic filtering methods with learned
decision making to accurately localize a robot in realistic
indoor environments. In contrast to previous methods, our
approach scales to continuous action spaces and arbitrary
map sizes by selectively attending to only local information.
In extensive experiments, we evaluate this ability in pho-
torealistic indoor environments and find that it is able to
accurately localize itself in both seen and completely unseen
apartments. The learned policy considerably outperforms the
baselines, demonstrating strong improvements in localization
performance by sampling informative observations.

In future work, we aim to extend the approach to si-
multaneously control sensors such as actuated cameras,
which promises to benefit even more from active perception.
Another promising avenue is the extension of learning-
based localization and attention mechanisms to dynamic
environments and noisy, partial or incorrect maps in which
it becomes important to selectively filter out uncertain or
incorrect observations. Lastly, the trade-off between active
localization and other task objectives is an exciting direction
for future work.
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Abstract: In this study, a novel end-to-end path planning algorithm based on deep reinforcement
learning is proposed for aerial robots deployed in dense environments. The learning agent finds an
obstacle-free way around the provided rough, global path by only depending on the observations
from a forward-facing depth camera. A novel deep reinforcement learning framework is proposed to
train the end-to-end policy with the capability of safely avoiding obstacles. The Webots open-source
robot simulator is utilized for training the policy, introducing highly randomized environmental
configurations for better generalization. The training is performed without dynamics calculations
through randomized position updates to minimize the amount of data processed. The trained policy is
first comprehensively evaluated in simulations involving physical dynamics and software-in-the-loop
flight control. The proposed method is proven to have a 38% and 50% higher success rate compared
to both deep reinforcement learning-based and artificial potential field-based baselines, respectively.
The generalization capability of the method is verified in simulation-to-real transfer without further
training. Real-time experiments are conducted with several trials in two different scenarios, showing
a 50% higher success rate of the proposed method compared to the deep reinforcement learning-
based baseline.

Keywords: deep reinforcement learning; obstacle avoidance; quadrotors; sim-to-real transfer

1. Introduction

Autonomous aerial robots are increasingly deployed in applications that require safe
path planning in dense environments, such as a greenhouse covered with dense plants,
search and rescue operation in an unstructured collapsed building or navigation in a forest.
Traditionally, autonomous navigation is solved under separate problems such as state
estimation, perception, planning, and control [1]. This approach may lead to higher latency
combining individual blocks and system integration issues. On the other hand, recent
developments in machine learning, particularly in reinforcement learning (RL) and deep
reinforcement learning (DRL), enable an agent to learn various navigation tasks end-to-end
with only a single neural network policy that generates required robot actions directly
from sensory input. These methods are promising for solving navigation problems faster
computationally since they do not deal with the integration of subsystems that are tuned
for their particular goals.

This study attempts to address the end-to-end planning problem of a quadrotor UAV
in dense indoor environments. The quadrotor deployed with a depth camera is required
to find its way around the global trajectory. We propose a DRL-based safe navigation
methodology for quadrotor flight. The learned DRL policy, utilizing the depth images
and the knowledge of a global trajectory, generates safe waypoints for the quadrotor. We
develop a Webots-based simulation environment where the DRL agent is trained with
obstacle tracks where the obstacle locations, shapes, and sparsity are randomized for every
episode of policy training for better generalization. Furthermore, we introduce safety
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boundaries to be considered during training in addition to collision checks. The safety
boundaries enable the agent to prevent risky situations that make the method more robust
to uncertainties.

Contributions

The contributions of this paper are fourfold:

• A novel DRL simulation framework is proposed for training an end-to-end planner
for a quadrotor flight, including a faster training strategy using non-dynamic state
updates and highly randomized simulation environments.

• The impact of continuous/discrete actions and proposed safety boundaries in RL
training are investigated.

• We open-source the Webots-based DRL framework, including all training and evalua-
tion scripts (the code, trained models, and simulation environment will be available at
https://github.com/open-airlab/gym-depth-planning, accessed on 1 July 2022).

• The method is evaluated with extensive experiments in Webots-based simulation envi-
ronments and multiple real-world scenarios, transferring the network from simulation
to real without further training.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 explains the end-to-end planning methodology for a quadrotor UAV
with the formalization of the RL problem. Section 4 provides the experimental setup and
the comprehensive tests of the proposed method in the simulation environment. The
section also provides the results of the real-time tests. Finally, Section 5 concludes this work
with future research directions.

2. Related Work

As a machine learning paradigm, RL aims to solve sequential decision-making prob-
lems through the interaction of a learning agent with its environment [2]. With the success
of the deep learning models in machine learning, it is also applied to RL, which brings
about the DRL field with success in several benchmark problems such as video games [3]
or continuous control tasks [4]. Several methods are proposed to optimize deep neural
networks to learn the value function [3], policy function [5], or both [4,6] in the RL domain,
such as the proximal policy optimization (PPO) [7] algorithm, a state-of-the-art method uti-
lized in this work. RL and its successor DRL have gained attention in robotics applications
as it is encouraging a complete framework for intelligent robots to learn by interacting with
their environment.

Since deep learning-based methods require plenty of data, they have emphasized
using simulation data as an alternative to expensive real-world data. The usefulness of
simulations becomes more crucial for DRL considering potential hardware failures dur-
ing exploration in the real-world [8]. However, there is a gap between simulation and
real-world data, as sensor signal qualities may not be preserved due to the lack of realistic
noise. Earlier works have shown that certain data modalities provide a better abstrac-
tion for sim-to-real transfer, such as using depth images [9] or applying morphological
filters [10]. Another gap between simulation and reality comes from the limitations in
modeling real-world dynamics, which are generally countered by domain randomization,
e.g., randomizing physical parameters [11] or randomizing observations gathered by visual
sensors [12].

Deep neural network-based methods are utilized in the control and navigation of
several robotics applications, including real-world demonstrations. Those applications
can be classified into two categories considering the input to the neural network: the
state information, such as positions and velocities, or raw sensory data, such as color
or depth images. Using state information directly, neural network policies have similar
functionality with a controller block in quadrotor UAVs, such as in attitude control [13]
or position control [11,14] level. Furthermore, various output configurations from motion
primitives [15] to lowest-level motor voltage commands [16] for the learned policies are also
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investigated. Compared to conventional control theoretic approaches, those methods are
lacking in providing mathematical guarantees such as stability analysis [17]. However, it is
an active research area where the most recent works promisingly show that DRL-based cas-
caded control outperforms classical proportional-integral-derivative (PID) controllers [18]
and demonstrates challenging control tasks such as high-speed flight control [19].

Prior to deep learning-based methods, the planning methods for robotics have been
extensively studied. In particular, graph-based (e.g., A* [20] and D* [21]), potential field-
based [22], and sampling-based [23] methods can be counted as subfields of conventional
planning algorithms, which require a graph or map representation of the configuration
space. Conventional planning algorithms are also an active research area for the application
of quadrotor flight [24], as well as other fields, such as collision avoidance of near-Earth
space systems [25]. Unlike conventional planning algorithms, DRL enables the learning of
so-called neural network end-to-end planners or visuomotor controllers that can generate
actions directly from sensory input without any map. Although several applications for
ground robots utilize lidar sensors for obstacle avoidance tasks [26,27], visual sensors
are more commonly used in aerial applications such as color or depth images. End-
to-end navigation is broadly investigated for quadrotor UAVs in several domains such
as corridor following [28], drone racing [1,29], aerial cinematography [30], autonomous
landing [31,32] or obstacle avoidance [33,34], which is the application in this paper. A
recent study demonstrates the capabilities of DRL in a safety critic mission, leveraging
the depth and semantic images for an emergency landing [32]. Similarly, a high-speed
quadrotor flight with obstacle avoidance has been shown with an imitation learning-based
neural network policy recently [35]. In the context of the present study, safe navigation is
considered rather than agility. Furthermore, instead of imitation learning, DRL is studied.
More similar to the present study, Camci et al. [36] utilize a quadrotor with a depth camera
for obstacle avoidance but with discrete actions. Dooraki et al. [37] also propose a similar
application with continuous actions in the position domain. The present research differs by
proposing safety boundaries and enabling heading angle steps together with position steps.

3. End-to-End Motion Planning of UAV
3.1. Reinforcement Learning Formalization of the Environment

An RL problem is generally formalized as a Markov decision process (MDP) with
state, action, and reward components with discrete timesteps, t. The common variables are
shown in Appendix A. For the problem of end-to-end local planning, the state is defined
as multi-modal data containing the depth image and the vector representing the moving
target point,

st = (Idepth,t, pt), (1)

where Idepth,t is 64× 64 matrix representing depth image and pt = [xt, yt]T is 2× 1 vector
representing the position of the target point with respect to the body frame. As shown in
Figure 1c, x-axis and y-axis represent the forward and the left direction, respectively.

The MDP environment is constructed for both continuous and discrete action spaces
for comparison purposes. For the formation of continuous action space, a vector of length
two is selected,

at ∈ {[a1, a2]
T | − π/8 ≤ a1, a2 ≤ π/8, a1, a2 ∈ R} (2)

where a1 defines the direction of 1 m position step and a2 defines the rotation in yaw
angle with respect to the current body frame. The distribution of actions is illustrated in
Figure 1a. The boundaries of the action space are selected to match the information from
the single-depth camera by assuring that all the actions are taken into a known area. On
the other hand, yaw angle change enables a sharper turn around an obstacle, as well as a
change in point of view if required.
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a1

a2

(a) Continuous actions. (b) Discrete actions.

x

y

z

minor safety boundary

major safety boundary

collision boundary

(c) Safety boundaries.

Figure 1. The actions and the safety boundaries of the end-to-end planning agent are illustrated.
(a) Continuous actions from the top view are defined by two angles: a1 represents the direction of
the position step (dashed lines), and a2 represents the heading angle (red arrow). FOV of the depth
camera is presented as blue lines. (b) Seven possible discrete actions: position and yaw angle steps.
(c) Illustration of quadrotor body reference frame where the x-axis is the forward-looking direction
and circular safety and collision boundaries considered in the simulation environment. The diameter
of collision, major and minor safety boundaries are 1, 2, and 3 m, respectively.

The discrete action space, which is a subset of the aforementioned continuous action
set, is comprised of seven actions, defined as a combination of a 1 m position step in three
possible directions and a turn in yaw angle with respect to the drone’s reference frame, as
shown in Table 1. The possible actions are also illustrated in Figure 1b. Both the direction
of position step and heading angle are a combination of the spatial limits of a continuous
action set and forward direction while moving and opposite turning sides are neglected.

The discrete action set is mainly constructed for comparison with previous work [36],
with some modifications. First, the position step direction, a1, is kept small in order to fit
with the field-of-view (FOV) of the depth camera so that the UAV does not hit an unseen
object. Second, yaw angle change is enabled to match the capabilities of continuous actions.
Finally, since we restrict the problem definition for constant altitude flight, we disable the
actions that change altitude. We believe these updates facilitate a fair comparison between
continuous and discrete action selections in such a problem domain.

Table 1. Discrete actions: each action is applied as a position step and a turn in heading angle with
respect to the drone’s reference frame.

Choice Corresponding Continuous Action [a1, a2]

Action 1 [π/8, π/8]
Action 2 [π/8, 0]
Action 3 [0, π/8]
Action 4 [0, 0]
Action 5 [0,−π/8]
Action 6 [−π/8, 0]
Action 7 [−π/8,−π/8]

An episode begins when the UAV is at the beginning of a track defining a global
trajectory of length L and obstacles placed. At each timestep, an action is applied to the
UAV, then the depth image and next target point are obtained as the new state. Figure 2
illustrates the selection of the target point projected on the global path and 5 m ahead of
the drone for consecutive timesteps. The episode is terminated under three conditions:
crashing into an obstacle, deviating from the global trajectory, and finalizing the route.
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time step: ....

x

y
5m

1 2

5m

3

5m

k

Obstacle
Target point
UAV
Global path

Figure 2. Moving target generation for the end-to-end agent. The target point is located 5 m ahead of
the current location of the UAV projected onto the global path. The obstacles, generated target points,
UAV, and global path are represented as shown in the legend. The UAV takes a position step at each
timestep and is informed by the vector showing the generated target point. The overall trajectory is
demonstrated at the k’th timestep.

A circular boundary is defined around the quadrotor with a diameter of 1 m to
encounter collisions. Whenever a part of this boundary is violated by an obstacle, the
collision is counted, and the episode is terminated. In addition to the collision boundary,
two safety boundaries, major and minor, are defined with diameters 2 m and 3 m, centered
at [0.5, 0, 0] and [1, 0, 0] on the quadrotor body frame. These safety boundaries are located
toward the frontal area of the drone to detect risky objects in the short-term action path, as
shown in Figure 1c. Unlike the collision, the violation of safety boundaries is not resulting
in the termination of the episode, but it adds a negative reward to avoid being close to
obstacles. Since the quadrotor motion is considered in the forward direction, these safety
boundaries are chosen to be tangent with the collision boundary from the reverse direction.
The diameters of major and minor safety boundaries are chosen to occupy the regions in
two and three consecutive action steps, respectively.

The reward signal is based on the UAV’s relative motion and the occupation of safety
boundaries at every timestep if the episode is not terminated. For termination of an episode,
both the collision and excessive deviation are punished with constant values. On the other
hand, finishing a route without a crash is rewarded. The reward signal is defined as,

rt =





2∆x− dy − 0.3dθ − 101major−sa f ety − 21minor−sa f ety, for non-terminal steps,
Rdp, for dy > 5 m,
Rcp, for collision,
R f r, for finishing normally,

(3)

where ∆x, dy and dθ are the distance traveled forward, the distance to the global trajectory
and the yaw angle difference from forward-looking; Rdp = −10, Rcp = −20 and R f r = 20
are punishment for excessive deviation, punishment for collision, and reward for finishing
an episode without any crash; 1major−sa f ety and 1minor−sa f ety are indicator functions return-
ing one or zero when corresponding safety boundary is occupied or not. This reward logic
enables the agent to learn to avoid obstacles while quickly navigating toward the goal, as
well as keeping a distance from obstacles thanks to safety boundaries.

3.2. Randomization of the Environment

For every episode of training, the obstacles in the environment are randomized. The
randomization strategy is summarized in Algorithm 1. The algorithm randomly creates a
corridor and places obstacles with varying shapes, sizes, orientations, and locations.
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Algorithm 1 Randomized obstacle environment.

with_wall ∼ U ({True, False})
if with_wall then

wall_width ∼ U (4, 10)
end if
#obstacles ∼ U (2, 7)
for each obstacle do

obstacle_shape ∼ U ({Box, Sphere, Cylinder})
obstacle_position.x ∼ U (3, L)
obstacle_position.y ∼ N (0, 2.5)
obstacle_position.z ∼ U (2, 3)
randomize_obstacle_orientation()
if obstacle_shape is cylinder then

radius ∼ U (0.5, 1.5)
height ∼ U (1, 3)

end if
if obstacle_shape is box then

length ∼ U (0.5, 2.5)
end if
if obstacle_shape is sphere then

radius ∼ U (0.5, 1.5)
end if

end for

3.3. Deep Reinforcement Learning: Actor and Critic Network Architecture

The actor and critic networks trained by PPO [7] rely on the same feature extractor.
PPO is a policy gradient algorithm that optimizes the parameterized policy (actor) function,
πθ(at|st), with parameters, θ, using the clipped objective [7],

JCLIP = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (4)

where rt(θ) =
πθ(at |st)

πθold
(at |st)

measures how different the new and old policy parameters. Ât is

the advantage estimate in the given timestep, which measures how much a certain action
acquires an extra long-term reward return using the parameterized value (critic) function.
The optimization runs after every rollout of nsteps number of timesteps. Using this objective
function, PPO increases the probability of good action decisions while suppressing bad
decisions, similar to a previous DRL method trust region policy optimization (TRPO) [5],
which only uses the expected value of rt(θ)Ât. PPO introduces the clipped objective, which
prevents large policy updates with only first-order optimization.

The actor–critic neural network feeds the depth image to three convolutional layers
with the number of filters, kernel size, stride, and activation functions, as given in Figure 3.
The convolutional layer is flattened and then reduced to a tensor of 256 neurons by a fully
connected layer. This tensor is concatenated with the moving target input to create the
feature vector that is shared by both actor and critic networks. The critic network utilizes
two fully connected layers with 64 neurons each and a tangent hyperbolic (tanh) activation
to regress the value function. The actor (policy) network has similar hidden layers to the
critic network, but the output layer consists of na neurons where na is equal to two for
continuous actions and seven for discrete actions.
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Figure 3. Actor–critic network structure of the end-to-end local planner. The actor network takes
inputs as depth images through convolutional layers and the moving target through fully connected
layers and outputs the next actions as position and yaw angle. The critic network shares the same
feature extractor and outputs the value estimation.

4. Experiments and Results
4.1. Simulation Setup

A Webots-based simulation environment has been developed to train and test the
proposed algorithms. Webots [38] is an open-source robot simulator that allows different
programming interfaces, such as python, or robot operating system (ROS), for several
kinds of robots. The 2021a release of Webots has been utilized to develop the cluttered
environment and deploy the UAV with the required sensory equipment. A third-party
software package, ArduPilot, is selected to implement a quadrotor UAV in Webots to benefit
from its MAVLink extendable communication-featured stable and reliable UAV with its
Webots SITL extension. The UAV robot is then equipped with a depth camera to provide
the required information to carry out end-to-end planning operations. The environment
needs to be reset every time a collision occurs in training, which is a benefit we can have in
simulation throughout the trial-and-error process.

The simulation environment is wrapped as an OpenAI gym environment [39] to allow
the required communication between the DRL algorithm and the environment. ROS [40]
handles this communication between the gym wrapper and the simulation. Specifically, the
MAVROS package is used to acquire the state estimation of the quadrotor UAV and send
position commands. The remaining information, such as depth images and collision, is
communicated directly by individual Webots ROS topics. The gym environment interfaces
with the simulation environment as an MDP for the DRL algorithm, as explained in
Section 3.1.

4.2. Training in Simulation

The agent is trained in Webots with randomized obstacle environments to present a
variety of data for the deep network. The agent is subject to different obstacle shapes, sizes,
locations, and densities for every episode of training. The randomization enables the agent
to generalize the experience during RL training. Each episode begins on a randomly created
route and terminates either at the end of the route or in a collision. Sample environment
configurations used for evaluation purposes are shown in Figure 4.
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Route 2 Route 3 Route 4 Route 5 Route 6Route 1

Figure 4. Six evaluation routes generated by the proposed environment randomizer. The black lines
represent the projection of a 30 m global trajectory on the ground.

Since the policy network generates waypoints to travel, the robot is transported in the
training simulations to acquire a new observation. This method reduces the computational
burden for physical dynamics in each update step, thus fastening the overall training time.
The transportation is also randomized in position and orientation in order to improve
the variety of the training data as well as to address the possible poor performance of the
controller in following the waypoints.

The policy network is trained with the PPO algorithm implementation in stable-
baselines3 [41]. The ‘number of steps to run per update’ hyperparameter, nsteps, is set
to 1024, while other hyperparameters are kept as default. The algorithm is trained through
100,000 timesteps, and the best network is stored during training based on the reward
performance in the recent 20 episodes.

4.3. Simulation Results

The same randomization method is used for creating the evaluation routes. A set of
six unique routes has been determined to test and compare the methods fairly, as shown
in Figure 4. The routes are numbered with increasing order of the number of obstacles
contained, which roughly makes the route more challenging. Furthermore, each route starts
with a random offset of ±0.5 m in the horizontal positioning of the drone for evaluation
purposes. Each method is evaluated ten times in each lane. The success and the distance
traveled without collision are recorded for every trial. In Table 2, the success rate and
average traveled distance are listed for ten trials in each route. In addition, a safety cost is
measured based on the inverse distance of the objects closer than 3 m, and the average of
this safety cost over all runs is reported.

The proposed method, the safe continuous depth planner (SCDP), is compared with
two DRL-based versions and a potential field-based planner. The continuous depth planner
(CDP) considers the same method without introducing safety boundaries. The discrete
depth planner (DDP) is considered as a baseline, which is a modified version of previous
research [36] using a discrete action domain, as explained in Section 3.1. An artificial poten-
tial field-based planner (APF) is also implemented as a conventional baseline method [22].
The chosen baselines represent two important classes of motion planning algorithms for
quadrotors: learning-based and model-based methods.

In the implementation of APF, each pixel in the middle row of the depth image creates
a repulsive force, and the moving target creates an attractive force. As such, APF uses the
same observation for the end-to-end planner. The action is also selected from the continuous
action set according to the direction of the common artificial force in the reference frame
of the UAV. The angle of the artificial force is mapped to the action set. When the angle is
above π/8 in magnitude, it also activates yaw angle turning actions. The parameters of
attractive and repulsive forces are tuned on the training routes and then tested to compare
with the proposed method fairly.

As can be seen from Table 2, the proposed safety boundaries demonstrate better
performance than the plain case in terms of the success rate. It is also observed that the final
policy avoids becoming closer to the obstacles, considering the reported safety cost, because
the rewards encountered with safety boundaries help the agent avoid dangerous situations.
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The same observations are valid when the continuous action set is compared against the
discrete set. The continuous depth planner is significantly more capable of handling dense
obstacle scenarios, such as routes #5 and #6, since it can generate finer trajectories. Lastly,
the learning-based end-to-end planners perform better than the baseline artificial potential
field method because of their learning capabilities to handle uncertainties.

Table 2. Average travel distance (in meters) and success rate (in percentage) of methods—safe
continuous depth planner (SCDP), continuous depth planner (CDP), discrete depth planner (DDP),
and artificial potential field (APF)—over 10 runs at 6 test routes.

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Overall Safety Cost

SCDP distance 30 30 30 25.8 30 30 29.7 0.51success rate 100 100 100 70 100 90 93

CDP distance 30 30 30 19.4 30 27.4 28.0 0.52success rate 100 100 100 0 100 80 80

DDP distance 30 28.8 8.93 16.6 28.0 25.8 23.1 0.57success rate 100 90 0 0 80 60 55

APF distance 27.5 24.7 29.0 10.7 9.7 20.7 20.4 0.87success rate 90 10 90 10 0 60 43

In order to provide a qualitative comparison, sample trajectories obtained from route
#6 are presented in Figure 5. In parallel with the observations in the comparison table,
SCDP tries to avoid risky situations. Additionally, the generated path by SCDP is smoother,
implying consistency in the sequential actions. Intuitively having a smoother trajectory
reduces the controller effort to follow provided waypoints, which is another advantage of
SCDP against other methods.

0 5 10 15 20 25 30

−4

−2

0

2

4 Flight direction SCDP
CDP
DDP

x (m)

y (m)

Global path

Figure 5. Comparison of the sample trajectories collected in route #6.

4.4. Real-Time Experiments

The trained model is deployed for real-time experiments in a custom quadrotor
carrying an Intel Realsense D435i depth camera, as shown in Figure 6. The drone is
controlled by a Pixhawk autopilot [42]. The overall framework runs entirely onboard on an
NVIDIA Jetson TX2 computer, except that the robot’s localization is provided by a motion
capture system. The overall pipeline can run up to 8 Hz. A geometric controller [43] is used
to track the poses generated by the policy accurately, with a linear speed of around 1 m/s.
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Intel Realsense
D435i

Nvidia Jetson TX2

Pixhawk 4
flight controller

Vicon motion
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Policy Waypoint
controller

Depth image Action

Attitude
commands

Figure 6. Custom drone used in real-time experiments. The depth images are acquired from an Intel
Realsense D435i depth camera. The end-to-end planner is running onboard by an NVIDIA Jetson
TX2. Pixhawk 4 flight controller is utilized for following the waypoints.

To cope with noisy real depth data, input images are enhanced by using a fast depth
dilation algorithm [44] and then resized by cropping the top part of the image to 64× 64
to feed the policy network. We find that processed depth images help to bridge the gap
between simulation and the real world. Unlike the simulations, the generated actions are
applied at the same frequency before reaching the waypoint to prevent the quadrotor from
stopping after each action, which causes a lot of noise due to pitch movements. Additionally,
the quadrotor can track the trajectory faster and smoother. Furthermore, the applied action
is calculated as the mean of the recent two actions generated, which prevents the robot from
applying oscillating actions, which might cause a failure due to noise. The consecutive
oscillating actions are especially expected in narrow passages, where the drone successively
observes the obstacles on the right and left and thus decides to switch directions.

The real-time experiments are conducted in two different scenarios, as shown in
Figure 7. For the first scenario, a moderate-level experimental setup is designed by grouping
obstacles into two groups with wider free space and making the obstacles larger and, hence,
easier to observe. The second scenario is denser and more complex, using eight obstacles
distributed around the global trajectory. The obstacles are created with cardboard boxes
grouped in various configurations. Additionally, a wall-like structure is created using
banners on the right side of the flight route (the video can be found: https://youtu.be/
HPXXc_R3re8, accessed on 12 July 2022).

SCDP and DDP methods are executed five times each in both moderate and difficult-
level scenarios. Table 3 presents the comparison of the two methods in both scenarios.
Similar to the simulations, the drone successfully navigates through obstacles, with the
narrowest passage being approximately three times the drone’s size. The SCDP method
succeeds in all trials in the moderate scenario, while one collision is observed with DDP.
Similarly, SCDP outperforms in the difficult scenario yet encounters one collision. Although
the DDP method also successfully avoids obstacles in most cases, the track cannot be
finalized successfully; instead, the drone exits the global trajectory, which shows our
framework handles the noisy and complicated inputs better by learning confident actions.
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Table 3. Comparison of the SCDP and DDP in real-time experiments. The moderate and difficult-level
scenarios are evaluated five times for both methods.

Moderate Scenario Difficult Scenario

SCDP
success rate 100% 80%

collision rate 0% 20%
distance (meters) 8 7.4

DDP
success rate 80% 0%

collision rate 20% 20%
distance (meters) 7.7 7.1

(a) (b)

(c) (d)

Figure 7. Moderate and difficult-level real-time experimental setups. (a) Real-time evaluation
track with moderate-level obstacle configuration. (b) Visualization of the moderate-level obstacle
configuration and a sample trajectory in RVIZ. (c) Real-time evaluation track with difficult-level
obstacle configuration. (d) Visualization of the difficult-level obstacle configuration and a sample
trajectory in RVIZ.

The trajectories obtained with each method and each scenario are visualized in Figure 8.
Although it is practically more challenging to obtain the variety of obstacle configurations
in real experiments than in simulation, the difficult scenario is observed to contain signif-
icant challenges to benchmark algorithms considering the variation of the resulting five
trajectories. In contrast, in the moderate scenario, all trajectories follow a similar pattern.
Together with the challenge of higher maneuverability, the difficult scenario also introduces
more diverse, in-depth observations. Similar to the simulation results, the trajectories
obtained by SCDP are smoother than the baseline method.
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(a) (b)

(c) (d)

Figure 8. Trajectories acquired by five runs in the moderate and difficult scenario by SCDP and DDP
methods. (a) SCDP in the moderate scenario. (b) DDP in the moderate scenario. (c) SCDP in the
difficult scenario. (d) DDP in the difficult scenario.

5. Conclusions

In this work, an end-to-end planner is trained with DRL for safe navigation in clut-
tered obstacle environments. The end-to-end planning algorithm is trained and tested in
comprehensive simulations developed in Webots. While the training of the policy network
is handled without dynamics and control to save time, it is successfully sim-to-real trans-
ferred for physical evaluations. Moreover, safety boundaries for training are introduced,
which successfully prevents the quadrotor from being in hazardous situations. The method
is also deployed in real-world indoor environments successfully. The end-to-end planner
outperforms a baseline implementation based on the artificial potential field method, which
has a lower success rate, especially in cluttered obstacle settings. This shows that SCDP
has learned to make better long-term decisions. The real-world experiments demonstrate
that the proposed UAV planner trained solely with simulation can work directly in a
real environment.

There are also certain limitations of the proposed method to be addressed in future
work. First, although the proposed planning method does not require the computation of a
map, the neural network-based method still requires significant computational resources
in training and also in deployment. Currently, the inference time of the used network is
not suitable for real-time robot control. If the algorithm can run continuously in real-time,
there is a possibility to provide lower-level control commands, instead of waypoints, to
the UAV, which can improve the tracking performance of the robot. Second, due to the
black box characteristics of neural networks, the planner cannot be theoretically analyzed
similarly to conventional planning methods, such as its completeness.
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Abbreviations
The following abbreviations are used in this manuscript:

DRL deep reinforcement learning
UAV unmanned aerial vehicle
PPO proximal policy optimization
FOV field of view
PID proportional-integral-derivative
MDP Markov decision process
SITL software-in-the-loop
ROS robot operating system
SCDP safe continuous depth planner
CDP continuous depth planner
DDP discrete depth planner
APF artificial potential field

Appendix A

The following variables are used in this manuscript:

Table A1. Common variables in the manuscript.

t discrete timestep
st state at timestep t
at action at timestep t
rt reward at timestep t

Idepth matrix representing the depth image
L length of the global trajectory
U uniform distribution
N normal distribution
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ABSTRACT

Precise localization is a critical task for many Unmanned
Aerial Vehicle (UAV)-based applications. Inertial-based nav-
igation, which relies on Inertial Measurement Units (IMUs),
is extensively used to this end, due to its low-cost and small
footprint. However, IMU-based localization leads to accu-
mulating significant localization errors. To overcome this
limitation, in this paper we propose a data-efficient Deep
Reinforcement Learning (DRL) method that enables learning
how to correct localization errors from IMUs leading to more
precise localization. In contrast with supervised approaches,
the proposed method employs a novel data augmentation and
regularization approach, which requires collecting a minimal
number of real examples, while it is also platform-agnostic
and can account for manufacturing impressions. The effec-
tiveness of the proposed method is demonstrated both in a
simulation environment, as well as using a real UAV.

Index Terms— Deep Reinforcement Learning, Inertial-
based Localization, Data Augmentation

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used in
various applications, ranging from precision agriculture [1]
and search and rescue missions [2] to indoor surveillance [3].
A common point between these applications, along with vir-
tually every UAV-based application, is the need for precise
UAV localization. UAV localization is critical both for mis-
sion control purposes, i.e., some tasks are related to the loca-
tion of a UAV, as well as for safety purposes, i.e., avoid flights
over restricted areas. Several different approaches have been
developed for UAV localization, with each one relying on dif-
ferent sensors and providing a different level of accuracy.

Perhaps among the most well known localization ap-
proaches is using satellite-based radio-navigation systems,

This work was supported by the European Union’s Horizon 2020 Re-
search and Innovation Program (OpenDR) under Grant 871449. This pub-
lication reflects the authors’ views only. The European Commission is not
responsible for any use that may be made of the information it contains.

such as the Global Positioning System (GPS) [4, 5]. De-
spite its low cost the accuracy of GPS and related systems is
usually low. Indeed, according to the official GPS documen-
tation, GPS-enabled devices are normally accurate to within
a 4.9 meters (16 feet), which is unacceptable for many appli-
cations. At the same time, there are several locations where
there is no GPS coverage [6], while such approaches cannot
be used indoors. The use of real-time kinematic positioning
can further reduce the errors introduced in satellite-based
radio navigation [7], yet it typically requires the use of extra
base stations, which increases the cost and reduces the flexi-
bility of UAVs. Light detection and ranging approaches [8, 9],
also known as LIDAR, can be also used to provide accurate
localization, especially when coupled with simultaneous lo-
calization and mapping (SLAM) approaches [10]. However,
such approaches involve the use of very expensive sensors
and they have greater computational and energy demands.

On the other hand, the use of Inertial Measurement Units
(IMUs) [11], which is a combination of accelerometers, gy-
roscopes, and magnetometers can provide very low-cost so-
lutions that also do not rely on any kind of external hardware
or communication (e.g., satellites, base stations, etc.). The
localization is accomplished by utilizing IMU data for dead
reckoning, called Inertial Navigation System (INS) [12]. The
recent demand for smaller sensors that can be integrated into
cutting-edge technologies, has prompted engineers to build a
Micro Electro-Mechanical System (MEMS) which can pro-
vide low-cost and low-footprint sensors that can be very eas-
ily integrated with virtually any UAV and provide real-time
measurements. Despite the cost and flexibility benefits of
such systems, they also come with accuracy limitations. IMU
sensors monitor the linear acceleration and rotational velocity
of the body with just a very small degree of inaccuracy ev-
ery time. However, over long periods these errors can accu-
mulate leading to significant position drifts that can comprise
their application, especially when used as a sole localization
sensor in mission critical applications.

These limitations have fueled research on methods for
improving inertial-based navigation for UAVs [13, 14, 15].
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Many recent approaches built upon Deep Learning (DL)-
based models that allow for significantly improving the lo-
calization process. However, despite these improvements,
these approaches suffer from a significant drawback. They
mostly rely on supervised learning (either regression-based or
classification-based), which in turn requires a large number
of samples to be collected and annotated to train the corre-
sponding methods. At the same time, such approaches are
typically linked to the hardware used for data collection and
their performance deteriorates when deployed on different
hardware, requiring collecting data again and re-training the
models. Furthermore, even when using the same hardware,
manufacturing tolerances might lead to sensors that have dif-
ferent noise characteristics, which make the application of
supervised learning approaches challenging.

Deep Reinforcement Learning (DRL) can overcome these
limitations [16], since it enables autonomous agents to learn
just by interacting with the environment. Indeed, DRL meth-
ods have shown to achieve remarkable results in a variety of
tasks in recent years, often outperforming humans [17, 18].
However, directly applying DRL for improving inertial-based
navigation for UAVs is not directly feasible since: a) a feed-
back signal is still required in order to measure the quality
of the learned policy and b) a large number of episodes are
typically required for learning. Even though the first limi-
tation can be easily addressed, e.g., by using visual cues to
provide a feedback signal, the low-data efficiency of DRL ap-
proaches still pose a significant limitation that prohibits such
approaches from being deployed in practice.

Based on the aforementioned observations, in this work
we propose a pipeline that can allow for easing these lim-
itations, enabling data-efficient DRL on UAVs for inertial-
based navigation. The proposed method employs a two-stage
pipeline. In the first stage, a backbone is trained using su-
pervised learning in a simulator. Acquiring ground truth an-
notations in a simulator is easy and cheap, so this approach
can enabled us to train a backbone that can capture the dy-
namics of the behavior of IMUs without targeting a specific
sensor. Then, the employed DL model is fine-tuned using
DRL on a real UAV. Since this can be an especially data-
intensive process, we further propose: a) a data augmenta-
tion method that can generate multiple simulated episode tra-
jectories just from one real episode and b) a regularizer than
can provide additional feedback when fine-tuning the learned
policy based on the sign of the measured reward signal. For
acquiring a reward signal, we propose a simple, yet efficient
visual landmark-based approach that can be used even with
low-resolution cameras. As we demonstrated through exten-
sive experiments on regressing the 2D position of a UAV, the
proposed method can indeed lead to significant performance
improvements over the employed baseline approaches.

The rest of the paper is structured as follows. First, Sec-
tion 2 introduces the proposed methodology, while the ex-
perimental evaluation of the proposed method is provided in

Section 3. Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

2.1. Background

The simplest method to localize a UAV using a inertial-based
approach is to employ a first-order numerical approach to
solve ordinary differential equations (ODEs), which is some-
times referred to as Euler’s method. Specifically, Euler’s
method employs the basic formula:

y(t+ h) = y(t) + h ∗ f(t, x), (1)

where the f(t, x) is simply the dx/dt amount. In our case,
time-step is represented by h, time by t, position by x, and
velocity by f(t, x). Thus, we estimate the next instant posi-
tion, taking into account an initial position at every constant
time-step. Note, we assume that velocity between two mea-
surements remains constant throughout the flight. This simple
approach enables UAV localization through IMU sensors that
can be provide acceleration/speed estimates. However, the
noise that it is introduced by IMUs can lead to a significant
drift in the estimation of UAV position using this approach.

Neural Networks (NNs) can be employed in a supervised
learning setting in order to learn how these errors should be
corrected, allowing for improving the localization accuracy.
Let GW : Rm → Rn denote a regression model, parame-
terized by weights W, with m inputs and n outputs. Also,
let v ∈ Rm denote a vector that contains the most recent ve-
locity measurements, including the current one, provided by
the IMU. Then, the model y = GW(·) can be trained to pro-
vide corrected estimates for the current velocity, denoted by
y ∈ Rn. Note that typically n = 2, since we are interested in
estimating the speed in the 2d plane, ignoring the speed in the
vertical to this plane axis (height), since altimeter sensors can
provide reliable estimates for the vertical speed. Similarly, m
is typically set to m = 2 × T , where T denotes the history
(number of time steps) to include in the input that will be fed
to the neural network that will provide the corrected speed
estimates. Training GW(·) is straightforward, since we just
need to collect enough training samples of IMU velocity es-
timates and the corresponding ground truth velocities. Then,
the mean square error can be used for training the neural net-
work estimator using gradient descent. Furthermore, note that
typically the estimator GW(·) is fitted to regress the velocity
errors instead of the actual velocities, since this accelerates
the learning process. After estimating the velocity error, then
the corrected velocity can be used in (1) to acquire a more
reliable estimation of the UAV’s position.

2.2. Data-efficient DRL-based training

Even through the aforementioned process can be easily per-
formed inside a simulation environment, it is very expensive
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to perform using real UAVs, since extra equipment is required
for measuring the accurate position of a UAV and a large num-
ber of samples need to be collected. Therefore, in this paper
we propose a two step pipeline that consists of the follow-
ing steps: a) train a generic DL-based backbone model in a
simulator to correct generic IMU errors and b) fine-tune this
model on a real UAV using DRL. This process can overcome
the need to collect a large number of annotated training sam-
ples using a real UAV. However, as mentioned in Introduc-
tion, DRL methods are also data intensive. To overcome this
limitation, we proposed to use a data augmentation method
coupled with a regularizer that can increase data efficiency.

In this work, we propose to employ a DRL agent in order
to provide continuous corrections to UAVs estimates. More
specifically, we introduce a virtual agent that controls the es-
timation of the UAV’s position. Hence, there are two posi-
tions: the actual UAV and a sphere indicating its estimated
position. The DRL agent controls the latter by providing con-
tinuous corrections in the two axes of the 2d plane. This setup
also enables an easy way to acquire the feedback signal for
training the agent both in simulation and in real word. More
specifically, in simulation, for each episode the UAV runs a
predetermined course, e.g,. 2 meters to the North and 1 meter
to the East. Then, when the episode is finished, we project
the virtual UAV’s position as a black mark onto the floor, and
then, the UAV uses its camera to snap an image and provide
the reward signal. To present this concept with an example
to be more intuitively, if the position of the UAV is accurate,
the black mark will be centered in the captured image. In
contrast, the black mark would be in a different location if
the positions of the actual and virtual locations are different.
Then, the reward for each axis k can be calculated as:

Rk =
1

1 + |pk|
, (2)

where pk is the distance in pixels between the black mark and
the center of the captured image (which represents the po-
sition of the UAV). In real deployment, the black mark will
represent the desired UAV position based on the provided
control command. Then, the reward can be calculated in a
similar fashion and provide the same behavior (maximize as
the agent better corrects the displacement estimations). This
process enables training the DRL agent without having ac-
cess to ground truth data regarding the actual speed and/or
displacement on each step.

In this work, we employ Proximal Policy Optimization
(PPO) [19] for training the agent. This is without loss of
generality, since any DRL method that can support contin-
uous action spaces can be used. Furthermore, since the aim
is to accelerate the learning process as much as possible, we
employed the supervised learning model that was pre-trained
on the simulator to initialize the weights of the actor model.
Therefore, the DRL method is employed to fine-tune the DL
model to the actual hardware used in the UAV. To further

increase the efficiency of the learning process we designed
and used a data augmentation method to create additional
episodes during the training. The main concept is that the
reward of an episode remains unchanged if the angle of ve-
locity vectors and the actions are rotated simultaneously. To
this end, the proposed method selects the episode with the
highest reward from the buffered episodes and then several
synthetic episodes are created by rotating the velocities and
actions by a random angle ϕ ∈ [0, 360).

Finally, to further increase the learning speed and min-
imize the number of training episodes required to fine-tune
the agent to the actual IMU used, we propose employing a
hint regularizer that provides additional supervision based on
whether the agent is currently overshooting or undershooting
the desired position (as indicated by the sign of the distance
in (2)). Therefore, the regularizer for each axis is defined as:

Lreg,k = −αreg · δk · gRL(x) (3)

where αreg is the weight of the regularizer, δk it is a binary
variable {−1, 1} indicating whether we are currently over-
shooting or undershooting the target position and gRL(x) is
the agent’s output. Then, the overall loss is calculated by sim-
ply adding the regularizer for both axis to the PPO loss.

3. EXPERIMENTAL EVALUATION

We conducted experiments using both a simulated envi-
ronment, i.e., for supervised learning and validation of the
proposed DRL approach, as well as a real UAV. For the
simulated experiments, we employed Webots [20]. For su-
pervised learning, we collected 500 episodes with velocities
and ground truth positions. We also experimentally found
that the IMU measurement is biased depending on the vehi-
cle’s velocity and it is always underestimated. Therefore, we
estimate the velocity bias in the simulation environment as
v/(1 + 1/(1 + c ∗ |v|)), where c is an IMU-depended factor
and v is the ground truth velocity. For the supervised learning
model, we used c = 5, while for the evaluation we used in
all cases c = 2 to simulate the drift that can occur due to
hardware changes.

The IMU was pooled with a frequency of 25Hz, while
each episode has a total length of 10 seconds. We also used
an MLP with two hidden layers as a backbone, with 12 neu-
rons each with the tanh activation. Then, the network cul-
minates in two branches that output corrections for each di-
mension. In every branch, there are two extra trainable pa-
rameters, which are used for shifting and scaling the output
of the network. We found that when we re-train the network
with new data from alternative sensors, the convergence suc-
ceeds more quickly due to these variables, which allows for
promptly shifting and scaling the output without refitting all
the weights of the backbone. The network receives a one-
second time frame of velocities, i.e., 25 measurements along
each of the two axes, and returns two corrections, one of each
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Baseline Supervised method RL-based fine-tuning

Fig. 1. Comparison between baseline (Euler’s method) (left), supervised training (middle) and RL-based fine-tuning (right).
Each axis corresponds to the displacement of a UAV in the 2d space when flying on a pre-determined course.

axis. The mean squared error was used for training the super-
vised model using the Adam optimizer and a learning rate of
3×10−2. The optimization ran for 10 epochs with a batch size
of 512, while the learning rate was reduced when the learn-
ing process approached a plateau (the reduction factor was set
to 0.1 and patience to 10). For the DRL setup, we used the
same configuration as the previous model for the actor, while
an MLP with 2 hidden layers with 12 neurons each was used
as a critic. The models were trained for 30 epochs with a
learning rate of 9× 10−5 and 5× 10−3 in actor and critic ac-
cordingly. PPO algorithm was used for fitting the DRL agent,
while the clipping factor was set to 0.15.

First, we evaluated the proposed method in simulation
using Webots. The experimental comparison between Euler’s
method with no corrections, the supervised method trained
on a model with c = 5, and the proposed RL-based fine-
tuning of the supervised model are shown in Fig. 1. As
demonstrated, using DRL to fine-tune the model trained in
simulation to adjust the actual characteristics of a specific
UAV leads to significant improvements. Based on these
observations we evaluated the ability of the proposed data-
efficient RL approach compared to the baseline Euler method.
The results are reported in Table 1 where we report the mean
squared error (MSE), mean distance (MD), mean positional
error (MPE), and absolute trajectory error (ATE) between
the ground truth displacement and the one estimated by the
DRL models. These results indicate that the proposed method
can improve DRL agents’ performance when training under
a constrained number of episodes (i.e., 30 episodes). Note
that as the duration of an episode increases, the error still
accumulates. Nonetheless, the proposed method manages
to significantly reduce all the error metrics compared to the
baseline. Finally, we also validated the proposed method
using data collected from a DJI Mavic mini 2 UAV using
different velocities. The results reported in Table 2 again
confirm that for a wide range of different speeds the proposed

Table 1. DRL fine-tuning evaluation on Webots using a dis-
tribution shift scenario (c changes from 5 to 2).

10 secs

metrics baseline supervised proposed

MSE 12.297 2.975 0.101
MD 3.438 1.692 0.286
MPE 1.714 0.931 0.212
ATE 2.008 1.073 0.251

100 secs

MSE 1225.922 312.100 18.832
MD 34.437 17.444 3.816
MPE 18.376 141.05 2.053
ATE 21.014 10.696 7.613

Table 2. DRL fine-tuning evaluation using a DJI Mavic 2
UAV. The percentage of estimated distance covered to the true
distance (MPE, %) is reported for different flying speeds.

Vel. (m/s) 0.1 0.3 1.1 1.4 2.2 2.8

baseline (%) 46.58 86.20 87.51 94.46 96.06 95.70
proposed (%) 80.59 98.14 106.89 99.31 102.98 98.14

method still leads to better performance.

4. CONCLUSIONS

In this paper, we proposed a data-efficient DRL approach for
improving inertial-based navigation for a UAV. The proposed
method employed a two-stage pipeline: in the first stage, a
backbone is trained using supervised learning, while in the
second stage a data-efficient DRL-based approach for fine-
tuning is used. We demonstrated that the proposed method
can indeed allow for improving inertial-based navigation, fo-
cusing on cases where the IMUs used in UAVs can have dif-
ferent characteristics requiring UAV-specific fine-tuning us-
ing a very small number of real episodes.

95



5. REFERENCES

[1] Panagiotis Radoglou-Grammatikis, Panagiotis Sarigian-
nidis, Thomas Lagkas, and Ioannis Moscholios, “A
compilation of uav applications for precision agricul-
ture,” Computer Networks, vol. 172, pp. 107148, 2020.

[2] Ebtehal Turki Alotaibi, Shahad Saleh Alqefari, and Anis
Koubaa, “Lsar: Multi-uav collaboration for search and
rescue missions,” IEEE Access, vol. 7, pp. 55817–
55832, 2019.

[3] Natthawat Boonyathanmig, Sarun Gongmanee,
Prachaya Kayunyeam, Piyavat Wutticho, and Sethakarn
Prongnuch, “Design and implementation of mini-uav
for indoor surveillance,” in Proceedings of the 9th Inter-
national Electrical Engineering Congress (iEECON),
2021, pp. 305–308.

[4] Salah Sukkarieh, Eduardo Mario Nebot, and Hugh F
Durrant-Whyte, “A high integrity imu/gps navigation
loop for autonomous land vehicle applications,” IEEE
Transactions on Robotics and Automation, vol. 15, no.
3, pp. 572–578, 1999.

[5] Songlai Han and Jinling Wang, “Integrated gps/ins nav-
igation system with dual-rate kalman filter,” GPS Solu-
tions, vol. 16, no. 3, pp. 389–404, 2012.

[6] “GPS Accuracy,” https://www.gps.gov/
systems/gps/performance/accuracy/,
Accessed: 2022-07-21.

[7] Patrick Henkel, Ulrich Mittmann, and Michele
Iafrancesco, “Real-time kinematic positioning with
gps and glonass,” in Proceedings of the 24th European
Signal Processing Conference (EUSIPCO), 2016, pp.
1063–1067.

[8] Michel Jaboyedoff, Thierry Oppikofer, Antonio
Abellán, Marc-Henri Derron, Alex Loye, Richard
Metzger, and Andrea Pedrazzini, “Use of lidar in
landslide investigations: a review,” Natural Hazards,
vol. 61, no. 1, pp. 5–28, 2012.

[9] Frederick G Fernald, “Analysis of atmospheric lidar ob-
servations: some comments,” Applied Optics, vol. 23,
no. 5, pp. 652–653, 1984.

[10] Dinh Van Nam and Kim Gon-Woo, “Solid-state lidar
based-slam: A concise review and application,” in Pro-
ceedings of th IEEE International Conference on Big
Data and Smart Computing (BigComp), 2021, pp. 302–
305.

[11] Norhafizan Ahmad, Raja Ariffin Raja Ghazilla, Nazi-
rah M Khairi, and Vijayabaskar Kasi, “Reviews on

various inertial measurement unit (imu) sensor applica-
tions,” International Journal of Signal Processing Sys-
tems, vol. 1, no. 2, pp. 256–262, 2013.

[12] Billur Barshan and Hugh F Durrant-Whyte, “Inertial
navigation systems for mobile robots,” IEEE Transac-
tions on Robotics and Automation, vol. 11, no. 3, pp.
328–342, 1995.

[13] Martin Brossard, Axel Barrau, and Silvere Bonnabel,
“Rins-w: Robust inertial navigation system on wheels,”
in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2019,
pp. 2068–2075.

[14] Santiago Cortés, Arno Solin, and Juho Kannala, “Deep
learning based speed estimation for constraining strap-
down inertial navigation on smartphones,” in Proceed-
ings of the IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), 2018, pp. 1–6.

[15] Sachini Herath, Hang Yan, and Yasutaka Furukawa,
“Ronin: Robust neural inertial navigation in the wild:
Benchmark, evaluations, & new methods,” in Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 3146–3152.

[16] Jacob Buckman, Danijar Hafner, George Tucker, Eu-
gene Brevdo, and Honglak Lee, “Sample-efficient rein-
forcement learning with stochastic ensemble value ex-
pansion,” Proceedings of the Advances in Neural Infor-
mation Processing Systems, vol. 31, 2018.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

[18] David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Sci-
ence, vol. 362, no. 6419, pp. 1140–1144, 2018.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[20] Olivier Michel, “Cyberbotics ltd. webots™: profes-
sional mobile robot simulation,” International Journal
of Advanced Robotic Systems, vol. 1, no. 1, pp. 5, 2004.

96



D5.3: Third report on deep robot action and decision making 97/147

OpenDR No. 871449



D5.3: Third report on deep robot action and decision making 98/147

F

SingleDemoGrasp: Learning to Grasp From a Single Image
Demonstration
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Abstract— Learning-based grasping models typically require
a large amount of training data and training time to generate
an effective grasping model. Alternatively, small non-generic
grasp models have been proposed that are tailored to specific
objects by, for example, directly predicting the object’s location
in 2/3D space, and determining suitable grasp poses by post
processing. In both cases, data generation is a bottleneck, as
this needs to be separately collected and annotated for each
individual object and image. In this work, we tackle these
issues and propose a grasping model that is developed in four
main steps: 1. Visual object grasp demonstration, 2. Data
augmentation, 3. Grasp detection model training and 4. Robot
grasping action. Four different vision-based grasp models are
evaluated with industrial and 3D printed objects, robot and
standard gripper, in both simulation and real environments.
The grasping model is implemented in the OpenDR toolkit
at: https://github.com/opendr-eu/opendr/tree/
master/projects/control/single_demo_grasp.

Index Terms— Grasping, Deep Learning in Grasping and
Manipulation, Perception for Grasping and Manipulation

I. INTRODUCTION

Collaborative robots have gained popularity in industry
as they are designed to be safe, particularly where human
and robot share the workspace. Accompanied by intuitive
programming interfaces, robot tasks can be programmed
efficiently [1]. Despite the benefits, the application of cobots
in industrial settings are mainly limited to offline tasks where
the actions and targets are defined to the system beforehand
[2]. For example, in the majority of pick and place tasks,
object poses are fixed, and the robotic arm should reach
a predefined grasp pose. Although there is great interest
in the generation of object grasp models from visual data,
[3], limitations still exist, for example, in terms of object
type coverage, grasp success, training complexity, model
inference time, etc. In particular, while grasp models have
reported high success rate (e.g., Dex-Net 4.0 [4] achieves
above 95% accuracy), this typically only holds for the task
at hand, i.e., bin picking with generic household items. Eval-
uating such grasping model on objects that exhibit different
properties (e.g., industrial parts) might result in unsuccessful
grasp attempts and an overall lower accuracy. In addition,
grasp modelling requires vast amounts of training data and
considerable training time on high-performance computing
clusters. Consequently, state of the art grasping models can
be large in size and slow to execute [5].

1Unit of Automation Technology and Mechanical Engineering, 2Unit
of Computing Sciences, Tampere University, 33720, Tampere, Finland;
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Fig. 1: Overview of the proposed grasping model.

Extending an existing dataset and retraining a grasping
model is in most cases not an option, due to unavailable data
or limitations in resources and computation power. These
problems exist in particular for small and medium sized
enterprises (SME), which typically don’t have the knowledge
and resources available for data collection, model training
and fine-tuning.

Our main observation to motivate this work is that collect-
ing or generating training data for a grasp detection model
is a tedious, time-consuming and costly task, which is often
out of reach in industrial environments. Even though plenty
datasets can be found [6], [7], each are limited (to some
extend) to the objects they contain. Industrial SMEs require
the handling of objects that, in most cases, do not resemble
objects in these datasets, or the objects themselves can
change depending on a customer’s requirement. Moreover,
as the handling of such objects requires a human pre-
selected grasp pose, a single generic model for all objects is
unfeasible.

In this work, we aimed to tackle this issue by investigating
visual learning-based approaches for object grasp detection,
with human annotation of a desired object grasp pose.
For this, different variants of the R-CNN architecture from
Detectron2 [8] are evaluated for the fast generation of a
grasping model. Single or multiple image demonstrations
with human annotations of an object grasp are collected and
utilized to generate an augmented object training dataset,
from which a detection model is trained. Object grasp
detection results (object grasp position and orientation on
a plane) are transformed to a 3D grasp pose and given as
input for robot motion planning (see Fig. 1). Four different
networks are developed and evaluated in simulation (Webots)
with eight different objects. The grasp detection model with
best performance was then implemented and evaluated in
real robot experiments (Franka robot with standard gripper).
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The main contributions of our work are as follows:

• Four different planar grasp models based on pre-
trained object detection models.

• Data generation by image augmentation of image
demonstrations with human annotation.

• Training of grasp detection networks in short time.
• Evaluation of the grasping approach in simulation

and with real experiments.

The paper is organized as follows: Section II reviews
related works and state of the art in computer vision and
grasping methods. Section III and Section IV define the
considered problem statement and research methodology,
respectively. Section V describes the implementation details
of the proposed grasping model, and Section VI reports
the results and provides an analysis. Finally, Section VII
concludes the work.

II. RELATED WORK

In the context of robotics, object detection, pose estimation
and grasp detection are closely related, as grasp poses or
grasp actions can be directly generated from an object pose.
This section presents a brief overview of related approaches.

A. Object Detection and Pose Estimation

Traditionally, object detection and pose estimation algo-
rithms have utilized classical 2D features that exploit local
salient details, such as corners, edges and ridges. Well-known
detectors like SIFT [9] can extract robust keypoints from a
scene by relying on texture on objects or of the scene itself.
Texture-less keypoint detection, on the other hand, utilizes
geometrical primitives as features in methods such as BIND
[10]. In addition, alternatives to traditional keypoints are tem-
plate matching, where a image patch provides the template
to localize within an image, or deep features that extract
keypoints based on high-level cues captured by convolutional
neural networks. The latter is a recent development that
has gained popularity due to their data-driven property and
promising performance [11], as compared to hand-crafted
features. Analogous to 2D keypoints for RGB images, 3D
keypoints can be extracted from 3D data representations,
such as pointclouds or volumetric images [12]. Following
the detection of keypoints from a raw image, follow-up steps
include the description of the keypoint and the matching
of them over two or multiple images. In a similar manner,
Convolutional Neural Network (CNN) based detectors, such
as Faster R-CNN [13], could be utilized to detect objects,
after which a grasp pose needs to be be extracted.

Object pose estimation on the other hand directly estimates
the 6D pose of an object. Similar to object detection, different
approaches exist, such as correspondence-based methods
3DMatch [14], template-based methods such as PoseCNN
[15] and voting based methods such as DenseFusion [16].
Again, once an object pose is extracted, this needs to be
converted to a grasp pose suitable for a robot to hold an
object.

B. Grasp Detection

Object grasp detection aims to derive a grasp pose directly
from sensor measurements and can be divided in several
categories to differentiate between approaches and their
assumptions. For example, the representation of a grasp is
an important consideration and determines the complexity
of the problem and its application. When considering only a
planar grasp pose representation, grasp detection is simplified
to finding the object and its orientation on a planar surface,
typically represented as an (oriented) bounding box, where
the center of the box is the grasp position [17], [18]. On
the other hand, in case a complete 3D pose is required for
grasping, detection should return the full 3D position and
3D orientation [19]. In context of learning-based grasp de-
tection, typical data-driven approaches differentiate between
the utilization of RGB [20], depth (in form of pointclouds
[21], [22]) or a combination of both (RGB-D, [23], [24]).
In addition, objects to be grasped can be known, similar
(i.e., different instance of a known category) or novel, which
should be considered when deciding (or developing) on the
data representation, collection and training approach [25].

The methods explained generate a grasp pose and require
motion planning to execute a grasping action. Such mo-
tion planning approaches can be generally listed as motion
primitive-based methods, imitation learning and reinforce-
ment learning methods [5], [25].

C. Datasets

Existing datasets for 2D object detection, such as Pascal
VOC [26], COCO [27] and, more recently, Objectron [28]
for 3D objects, are widely available, including common
objects that are present in everyday scenes. There are also
datasets designed specifically for grasping such as EGAD!
that contains 3D meshes with diverse properties [6] to
cover variations in object properties, and datasets that uti-
lize simulation for the grasp data collection, e.g., Jacquard
[29] and ACRONYM [7]. These publicly available datasets
include different categories of objects enabling a reasonable
comparison and performance evaluation of grasping models.
However, they are not suitable for applications where the
target objects are not included in the dataset, simply because
no success rate can be guaranteed.

III. PROBLEM STATEMENT

The robot object grasping scenario considers a robot ma-
nipulator with standard gripper and objects that are located
on a planar table in front of it (see Fig. 2). Objects of interest
are unknown beforehand (e.g., industrial objects) and can
have both simple or complex geometry. All objects should
allow for a stable grasp, without alteration to the gripper or
object pose and be light enough to be lifted (< 1 kg). As
general rule, we denote that each object can be represented
by a 2D planar position and 1D orientation {x, y, θ}, from
which a grasp pose is extracted, with rotation and translation
defined as R(θ) ∈ SO(3) and t(x, y) ∈ R3. Our observation
is that one common grasp model for a selection of objects is
difficult to generate. Instead, our approach aims to generate
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Fig. 2: Object grasping scenario.

a grasp model for individual objects, thereby avoiding mod-
elling conflicts with objects that have different properties. In
addition, grasp models need to be generated and deployed
fast, without large computational resources, thus restricting
the data generation and model training process. This implies
that for perception only RGB images are used, with a camera
located on the end-effector of the robot.

In summary, the grasping problem can then be stated as
follows: from a single image demonstrations of an object
annotated with its grasp, generate suitable training data and
train a grasp detection model that can run in real-time to
successfully grasp the object.

IV. METHODOLOGY

Four different grasp detection modules are developed and
implemented to find the most robust approach for extracting
planar grasp poses. In all cases, the grasping approach
consists of the following four distinct steps (Fig. 1):

1) Human input - captures and annotates the object in
the field of view of the camera.

2) Training data - is generated automatically by applying
data augmentation techniques.

3) Object grasp pose - is estimated based on different
state of the art neural networks.

4) Grasping action - is done after converting planar grasp
to 3D Cartesian pose.

Following, we describe the four different grasp detection
modules and their required image annotations. An overview
of the models is depicted in Fig. 3 and described in Table I.

A. Faster R-CNN-based Grasp Detection

Model A separates the object grasp location and orien-
tation estimation into two different detection models, i.e.,
Faster R-CNN and CNN, respectively. The Faster R-CNN
network takes images and their corresponding annotation as
input for training, and generates a bounding box around the
objects if they are present in the image scene. The center
location of the bounding box is then used as grasp position.
In order to predict the grasp orientation, a CNN network

is implemented where the final layer consists of 360 output
nodes to represent the object’s orientation. The first layer
of this CNN network accepts image arrays with a size of
(224× 224× 3) to extract features and classifies the object
based on the highest score to predict the corresponding
orientation. Input annotation on the image is done by defining
a bounding box around the object. One additional step is
required for the orientation, by using the bounding box to
crop and resize the region of interest that are labeled with
the corresponding orientation.

B. Keypoint R-CNN-based Grasp Detection by Bounding box

Model B utilizes the Keypoint R-CNN network to detect
both object, represented as a bounding box, and keypoints
of an object. For human annotation, a bounding box and two
keypoints on the object need to be defined. The keypoints
represent the reference orientation for the grasp, from which
the augmentation will add ten more keypoints. The estimated
bounding box center can then be used as the robot’s interme-
diate hover position, before a relative orientation is extracted
from the keypoints to form the grasp pose.

C. Keypoint R-CNN-based Grasp Detection

Model C is an improvement of Model B by retrieving the
grasp position and orientation directly from the keypoints.
Therefore, the same network as in model B is used, and the
bounding box information is not utilized. Annotation follows
the same approach as Model B, with 12 keypoints used in
total for grasp detection.

D. Mask R-CNN-based grasp detection

Model D utilizes Mask R-CNN to predict an object mask
and returns a planar object position and orientation. This is
possible, as the grasping approach only requires 2D object
information, based on the object mask that separates the
object from the background. One additional step is necessary
to determine the grasp orientation, which is done by con-
verting the mask over the object to a binary image followed
by local feature extraction methods (SIFT) to estimate the
relative orientation. Annotation of the input image requires
a bounding box to be drawn around the object and also a set
of keypoints to construct a mask/polygon around the object.

E. Augmented Dataset Generation

Dataset generation utilizes a single or multiple input
images (RGB, 480 × 640 × 3, see Fig. 4a) taken above the
workspace in which the target object is visible. These images
are then annotated by a person as explained in previous
sections and as illustrated in Fig. 4b, depending on their
corresponding model input format (see Table I). Then, a
sequence of image augmentation techniques are performed
to the input annotation, consisting of cropping, zooming,
rotation, translation, etc. (see Fig. 4c). For each model, 1500
training samples and 200 validation samples are generated,
for position and orientation data, respectively. For the CNN
network of model A, the number of generated samples for
training an orientation predictor is 5000. More details about
each model can be found in Table I.
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Fig. 3: Overview of the grasp detection approach from a single RGB image demonstration. The grasp detection models
utilize the R-CNN architecture family from Detectron2 to generate keypoints, mask and bounding box and extract an object
grasp pose. Separately, one CNN network is developed to obtain the object grasp orientation for model A. Abbreviations
denote; FPN: Feature Pyramid Network, RPN: Region Proposal Network, ROI: Region Of Interest, KP: Keypoints, BB:
bounding box.

TABLE I: Object grasp detection models. Abbreviations: BB - bounding box, KP - keypoints, CL - class label.

Object position estimation Object orientation estimation
Grasping

model
Pre-trained

model Output format Pre-trained
model Method Human input

annotation Training data

A Faster R-CNN BB CNN Classification BB BB, cropped box
B Keypoint R-CNN BB and KP Keypoint R-CNN KP BB, 2 KP BB, KP, CL
C Keypoint R-CNN KP Keypoint R-CNN KP 2 KP KP, CL
D Mask R-CNN BB and object mask Mask R-CNN mask + SIFT BB, mask BB, mask, CL

V. IMPLEMENTATION

Implementation of the proposed grasping models include
the overall architecture, the grasp detection networks, as well
as simulation environment.

A. Architecture

The grasping approach is divided into two major compu-
tation nodes, which are explained as follows.

Perception - feeds the neural network models with the
input images, runs inference and generates an output. The
raw output of the models as explained in Section IV are
then used to calculate the planar grasp pose of the object
with respect to the image plane. This 2D information is then
transformed into 3D coordinates in the world frame and sent
to the motion controller node. The transformation from 2D
to 3D is done by utilizing a pin-hole camera model, as all the
intrinsic and extrinsic parameters of the camera are available.
The structure of the perception node is illustrated in Fig. 3.

Motion control - generates the actions and motions of
the robot manipulator and gripper in order to execute a
grasp. It receives input from the perception node, and directly
commands a grasping action. Motion generation is done
using ROS MoveIt1, with a Cartesian position controller
running on the robot at 1000 Hz.

1https://moveit.ros.org

B. Grasp Detection Networks

All the models utilize Detectron2 [8] as their perception
module. The generated training data and their corresponding
labels are fed to the learner, according to the corresponding
model input format (see Table I), resulting in one unique
grasp detection model for each object. The object grasping
approach is implemented in PyTorch, with ROS for commu-
nication, and integrated in the OpenDR toolkit [30]. As for
the training hyperparameters, object detection for model A
utilizes a learning rate of 0.005 and 8 images per batch to
train for 500 iterations. For orientation prediction in model
A training utilizes a batch size of 32, for 15 epochs with
a categorical cross-entropy loss function. Models B, C and
D utilize the same hyperparameters, with a learning rate of
0.0008, 2 images per batch for 1000 iterations.

C. Simulation Environment

For fast evaluation of the developed grasp detection mod-
els, the entire grasp detection and execution framework has
been implemented in robotics simulation. This enables grasp-
ing models to be assessed without costly robotic hardware,
speeding up developments considerably. For this purpose,
3D models of all objects are included and relevant object
and physics parameters can be changed to understand the
capabilities and limitations of the grasping models. Webots
(see Fig. 5a) is utilized to demonstrate the functionalities,
and is freely available to the research community.
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(a) (b) (c)

Fig. 4: Training data generation for the planar grasp models. (a) depicts examples of input images for human annotation. (b)
depicts the annotations for the four different grasp models (bounding box, keypoints and/or mask, see Table I). (c) depicts
augmented images, with variation in brightness, translation, rotation and scale, generated from input and annotated images.

VI. RESULTS AND COMPARISON

Experimental results, their analysis and a comparison to
other related work follows in this section.

A. Object Grasping Scenario

To evaluate the performance of the developed models, the
grasping scenario is first performed in simulation, after which
the best performing model is evaluated by experiments on a
real robot. In both cases the scenario includes a collaborative
robot (Franka Emika), RGB camera (Intel Realsense D-435)
and standard gripper (see Fig. 2). The objects selected for
evaluation are depicted in Fig. 5b and include parts from a
real Diesel engine and several 3D-printed objects. Variations
in object properties are thereby included in terms of mass
distribution, texture, symmetry and scale, which is useful as
human annotation input determines the object grasp pose.
For example, the Diesel engine fuel line (curved pipe) has
a small width and a non symmetric shape with even mass
distribution, while the Diesel engine piston has a symmetric
shape, low aspect ratio and an uneven mass distribution. All
objects are placed at random configuration on the table in
front of the robot and 10 robot grasp attempts are executed
for each object from different robot starting configurations.

B. Grasp Detection Results

Table II lists the performance of each developed model for
all objects, expressed as the percentage of successful grasps.
For each object 10 grasp detections and grasp attempts
are made, therefore, for each model 80 grasp attempts are
made in total. While the success rate of all models are
within a similar range (i.e., between 78%-93%), some crucial
differences can be identified as follows.

Model A is essentially a two-stage detector, with two
separate training datasets and training steps, and, during in-
ference, two consecutive predictions, to estimate the position
and orientation of an object grasp. This, unfortunately, makes
the model computationally and practically less efficient,
compared to the other models. The high success rate is found
to be due to a more robust bounding box detection by Faster

R-CNN, compared to the keypoint detectors, in terms of the
Minimum Area Rectangle (MAR).

Model B and C utilize keypoints for object grasp detection,
with the difference that model B utilizes an estimated bound-
ing box for the grasp orientation, while model C extracts
this information from the keypoints themselves. While model
C demonstrated the highest success rate among all models,
keypoints have the limitation that a direct relation between
detected keypoints and the actual grasp pose is difficult to
realize. We discuss this further in Section VI-D. The high
grasp success rate is in this case also achieved by increasing
the number of input images and their annotations to seven.

Finally, model D achieved the lowest grasp success rate,
partly due to the complexity of detecting the mask of an
object. This requires a large number of features on the object,
complicating the problem when objects share similarities
with each other. In addition, the annotation of an input
image is slightly more difficult as the user has to draw
a mask/polygon over the object. Fig. 6 depicts several
successful object grasping results with model C.

C. Computational Performance

All developed models could be trained to relatively high
success rate (i.e., ≈ 80%) with a manageable dataset size.
This implies around 1500 image samples, leading to a
training time below ten minutes. The only exception is
model A, where a slightly larger set of images was required
for the object grasp orientation estimation and a longer
overall training time. All trained models are light-weight
(below 0.5GB), meaning they allow for training and real-
time execution on a standard GPU (see Table II). In all,
with the required data augmentation, dataset size and grasp
model training time, it is possible to generate an object grasp
model from single or multiple image demonstrations in under
15 minutes. This is very short, compared to other state of the
art, e.g., 24hrs in case of [4]. However, it has to be noted that
such comparison should take into account crucial differences
between each method, such as grasp representation (planar
vs. 6DOF) and image format (RGB vs. depth).
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(a) (b)

Fig. 5: Evaluation of the grasp detection models is done in Webots simulation environment (a) and by experiments with
real objects (b). Objects used for evaluation include Diesel engine parts and 3D printed objects.

TABLE II: Object grasping results are averaged for eight objects, with 10 attempts per object (80 attempts in total).

Training Inference

Model Dataset size Training time
hr:min:sec Model size GTX 1080 Ti

(FPS)
GeForce 940mx

(FPS)
Success rate

(%)

A Faster R-CNN: 1500
CNN: 5000

00:14:00
00:02:00

Faster R-CNN: 300 MB
CNN: 8 MB

20 2.5

91

B 1500 00:07:30 450 MB 83
C (simulation) 1500 00:07:00 450 MB 94
C (real experiment) 2000 00:08:00 450 MB 89
D 1500 00:06:30 330 MB 78

D. Limitations

During the experiments, random objects were placed in the
view of the camera to observe the effect of unseen and similar
objects to the grasp detection models. Even though this did
not pose any major issues (i.e., no false positives), typical
challenges in visual detection, such as illumination effects
and object overlap, remain. While such effects can be taken
into account in the training dataset, this would increase the
size of the grasp model. Similarly, since only a single view of
an object is used for demonstration, situations might occur
where a current viewpoint of the camera does not capture
the object well. One solution to this is to include multiple
views of an object, each with their individual annotations,
which increases the robustness of grasp detection. In our
experiments, the results for model C where obtained with
seven different views and annotations of the object.

The proposed approach only utilizes RGB images, mean-
ing depth information is not taken into account, as compared
to other work [21], [22]. Therefore, the grasping height must
be known or estimated prior to a grasp action. This can be
solved either by calibrating the camera with respect to the
robot and its work area and assuming a fixed grasp height
above the table, or by hand-guiding the robot to a desired
grasp height. In this work, the former approach was taken.

A further limitation of our approach is the choice of object
grasp annotations. For all models, an object grasp is only
defined by a bounding box around the object (similar to
[18]) and/or several keypoints. In some cases, this does not
represent well the grasp pose of an object, for example when

a grasp position is not in the center of the bounding box or
keypoint set. In such case, the grasp position should be offset
by the required distance from the center.

Finally, the planar grasp representation limits the approach
to only top grasps with an end-effector pose perpendicular to
the table (see Fig. 2). Other end-effector and/or grasp poses,
would need to be modelled and integrated separately. One
possible solution is to include depth sensing to extract the
distance between object and gripper for 6D grasps.

VII. CONCLUSIONS

This work proposed a fast modelling approach for vision-
based object grasp detection. Based on a single human object
grasp annotation, an augmented dataset of RGB training
images is generated, to be utilized for training a grasp de-
tection model. Four different planar grasp detection models,
each with different human annotations and grasp detection
approach, are evaluated and implemented in simulation. All
models are light-weight (below 0.5GB), enabling real-time
inference. Best results were obtained with a keypoint-based
model, which was further demonstrated with real robot
grasping experiments. In all, from a human object grasp
annotation, the augmented dataset and grasp model training,
the approach enables the generation of a planar object grasp
model in under 15 minutes.
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Fig. 6: Successful object grasping results with model C for different parts: (a) bolt, (b), gear casing, (c) Diesel engine
common rail, (d) 3D printed part and (e) Diesel engine fuel line.
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Adaptively Calibrated Critic Estimates for Deep Reinforcement
Learning

Nicolai Dorka1 and Tim Welschehold1 and Joschka Bödecker1 and Wolfram Burgard2

Abstract— Accurate value estimates are important for off-
policy reinforcement learning. Algorithms based on temporal
difference learning typically are prone to an over- or underes-
timation bias building up over time. In this paper, we propose
a general method called Adaptively Calibrated Critics (ACC)
that uses the most recent high variance but unbiased on-policy
rollouts to alleviate the bias of the low variance temporal
difference targets. We apply ACC to Truncated Quantile
Critics [1], which is an algorithm for continuous control that
allows regulation of the bias with a hyperparameter tuned per
environment. The resulting algorithm adaptively adjusts the
parameter during training rendering hyperparameter search
unnecessary and sets a new state of the art on the OpenAI gym
continuous control benchmark among all algorithms that do
not tune hyperparameters for each environment. ACC further
achieves improved results on different tasks from the Meta-
World robot benchmark. Additionally, we demonstrate the
generality of ACC by applying it to TD3 [2] and showing an
improved performance also in this setting.

I. INTRODUCTION

Off-policy reinforcement learning is an important research
direction as the reuse of old experience promises to make
these methods more sample efficient than their on-policy
counterparts. This is an important property for many applica-
tions such as robotics where interactions with the environment
are very time- and cost-intensive. Many successful off-policy
methods make use of a learned Q-value function [2], [3],
[4], [5]. If the action space is discrete the Q-function can be
directly used to generate actions while for continuous action
spaces it is usually used in an actor-critic setting where the
policy is trained to choose actions that maximize the Q-
function. In both cases accurate estimates of the Q-values are
of crucial importance.

Unfortunately, learning the Q-function off-policy can lead
to an overestimation bias [6]. Especially when a nonlinear
function approximator is used to model the Q-function, there
are many potential sources of bias. Different heuristics were
proposed for their mitigation, such as the double estimator in
the case of discrete action spaces [7] or taking the minimum
of two estimates in the case of continuous actions [2]. While
these methods successfully prevent extreme overestimation,
due to their coarse nature, they can still induce under- or
overestimation bias to a varying degree depending on the
environment [8].

To overcome these problems we propose a principled
and general method to alleviate the bias called Adaptively

Authors are with: 1University of Freiburg and 2 University of Technology
Nuremberg, Germany. dorka@cs.uni-freiburg.de.

This work was supported by the European Union’s Horizon 2020 research
and innovation program under grant agreement No 871449-OpenDR.

Calibrated Critics (ACC). Our algorithm uses the most recent
on-policy rollouts to determine the current bias of the Q-
estimates and adjusts a bias controlling parameter accordingly.
This parameter adapts the size of the temporal difference
(TD) targets such that the bias can be corrected in the
subsequent updates. As the parameter changes slower than the
rollout returns, our method still benefits from stable and low-
variance temporal difference targets, while it incorporates the
information from unbiased but high variance samples from
the recent policy to reduce the bias.

We apply ACC to Truncated Quantile Critics (TQC) [1],
which is a recent off-policy actor-critic algorithm for continuous
control showing strong performance on various tasks. In TQC
the bias can be controlled in a finegrained way with the help of a
hyperparameter that has to be tuned for every environment. ACC
allows to automatically adjusts this parameter online during
the training in the environment. As a result, it eliminates the
need to tune this hyperparameter in a new environment, which
is very expensive or even infeasible for many applications.

We evaluate our algorithm on a range of continuous control
tasks from OpenAI gym [9] and robotic tasks from the meta
world benchmark [10] and exceed the current state-of-the-
art results among all algorithms that do not need tuning of
environment-specific hyperparameters. For each environment,
ACC matches the performance of TQC with the optimal
hyperparameter for that environment. Further, we show that
the automatic bias correction allows to increase the number of
value function updates performed per environment step, which
results in even larger performance gains in the sample-efficient
regime. We additionally apply ACC to the TD3 algorithm
[2] where it also leads to notably improved performance,
underscoring the generality of our proposed method. To
summarize, the main contributions of this work are:

1) We propose Adaptively Calibrated Critics, a new general
algorithm that reduces the bias of value estimates in
a principled fashion with the help of the most recent
unbiased on-policy rollouts.

2) As a practical implementation we describe how ACC can
be applied to learn a bias-controlling hyperparameter of
the TQC algorithm and show that the resulting algorithm
sets a new state of the art on the OpenAI continuous
control benchmark suite.

3) ACC achieves strong performance on robotics tasks.
4) We demonstrate that ACC is a general algorithm with re-

spect to the adjusted parameter by additionally applying
it successfully to TD3.

To allow for reproducibility of our results we describe our
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algorithm in detail, report all hyperparameters, use a large
number of random seeds for evaluation, and made the source
code publicly available1.

II. BACKGROUND

We consider model-free reinforcement learning for episodic
tasks with continuous state and action spaces S and A. An
agent interacts with its environment by selecting an action
at ∈ A in state st ∈ S for every discrete time step t. The
agent receives a scalar reward rt and transitions to a new state
st+1. To model this in a mathematical framework we use a
Markov decision process, defined by the tuple (S,A,P,R, γ).
Given an action a ∈ A in state s ∈ S the unknown state
transition density P defines a distribution over the next state.
Rewards come from the reward function R and future rewards
are discounted via the discount factor γ ∈ [0, 1].

The goal is to learn a policy π mapping a state s to a
distribution over actions such that the sum of future discounted
rewards Rt =

∑T
i=t γ

i−tri is maximized. We use the term
πφ for the policy with parameters φ trained to maximize
the expected return J(φ) = Esi∼P,ai∼π[R0]. The value
function for a given state-action pair (s, a) is defined as
Qπ(s, a) = Esi∼P,ai∼π[Rt|s, a], which is the expected return
when executing action a in state s and following π afterwards.

A. Soft Actor Critic

TQC extends Soft Actor-Critic (SAC) [3], which is a strong
off-policy algorithm for continuous control using entropy reg-
ularization. While in the end we are interested in maximizing
the performance with respect to the total amount of reward
collected in the environment, SAC maximizes for an auxiliary
objective that augments the original reward with the entropy
of the policy J(φ) = Est∼P,at∼π[

∑
t γ

t(rt + αH(π(·|st)))],
where H denotes the entropy.

A critic is learned that evaluates the policy π in terms of its
Q-value of the entropy augmented reward. The policy—called
actor—is trained to choose actions such that the Q-function
is maximized with an additional entropy regularization

Jπ(φ) = E
st∼D,at∼πφ

[Qθ(st, at)− α log πφ(at|st)]. (1)

The weighting parameter α of the entropy term can be
automatically adjusted during the training [11]. Both the
training of actor and critic happen off-policy with transitions
sampled from a replay buffer.

B. Truncated Quantile Critics

The TQC algorithm uses distributional reinforcement
learning [12] to learn a distribution over the future augmented
reward instead of a Q-function which is a point estimate
for the expectation of this quantity. To do so TQC utilizes
quantile regression [13] to approximate the distribution with
Dirac delta functions Zθ(st, at) = 1

M

∑M
m=1 δ(θ

m(st, at)).
The Diracs are located at the quantile locations for fractions
τm = 2m−1

m ,m ∈ {1, . . . ,M}. The network is trained
to learn the quantile locations θm(s, a) by regressing the
predictions θm(st, at) onto the Bellman targets ym(st, at) =

1https://github.com/Nicolinho/ACC

rt + γ(θm(st+1, at+1)−α log πφ(at+1|st+1)) via the Huber
quantile loss.

TQC uses an ensemble of N networks (θ1, · · · , θN ) where
each network θn predicts the distribution Zθn(st, at) =
1
M

∑M
m=1 δ(θ

m
n (st, at)). A single Bellman target distribution

is computed for all networks. This happens by first computing
all targets for all networks, pooling all targets together in one
set and sorting them in ascending order. Let k ∈ {1, . . . ,M},
then the kN smallest of these targets yi are used to define the
target distribution Y (st, at) = 1

kN

∑kN
i=1 δ(yi(st, at)). The

networks are trained by minimizing the quantile Huber loss
which in this case is given by

L(st, at; θn) =
1

kNM

M,kN∑

m,i=1

ρHτm(yi(st, at)−θmn (st, at)) (2)

where ρHτ (u) = |τ − 1(u < 0)|L1
H(u) and L1

H(u) is the
Huber loss with parameter 1.

The rationale behind truncating some quantiles from the
target distribution is to prevent overestimation bias. In TQC
the number of dropped targets per network d = M − k is
a hyperparameter that has to be tuned per environment but
allows for a finegrained control of the bias.

The policy is trained as in SAC by maximizing the entropy
penalized estimate of the Q-value which is the expectation
over the distribution obtained from the critic

J(φ) = E
s∼D
a∼π

[
1

NM

M,N∑

m,n=1

θmn (s, a)− α log πφ(a|s)
]
. (3)

III. ADAPTIVELY CALIBRATED CRITICS

In this section, we will introduce the problem of estimation
bias in TD learning, present our method ACC and demonstrate
how it can be applied to TQC.

A. Over- and Underestimation Bias

The problem of overestimation bias in temporal differ-
ence learning with function approximation has been known
for a long time [6]. In Q-learning [14] the predicted Q-
value Q(st, at) is regressed onto the target given by y =
rt + γmaxaQ(st+1, a). In the tabular case and under mild
assumptions the Q-values converge to that of the optimal
policy [14] with this update rule. However, using a function
approximator to generate the Q-value introduces an approxi-
mation error. Even under the assumption of zero mean noise
corruption of the Q-value E[εa] = 0, an overestimation bias
occurs in the computation of the target value because of
Jensen’s inequality

max
a

Q(st+1, a) = max
a

E[Q(st+1, a) + εa]

≤ E
[

max
a
{Q(st+1, a) + εa}

]
. (4)

In continuous action spaces it is impossible to take the
maximum over all actions. The most successful algorithms
rely on an actor-critic structure where the actor is trained to
choose actions that maximize the Q-value [2], [3], [15]. So
the actor can be interpreted an approximation to the argmax
of the Q-value.

With deep neural networks as function approximators other
problems such as over-generalization [5], [16] can occur
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where the updates to Q(st, at) also increases the target
through Q(st+1, a) for all a which could lead to divergence.
There are many other potential sources for overestimation bias
such as stochasticity of the environment [17] or computing the
Q-target from actions that lie outside of the current training
data distribution [18].

While for discrete action spaces the overestimation can be
controlled with the double estimator [7], [17], it was shown
that this estimator does not prevent overestimation when
the action space is continuous [2]. As a solution the TD3
algorithm [2] uses the minimum of two separate estimators
to compute the critic target. This approach was shown to
prevent overestimation but can introduce an underestimation
bias. In TQC [1] the problem is handled by dropping some
targets from the pooled set of all targets of an ensemble of
distributional critics. This allows for more finegrained control
of over- or underestimation by choosing how many targets are
dropped. TQC is able to achieve an impressive performance
but the parameter d determining the number of dropped targets
has to be set for each environment individually. This is highly
undesirable for many applications since the hyperparameter
sweep to determine a good choice of the parameter increases
the actual number of environment interactions proportional to
the number of hyperparameters tested. For many applications
like robotics this makes the training prohibitively expensive.

B. Dynamically Adjusting the Bias
In the following we present a new general approach to

adaptively control bias emerging in TD targets regardless
of the source of the bias. Let Rπ(s, a) be the random
variable denoting the sum of future discounted rewards
when the agent starts in state s, executes action a and
follows policy π afterwards. This means that the Q-value
is defined as its expectation Qπ(s, a) = E[Rπ(s, a)]. For
notational convenience we will drop the dependency on the
policy π in the following. We start with the tabular case.
Suppose for each state-action pair (s, a) we have a family
{Q̂β(s, a)}β∈[βmin,βmax]⊂R of estimators for Q(s, a) with
the property that Q̂βmin(s, a) ≤ Q(s, a) ≤ Q̂βmax(s, a),
where Q(s, a) is the true Q-value of the policy π and Qβ a
continuous monotone increasing function in β .

If we have samples Ri(s, a) of the discounted returns
R(s, a), an unbiased estimator for Q(s, a) is given by the
average of the Ri through Monte Carlo estimation [19]. We
further define the estimator Q̂β∗(s, a), where β∗ is given by

β∗(s, a) = arg min
β∈[βmin,βmax]

∣∣∣∣∣Q̂β(s, a)− 1

N

N∑

i=1

Ri(s, a)

∣∣∣∣∣. (5)

The following Theorem, which we prove in the appendix,
shows that the estimator is unbiased under some assumptions.

Theorem 1: Let Qβ(s, a) be a continuous monotone in-
creasing function in β and assume that for all (s, a) it
holds Q̂βmin(s, a) ≤ Q(s, a) ≤ Q̂βmax(s, a), the returns
R(s, a) follow a symmetric probability distribution and that
Q̂βmin(s, a) and Q̂βmax(s, a) have the same distance to
Q(s, a). Then Qβ∗ from Equation 5 is an unbiased estimator
for the true value Q for all (s, a).

Algorithm 1 ACC - General
Initialize: bias controlling parameter β, steps between β
updates Tβ , tβ = 0
for t = 1 to total number of environment steps do

Interact with environment according to π, store tran-
sitions in replay buffer B and store observed returns
R(s, a), increment tβ += 1
if episode ended and tβ >= Tβ then

Update β with Eq. 6 using the most recent experience
and set tβ = 0

end if
Sample mini-batch b from B
Update Q with target computed from Qβ and b

end for

The symmetry and same distance assumption can be replaced
by assuming that Q̂βmin(s, a) ≤ Ri ≤ Q̂βmax(s, a) with
probability one. In this case the proof is straightforward since
Qβ can take any value for which Ri has positive mass.

We are interested in the case where Q̂ is given by a function
approximator such that there is generalization between state-
action pairs and that it is possible to generate estimates
for pairs for which there are no samples of the return
available. Consider off-policy TD learning where the samples
for updates of the Q-function are sampled from a replay buffer
of past experience. While the above assumptions might not
hold anymore in this case, we have an estimator for all state-
action pairs and not just the ones for which we have samples
of the return. Also in practice rolling out the policy several
times from each state action pair is undesirable and so we
set N = 1 which allows the use of the actual exploration
rollouts. Our proposed algorithm starts by initializing the bias-
controlling parameter β to some value. After a number of
environment steps and when the next episode is finished, the
Q-value estimates and actual observed returns are compared.
Depending on the difference β is adjusted according to

βnew = βold + α

Tβ∑

t=1

[
R(st, at)− Q̂(st, at)

]
, (6)

where α is a step size parameter and (st, at)
Tβ
t=1 are the Tβ ∈

N most recent state-action pairs. As a result β is decreased in
the case of overestimation, where the Q-estimates are larger
than the actual observed returns, and increased in the case
of underestimation. We assumed that Qβ is continuous and
monotonically increasing in β. Hence, increasing β increases
Qβ and vice versa. For updating the Q-function the target
will be computed from Qβ .

Only performing one update step and not the complete
minimization from Equation 5 has the advantage that β is
changing relatively slow which means the targets are more
stable. Through this mechanism our method can incorporate
the high variance on-policy samples to correct for under- or
overestimation bias. At the same time our method can benefit
from the low variance TD targets. ACC in its general form
is summarized in Algorithm 1.

Other algorithms that attempt to control the bias arising in
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TD learning with non-linear function approximators usually
use some kind of heuristic that includes more than one esti-
mator. Some approaches use them to decouple the choice of
the maximizing action and the evaluation of the maximum in
the computation of the TD targets [7]. Alternative approaches
take the minimum, maximum or a combination of both over
the different estimators [2], [8], [20], [21]. All of these have
in common that the same level of bias correction is done
for every environment and for all time steps during training.
In the deep case there are many different sources that can
influence the tendency of TD learning building up bias in
non-trivial ways. ACC is more principled in the regard that
it allows to dynamically adjust the magnitude and direction
of bias correction during training. Regardless of the source
and amount of bias ACC provides a way to alleviate it. This
makes ACC promising to work robustly on a wide range of
different environments.

One assumption of ACC is that there is a way to adjust
the estimated Q-value with a parameter β such that Q̂β is
continuous and monotonically increasing in β. There are many
different functions that are in accordance with this assumption.
We give one general example of how such a Q̂β can be easily
constructed for any algorithm that learns a Q-value. Let Q̂
be the current estimate. Then define Q̂β = β|Q̂|/K + Q̂,
where K is a constant (e.g. 100) and [βmin, βmax] is some
interval around 0. In the following section we will present
an application of ACC in a more sophisticated way.

C. Applying ACC to TQC

As a practical instantiation of the general ACC algorithm
we apply it to adjust the number of targets dropped from the
set of all targets in TQC. Denote with dmax ∈ {0, . . . ,M}
some upper limit of targets to drop per network. Define
βmin = 0, βmax = dmax and let d = dmax − β be the
current number of targets dropped for each network. Further,
we write Qβ for the TQC estimate with dN targets dropped
from the pooled set of all targets. If dmax is set high enough
the TQC estimate without dropped targets Qβmax induces
overestimation while the TQC estimate with dmax dropped
targets per net Qβmin induces underestimation.

In general, β ∈ [0, dmax] is continuous and hence also d
is a continuous value. As the number of dropped targets from
the pooled set of all targets has to be a discrete number in
{0, . . . , NM} we round the total number of dropped targets
dN to the nearest integer in the computation of the TD target.
When updating β with Equation 6, we divide the expectation
by the moving average of the absolute value of the difference
between returns and estimated Q-values for normalization.

IV. EXPERIMENTS

We evaluate our algorithm on a range of continuous control
tasks from OpenAI Gym [9] and the meta world benchmark
[10] that both use the physics engine MuJoCo [22] (version
1.5). First, we benchmark ACC against strong methods that
do not use environment specific hyerparameters. Then we
compare the performance of TQC with a fixed number of
dropped targets per network with that of ACC. Next, we

evaluate the effect of more critic updates for ACC and show
results in the sample efficient regime. Further, we study the
effect of ACC on the accuracy of the value estimate, and
investigate the generality of ACC by applying it to TD3.

We implemented ACC on top of the PyTorch code
published by the authors2 to ensure a fair comparison. While
in general a safe strategy is to use a very high value for
dmax as it gives ACC more flexibility in choosing the right
amount of bias correction we set it to dmax = 5, which is
the maximum value used by TQC for the number of dropped
targets in the original publication. At the beginning of the
training we initialize β = 2.5 and set the step size parameter
to α = 0.1. After Tβ = 1000 steps since the last update and
when the next episode finishes, β is updated with a batch
that stores the most recent state-action pairs encountered in
the environment and their corresponding observed discounted
returns. After every update of β the oldest episodes in this
stored batch are removed until there are no more than 5000
state-action pairs left. This means that on average β is updated
with a batch whose size is a bit over 5000. The updates of
β are started after 25000 environment steps and the moving
average parameter in the normalization of the β−update
is set to 0.05. The first 5000 environment interactions are
generated with a random policy after which learning starts.
We did not tune most of these additional hyperparameters and
some choices are directly motivated by the environment (e.g.
setting Tβ to the maximum episode length). Only for α we
tested a few different choices but found that for reasonable
values it does not have a noticeable influence on performance.
All hyperparameters of the underlying TQC algorithm with
N = 5 critic networks were left unchanged.

Compared to TQC the additional computational overhead
caused by ACC is minimal because there is only one update
to β that is very cheap compared to one training step of the
actor-critic and there are at least Tβ = 1000 training steps in
between one update to β.

During training, the policy is evaluated every 1,000
environment steps by averaging the episode returns of 10
rollouts with the current policy. For each task and algorithm
we run 10 trials each with a different random seed.

A. Comparative Evaluation

We compare ACC to the state of the art continuous
control methods SAC [3] (with learned temperature parameter
[11]) and TD3 [2] on six OpenAI Gym continuous control
environments. To make the different environments comparable
we normalize the scores by dividing the achieved return by
the best achieved return among all evaluations points of all
algorithms for that environment.

Figure 1a) shows the aggregated data efficiency curve over
all 6 tasks computed with the method of [23], where the
interquantile mean (IQM) ignores the bottom and top 25%
of the runs across all games and computes the mean over the
remaining. The absolute performance of ACC for each single
task can be seen in Figure 2. Overall, ACC reaches a much
higer performance than SAC and TD3.

2https://github.com/bayesgroup/tqc_pytorch
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Fig. 1. Sample efficiency curves aggregated from the results over
several environments. The normalized IQM score and the mean of the
success rate respectively is plotted against the number of environment steps.
Shaded regions denote pointwise 95% stratified bootstrap confidence intervals
according to the method of [23]. (a) Aggregated results over the 6 gym
continuous control tasks. (b) Aggregated results over the 12 metaworld tasks.

B. Robotics Benchmark

To investigate, if ACCs strong performance also translates
into robotics environments, we evaluate ACC and SAC on 12
of the more challenging tasks in the Meta-World benchmark
[10], which consists of several manipulation tasks with a
Sawyer arm. We use version V2 and use the following 12
tasks: sweep, stick-pull, dial-turn, door-open, peg-insert-side,
push, pick-out-of-hole, push-wall, faucet-open, hammer, stick-
push, soccer. We evaluate the single tasks in the in the MT1
version of the benchmark, where the goal and object positions
change across episodes. Different to the gym environments, β
is updated every 500 environment steps as this is the episode
length for these tasks. Figure 1b) shows the aggregated data
efficiency curve in terms of success rate over all 12 tasks
computed with the method of [23].

The curves demonstrate that ACC achieves drastically
stronger results than SAC both in terms of data efficiency and
asymptotic performance. After 2 million steps ACC already
achieves a close to optimal task success rate which is even
considerably higher than what SAC achieves at the end of
the training. This shows, that ACC is a promising approach
for real world robotics applications.

C. Fixing the Number of Dropped Targets

In this experiment we evaluate how well ACC performs
when compared to TQC where the number of dropped targets
per network d is fixed to some value. Since in the original
publication for each environment the optimal value was one
of the three values 0, 2, and 5, we evaluated TQC with d
fixed to one of these values for each environment. To ensure
comparability we used the same codebase as for ACC. The
results in Figure 2 show that it is not possible to find one
value for d that performs well on all environments. With
d = 0, TQC is substantially worse on three environments
and unstable on the Ant environment. Setting d = 2 is
overall the best choice but still performs clearly worse for
two environments and is also slightly worse for Humanoid.
Dropping d = 5 targets per network leads to an algorithm that
can compete with ACC only on two of the six environments.
Furthermore, even if there would be one tuned parameter that
performs equally well as ACC on a given set of environments
we hypothesize there are likely very different environments
for which the specific parameter choice will not perform well.
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Fig. 2. Learning curves of ACC applied to TQC and TQC with different
fixed choices for the number of dropped atoms d on six OpenAi gym
environments. We used version v3. The shaded area represents mean ±
standard deviation over the 10 trials. For readability the curves showing the
mean are filtered with a uniform filter of size 15.

The principled nature of ACC on the other hand provides
reason to believe that it can perform robustly on a wide range
of different environments. This is supported by the robust
performance on all considered environments.

D. Evaluation of Sample Efficient Variant

In principle more critic updates per environment step should
make learning faster. However, because of the bootstrapping
in the target computation this can easily become unstable.
The problem is that as targets are changing faster, bias can
build up easier and divergence becomes more likely. ACC
provides a way to detect upbuilding bias in the TD targets
and to correct the bias accordingly. This motivates to increase
the number of gradient updates of the critic. In TD3, SAC
and TQC one critic update is performed per environment step.
We conducted an experiment to study the effect of increasing
this rate up to 4. ACC using 4, 2 and 1 updates are denoted
with ACC 4q, ACC 2q and ACC 1q respectively. ACC 1q
is equal to ACC from the previous experiments. We use the
same notation also for TD3 and SAC.

Scaling the number of critic updates by a factor of 4
increases the computation time by a factor of 4. But this
can be worthwhile in the sample efficient regime, where a
huge number of environment interactions is not possible
or the interaction cost dominate the computational costs
as it is the case when training robots in the real world.
The results in Figure 3a) show that in the sample efficient
regime ACC4q further increases over plain ACC. ACC4q
reaches the final performance of TD3 and SAC in less than
a third of the number of steps for five environments and for
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Fig. 3. The mean ± standard deviation over 10 trials. (a) Results in the sample efficient regime where tuning of hyperparameters in an inner loop is too
costly with different choices for the number of value function updates per environment step. (b) Results for ACC applied to TD3 compared to pure TD3.

Humanoid in roughly half the number of steps. Increasing
the number of critic updates for TD3 and SAC shows mixed
results, increasing performance for some environments while
decreasing it for others. Only ACC benefits from more updates
on all environments, which supports the hypothesis that ACC
is successful at calibrating the critic estimate.

E. Analysis of ACC

To evaluate the effect of ACC on the bias of the value
estimate, we analyze the difference between the value estimate
and the corresponding observed return when ACC is applied
to TQC. For each state-action pair encountered during
exploration, we compute its value estimate at that time and at
the end of the episode compare it with the actual discounted
return from that state onwards. Hence, the state-action pair
was not used to update the value function at the point when the
value estimate has been computed. If an episode ends because
the maximum number of episode time-steps has been reached,
which is 1,000 for the considered environments, we ignore
the last 100 state-action pairs. The reason is that in TQC
the value estimator is trained to ignore the episode timeout
and uses a bootstrapped target also at the end of the episode.
We normalize for different value scales by computing the
absolute error between the value estimate and the observed
discounted return and divide that by the absolute value of
the discounted return. Every 1,000 steps, the average over
the errors of the last 1,000 state-action pairs is computed.
The aggregated results in Figure 4b) show that averaged over
all environments ACC indeed achieves a lower value error
than TQC with the a fixed number of dropped atoms d. This
supports our hypothesis that the strong performance of ACC
applied to TQC indeed stems from better values estimates.

To better understand the hidden training dynamics of
ACC we show in Figure 4a) how the number of dropped
targets per network d = dmax − β evolves during training.
Interestingly, the relatively low standard deviation indicates
a similar behaviour across runs for a specific environment.
However, there are large differences between the environments

which indicates that it might not be possible to find a single
hyperparameter that works well on a wide variety of different
environments. Further, the experiments shows that the optimal
amount of overestimation correction might change over time
during the training even on a single environment.

F. Beyond TQC: Improving TD3 with ACC

To demonstrate the generality of ACC, we additionally
applied it to the actor-critic style TD3 algorithm [2], which
uses two critics. These are initialized differently but trained
with the same target value, which is the minimum over the two
targets computed from the two critics. While this successfully
prevents the overestimation bias, using the minimum of the
two target estimates is very coarse and can instead lead to an
underestimation bias. We applied ACC to TD3 by defining
the target for each critic network to be a convex combination
between its own target and the minimum over both targets. Let
Qi = Qθ̄i(st+1, πφ̄(st+1)), we define the k-th critic target

yk = r + γ
(
β Qk + (1− β) min

i=1,2
Qi

)
,

where β ∈ [0, 1] is the ACC parameter that is adjusted to
balance between under- and overestimation. The results are
displayed in Figure 3b) and show that ACC also improves
the performance of TD3.

V. RELATED WORK

A. Overestimation in Reinforcement Learning

The problem of overestimation in Q-learning with function
approximation was introduced by [6]. For discrete actions
the double estimator has been proposed [17] where two
Q-functions are learned and one is used to determine the
maximizing action, while the other evaluates the Q-function
for that action. The Double DQN algorithm extended this
to neural networks [7]. However, Zhang et al. [24] observed
that the double estimator sometimes underestimates the Q-
value and propose to use a weighted average of the single
and the double estimator as target. This work is similar to
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Fig. 4. (a) Mean (thick line) and standard deviation (shaded area) over 10 trials of the number of dropped targets per network d = dmax − β in
ACC over time for different environments with a uniform filter of size 15. (b) The normalized absolute error of the value estimate aggregated over the 6
environments. Shown are the mean with stratified bootstrapped confidence intervals computed from the results of 5 trials per environment. We used a
uniform filter of size 401 for readability.

ours in the regard that depending on the parameter over- or
underestimation could be corrected. A major difference to
our algorithm is that the weighting parameter is computed
from the maximum and minimum of the estimated Q-value
and does not use unbiased rollouts. Similarly, the weighted
estimator [25], [26] estimates the maximum over actions in the
TD target as the sum of values weighted by their probability
of being the maximum. In continuous action spaces this
can be done through Gaussian process regression [26] and
for discrete actions via dropout variational inference [25].
Different to ACC the weighting is computed from the same
off-policy data used to compute the single quantities while
ACC adjusts the weighting parameter β in a separate process
using the latest on-policy rollouts. Lv et al. [27] use a similar
weighting but suggest a stochastic selection of either the
single or double estimator. The probability of choosing one
or the other follows a predefined schedule. Other approaches
compute the weighted average of the minimum and maximum
over different Q-value estimates [21], [18]. However, the
weighting parameter is a fixed hyperparameter. The TD3
algorithm [2] uses the minimum over two Q-value estimates as
TD target. Maxmin Q-learning is another approach for discrete
action spaces using an ensemble of Q-functions. For the TD
target, first the minimum of over all Q-functions is computed
followed by maximization with respect to the action [8].
Decreasing the ensemble size increases the estimated targets
while increasing the size decreases the targets. Similarly to
TQC this provides a way to control the bias in a more fine-
grained way; the respective hyperparameter has to be set
before the start of the training for each environment, however.
Cetin et al. [28] propose to learn a pessimistic penalty to
overcome the overestimation bias.

What sets ACC apart from the previously mentioned works
is that unbiased on-policy rollouts are used to adjust a
term that controls the bias correction instead of using some
predefined heuristic.

B. Combining On- and Off-Policy Learning
There are many approaches that combine on- and off-

policy learning by combining policy gradients with off-policy
samples [29], [30], [31]. In [32] an actor-critic is used where
the critic is updated off-policy and the actor is updated with
a mixture of policy gradient and Q-gradient. This differs
from our work in that we are interested only in better critic
estimates through the information of on-policy samples. To
learn better value estimates by combining on- and off-policy

data prior works proposed the use of some form of importance
sampling [33], [34]. In [35] the TD target is computed by
mixing Monte Carlo samples with the bootstrap estimator.
These methods provide a tradeoff between variance and bias.
They differ from our work in using the actual returns directly
in the TD targets while we incorporate the returns indirectly
via another parameter. Bhatt et al. [36] propose the use of a
mixture of on- and off-policy transitions to generate a feature
normalization that can be used in off-policy TD learning.
Applied to TD3, learning becomes more stable eliminating
the need to use a delayed target network.

C. Hyperparameter Tuning for Reinforcement Learning

Most algorithms that tune hyperparameters of RL algo-
rithms use many different instances of the environment to
find a good setting [37], [38], [39]. There is, however, also
work that adjusts a hyperparameter online during training
[40]. In this work the meta-gradient (i.e., the gradient of the
update rule) is used to adjust the discount factor and the
length of bootstrapping intervals. However, it would not be
straightforward to apply this method to control the bias of
the value estimate. Their method also differs from ours in
that they do not use a combination of on- and off-policy data.

VI. CONCLUSION

We present Adaptively Calibrated Critics (ACC), a general
off-policy algorithm that learns a Q-value function with bias
calibrated TD targets. The bias correction in the targets is
determined via a parameter that is adjusted by comparing
the current value estimates with the most recently observed
on-policy returns. Our method incorporates information from
the unbiased sample returns into the TD targets while keeping
the high variance of the samples out. We apply ACC to TQC,
a recent off-policy continuous control algorithm that allows
fine-grained control of the TD target scale through a hyper-
parameter tuned per environment. With ACC, this parameter
can automatically be adjusted during training, obviating the
need for extensive tuning. The strong experimental results
suggest that our method provides an efficient and general
way to control the bias occurring in TD learning.

Interesting directions for future research are to evaluate
the effectiveness of ACC applied to algorithms that work
with discrete action spaces and when learning on a real robot
where tuning of hyperparameters is very costly.
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Abstract

Early stopping based on the validation set performance is a popular approach to
find the right balance between under- and overfitting in the context of supervised
learning. However, in reinforcement learning, even for supervised sub-problems
such as world model learning, early stopping is not applicable as the dataset
is continually evolving. As a solution, we propose a new general method that
dynamically adjusts the update to data (UTD) ratio during training based on under-
and overfitting detection on a small subset of the continuously collected experience
not used for training. We apply our method to DreamerV2, a state-of-the-art model-
based reinforcement learning algorithm, and evaluate it on the DeepMind Control
Suite and the Atari 100k benchmark. The results demonstrate that one can better
balance under- and overestimation by adjusting the UTD ratio with our approach
compared to the default setting in DreamerV2 and that it is competitive with an
extensive hyperparameter search which is not feasible for many applications. Our
method eliminates the need to set the UTD hyperparameter by hand and even leads
to a higher robustness with regard to other learning-related hyperparameters further
reducing the amount of necessary tuning.

1 Introduction

In model-based reinforcement learning (RL) the agent learns a predictive world model to derive the
policy for the given task through interaction with its environment. Previous work has shown that
model-based approaches can achieve equal or even better results than their model-free counterparts [7,
12, 20, 23]. An additional advantage of using a world model is, that once it has been learned for
one task, it can directly or after some finetuning be used for different tasks in the same environment
potentially making the training of multiple skills for the agent considerably cheaper. Learning a world
model is in principle a supervised learning problem. However, in contrast to the standard supervised
learning setting, in model-based RL the dataset is not fixed and given at the beginning of training but
is gathered over time through the interaction with the environment which raises additional challenges.

A typical problem in supervised learning is overfitting on a limited amount of data. This is well
studied and besides several kinds of regularizations a common solution is to use a validation set that is
not used for training but for continual evaluation of the trained model during training. By considering
the learning curve on the validation set it is easy to detect if the model is under- or overfitting the
training data. For neural networks a typical behavior is that too few updates lead to underfitting while
too many updates lead to overfitting. In this context, the validation loss is a great tool to balance
those two and to achieve a small error on unseen data.

For learning a world model on a dynamic dataset there unfortunately is no established method to
determine if the model is under- or overfitting the training data available at the given point in time.
Additionally, in model-based RL a poorly fit model can have a dramatic effect onto the learning result
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as from it the agent derives the policy, which influences the future collected experience which again
influences the learning of the world model. So far, in model-based RL this is commonly addressed
with some form of regularization and by setting an update-to-data (UTD) ratio that specifies how
many update steps the model does per newly collected experience, similar to selecting the total
number of parameter updates in supervised learning. Analogously to supervised learning, a higher
UTD ratio is more prone to overfit the data and a lower one to underfit it. State-of-the-art methods set
the UTD ratio at the beginning of the training and do not base the selection on a dynamic performance
metric. Unfortunately, tuning this parameter is very costly as the complete training process has to be
traversed several times. Furthermore, a fixed UTD ratio is often sub-optimal because different values
for this parameter might be preferable at different stages of the training process.

Environment

Training
Data

World
Model

Train every
1

UTD ratio

Evaluate

update

Policy

Validation
Data

Figure 1: Overview of DUTD. A small
subset of the experience collected from
the environment is stored in a valida-
tion set not used for training. The world
model is trained for one update after every

1
UTD ratio many environment steps. From
time to time, e.g., after an episode ended,
the UTD ratio is adjusted depending on
the detection of under- or overfitting of
the world model on the validation data.
The policy is obtained from the world
model either by planning or learning and
collects new data in the environment.

In this paper, we propose a general method – called
Dynamic Update-to-Data ratio (DUTD) – that adjusts
the UTD ratio during training. DUTD is inspired by us-
ing early stopping to balance under- and overfitting. It
stores a small portion of the collected experience in a
separate validation buffer not used for training but in-
stead used to track the development of the world models
accuracy in order to detect under- and overfitting. Based
on this, we then dynamically adjust the UTD ratio.

We evaluate DUTD applied to DreamerV2 [12] on the
DeepMind Control Suite and the Atari100k benchmark.
The results show that DUTD improves the world model
and as a result increases the overall performance relative
to the default DreamerV2 configuration. Most impor-
tantly, DUTD makes searching for the best UTD rate
obsolete and is competitive with the best value found
through extensive hyperparameter tuning of DreamerV2.
Further, our experiments show that with DUTD the world
model becomes considerably more robust with respect to
the choice of the learning rate.

In summary, this paper makes the following contributions:
i) we introduce a method to detect under- and overfitting
of the world model online by evaluating it on hold-out
data; ii) We use this information to dynamically adjust the
UTD ratio to optimize world model performance; iii) Our
method makes tuning the UTD hyperparameter obsolete;
iv) We exemplarily apply our method to a state-of-the-
art model-based RL method and show that it leads to an
improved overall performance and higher robustness. We
will make the source code of our implementation publicly
available upon publication.

2 Related Work

In reinforcement learning there are two forms of generalization and overfitting. Inter-task overfitting
describes overfitting to a specific environment such that performance on slightly different environ-
ments drops significantly. This appears in the context of sim-to-real, where the simulation is different
from the target environment on which a well performing policy is desired, or when the environment
changes slightly, for example, because of a different visual appearance [16, 18, 24, 30, 32]. In contrast,
intra-task overfitting appears in the context of learning from limited data in a fixed environment
when the model fits the data too perfectly and generalizes poorly to new data. We consider intra-task
opposed to inter-task generalization.

In model-based reinforcement learning, there is also the problem of policy overfitting on an inaccurate
dynamics model. As a result, the policy optimizes over the inaccuracies of the model and finds
exploits that do not work on the actual environment. One approach is to use uncertainty estimates
coming from an ensemble of dynamics models to be more conservative when the estimated uncertainty
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is high [7]. Another approach to prevent the policy from exploiting the model is to use different
kinds of regularization on the plans the policy considers [3]. In contrast to these previous works, we
directly tackle the source of the problem by learning a better dynamics model. Consequently, our
method is orthogonal to and can easily be combined with the just mentioned line of work.

Directly targeting the overfitting of the dynamics model can be done through the usage of a Bayesian
dynamics model and the uncertainties that come with such a model. Gaussian processes have been
used successfully in this context [8] although it is difficult to scale this to high-dimensional problems.
Another way to reduce overfitting of the dynamics model is to use techniques from supervised
learning. This includes for example regularization of the weights, dropout [25], or data augmentation
[14, 22]. All of these are also orthogonal to our method and can be combined with it to learn an even
better dynamics model. Another popular approach is early stopping [2, 15, 26], where the training
is stopped before the training loss converges. Our method can be regarded as the analogy of early
stopping in a dynamic dataset scenario.

It is also possible to reduce the amount of model parameters for less overfitting but this comes with
the risk of reduced performance if the right amount of training steps would have been performed. Our
method overcomes this problem by automatically choosing the right amount of training steps for a
given network.

Hyperparameter optimization for RL algorithms is also related to our work. For example, AlphaStar
[23] has been improved by using Bayesian optimization [6]. Zhang et al. [31] demonstrated that
model-based RL algorithms can be greatly improved through automatic hyperparameter optimization.
A recent overview on automated RL is given by Parker-Holder et al. [17]. However, most of these
approaches improve hyperparameters by training the RL agent on the environment in an inner loop
while keeping the hyperparameters fixed during each run. Our work deviates from that by adapting a
hyperparameter online during training of a single run. An approach that also falls into this category
is from Schaul et al. [19], where behavior-related parameters such as stochasticity and optimism
are dynamically adapted. Similarly, the algorithm Agent57 [4] adaptively chooses from a set of
policies with different exploration strategies and achievs human level performance on all 57 Atari
games [5]. Another approach adapts a hyperparameter that controls under- and overestimation of the
value function online resulting in a model-free RL algorithm with strong performance on continuous
control tasks [9].

In contrast to these approaches, we propose a method that directly learns a better world model by
detecting under- and overfitting online on a validation set and dynamically adjusts the number of
update steps accordingly. This renders the need to tune the UTD ratio hyperparameter unnecessary
and further allows to automatically have it’s value being adapted to the needs of the different training
stages.

3 The DUTD Algorithm

In this section, we will first introduce the general setup, explain early stopping in the context of
finding the right data fit and propose a new method that transfers this technique to the online learning
setting. Lastly, we explain how the method can be applied to DreamerV2.

3.1 Model-Based Reinforcement Learning

We use the classical reinforcement learning framework [27] assuming a Markov decision process
(S,A,P,R). In this framework, the agent sequentially observes the current state st ∈ S in which
it executes an action at ∈ A, receives a scalar reward rt according to the reward function R, and
transitions to a next state st+1 generated by the unknown transition dynamics P . The goal is to learn
a policy that selects actions in each state such that the total expected return

∑T
i=t ri is maximized.

Model-based reinforcement learning approaches learn a world model P̂(st+1 | st, at) – also called
dynamics model – and a reward model R̂(rt | st) that attempt to reflect their real but unknown
counterparts. These models can then be used to learn a good policy by differentiating through the
world models or by generating imaginary rollouts on which a reinforcement learning algorithm can
be trained. Alternatively, the learned model can be used in a planning algorithm to select an action in
the environment.

3

117



3.2 Under- and Overfitting

A well-known problem in supervised learning is that of overfitting, which typically corresponds to
a low error on the training data and a high error on test data not seen during training. Usually, this
happens if the model fits the training data too perfectly. In contrast to this, underfitting corresponds
to the situation in which the model even poorly fits the training data and is characterized by both a
high training and test error. To measure the performance of the model on unseen data, the available
data is often split into a training and a validation set. Generally, only the training set is used to train
the model while the validation set is used to evaluate its performance on new data.

For iterative training methods – like gradient descent based methods – overfitting is often detected
by observing the learning curves for training and validation error against the number of training
steps. A typical behavior is that in the beginning of the training both training and validation loss
are decreasing. This is the region where the model is still underfitting. At some point, when the
model starts overfitting the training data, only the training loss decreases further while the validation
loss starts to increase. The aforementioned early stopping method balances under- and overfitting by
stopping the training once the validation loss starts to increase.

While in supervised learning one can easily select a well fit model by using the validation loss, in
reinforcement learning one cannot apply this technique as the dataset is not fixed but dynamic and is
constantly growing or changing. Furthermore, the quality of the current policy influences the quality
of the data collected in the future. Even though learning a world model is in principle a supervised
task, this problem also occurs in the model-based RL framework.

3.3 Dynamic Update-to-Data Ratio

A typical hyperparameter in many RL algorithms is the update-to-data (UTD) ratio which specifies
the number of update steps performed per environment step (i.e., per new data point). This ratio can
in principle be used to balance under- and overfitting as one can control it in a way that not too few or
too many updates steps are done on the currently available data. However, several problems arise
while optimizing this parameter. First, it is very costly to tune this parameter as it requires to run
the complete RL training several times making it infeasible for many potential applications. Second,
the assumption that one fixed value is the optimal choice during the entire training duration does not
necessarily hold. For example, if data from a newly explored region of the environment is added to
the replay buffer it might be beneficial to increase the number of update steps.

To address these problems, we propose – DUTD – a new method that dynamically adjusts the
UTD ratio during training. It is inspired by the early stopping criterion and targets at automatically
balancing under- and overfitting online by adjusting the number of update steps. As part of the method,
we store some of the experience in a separate validation buffer not used for training. Precisely, every
d environment steps we collect s consecutive transitions from a few separate episodes dedicated to
validation and every k environment steps the world model is evaluated on the validation buffer, where
k should be much smaller than d. As the world model learning task is supervised this is easily done
by recording the loss of the world model on the given validation sequences. The current validation
loss is then compared to the validation loss of the previous evaluation. If the loss has decreased, we
assume the model is still in the underfitting regime and increase the UTD rate by a specified amount.
If the loss has increased, we assume the model to be in an overfitting regime and hence reduce the
UTD rate. To allow for a finer resolution at the high-update side of the allowed interval we adjust the
UTD rate in log-space, meaning it is increased or decreased by multiplying it with a value of c or 1/c
respectively, where c is slightly larger than 1. The update formula at time step t then becomes

utd_ratiot = utd_ratiot−k · b; b =

{
c, if validation_losst < validation_losst−k,
1
c , if validation_losst ≥ validation_losst−k.

(1)

DUTD is a general method that can be applied to any model-based RL algorithm that learns a world
model in a supervised way. The implementation can be either in terms of the UTD ratio or the
data-to-update ratio which is its inverse and which we call IUTD (i.e., the number of environment
steps per update step). It is more convenient to use the UTD ratio if several updates are performed
per environment step and the IUTD if an update step is only performed after some environment steps.
Methodologically, the two settings are the same as the two ratios describe the same quantity and are
just the inverse of each other.
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A high-level overview of DUTD is shown in Figure 1 and the pseudocode is described in Algorithm 1,
both explained in terms of the IUTD ratio as we will apply DUTD to an algorithm for which several
update steps per environment steps becomes computationally very costly. However, in both framework
both scenarios can be addressed by letting the ratio be a fractional. In the next section we will explain
how DUTD can be applied specifically to the DreamerV2 algorithm [12].

3.4 Applying DUTD to DreamerV2

Algorithm 1 DUTD (in terms of inverted UTD ratio)
Input: Initial inverted UTD ratio iutd_ratio; number
of steps after which additional validation data is col-
lected d, number of validation transitions collected
s, steps after which the iutd_ratio is updated k, iutd
update increment c
for t = 1 to total_num_of_env_steps do

Act according to policy π(a | s) and observe next
state
if t mod d == 0 then

Collect s transitions and store experience in a
separate validation buffer; increment t = t+ s

end if
if t mod iutd_ratio == 0 then

Perform one training step of the transition model
end if
if t mod k == 0 then

Compute model loss L on validation dataset
if L ≥ Lprevious then # Overfitting
iutd_ratio = iutd_ratio · c

else # Underfitting
iutd_ratio = iutd_ratio/c

end if
Lprevious = L

end if
end for

We apply DUTD to DreamerV2 [12],
which is a model-based RL algorithm that
builds on Dreamer [11] which again builds
on PlaNet [10]. DreamerV2 learns a world
model through latent imagination. The pol-
icy is learned purely in the latent space of
this world model through an actor-critic
framework. It is trained on imaginary roll-
outs generated by the world model. The
critic is regressed onto λ-targets [21, 27]
and the actor is trained by a combination of
Reinforce [29] and a dynamics backprop-
agation loss. The world model learns an
image encoder that maps the input to a cat-
egorical latent state on which a Recurrent
State-Space Model [10] learns the dynam-
ics. Three predictors for image, reward,
and discount factor are learned on the latent
state. The total loss for the world model is
a combination of losses for all three predic-
tors and a Kullback–Leibler loss between
the latents predicted by the dynamics and
the latents from the encoder.

To apply DUTD we evaluate the image
reconstruction loss on the validation set.
Other choices are also possible but we spec-
ulate that the image prediction is the most
difficult and important part of the world
model. One could also use a combination
of different losses but then one would po-
tentially need a scaling factor for the different losses. As we want to keep our method simple and
prevent the need of hyperparameter tuning for our method, we employ the single image loss.

4 Experiments

We evaluate DUTD applied to DreamerV2 on the Atari 100k benchmark [13] and the DeepMind
Control Suite [28]. For each of the two benchmarks we use the respective hyperparameters provided
by the authors in their original code base. Accordingly, the baseline IUTD ratio is set to a value of 5
for the control suite and 16 for Atari which we also use as initial value for our method. This means
an update step is performed every 5 and 16 environment steps respectively. For both benchmarks we
set the increment value of DUTD to c = 1.3 and the IUTD ratio is updated every 500 steps which
corresponds to the length of one episode in the control suite (with a frame-skip of 2). Every 100, 000
steps DUTD collects 3, 000 transitions of additional validation data. We cap the IUTD ratio in the
interval [1, 15] for the control suite and in [1, 32] for Atari. This is in principle not necessary and we
find that most of the time the boundaries, especially the upper one, is not reached. A boundary below
1 would be possible by using fractions and doing several updates per environment step, but this would
be computationally very expensive for DreamerV2. All other hyperparameters are reported in the
Appendix. They were not extensively tuned and we observed that the performance of our method is
robust with respect to the specific choices. The environment steps in all reported plots also include
the data collected for the validation set.
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Figure 2: Aggregated metrics over 5 random seeds on the 26 games of Atari 100k with 95% confidence
intervals according to the method presented in Agarwal et al. [1]. The intervals are estimated by the
percentile bootstrap with statified sampling. Higher mean, median, interquantile mean (IQM) and
lower optimality gap are better.

The Atari 100k benchmark [13] includes 26 games from the Arcade Learning Environment [5] and
the agent is only allowed 100, 000 steps of environment interaction per game, which are 400, 000
frames with a frame-skip of 4 and corresponds to roughly two hours of real-time gameplay. The final
performance per run is obtained by averaging the scores of 100 rollouts with the final policy after
training has ended. We compute the human normalized score of each run as agent score−random score

human score−random score .
The DeepMind Control Suite provides several environments for continuous control. Agents receive
pixel inputs and operate with a frame-skip of 2 as in the original DreamerV2. We trained for 2
million frames on most environments and to save computation cost for 1 million frames if standard
DreamerV2 already achieves its asymptotic performance well before that mark. The policy is
evaluated every 10, 000 frames for 10 episodes. For both benchmarks, each algorithm is trained with
5 different seeds on every environment.

Our experiments are designed to demonstrate the following:

• The UTD ratio can be automatically adjusted using our DUTD approach

• DUTD generally increases performance (up to 300% on Atari100k) by learning an improved
world model compared to the default version of DreamerV2

• DUTD increases the robustness of the RL agent with regard to learning-related hyperparameters

• DUTD is competitive with the best UTD hyperparameter found by an extensive grid search

4.1 Performance of DUTD compared to Standard DreamerV2

0.0 0.5 1.0 1.5 2.0
Environment Steps (in millions)

0

200

400

600

800

IQ
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DreamerV2-IUTD_5
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Figure 3: Sample efficiency curves ag-
gregated from the results for ten environ-
ments of the DeepMind Control Suite
for DreamerV2 with the default UTD ra-
tio and when it is adjusted with DUTD.
The IQM score at different training steps
is plotted against the number of envi-
ronment steps. Shaded regions denote
pointwise 95% stratified bootstrap confi-
dence intervals according to the method
by Agarwal et al. [1].

For Atari100k, Figure 2 shows results aggregated over the
26 games with the method of Agarwal et al. [1], where the
interquantile mean (IQM) ignores the bottom and top 25%
of the runs across all games and computes the mean over
the remaining. The optimality gap describes the amount
by which a minimal value of human level performance
has not been achieved. In Figure 10 of the Appendix we
present the learning curves for each environment. The
results show that DUTD increases the performance of
DreamerV2 drastically on all considered metrics. It in-
creases the interquantile mean (IQM) score by roughly
300% and outperforms the human baseline in terms of
mean score without any data augmentation.

Figure 3 shows the aggregated results for two million
frames over ten environments of the Control Suite, which
we list in the Appendix. The curves per environment are
presented in Figure 11 of the Appendix further including
results for ten more environments on which the algorithms
run until one million frames. Compared to the manually
set default UTD ratio, DUTD matches or improves the
performance on every environment. Overall, DUTD im-
proves the performance significantly although its average
IUTD rate over all games and checkpoints is 5.84 similar
to the default rate of 5 showing that DUTD better exploits
the performed updates.
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Figure 4: Learning curves for five environments of the Control Suite for DUTD-DreamerV2 and
standard DreamerV2 when non-default learning rates are used. The first row shows the results for a
lower than default learning rate of 0.0001 and the second row for a higher one of 0.001. The default
learning rate is 0.003 and its results are shown in Figure 11. The solid line represents the mean and
the shaded region a pointwise standard deviation in each direction computed over 5 runs.
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Figure 5: Aggregated metrics over 5 random seeds on the 26 games of Atari 100k, cf. Figure 2 for
the methodology. DUTD is compared to Dreamer with different choices for the IUTD rate.

4.2 Increased Robustness with DUTD

As DUTD dynamically adjusts the UTD ratio which allows to modify the training process online, we
formed the hypothesis that with DUTD the underlying RL algorithm is more robust to suboptimal
learning hyperparameters. Similar to supervised learning on a fixed dataset the optimal number of
updates to tradeoff between under- and overfitting will be highly dependent on hyperparameters like
the learning rate. To investigate this, we evaluated DreamerV2 with and without our method for
different learning rates of the dynamics model. The standard learning rate on the control suite is
0.0003. Hence, we trained with both a higher learning rate of 0.001 and a lower one of 0.0001 on
a subset of the environments. The resulting learning curves are displayed in Figure 4. While the
performance for a learning rate of 0.001 is overall rather similar, for a learning rate of 0.0001 the
performance decreases substantially with the standard fixed IUTD ratio of 5. However, using DUTD
the algorithm achieves considerably stronger results. This shows that using DUTD the algorithm is
more robust to the learning rate, which is an important property when the algorithm is applied in real
world settings such as robotic manipulation tasks, since multiple hyperparameter sweeps are often
infeasible in such scenarios. The need for more robustness as offered by DUTD is demonstrated by
the performance drop of DreamerV2 with a learning rate differing by a factor of 3 and the fact that on
Atari a different learning rate is used.

4.3 Comparing DUTD with Extensive Hyperparameter Tuning

In the previous sections, we showed that DUTD improves the performance of DreamerV2 with its
default IUTD rate significantly. Now we want to investigate the question of how well DUTD compares
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Figure 7: IUTD ratio against environment steps for DUTD and the standard DreamerV2 on five
environments. For each environment the mean over 5 runs is plotted as the solid line and the shaded
region represents one pointwise standard deviation in each direction.

to the best hyperparameter value for IUTD that can be found through an extensive grid search on
each benchmark. While for many applications such a search is not feasible we are interested in what
can be expected of DUTD relative to what can be regarded as the highest achievable performance.
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Figure 6: Sample efficiency curves show-
ing the IQM score aggregated from the
results for ten environments of the Deep-
Mind Control Suite for DreamerV2 with
different choices for the IUTD ratio.
Shaded regions denote pointwise 95%
stratified bootstrap confidence intervals.

On the Atari 100k benchmark we evaluate DreamerV2
with IUTD rates of 1, 2, 4, 7, 10 and 16 (the default value)
and denote the algorithms with DreamerV2-IUTD_1,
DreamerV2-IUTD_2, etc. The aggregated results over
all games and seeds in Figure 5 show an increase in per-
formance when the number of updates increases up to an
IUTD rate of 2. Increasing it further to 1 leads to declin-
ing results. Thus, there is a sweet spot and one can not
simply set the IUTD rate very low and expect good results.
Averaged over all runs and checkpoints the IUTD rate of
DUTD is at 3.91 which is in the region of the best per-
forming hyperparameters of 2 and 4. This is also reflected
by the fact that DUTD achieves similar performance to
these two optimal choices.

We further evaluate DreamerV2 with IUTD rates of 2, 5
(the default one), 10, and 15 on ten environments of the
control suite. An IUTD value below 2 is not possible
as a single run would take roughly two weeks to run on
our hardware. The aggregated sample efficiency curves
in Figure 6 further support the hypothesis that DUTD is
competitive with the results of an extensive grid search.
Only an IUTD choice of 2 gives slightly better sample
efficiency but reaches a lower final performance. To further investigate the behaviour of DUTD
we report the adjusted inverted UTD ratio over time for five environments in Figure 7, and for
all environments in Figure 12 in the Appendix. Interestingly, the behavior is similar for all the
environments. At the start of the training, the ratio is very low and then it quickly oscillates around a
value of roughly 5 for most environments and an even higher value for a few others. On cheetah_run
and hopper_hop, the IUTD oscillates around the default value of 5 most of the time and still, DUTD
reaches a higher performance than Dreamer as can be seen in the single environment plot in Figure
11 of the Appendix. This result supports the hypothesis that a static IUTD rate can be suboptimal for
some environments and that DUTD successfully balances over- and underfitting during the training
process.

4.4 Evaluating World Model Performance

Next we want to explore if the improved performance with DUTD actually originates from an
improved world model that better generalizes to new data. To this end, we designed an experiment
where the accuracy of the world model is constantly evaluated on a held out test set that is neither
used for training nor validation. We evaluate each algorithm on 5 environments for 5 random seeds.
For every combination of environment and seed we collect a test set with 20 episodes of random
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Figure 8: Image reconstruction loss of the world model on a held out test set for five environments of
the DeepMind Control Suite. The solid line represents the mean and the shaded region a pointwise
standard deviation in each direction computed over 5 runs.

interactions before the training starts. This test set is the same for our approach and the baseline to
ensure the data selection procedure avoids bias in the test data induced through the respective world
models and policies. In Figure 8 we plot the image prediction loss on the test set averaged over the
5 seeds for DreamerV2 with the default UTD rate and when using DUTD. The curves validate our
hypothesis that with DUTD the world model achieves on average a better accuracy and hence that
the validation data is indeed useful for balancing under- and overfitting. For the acrobot, cartpole,
and cheetah environment, the accuracy with DUTD is better in the beginning and then becomes
similar which, according to our opinion, is due to the fact that the asymptotic performance of the
corresponding policy is also reached quickly on those environments. On hopper, the accuracy is
better during the whole learning process which is also reflected in a better performing policy (cf.
Figure 11). These results indicate that the performance increase originates indeed from an improved
world model.

5 Discussion

We presented a novel and general method denoted as DUTD that is designed to detect under- and
overfitting on evolving datasets and is able to dynamically adjust the typically hand-set UTD ratio in
an automated fashion. As in early stopping, the underlying rationale is that too many updates can lead
to overfitting while too few updates can lead to underfitting. DUTD quickly identifies such trends by
tracking the development of the world model performance on a validation set. It then accordingly
increases or decreases the UTD ratio in the case of underfitting or overfitting.

In our experiments, we demonstrated how to successfully apply DUTD to a model-based RL algorithm
like DreamerV2. The experiments show that DUTD can automatically balance between the under-
and overfitting of the world model by adjusting the UTD ratio. As a result, DUTD removes the
burden of manually setting the UTD ratio, which otherwise needs to be tuned for new environments
making it prohibitively expensive to apply such algorithms in many domains. At the same time,
DUTD increases the performance of DreamerV2 significantly compared to its default UTD rate and is
competitive with the best hyperparameter found for each domain through an extensive hyperparameter
search. Moreover, a notable property of DUTD-DreamerV2 is its robustness to changes in the learning
rate. This is important, as the learning rate often has to be tuned for new environments. For example,
in DreamerV2 the default learning rate differs between Atari and the DeepMind Control Suite. In the
context of real world problems such tuning is undesirable and often too costly. At the same time, the
hyperparameters of DUTD can easily be set and do not have a big influence on the final performance.
We recommend updating the UTD rate after a fixed time interval that is similar to the average episode
length. The data used for validation should not exceed 10% of all data.

An interesting avenue for future work would be to explore non-supervised objectives for model-free
RL algorithms that can be used for evaluation on the validation set. This would allow the usage of
DUTD to adjust the UTD ratio of such algorithms.

We are convinced that DUTD is a further step in the direction of autonomy and the easy applicability
of RL algorithms to new real world problems without the need to tune any hyperparameters in an
inner loop.
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A B S T R A C T
Collaboration between human and robot requires interaction modalities that suit the context of the
shared tasks and the environment in which it takes place. While an industrial environment can be
tailored to favor certain conditions (e.g., lighting), some limitations cannot so easily be addressed
(e.g., noise, dirt). In addition, operators are typically continuously active and cannot spare long time
instances away from their tasks engaging with physical user interfaces. Sensor-based approaches that
recognize humans and their actions to interact with a robot have therefor great potential. This work
demonstrates how human-robot collaboration can be supported by visual perception models, for the
detection of objects, targets, humans and their actions. For each model we present details with respect
to the required data, the training of a model and its inference on real images. Moreover, we provide
all developments for the integration of the models to an industrially relevant use case, in terms of
software for training data generation and human-robot collaboration experiments. These are available
open-source in the OpenDR toolkit at https://github.com/opendr-eu/opendr. Results are discussed in
terms of performance and robustness of the models, and their limitations. Although the results are
promising, learning-based models are not trivial to apply to new situations or tasks. Therefore, we
discuss the challenges identified, when integrating them into an industrially relevant environment.

1. Introduction
Collaborative robots (co-bots) can improve the safety,

work efficiency and productivity of industrial processes by
acting as flexible and reconfigurable tool to human op-
erators. Within Industry 4.0, co-bots have a core role to
contribute to the transition from traditional manufacturing
to digital manufacturing [3, 13]. Co-bots can be easily pro-
grammed and reconfigured, and are safe for interaction, due
to their small form-factor and incorporated sensor systems
that can detect collisions [55]. Co-bots are also to be found
in high-payload form, where protective covering can be com-
plemented by sensor-based safety features. Human-robot
collaboration (HRC) is typically possible in two ways [60]:
1. Off-line programming of robot tasks by demonstration
(also known as hand-guiding or kinesthetic teaching), and
2. On-line interaction between human and robot, enabled
by external sensor systems. While off-line programming is
an established method of collaboration, on-line interaction
still typically requires great efforts in development and its
success depends highly on the sensor system. That is, if the
external sensor system is not robust or has high latency, this
reflects negatively on the performance of the collaboration.

Nevertheless, the role of humans and industrial robots
in smart factories is often emphasized [13] and future
roadmaps state clear benefits on utilizing collaboration
between humans and robots [55]. The practical requirements
and tools needed, however, are often underestimated or
given little attention, resulting in great interest from industry
and SMEs, but not many practical implementations [60].
To be realistic, successful integration of perception tools
in human-robot collaboration requires considerable effort
towards the selection of suitable detection tools, the prepa-
ration of suitable data for training and the actual training
of a detection model, followed by its implementation in the

robotic system. In this work we address these issues, and
present the following contributions:

1. Identification of challenges for deep learning-based
visual perception in HRC

2. Practical integration details for three deep learning-
based visual perception tools in HRC

3. Open-source software templates for sensor-based HRC
4. Validation of the sensor-based HRC framework with

an industrial use case
The problems we aim to address in this work are the cur-

rent limitations in perception models and situational aware-
ness for industrial human-robot collaboration. Perception
and situational awareness of robot systems can be enhanced,
such that fluent and responsive collaboration between human
and robot is possible. We believe that perception models,
based on deep learning, are ideal for this, as they can be
accurate, reliable and fast to execute. These can then provide
the required sensory input for interaction, such as the human
body and its pose, human actions or gestures, and the pose of
objects and targets in the scene. Developing and integrating
such models for robotics in industry are hard tasks, often re-
quiring expertise from many different areas [47]. Therefore,
we additionally provide a general HRC software framework,
based on ROS [39], which can be utilized to replicate our
developments. The framework is build around OpenDR [37],
a deep learning toolkit for robotics, and has the perception
tools integrated for a practical and industrially relevant use
case in agile production. The visual perception tools are
human skeleton detection, human action recognition and the
detection and pose estimation of objects and targets in the
scene.
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In the following section, the current challenges of per-
ception for HRC are identified, when considering deploy-
ment in industrial environments.
1.1. Challenges for sensor-based HRC

The first two identified challenges relate to typical and
well-known issues of learning-based perception [28], i.e.,
perception model selection and training data collection. The
last two identified challenges relate to the applicaton and
integration of such models to an industrial environment.
1. Model selection and training - The choice of perception

model depends mostly on what needs to be detected.
Many well-performing models exist, e.g. for common
objects households objects [25] or humans [33, 54].
However, simply selecting the model with the highest
accuracy is usually not the best approach. For example,
a model that detects humans in an automotive scenario
would not perform well in industrial scenario. All rel-
evant context and properties of the model needs to be
considered, as it will affect the performance with respect
to the intended use case. Moreover, properties such as
model size and inference time are of practical importance
for human-robot collaboration where delay and respon-
siveness of the interaction matter greatly.

2. Data collection - The performance of a detection model
is directly influenced by the quality and quantity of the
data used for training. Data and its annotation need to
include enough variability that could occur in the real use
case, without enlarging the dataset unnecessarily. While
in certain areas large datasets exist (e.g., household ob-
jects [22]), in other cases the dataset needs to be collected
or generated from scratch. Collecting real data is usually
preferred, as it captures the realistic content of the target
object as well as the sensor, however, synthetic data has
also shown suitable performance in many cases [35]. One
additional problem for data collection is the annotation
of the data with the ground truth, for example, object
classes or 6D object poses. For real data, annotation is
difficult and time-consuming, and in some cases near
impossible (e.g., object poses). In this case simulation
and the generation of synthetic data has the benefit of
knowing exactly where an object is rendered in the virtual
world [48].

3. Reliability and safety - Deep neural networks (DNN)
are known as black-box models, implying that their inner
workings cannot (easily) be understood [5]. Explainable
AI aims to provide explanations to models, even though
there is no general consensus of what is meant by explain-
able and/or interpretable [20]. In case of safety-critical
applications (e.g. autonomous driving or human-robot
collaboration), DNN cannot provide required reliability
and safety levels [18]. Moreover, model performance,
failure probability and their uncertainty are difficult to de-
termine and can drift during long-term operation. While
continual learning might prove useful in this regard,
developments are still in early stages [30].

4. Integration - Deploying DNNs to a real environment re-
quires integration efforts that depend on the model and its
intended outcome. Clear differences can be identified be-
tween models that provide input for on-line decision mak-
ing and models that provide diagnostics for off-line moni-
toring [52]. For example, in manufacturing environments,
the detection of obstacles and humans needs to provide
timely input to machinery for halting processes. As such,
the operating equipment needs to be shut down and tested
extensively to ensure reliable working of the developed
tools [44]. Predictive maintenance, on the other hand,
only provides recommendations and does not interfere
with running processes. Data collection and installation
of models can, therefore, often be done while machinery
is in operation or without rigorous testing protocols [57].
One additional challenge is the availability of state-of-
the-art DNN tools. While most developments are open-
source available and can even be commercialized, there
is no guarantee for code-quality and its maintenance [21].
Support for the software is typically not offered by the
tool developers, and tools quickly become obsolete due
to, for example, general software updates. As industrial
systems are operational for extended time periods (years),
investment in upgrading is not a regular occurrence.
These identified challenges are broad research topics,

and cannot be tackled by individual research efforts, but
require community effort to push boundaries forward. We
therefore do not claim in this work that we provide a solution
to these challenges but offer directions in the specific area of
human-robot collaboration how the challenges can be taken
into account. The remainder of this paper is organized as
follows. In Section 2 we provide an overview of related work
in human-robot collaboration and relevant perception tools.
As a result of this overview, several perception tools are
selected for implementation and explained in further detail
in Section 3. Section 4 describes the industrial assembly use
case, the software framework as well as integration details
needed to replicate the research developments. The results
of the perception modules and the human-robot collabora-
tion experiments are presented and discussed in Section 5.
Finally, Section 6 concludes the work.

2. Related work
2.1. Human-robot collaboration

Collaboration between human and robot has been an
ongoing trend since the advent of smart manufacturing [13]
and Industry 4.0 [55]. Formal definitions of collaboration,
working zones and operating modes are common [51] and
standards provide requirements and design guidelines to
ensure safety for operators. [53] provides an overview of
symbiotic human-robot collaborative assembly and high-
lights future research directions. Methods presented include
voice processing, gesture recognition, haptic interaction, and
even brainwave perception. In most cases deep learning is
used for classification, recognition and context awareness
identification. Computer vision-based approaches are the
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most popular, as presented in [14]. This reports a systematic
review of computer vision-based holistic scene understand-
ing in HRC scenarios, which mainly takes into account the
cognition of object, human, and environment. Subsequently,
visual reasoning can be used to gather and compile visual
information into semantic knowledge for robot decision-
making and proactive collaboration.

Particular examples of vision-based HRC are as follows.
Visual recognition of repetitive assembly actions is pre-
sented in [8] and utilizes object detection with Yolo [40] and
human pose estimation with OpenPose [6] as separate meth-
ods. Real-time human-robot interaction has been demon-
strated in [32], with hand gesture detection utilized for robot
programming. An overview of approaches is presented in
[42, 44], where again vision-based methods are high-lighted
as most popular, in combination with machine learning.
2.2. Human detection

The detection of humans, individual body parts and their
actions based on visual information has been a long-standing
problem in computer vision [33].

Human presence detection - Detecting the presence of
a person in the robot work space has been an active area
of research, mainly to ensure safety of the human [61].
Different visual modalities can be used to detect humans
[23]. In [34], a depth sensor is utilized, producing data
in the form of a point cloud. From this, a convex hull of
the human point cloud is created and background removal
detects any moving objects/subjects in the scene. Similar is
the work in [15], where a depth map is utilized to detect
a person’s presence, but also to allow interaction with a
projected graphical user interface. A dynamically updated
workspace model is, therefore, required. Depth cameras are
also used in [27] for the detection of a person in the work
space and to compute their distance to the robot. In addition,
laser scanners at leg-level are included to detect an operator’s
presence. It is noted that both sensing systems work in par-
allel and do not fuse information together, allowing a redun-
dancy for safety. 3D LiDAR-based detection of humans is
presented in [59], which utilizes a learning-based approach
for human classification. The work, however, targets large
indoor public spaces and a mobile service robot. In [23] a
comparison is made between the performance of state-of-
the-art person detectors for 2D range data, 3D LiDAR, and
RGB-D data, as well as selected combinations thereof, in
a challenging industrial use case. Multi-modal approaches
have also gained interest [38], however, most works only
consider larger environments for mobile robots (or cars)
[19], making their suitability for small and dense industrial
environments questionable. Human pose estimation goes
beyond human detection by estimating 3D poses of humans
and their individual skeleton joints. Well-known approaches
are OpenPose [6] and VoxelPose [49], which can utilizes
single as well as multiple cameras.

Gesture detection - Detection and recognition of human
gestures has also been of interest to robotics. In [24], a

comprehensive review is given of different gesture recog-
nition approaches for human-robot collaboration. Besides
visual perception, the review also includes non-image based
approaches, such as wearables. Related to our work, is
[32], which demonstrates a real-time human-robot inter-
action framework with robust background invariant hand
gesture detection. The approach presents a method to collect
a training dataset for static hand gestures, taken from letters
and numbers from American sign language.

Human action recognition - As an extension to the de-
tection of humans and their gestures, the methods of human
action recognition consider the behavior of a person, i.e.,
their actions or motions, to be detected [54, 46]. This implies
an image sequence to be used for recognition, as compared
to single images in e.g., human detection. Recent progress
has been achieved by deep learning approaches that take
as input an image sequence in RGB-D format, extracts the
2D or 3D skeleton pose and performs action classification
[58]. In relation to human-robot collaboration, research on
action recognition has also focused on industrial activities
[10] and pose forecasting [43], including actions such as
picking, placing, assembling, polishing, etc.
2.3. Object detection and pose estimation

State of the art deep neural networks have shown impres-
sive performance for generic object categories [25]. Real-
time object detection is an active research problem to allow
adoption to robotics applications, and many works can be
found that ave utilized detectors for tasks such as robot
grasping [11]. Popular approaches are for example, Faster
R-CNN [41], Yolo [40] and SSD [26]. Pose estimation of
objects considers to estimate the 6D pose of an object.
Similar to object detection, different approaches exist, such
as correspondence-based methods 3DMatch [62], template-
based methods such as PoseCNN [7] and voting based meth-
ods such as DenseFusion [53]. For both object detection and
pose estimation, datasets can be found, for example, Pascal
VOC [12] and COCO [22] for 2D object detection, and,
more recently, Objectron [1] and T-LESS [16] for 3D objects
and 6D pose estimation. It is important to mention a crucial
difference between these methods of object detection and
pose estimation, as compared to human detection and pose
estimation. In general, most human perception approaches
are successful with a large variety in humans. That means
existing dataset are sufficient to be used in new areas with
new humans. In contrast, most object perception approaches
do not scale well to novel objects and additional data should
be generated to train a model and achieve successful detec-
tion. In this work, results were achieved in a similar manner.
2.4. Other interaction modalities

Speech - Utilizing speech as interaction modality has
the benefit of not requiring physical actions for the human,
allowing work-related tasks to be uninterrupted [31]. As a
research field, the maturity has increased significantly re-
cently, due to advancements of speech recognition technolo-
gies, with respect to recognition performance and robustness
against noise [50]. However, despite the maturity in speech
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recognition performance, the connection of speech com-
mands to robot actions and/or higher-level goals requires
internal representations that need to be developed as well
[29]. For tasks that are low in complexity (e.g., pick-and-
place, hand-overs) such knowledge representation is man-
ageable [4], but with increasing conversational capabilities
in natural language perception, knowledge representation
requires careful and extensive modelling.

Graphical user interface - The most common modality
for programming industrial robots is a graphical user inter-
face (GUI) [51]. Robot tasks and motions can be achieved by
either robot hand-guiding and a teaching pendant, or by low-
level programming with suitable programming language and
software toolbox. In both cases a GUI is utilized to assist in
the programming and/or teaching of robot tasks. GUIs are
typically developed with ease-of-use in mind and, recently,
user perceptions such as user experience, user effort and
understanding are actively taken into account as well [9].
As a graphical tool, GUIs offer great capabilities, such
as visualization and simulation, integrated as apart of the
robot programming stage. Limitations, however, have been
identified as well, such as a higher cognitive burden needed
for end-users [2]. While GUIs are beneficial for the pro-
gramming of robots, they are not well suited for interaction
during task execution. Human-robot collaboration requires
responsiveness of the robot to human cues, which is difficult
to achieve with a GUI alone.

From this brief overview of related work, a few observa-
tions can be made. Most perception tools are developed and
presented without robotics in mind, aiming for general target
groups. This implies that specific characteristics relevant for
human-robot collaboration in industrial environments are
not included or tested, making their suitability for this ques-
tionable. For example, manufacturing environments can be
dirty and noisy, and specific conditions, such as lighting, can
be difficult to adjust, in contrast to laboratory and domestic
environments. In addition, while the utilization (and repli-
cation) of perception tools is often possible by open-source
software, details on integration are usually limited to just
the tool itself and not to a common framework for robotics
(e.g., ROS). Exceptions to this can be found, however, these
are typically individual tools with specific robots [32]. Our
work aims to fill this gap, by detailing three different visual
perception tools with respect to human-robot collaboration.
For all three, we provide detailed explanations on how to
replicate our work, from dataset generation and training
tools, to code examples (Python and ROS) and integrated
experiments with a collaborative robot. All developments
can found open-source in the OpenDR toolkit [37].

3. Visual recognition modules
All three integrated visual recognition modules utilize

color images only for detection and recognition. Depth per-
ception was intentionally excluded to aim that perception
models run at high update rate, ideally in real-time (i.e., 20
FPS or higher). Especially for the detection of a person and

their gestures this is needed to have a responsive system with
low delay time.
3.1. Human skeleton detection

Method - Detection of a human in the scene is done with
OpenPose [6], a real-time multi-person human pose detector.
OpenPose is capable of detecting up to a total of 135 human
body, foot, hand, and facial key points, from a single or
multiple image/camera sources. To achieve detections in
realtime, the lightweight version of OpenPose is used, as
reported in [36]. For a successful detected human pose the
method returns a list 18 2D image key points of the human
skeleton with associated key point abbreviation.

Data generation and model training - The method
in this work utilizes the pretrained MobileNet model as
explained in [36], which was trained and evaluated with the
COCO 2017 dataset [22] under default training parameters.
3.2. Human action recognition

Method - Recognition of human actions is done with ST-
GCN [58], a real-time skeleton-based human action recog-
nition framework. Depending on the dataset the method can
detect a large number of different human actions, ranging
from daily activities to complex actions with interactions.
It utilizes the lightweight OpenPose model, to estimate the
location of the human joints in every image, to generate a
sequence of detected human skeleton graphs, connected both
spatially and temporally.

Data generation and model training - The utilized
training dataset is NTU-RGB+D [45], which contains 56,000
human action clips in 60 human action classes. For each im-
age human skeleton joints are annotated in 3D, with respect
to the camera coordinate system. The pretrained model from
the original authors, with default training parameters, is used
for inference.
3.3. Assembly object and target detection

Method - Detection of objects and targets in the scene
utilizes the Mask R-CNN model from Detectron2 [56]. Mask
R-CNN combines a Region Proposal Network (RPN) with
the CNN model, to simultaneously predict object bounds and
objectness scores at each position. RPN and Fast R-CNN are
then merged into a single network. After objects and targets
are detected, their orientation is estimated in each bounding
box by the second order moment from a segmented object or
target.

Data generation and model training - As the assembly
objects and targets are novel with respect to existing datasets,
a custom dataset needed to be generated. For this, 200
images of eight object and target classes were annotated with
segmentation polygons, as depicted in Fig. 1. The object
classes included rocker arms, bolts and pushrods, and the
target classes included the Diesel engine, small and big
pushrod holes, bolt holes and rocker arm locations. This data
was augmented to include a broad variation in noise and
lighting conditions, to form the custom dataset of <300,000
images. The methods for data generation and annotation are
available in the OpenDR toolkit1.
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(a) (b) (c) (d)
Figure 1: Image annotations for assembly objects, including bolts (red), pushrods (grey) and rocker arms (light blue); (a), (b)
and (c), and targets objects, including Diesel engine (grey), small (yellow) and big (orange) pushrod holes, bolt holes (green) and
rocker arm locations (dark blue); (d). Annotations are done with segmentation polygons in different colors, for different object
classes. A total of 200 images with eight object and target classes were utilized for augmentation and dataset generation.

4. Industrial assembly use case
4.1. Diesel engine assembly

The manufacturing of Diesel engines involves assembly
steps that are hard to automate, such as contact placement
and manipulation of parts with various degrees of freedom.
For example, rocker arm placement, push rod insertion and
bolt fastening all have different constraints with respect to
the final manipulation of the part to the engine. Rocker arms
can be moved freely in 3D task space before placements,
push rod insertion requires vertical motion into a pushrod
hole and bolt fastening requires rotational motion and com-
pliance orthogonal to vertical motion. In addition, parts to
assemble are complex in shape, metallic and require lubri-
cant for assembly and for operation. This means traditional
robotic operations for picking and placing are not suitable
for assembly and manual actions are the standard approach
for manufacturing. A promising alternative, however, is to
utilize the robot as assistant and assign tasks to it that support
the assembly procedure and the ergonomy of the human
operator. These are easy, but repetitive tasks, such as pick
and placement, and actions for operator assistance such as
hand-overs of parts and tools.

The scenario for human-robot collaboration is depicted
in Fig. 2 and includes the Diesel engine, a table with parts
and tools, the human operator and a collaborative robot. To
demonstrate and validate our developments, we constructed
a use case in which the robot picks and places parts from the
table to the engine (push rods) and hands-over parts from
the table to the operator (rocker arms and bolts). Visual
perception is used as input to robot actions, i.e., to detect
the position and orientation of objects and targets. At the
same time, human skeleton detection and human action
recognition is used as input to coordinate the human-robot
collaborative tasks and to introduce safety for the human
operator, i.e., only allowing robot actions to be executed
when a person’s hands are away from the engine.

Figure 2: Experimental setup with a collaborative robot
(Franka Emika), Diesel engine and parts for assembly tasks.

4.2. Integration
All developments are integrated in the OpenDR1 toolkit

[37] with ROS/ROS22 nodes of the perception tools and
ROS moveit23 scripts for the human-robot collaboration
scenarios, enabling to easily replicate (and extend) our work.
For robot and perception hardware, we utilize the Franka
Emika collaborative robot4 and an Intel Realsense D435
RGB-D camera.

A Python script example of a visual recognition module
is shown in Listing 1, demonstrating its usage. Here, a
pretrained model for Detectron2 is loaded and the model
inference is run on an input image. The prediction results
of the model are drawn as boxes on the image as well. It
should be noted that other tools of the OpenDR toolkit, i.e.,
human skeleton detection, human action recognition, as well
as other perception tools, datasets and trained models, can be

1https://github.com/opendr-eu/opendr
2https://www.ros.org/
3https://moveit.picknik.ai/
4https://franka.de/
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utilized in a similar manner [37]. For example, in the case of
object and target detection, a custom dataset was generated,
as explained briefly in Section 3.3. This included image
annotation and augmentation, with the open-source tools
Label Studio5 and Albumentations6, respectively. These are
also integrated into the OpenDR perception tools, in form of
Python scripts and Jupyter notebooks7.
Listing 1: Object and target detections script in OpenDR1

from opendr.engine.data import Image

from opendr.perception.object_detection_2d import

↪ Detectron2Learner

# load model and run inference on image

detectron2 = Detectron2Learner(device="cpu")

detectron2.download(".", mode="pretrained")

detectron2.load("./detectron2_default")

img = Image.open("input_image.jpg")

predictions = detectron2.infer(img)

# draw bounding boxes of predictions on image

boxes = BoundingBoxList([box for kp,box in predictions])

draw_bounding_boxes(img.opencv(), boxes, class_names=

↪ detectron2.classes, show=True)

A python script example of robot actions is shown in
Listing 2, demonstrating how to define a pick and place task
with several concatenated actions. These low-level actions
are based on Moveit23 and therefore robot-agnostic. In the
example, motions are defined in task space as 2D planar
motion parallel to the table (2D_action) and 1D motion
vertical to the table (1D_action), to perform a grasping action.
Additional actions include end-effector rotations (rotate_EE)
and gripper actions (move_gripper). Actions can take input
from a visual recognition module, as shown by the inclusion
of object and place.

Listing 2: Robot actions script in OpenDR1

def Pick_and_Place(object,place):

# Move and align robot above object

2D_action(pose=[object.x, object.y], slow=False)

rotate_EE(angle=object.angle)

# Move robot down and grasp object

1D_action(z_pose=0.35, slow=True)

move_gripper(speed=20.0, width=0.02)

# Move robot to place and release object

1D_action(z_pose=0.2, slow=True)

2D_action(pose=[place.x, place.y], slow=False)

1D_action(z_pose=0.35, slow=True)

move_gripper(speed=20.0, width=0.08)

A python script example for human-robot collaboration
is shown in Listing 3, demonstrating how to combine the
visual recognition modules and the robot actions. In the
example, whenever a visual recognition module publishes

5https://labelstud.io/
6https://albumentations.ai/
7https://jupyter.org/

a message, i.e., when a successful detection is made, a
callback function is called with successive robot actions.
This can therefore be used for human coordination of the
assembly process, by triggering, halting and/or resuming
robot actions.

Listing 3: Human-robot collaboration script in OpenDR1

def AR_callback(AR_data):

if AR_data.id == 37 and AR_data.score > 0.80:

# Stop robot motion when 'salute' is detected

stopAction()

elif AR_data.id == 39 and AR_data.score > 0.80:

# Continue when 'cross hands in front' is detected

continueAction()

def OD_callback(OD_detections):

# Get bolt and bolt_hole pose

bolt_id = detections.find_object("bolt")

bolt_pose = detections.get_pose(bolt_id)

bolt_hole_id = detections.find_object("bolt_hole")

bolt_hole_pose = detections.get_pose(bolt_hole_id)

# Call pick and place action

Pick_and_Place(bolt_pose,bolt_hole_pose)

if __name__ == '__main__':

# subscribe to action_recognition topic

rospy.Subscriber("/opendr/action_recognition",

↪ ObjectHypothesis, AR_callback)

# subscribe to object_detection topic

rospy.Subscriber("/opendr/object_detection",

↪ ObjectHypothesisWithPose, OD_callback)

rospy.spin()

5. Results and Discussion
Results are described for each individual visual recogni-

tion module and for the utilization of the modules in human-
robot collaboration experiments. Integration, limitations and
future work are described in the discussion as well.
5.1. Visual recognition performance

Table 1 provides details of the different perception mod-
ules and their corresponding datasets for training and infer-
ence. In the case of human skeleton detection and human
action recognition, pre-generated datasets were utilized, as
these provided sufficient performance for detection. A dis-
advantage, however, was that the features for detection could
not be changed and no additional classes could be added. We
explain this in more detail for each recognition module.
Human skeleton detection

The human skeleton detection method (LightWeight
OpenPose [36]) with pretrained model [22] achieves satis-
factory detection performance, when assessed with a single
person in the image. Fig. 3 depicts the skeleton detection and
draws it over the person in the scene.
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Table 1
Perception models and datasets utilized to enable human-robot collaboration. Performance is reported in terms of frames per
second (FPS) and reported prediction accuracy on the dataset, from the original research papers.

Training Inference (GTX 1080 Ti)

Perception module Method Dataset Dataset
size

Model
size

Image
size FPS Prediction

accuracy (%)

Human skeleton
detection

Lightweight
OpenPose [36] COCO 2017 [22] 25 GB 1.2 GB

1920x1080
1280x720
960x540

30
30
60

88

Human action
recognition ST-GCN [58] NTU-RGB+D [45] 1.3 TB 47 MB

1920x1080
1280x720
960x540

24
30
31

83

Object and
target detection Detectron2 [56] Custom 65 GB 0.5 GB

1920x1080
1280x720
960x540

2.6
4.5
6.0

-

In terms of computational performance, the module
achieves 30 frames per second, for high resolution camera
image input (1920 × 1080) and even higher for lower
resolution images (see Table 1).

The industrial environment and the scenario of engine
assembly leaves practical limitations on how the human
skeleton detection tool can be utilized. For example, the
camera cannot capture the human in full, but only the upper
body. For human-robot collaborative tasks the detection of a
person’s left and right wrist was therefore chosen for the in-
teraction, as these could be detected reliably, while allowing
free motion in the entire camera view. The detection of both
wrists in predefined areas in the image can then be utilized to
trigger robot actions, and to halt and resume them. Requiring
both detections simultaneously in both areas increased the
robustness to false positive detection with a single wrist,
when the person was doing assembly actions on the engine.
A sequence of screenshots of human skeleton and wrist
detection can be seen in Fig. 3 and Fig. 5.
Human action recognition

The human action recognition method (ST-GCN [58])
with pretrained model [45] achieves satisfactory recognition
performance, when assessed with a single person performing
actions in the image. Fig. 3 depicts the actions recognized
and their confidence score printed on the image. As the
action recognition tool utilizes skeleton detection, this is
drawn over the image as well.

In terms of computational performance, the module
achieves 24 frames per second, for high resolution camera
image input (1920 × 1080) and even higher for lower
resolution images (see Table 1).

Similar to human skeleton detection, the industrial sce-
nario imposed limitations as the datasets for human action
recognition mostly covers daily actions [45], not relevant
for industrial tasks. However, few action classes were gen-
eral enough to be also useful in human-robot collaborative
scenarios and robust enough for reliable detection. These
were the human actions of ’salute’ (ID:37), ’put the palms
together’ (ID:38) and ’cross hands in front’ (ID:39), as can
be seen in Fig. 3c and Fig. 3d.

Object and target detection
The object and target detection method (Detectron2

[56]) with custom trained model achieves satisfactory per-
formance, for non-overlapping objects. Fig. 4 depicts the
objects detected on the table (a) and the targets detected
on the engine (b). To create the dataset, 200 images of the
eight objects and targets, in various configurations, were
recorded and all objects and targets in the images were
annotated with segmentation polygons in their correct class.
Distractor objects, such as Diesel fuel lines, common rails
and other tools, were included, as would be expected in a
real scene. This data was then expanded with augmentations
to a full datatset of around 300,000 images. Training of
the model was done until convergence of the loss function
(sum of losses due to classification and bounding box
regression), which took around 20,000 epochs. With this
method, the trained model achieved detection confidences
for real camera images of more than 90%. While more data
could be added and more training could be done, results are
sufficient to perform reliable experiments for picking and
placing, and human-robot collaboration.

In terms of computational performance, the module can-
not run in real-time, but achieves 2.6 frames per second for
high resolution camera input (1920 × 1080). As the objects
and targets are static in the scene, real-time performance is
not required. The implemented object and target detection
tool enables both continuous detection (images are pro-
cessed consecutively) and detection requests from a single
image, with a function call. In the human-robot collaboration
scenario a detection request is utilized to save computational
performance of the GPU machine. It is expected, though,
that both approaches would work equally well in terms of
object pick and placement performance.
5.2. Human-robot collaboration

The visual perception modules were utilized to enable
human-robot collaboration, in several different ways, with
the detection modules utilized as interaction tool. Certain
tools are more suited to specific tasks, due to their detec-
tion or computational performance. For example, human
skeleton detection is very reliable and fast, while human
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(a) (b) (c) (d)
Figure 3: Human visual recognition modules. (a) and (b) depict results of human skeleton detection with the skeleton-based
tracker Lightweight OpenPose [36]. (b) demonstrates that skeleton detection can be used for human-robot collaboration by
detecting human wrists (handLeft and handRight) in certain image areas. (c) and (d) depict results of human action recognition
with the real-time skeleton-based human action recognition framework ST-GCN [58]. Recognized actions are ’salute’ (c) and
’cross hands in front’ (d), with their corresponding confidence score.

(a) (b)
Figure 4: Results of visual perception for object and target detection utilizes Detectron2 [56]. (a) depicts detection of objects
(three classes): rocker arms, bolts and pushrods, and (b) depicts detection of targets (five classes): engine, bolt holes, pushrod
holes and rocker arm location. Each detection is labeled with the detected class and their corresponding confidence score.

action recognition is less reliable and slower. This time
performance difference is due to the fact that human action
recognition relies on the human skeleton detection as input
and requires a considerable number of detected frames (300)
for successful recognition. In practise this means that human
action recognition has more false detections as well. The
following experiments were tested in detail.
Human safety

The functionality of human safety can be enabled by only
allowing robot motion when the hands of a person are re-
moved from the scene. As the human skeleton detection tools
returns a set of skeleton nodes, the wrist nodes’ locations in
the image can be utilized for this. The detection of the human
wrists in certain image areas is demonstrated in Fig. 3 and
Fig 5. While the system is responsive after a true positive
detection (delay of ≈ 33𝑚𝑠), performance is sensitive to
false negative detections, causing unnecessary delays and an
unsafe system. Moreover, requiring the hands of an operator
to be held up for extended time periods, many times per day,
might be straining and uncomfortable.

Human task coordination
The shared assembly task can easily be coordinated by

the human with visual perception. Human skeleton detection
(i.e., wrists in certain location) or human actions can be used
for starting and/or stopping robot actions, thereby setting
the pace for the assembly task and performing corrective
actions, in case a robot has misplaced a part. Human visual
perception is not required to have high performance for this,
as the detection tools can be run at a high rate (i.e., >30
FPS). This implies that few false negative detections have
no significant negative impact in the collaboration. For the
object and target detection tool, real-time performance is
not required either, as pick and place actions are called on
request. These coordination experiments, by human wrist
detection, are depicted in Fig. 5 and Fig. 6. Robot actions
are the assembly (pick and placement) of pushrods and bolts
(six in total) to the Diesel engine and human actions are
the placement of rocker arms, after their hand-over from
the robot. A video of the experiments can be found here:
https://youtu.be/3z3yiLdznrY
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(a) (b)
Figure 5: Results of human-robot collaboration experiments. (a) and (b) depict human task coordination by visual detection of
the left wrist (handLeft), for halting the robot and performing manual assembly actions (a), followed by right wrist detection
(handRight) for resuming robot actions (b).

Robot-human hand-overs
As explained in Section 4, certain tasks for assembling

a Diesel engine are too difficult for a robot to execute.
However, as assistive tool, the robot can hand-over parts
located on a table to the person executing complex assembly
tasks. This is demonstrated in Fig. 6a and Fig. 6b for the
assembly tasks of rocker arm placement. The objects are
detected with the same detection model and all detected parts
are handed over in sequence to a hand-over point, close to
the human. By human gestures (visual perception tools) the
person can request for the initiation of the hand-over task
(i.e., pick an object and move to the hand-over location) and
trigger the actual hand-over action. After the rocker arm is
handed over, the human can continue the assembly action,
while the robot fetches another part.

In theory, human-robot collaboration by human coor-
dination can improve the fluency of collaboration fluency
measures [17]. This implies the reduction of idle time for
both human and robot, as well as the robot’s functional delay,
leading to higher task efficiency. While this work serves
to demonstrate the functionality of the visual perception
modules, a thorough analysis and evaluation for fluency
measures has not been carried out.
Assembly progress tracking

Besides enabling human-robot collaboration, the visual
perception tools can also be used to track the progress
of the Diesel engine assembly task. This means to track
how many objects are placed in the correct location or
whether some objects are missing. While there are many
ways how this could be implemented, a simple but effective
implementation was done as follows. As the entire engine
block is detected as well, it can be easily checked whether
certain assembly objects (rocker arms, pushrods and bolts)
are detected inside the detected engine bounding box. For
this, the image dataset included the images of assembly
objects assembled on the engine. Output of the assembly
progress tracking tool then returns the number of objects

assembled and/or whether the task is completed or not. Fig.
6c depicts the detection of different objects (rocker arms,
bolts) inside the detected Diesel engine bounding box. In
this time instance, five of the eight rocker arms are placed
and detected (class 7), while three rocker arm locations are
detected (class 0) and thus empty. In addition, ten bolts
are placed and detected (class 5), while eleven bolts holes
are detected (class 1) and thus empty. It should be noted,
however, that visual detection is not a fool-proof way to track
assembly progress. In total, 22 bolts should be assembled
to the engine block, meaning one bolt hole or bolt was not
detected. This misdetection of the bolt can be seen in the
center of image (Fig. 6c).
5.3. Discussion

Limitations - The first limitation of the explored per-
ception modules relates to the relevance of the (training)
data for industrial context. As most tools are developed for
humans and objects in domestic or outdoor environments,
success in other areas is not guaranteed. In certain cases this
is not a major issues (e.g., humans look similar in a broad
context), but in some cases it can be a problem, as classes
are unsuitable (e.g., multi-human actions in a single human
use case) or simply do not exist (e.g., novel objects or human
actions to detect). One obvious solution to this would be
to extend an existing dataset or create a new dataset from
scratch, however, this is not a trivial task. Collecting data
is complex, and expensive in resources and equipment, even
when synthetic data generation approaches exist [48]. In this
work, the data generation tools for object and target detection
are open-source available through the OpenDR toolkit.

Utilizing perception tools for human safety, in particular
by DNN-based visual perception models, is not recom-
mended. The reaction time of a safety system, in order to
stop robot motion, should be small, which cannot always
be guaranteed. Some models used in this work can be
executed in real-time (see Table 1), and even faster (60 FPS),
meaning that it takes at least 17𝑚𝑠 for a detection, assuming
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(a) (b) (c)
Figure 6: Results of robot-human hand-over and assembly tracking experiments. (a) depicts the hand-over of a rocker arm from
robot to human. (b) depicts the human assembly action of the rocker arm by the human, while the robot fetches another rocker
arm. (c) depicts the assembly tracking results, with several objects (rocker arms, class 7; bolts, class 5) and their locations (rocker
arm location, class 0; bolt holes, class 1) detected inside the detected Diesel engine bounding box (class 4). One bolt, however,
is not detected at all. Each detection is labeled with the detected class and their corresponding confidence score.

a prediction is accurately made. Other models are simply
not suited for fast detection or recognition, as they require
a set of images, instead of single images (e.g., 300 in the
case of [58]) and/or rely on another detection tool as input
(e.g., skeleton detection in the case of [58]). In addition,
as reported in [18], quantifying the reliability of machine
learning and DNN-based perception tools is still a challenge
and performance might drift over time. The time-delay of
perception and its performance uncertainty should then be
taken into account when calculating the minimum separation
distance between human and robot.

Integration effort - The resources and effort needed to
develop, train and deploy perception models for industrial
use, is considerable. Even when robust and reliable pre-
trained models are to be integrated, still effort is needed
to comply tools to existing software frameworks with its
own datatypes and formatting. While ROS2 has taken first
steps to enable this for robotics, computer vision tools are
typically disconnected from this. OpenDR [37] has made
efforts to integrate a variety of perception models into ROS,
and examples to specific use cases are presented in this
work. In the case when pretrained models are not sufficient,
additional effort is needed for data collection and training.
As it is difficult to estimate how much effort is needed
for different models, we report the effort for our custom
dataset for object and target detection. A collection of
200 RGB images where taken as base for the dataset and
annotations were needed for eight object and target classes.
This annotation took considerable time (2-3 days) for the
relatively small set of images. Generation of the complete
dataset and training a model is time-consuming as well (2
hours for a single training cycle), and optimizing to good
results requires expertise. Naturally, better performance can
be obtained with more powerful computational hardware
(e.g., computing cluster or cloud computing), however, these
are not always available, and come with additional cost.

Future work - The results of our work demonstrate that
deep learning-based perception models can be easily trained
and deployed to robotic environments and achieve reliable
detection and recognition results. Results also demonstrated
that multiple perception models can be utilized simultane-
ously, enabling the fusion of different sensors or utilizing
different detection modules in parallel. As such, this work
has established a baseline for future directions. These in-
clude the fusion of different sensor information, from similar
or dissimilar modalities. This sensor fusion would enable a
higher robustness then single sensor models and introduces a
redundancy of sensing, for example, in case one sensor fails
or is occluded. Exploration of these topics will be done as
future work.

6. Conclusions
Visual perception is a common tool for enabling human-

robot collaboration, by detection or recognition of relevant
objects, features and actions in the scene. The performance
and maturity of such tools are usually evaluated by scenarios
not related to robotics or manufacturing, limiting their direct
utilization in industrial environments. Moreover, in some
cases visual perception tools need to be tailored to suit
the context of the human-robot collaboration scenario. This
means collecting, annotating and augmenting visual data and
the training of a perception model.

In this work we have identified these common issues
and provide the practical integration details for three differ-
ent deep learning-based visual perception tools. These are
human skeleton detection, human action recognition, and
object and target detection in context of the industrial use
case of Diesel engine assembly. The tools are integrated
open-source in the OpenDR toolkit, with ROS as software
platform, providing templates for perception, robot actions
and human-robot collaboration, thereby enabling to easily
replicate and extend our work.
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Abstract

Several recent works show impressive results in mapping language-based human
commands and image scene observations to direct robot executable policies (e.g.,
pick and place poses). However, these approaches do not consider the uncertainty
of the trained policy and simply always execute actions suggested by the current
policy as the most probable ones. This makes them vulnerable to domain shift and
inefficient in the number of required demonstrations. We extend previous works
and present the PARTNR algorithm that can detect ambiguities in the trained policy
by analyzing multiple modalities in the pick and place poses using topological
analysis. PARTNR employs an adaptive, sensitivity-based, gating function that
decides if additional user demonstrations are required. User demonstrations are
aggregated to the dataset and used for subsequent training. In this way, the policy
can adapt promptly to domain shift and it can minimize the number of required
demonstrations for a well-trained policy. The adaptive threshold enables to achieve
the user-acceptable level of ambiguity to execute the policy autonomously and in
turn, increase the trustworthiness of our system. We demonstrate the performance
of PARTNR in a table-top pick and place task.

1 Introduction

Despite the numerous exciting results in robot learning, only a few methods are actually robust enough
to be employed in everyday life. Many manipulation tasks, such as pick-and-place in household
scenarios, are challenging for robots, while they are actually easy for humans. To overcome this
performance mismatch, we can exploit the human domain knowledge through (interactive) imitation
learning [4]. This requires novel methods with an intuitive interface to transfer non-expert user
knowledge to robotic systems. The impressive capabilities of recently introduced foundation models
can possibly ease this transfer of knowledge. Foundation models can be trained on language data
only (e.g., Transformers [17], BERT [7], or GPT-3 [3]) or can be trained on multi-modal data, such as
images and their captions (e.g., CLIP [13]). In the field of robotics, language foundation models can
be used for task planning [2] and interpreting human commands [16, 1] as well as corrections [15].
In particular, in the setting of (interactive) imitation learning, it is a natural choice to exploit language
foundation models, since it allows the user to give instructions or corrections in an intuitive manner.
Interactive imitation learning is a subclass of imitation learning in which the human is influencing the
learning loop while executing the task [4]. To be practical and trustworthy, the robot should ask for
help when it is uncertain about the outcome of its actions. At the same time, humans should not be
bothered too much. In this work, we address this problem by introducing Pick and place Ambiguity
Resolving by Trustworthy iNteractive leaRning (PARTNR). Our work is related to the seminal work
that introduced dataset aggregation (DAgger) for imitation learning [14]. DAgger addresses the
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Figure 1: PARTNR framework on an example task.

compounding errors in imitation learning caused by covariate shift through the collection of on-policy
data. Many variants were introduced afterward, such as Human-Gated DAgger (HG-DAgger) [11],
where the expert can take over control if deemed necessary, and Ensemble-DAgger[12], where the
robot queries expert input when a novel or risky situation is faced. Regarding the ambiguity resolution,
our work is related to LIRA [9] which treats ambiguities in discrete reference frames, while here we
focus on actions. PARTNR can be used to interactively train vision-based pick and place models, such
as Transporter networks [19] and its extension for language commands CLIPort [16]. PARTNR asks
for a human demonstration in case the model predictions are ambiguous. We consider a prediction
to be ambiguous if it results in multiple options with similar value estimates. To be trustworthy,
the threshold of the gating function is adaptive and allows it to satisfy a user-defined sensitivity,
balancing between potential failing and asking the user unnecessarily. PARTNR consists of two main
steps: 1) Detecting ambiguity in pick and place heatmaps by finding multiple local maxima using
topological persistence and query user demonstrations if needed. 2) Aggregating data from new
human demonstrations in DAgger style to learn from feedback and resolve the ambiguity. PARTNR
has several advantageous features compared to the other state-of-the-art approaches: 1) By querying a
new demonstration based on the level of ambiguity, it avoids gathering demonstrations for situations
that are already learned by the agent, therefore reducing the number of required demonstrations. 2) By
specifying the desired sensitivity level, the user can set its preferred balance between the frequency
of queries by the robot and the failure rate, therefore increasing the system’s trustworthiness. 3) By
gathering data during execution, PARTNR can adapt to changing environments as well as include
failure states, i.e., new states visited by making mistakes, in the dataset so it can learn to recover from
them. We demonstrate these on a simulated table-top robot pick and place task, where we show an
improvement of the performance with respect to the baseline (CLIPort variant).

The rest of the paper is organized as follows. Section 2 presents preliminaries as seen in the works
[19, 16] and lays the formal problem formulation for our work. Section 3 presents our method. This
is followed by experiments and conclusion sections.

Additional material is available at: partnr-learn.github.io.

2 Preliminaries and Problem Definition

We follow [19, 16] and describe the pick and place problem as finding a mapping from an observation
ot to a pick and place action at at time step t, that is, f(ot)→ at = (Tpick, Tplace) ∈ A, where A is
the set of possible actions and Tpick and Tplace are the end-effector pick and place poses, respectively.
We consider a table-top pick and place problem with Tpick, Tplace ∈ R2. Motion primitives can be
used to obtain a sequence of lower-level actions from Tpick and Tplace. Furthermore, we consider
vision-based manipulation with Ti ∼ (u, v), i ∈ {pick,place}, where (u, v) is a pixel location of a
(projected) top view image. If we model the action-value functions Qpick and Qplace, the optimal
pick and place locations according to the model are Tpick = argmax(u,v)Qpick((u, v)|ot) and
Tplace = argmax(u,v)Qplace((u, v)|ot, Tpick). Note that Tplace is conditioned on Tpick. Normalized
heatmaps correlated with pick and place success can be obtained using the softmax function, i.e.,
Vpick ∈ RH×W = softmax(Qpick((u, v)|ot)) , where H and W are the height and width of the top
view image, respectively. The action-value functions can be estimated through imitation learning. We
build on the standard imitation learning setting where we have a dataset D = {ζ1, ζ2, ..., ζn}, where
n is the number of expert demonstration trajectories consisting of one or more tuples of observations
and actions, i.e., ζi = {(o0,a0), (o1,a1), ...}.
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In this work, we extend previous problem formulation and consider situations when taking the most
probable action by argmax is not sufficient, e.g. when there is no single distinctive maximum. We
tackle the interactive learning problem where the robot needs to hand over the control back to the
human and learn from new human demonstrations.

3 PARTNR: Pick and place Ambiguity Resolving by Trustworthy iNteractive
leaRning

PARTNR is an interactive imitation learning algorithm that asks the human to take over control in
case it considers the situation to be ambiguous. The situation is ambiguous when the learned policy
does not provide a single dominant solution, i.e., there are multiple local maxima with close values
in the action space. User demonstrations are aggregated to the dataset D and used for subsequent
training, as shown in Algorithm 1. The robot observes, at each execution step, a human-provided
natural language command and the state of the environment (e.g., a top-view image of the table).
Based on the observation, the policy provides the heatmap, representing the value of the action (e.g.,
Qpick representing pick location). The heatmap (Qpick and subsequently Qplace) is then analyzed to
detect multiple local maxima (in TopAnalysis). In this work, we rely on computational topology
methods for finding local maxima [8]. Specifically we use a persistent homology method [10]. Then,
in AmbiguityMeasure, the obtained corresponding values of the local maxima T, are normalized
using the softmax function and the maximum value p̂act is then used to decide if the situation is
ambiguous. If p̂act is smaller than the threshold pthract, the situation is ambiguous. In case the situation
is ambiguous, the robot is not executing the policy but queries the human teacher. The threshold
pthract is updated continuously, by the function UpdateThreshold, to satisfy a user-defined sensitivity
value (more details in Appendix C). Whenever there is a teacher input, the data is aggregated and the
policy is updated using the function Train (like in [14]).

Figure 1 shows the PARTNR framework in an example where a human asks the robot to pick the
red block and place it in the top right corner. As we can see on the heatmaps for pick and place,
there are multiple local maxima for this command. In the pick heatmap Qpick there are at least
three local maxima, each related to one of the blocks. The maximum related to the red block is the
highest (0.45). However, the orange block is also relatively close (0.39). In this case, the situation
might be ambiguous (depending on the sensitivity level) and the robot might query the teacher for a
demonstration.

4 Experiments and Results

We evaluated the performance of the proposed method in a simulated table-top pick and place task,
which is shown in Figure 2. This task is very similar to tasks from [16, 19, 18]. The goal of this task

Algorithm 1: PARTNR
output :Qpick,Qplace // pick and place value functions

1 begin
2 D,Qpick,Qplace, p

thr
pick, p

thr
place ← init() // initialization

3 for t← 0 to tmax do // while experiment runs
4 ot ← Observe()

5 foreach act ∈ {pick, place} do
6 T = {(u1, v1), . . . , (uk, vk)} ← TopAnalysis(Qact((u, v)|ot)) // k local maxima
7 p̂act ← AmbiguityMeasure(T)

8 if p̂act ≤ pthr
act then // if ambiguous

9 at ← QueryTeacher(T)
10 Act(at),D ← D ∪ (ot, at) // adding user input to the Dataset
11 else // if not ambiguous
12 Act(argmax(u,v)∈TQact((u, v)|ot))

13 if acorr ← ObserveCorrection() ̸= ∅ then // if teacher corrects
14 D ← D ∪ (ot, acorr)

15 pthr
act ← UpdateThreshold(pthr

act),Qact ← Train(D) // update the model with new data
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is to execute language commands in the form “Pick the [pick color] box and place it in the [place
color] bowl.”, where the pick and place colors are sampled at the beginning of an episode, based on
the colors of the objects present in the scene. The task is simulated using the PyBullet simulator [6]
and the implementation is adapted from [18]. At the beginning of each episode, three boxes and three
bowls are placed at random locations on the table. Similar to [16], the colors of the objects are either
sampled from the color set of Call ∪Cseen or the color set Call ∪Cunseen, where Call = {red, blue, green},
Cseen = {yellow, brown, gray, cyan}, and Cunseen = {orange, purple, pink, white}. The set of seen
colors is used for offline training, while both sets are used for evaluation and interactive learning, to
simulate a domain shift.

As a baseline, the CLIPort variant used in [18, 2] is employed and trained on a dataset consisting of
demonstrations from a scripted expert. We also trained CLIPort models using the PARTNR algorithm
with the same architecture as the baseline interactively, as described in Algorithm 1. The interactive
models are initially trained offline and updated interactively while executing the task. To have a fair
comparison between the baseline and the interactive models, both have the same number of total
demonstrations and a total number of model updates. Since real-life demonstrations are never perfect,
we also evaluated the method with noisy demonstrations.

We follow [16] and evaluate each model in 100 episodes consisting of three pick-and-place commands.
The percentage of successfully performed pick and place commands is used as evaluation metric.
The results in Table 1 show that the PARTNR algorithm improves the baseline performance, both
in the in-distribution and out-of-distribution scenarios (seen and unseen case). The improvement in
the unseen case indicates that by collecting on-policy data, the methods improves robustness against
domain shifts. The on-policy data also enables to learn to recover from failure states, which is not
possible in the offline baseline. Interestingly, both the baseline and PARTNR performance improved
substantially when adding noise to the pick and place demonstrations from the scripted expert. To be
noted, the final performance is lower than obtained with the original CLIPort model in [16]. Most
likely, this is due to the usage of a simplified variant, a lower number of data augmentations and a
lower number of camera perspectives. However, this is not relevant as the main focus here is to make
a comparison against a non-interactive baseline, and not to obtain optimal performance.

Figure 2: The put-
blocks-in-bowls task.

put-blocks-in-bowls
seen-colors

put-blocks-in-bowls
unseen-colors

algorithm data split 500 1000 1000 noisy 1500 500 1000 1500

Baseline 100% off 28.3 51.7 82.7 62.7 19.0 22.0 16.7
PARTNR 50% off + 50% int 30.3 57.3 91.0 80.3 30.7 53.0 78.3
PARTNR (80% data) 50% off + 30% int 28.0 39.3 77.7 68.0 20.3 28.3 57.3

Table 1: The performance of the PARTNR algorithm is evaluated against the performance of the non-interactive
baseline (CLIPort variant). Here the success rate (%) is shown for a number of demonstrations, i.e., 500, 1000 and
1500. The data split indicates the percentage of demonstrations that were obtained offline (off) and interactively
(int), so in the last row, 20% fewer demonstrations were collected. Since real demonstrations are often noisy, we
also evaluated both methods with noise (∼ N (0, 32) pixels) added to the pick and place locations (1000 noisy).

5 Conclusions and Outlook

This work introduced PARTNR, an interactive learning algorithm for resolving ambiguities in
pick-and-place tasks. The PARTNR algorithm improves the baseline performance, both in the in-
distribution and out-of-distribution scenarios. Furthermore, sampling efficiency is improved (even
up to 20% more data-efficient), since demonstrations are only collected when needed, based on the
user-specified sensitivity. In the future, we plan to evaluate PARTNR with the original CLIPort
baseline as well and to further address the epistemic uncertainty of the model, e.g., through an
ensemble approach. Also, we wish to extend the method with sequence prediction and feedback
control. Finally, we plan to monitor the human cognitive load in a real-world participant study.
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A Recovering from mistake

Because the PARTNR algorithm collects data from the state distribution induced by the novice policy, it can
learn to recover after mistakes, while this is not the case when learning offline from expert demonstrations. That
is to say, the expert does not make any mistakes and therefore failure states are not visited by the expert policy.
An example of such a recovery learned interactively is shown in Figure 3.

(a) (b) (c) (d)

Figure 3: Example of learning how to recover thanks to on-policy data collection. The figures (a) and (b) show
demonstrations for failure states, i.e., in (a) the block to be picked is already in another bowl, and in (b) there is
already a block in the blue bowl. Such demonstrations of failure states are collected only in the interactive case.
Figures (c) and (d) show that the novice can learn to recover from such failure states.

B PARTNR framework: Detailed algorithm

A detailed version of the PARTNR algorithm is shown in Algorithm 2. For computing the sensitivity or optionally
specificity [5], we also need to keep track of the true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN). The definition of positives and negatives is shown in Table 2.

Table 2: Definition of positives and negatives. In the ideal case, the teacher is only queried in the case that the
robot’s action would result in a failure (true positive).

Human input was necessary

A
m

bi
gu

ou
s True False

True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

C Adaptive Threshold: More details

A detailed version of the adaptive threshold algorithm is shown in Algorithm 3. Here, the number of true
positives, true negatives, false positives, and false negatives are counted over a window (kTP, kTN, kFP, kFN,
respectively). Subsequently, the sensitivity can be estimated (ŝ) [5]. Finally, the threshold pthr is updated
proportionally to the error between the desired and estimated sensitivity. In our experiments, we used the
following values: pthr0 = 0.5, sdes = 0.9, wn = 50 and a = 0.005.
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Algorithm 2: PARTNR - detailed algorithm

input :Dinit // initial demonstrations
output :Qpick,Qplace // pick and place value functions

1 begin
2 D ← Dinit // initial Dataset
3 Qpick,Qplace ← Train(Dinit)
4 TP,TN,FP,FN← ∅
5 pthrpick, p

thr
place ← init()

6 for t← 0 to tmax do // while experiment runs
7 ot ← Observe()

8 foreach act ∈ {pick,place} do
9 isUpdated← false

10 T = {(u1, v1), . . . , (uk, vk)} ← TopAnalysis(Qact((u, v)|ot))
11 amax ← argmax(u,v)∈TQact(u, v)

12 p̂act ← AmbiguityMeasure(T)

13 if p̂act ≤ pthract then // if ambiguous
14 at ← QueryTeacher(T)
15 D ← D ∪ (ot,at) // adding user input to the Dataset
16 isUpdated← true
17 if at == amax then
18 FP← FP ∪ t // adding False Positive flag
19 else
20 TP← TP ∪ t // adding True Positive flag

21 Act(at)
22 else // if not ambiguous
23 Act(amax)
24 if acorr ← ObserveCorrection() ̸= ∅ then // if teacher corrects
25 D ← D ∪ (ot,acorr)
26 isUpdated← true
27 FN← FN ∪ t // adding False Negative flag
28 else
29 TN← TN ∪ t // adding True Negative flag

30 pthract ← UpdateThreshold(pthract,TP,TN,FP,FN)

31 if isUpdated then
32 Qact ← Train(D) // update the model with new data

Algorithm 3: UpdateThreshold
input :Initial threshold pthr0 , Desired sensitivity sdes, Window length wn, Adaptation rate a.
output : threshold pthr

1 begin
2 kTP, kTN, kFP, kFN ← MovHorCnt(wn,TP,TN,FP,FN) // Counting occurrence

in the window wn

3 ŝ← kTP

kTP+kFN

4 pthr ← pthr0 − a · (sdes − ŝ)

D Ambiguity Measure: Example and visualization

Figure Figure 4 shows a visual example of how the ambiguity measure is obtained.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4: This figure shows a visual example of obtaining the ambiguity measure. The input image together
with the correct action (green arrow) is shown in (a). Here, the language command is: ‘Pick the red block and
place it on the top right corner”. With TopAnalysis, we obtain local maxima T, which are shown in (b) and
(c) for the pick and place poses, respectively. The corresponding values are shown in (d). After normalization
using the softmax function, we obtain (e). The local maxima with a normalized value greater than 0.01 are
shown in (f) and (g) for the pick and place poses, respectively. The maximum of the normalized values is used
as ambiguity measure.
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