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Abstract—In this paper we evaluate the impact of domain
shift on human detection models trained on well known object
detection datasets when deployed on data outside the distribution
of the training set, as well as propose methods to alleviate
such phenomena based on the available annotations from the
target domain. Specifically, we introduce the OpenDR Humans
in Field dataset, collected in the context of agricultural robotics
applications, using the Robotti platform, allowing for quantita-
tively measuring the impact of domain shift in such applications.
Furthermore, we examine the importance of manual annotation
by evaluating three distinct scenarios concerning the training
data: a) only negative samples, i.e., no depicted humans, b) only
positive samples, i.e., only images which contain humans, and
¢) both negative and positive samples. Our results indicate that
good performance can be achieved even when using only negative
samples, if additional consideration is given to the training
process. We also find that positive samples increase performance
especially in terms of better localization. The dataset is publicly
available for download at https://github.com/opendr-eu/datasets.

I. INTRODUCTION

Object detection combines the tasks of classification and
localization, i.e., it refers to finding what objects are pictured
in an image, as well as where in the image they are located.
In the case of multiple object, multiple class object detection,
a generic object detector should be able to detect an unknown
number of objects belonging to a number of different classes.
Depending on the training dataset, these classes can include
people, animals, inanimate objects, etc. Such datasets include
the widely popular PASCAL VOC [1] and MS COCO [2]
object detection benchmarks, containing objects from 20 and
80 classes respectively. Deep Learning brought significant
improvements both in terms of effectiveness and efficiency and
currently the top performing object detection methods on these
challenging benchmarks are all based on Deep Convolutional
Neural Networks (CNNs).

Despite improvements in these detectors on well known
object detection benchmarks, deploying them on new appli-
cations highlights the domain adaptation problem. Domain
adaptation refers to the process of alleviating the domain shift
between a source and target domain, i.e., how to effectively
deploy a detector trained on a source domain onto a target

(a) Image depicting two humans, captured by the front
camera of the robot.

(b) Image depicting one human, captured by the back
camera of the robot.

Fig. 1: Examples of detections using a pretrained model.
Existing models lead to false detections under distribution
shifts.

domain, which differs from the source in some way. Recent
works in domain adaptation for object detection propose a
progressive shift towards the target domain [3[], [4]. A some-


https://github.com/opendr-eu/datasets

what more straightforward approach to domain adaptation is
incremental learning [S]. In any case, knowledge transfer is
of significant importance when training a detector on a new
dataset, in order to maximize its accuracy for the new domain.

In this paper, we introduce a dataset, called OpenDR Hu-
mans in Field, collected in the context of agricultural use cases
using the Robotti robotic platform, designed for detection
of humans in fields. Samples from this dataset are shown
in Figure [T} with detections made using an SSD detector
[6] pretrained on the COCO dataset [2], where the domain
shift problem is evident. We evaluate the accuracy of various
detectors trained on existing datasets, identifying important
limitations that these detectors face on scenarios like this. The
results of this evaluation highlight the need to use domain
adaptation and knowledge transfer approaches to increase the
performance of detection on such applications. We examine
various methods in depth and report results in terms of preci-
sion and recall for each. Our main findings are that using only
negative samples can significantly drop the false positive rate,
compared to a baseline pretrained model, and incorporating
positive samples can further improve localization, leading to
increased detection precision.

II. RELATED WORK

Single-stage detectors have been shown to perform about
as well as their two-stage, heavyweight counterparts, while
running at much faster speeds. The seminal methods of YOLO
[7] and SSD [6] inspired many recent works which utilize
the anchor-based, single-stage architectures proposed by them.
Anchor-free object detectors aim to tackle issues arising from
the use of predefined anchors, such as the need for thousands
of such anchors in order to train dense object detectors, or the
tedious hyperparameters they introduce, like the size, aspect
ratio etc. CenterNet [8]] is one such anchor-free object detector,
taking into consideration the center of objects as well as the
corners, to detect each object as a triplet.

In the context of agriculture, object detection methods
can assist robots in their tasks in various ways [9]. We are
specifically interested in the human-centric scenario, where
human labour is complemented with robots, focusing on
human detection in fields, which is a critical safety aspect for
human-robot interaction. The main contribution of this paper is
the collection of a dataset that depicts humans in agricultural
fields in various conditions. This is in contrast to the most
commonly used person detection datasets, where humans are
depicted in urban scenarios. Furthermore, the lenses attached
to the robot are wide-angled, leading to bounding boxes of
different proportions than those commonly seen in existing
datasets. Therefore, the collected dataset allows for evaluating
the impact of domain shift, as well as employing method for
reducing its effect.

Indeed, this domain shift problem [[10], compared to existing
datasets, is evident in Figure @ and is encountered in other
computer vision tasks as well, such semantic segmentation
[11] or concept detection [12]. In object detection, a two-
level domain adaptation approach was introduced in [13]] for

Faster R-CNN, on an image-level as well as on an instance-
level. In [14], a multidomain-invariant representation learning
process was proposed, using adversarial learning. In this
work, we tackle the domain shift problem in a data-driven
manner, influenced also by the lack of a large collection of
images, paving the way for developing methods that can work
under the challenging settings that are often encountered in
agricultural applications.

The rest of this paper is structured as follows. Section
presents several works related to object detection and domain
adaptation. The dataset collection process, as well as the
employed methods for alleviating domain shift are described in
Section[ITI} The results of our experimental study are presented
and analyzed in Section [[V] Finally, Section [V] concludes our
work and summarizes our findings.

III. PROPOSED METHOD
A. Dataset Collection

A Robotti was deployed by AGI to collect images with a
front and back camera, in a realistic scenario to mimic the
images that the robot might encounter in the agricultural use
case. A total of 8038 images were collected on two separate
occasions, 818 in the first batch and 7233 in the second. For the
purposes of this work, the first batch was fully annotated, while
the second one is provided to support unsupervised learning
tasks. Of the 818 collected images, 13 were discarded as they
depicted unwilling participants to comply with GDPR. The
remaining images were annotated with bounding boxes, where
one bounding box corresponds to one depicted person. The
LabelIm tool was used for the annotation, which outputs
annotations in PASCAL VOC .xml format. Figure [2a] is an
image from this dataset annotated with two bounding boxes
for the two depicted humans. In total, 158 images contained
people, and 647 images did not. The latter were annotated with
an empty bounding box list, to be used as negative samples
in object detection algorithms. Figure 2b]is an example of an
image from this dataset containing no humans.

B. Alleviating the Domain Shift

A natural first step to alleviate the domain shift is to
finetune a pretrained detector on background images from the
new domain, i.e., images which do not depict any objects of
interest. One benefit of this method is that no annotation is
required, which can often be a tedious and time-consuming ac-
tivity. However, training a detector solely on negative samples
may quickly degrade the detector’s performance on positive
samples, i.e., images depicting objects of interest. A small
learning rate and only a small number of training iterations
can be used to lessen this undesirable side-effect.

In the absence of a sufficient number of negative training
examples, or in the case where performance is still sub-
par, positive samples should be included in the training set.
Although bounding box annotation is costly, it is the most
reliable way to increase detection performance on a new
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(b) Negative sample with no humans in field of
view.

Fig. 2: Examples of collected images: (a) Image depicting two
humans, annotated with bounding boxes, (b) Image depicting
no humans.

dataset. Positive samples can be used as the only training
set as they contain some of the background information
as well. Furthermore, finetuning a pretrained detector with
both positive and negative samples can lead to fewer false
positive detections in comparison to training with only positive
samples, as well as fewer missed detections in comparison to
using only negative samples.

However, finetuning using only the target dataset can de-
teriorate the detector’s performance on the source dataset
due to catastrophic forgetting phenomena [15]. Even though
the source dataset may no longer be relevant, this drop in
performance can be reflected in the target dataset, in the
form of overfitting. Thus, we propose that in addition to
the aforementioned training sets, the source dataset is used
in finetuning as well. Specifically for human detection, only
the ‘person’ class from the source dataset is extracted and
appended to the training set. To enforce balance between the
samples of the source and target datasets, the samples of
the latter are repeated multiple times. Each sample undergoes
transformations, according to the data augmentation protocol
of the detector, such that even if the same image is used twice
in a batch, the detector sees a slightly different version of it.

TABLE I: Evaluation in terms of precision at 0.5 IoU, of
pretrained detectors on the collected dataset depicting humans
in field.

Method Train Set  Pos. Only All FPS
SSD vOoC 535 422 236
SSD COCO 80.3 70.1  23.6

SSD - MBNet voC 40.8 18.8 35

SSD - MBNet COCO 60.7 423 35
CenterNet vVOC 43.4 28.6 16.1
CenterNet COCO 63.1 54.8 16.1
YOLOV3 vOC 63.4 609 152
YOLOV3 COCO 78.9 747 152

IV. EXPERIMENTAL RESULTS
A. Baseline models

An extensive evaluation of pretrained detectors of the SSD
6], YOLOv3 [7] and CenterNet [8] families, was conducted
for this dataset. The results are summarized in Table [lin terms
of precision at 0.5 IoU and FPS on Jetson AGX. The detectors
are trained on either the PASCAL VOC [1] and MS COCO
[2] object detection benchmarks, containing objects of 20 and
80 classes respectively. Finally, the MobileNet version of SSD
[[16]], [[17] is also evaluated. For the target dataset, we evaluate
the methods on two subsets: a) on the positive samples only
(‘Pos. Only’), and b) on the entire test set (‘All’), including
both positive and negative samples. The reason behind this
choice is to examine the effect of each training method on the
false positive detections.

As expected, the addition of images without people high-
lights the false positive accumulation, due to the unseen back-
grounds present in the dataset. Detectors trained on COCO
seem to perform significantly better than those trained on
VOC, which can be attributed to the wider range of appearance
in people in the larger COCO dataset. The object scale in
COCO is also more varied, containing people as small as 10
pixels in height. The YOLOv3 detector in general performs
the best, but is the slowest of the evaluated detectors on the
Jetson AGX. The SSD MobileNet variant, especially when
trained on COCO, seems to give off the best speed/accuracy
trade-off. Even so, the drop in precision is significant when
considering negative-only samples.

Based on this experimental study, we conclude that further
training of the detectors is necessary to avoid false positive
detections as well as to increase the true positive ratio.
Knowledge transfer from the COCO dataset seems to be the
most promising direction, as it leads to the best precision
for all detectors. Furthermore, we choose the SSD algorithm
as it is the fastest of the compared ones, and specifically
the standard VGG16 version, as it still runs at about real-
time on the AGX while achieving higher performance than its
MobileNet counterpart.

B. Domain Adaptation Experiments

Two major sets of experiments are conducted. In the first
case, the detector is finetuned using only the target dataset,
and specifically different splits of it. In the second case,



TABLE II: Target domain finetuning - Evaluation using only
the positive samples of the dataset

Train Set AP  Precicion@0.5 Recall@0.5
Baseline (COCO) 49.8 80.3 554
Finetune with negatives  50.6 83.1 55.5
Finetune with positives  57.0 90.1 63.2
Finetune with both 56.6 91.1 63.3

TABLE III: Target domain finetuning - Evaluation using the
entire (positive and background) samples of the dataset

Train Set AP  Precicion@0.5 Recall@0.5
Baseline (COCO) 44.8 70.1 55.4
Finetune with negatives  48.6 78.9 55.5
Finetune with positives  56.7 89.3 63.2
Finetune with both 56.5 90.9 63.3

the detector is finetuned using the target dataset as well as
the COCO ‘person’ subset, i.e., any images from the COCO
dataset which depict humans.

1) Finetuning on target domain only: For the following
experiments, we also measure the performance in terms of
Average Precision (AP), Precision at 0.5 IoU threshold, and
Recall at 0.5 IoU. Thus we can draw conclusions regarding
the false positive (FP), false negative (FN) and localization
performance of each method. Table [[I] contains the results
of our study on the positive subset of the target dataset. In
comparison to the pretrained model on COCO, using only
negative samples increases all metrics, although it has the least
significant effect on recall. This can be attributed to a very
small change of the FN detections, i.e., the detector is only
slightly better at finding humans it didn’t before finetuning.
The most significant change is in terms of Precision@(.5,
translating to a smaller FP rate, i.e., the detector has learned
to not make false predictions, as expected. In terms of AP, the
increase is not as large, indicating that although the overall FP
rate has improved, localization issues ensue. This highlights
the need to add positive samples to the training set.

On the other hand, using only positive samples, significantly
increases the detection performance in terms of both precision
and recall. Using both positive and negative samples further
increases the precision at 0.5 IoU, at the cost of slightly
worsened localization at higher thresholds. Furthermore, the
effect on FN is negligible. This indicates that using positive
only samples provides the detector with enough background
(i.e., negative) samples to reach this peak performance.

The performance of the proposed methods on the entire
test set (both positive and negative samples) is shown in
Table Note that splitting the test set like this only affects
the precision scores, and not the recall. Thus, we focus on the
precision scores, and specifically on the FP and localization
performance.

All of the evaluated methods lead to more FP detections,
which is expected as these occur on the added negatives-only
subset. Other than this drop, the results are similar to those

TABLE IV: Finetuning using both the target and source
domain - Evaluation using the entire (positive and background)
samples of the dataset

Train Set AP Prec@0.5 Rec@0.5 \ COCO AP
Baseline (COCO) 44.8 70.1 55.4 37.0
COCO+Neg. 49.1 79.4 53.5 36.4
COCO+Pos. 61.9 94.3 67.0 34.9
COCO+Both 60.7 93.9 70.1 36.8

regarding the positives-only subset. Specifically, using negative
samples only improves the baseline performance and the effect
is more prominent on this set (+8.8% precision at 0.5 IoU, in
comparison to +2.8% in positives-only).

Using only positive and using both positive and negative
samples both significantly improve the performance over the
baseline pretrained model, and actually more or less reach
the same performance as when evaluating only on positive
samples. This result is consistent with the fact that positive
samples contain a superset of the information presented in
negative samples that is relevant to the detection algorithm.

2) Finetuning on target and related source domain class:
Mixing the source and target domains in a balanced manner
during training may intuitively increase the performance of the
detector on the target dataset even more, while maintaining
performance on the source domain. Table summarizes the
results of this experiment on the entire target dataset, i.e.,
the results are comparable to those in Table The ‘COCO
AP’ column shows the AP on the person subset of COCO, to
highlight performance loss on the source domain.

The ‘COC+Neg./Pos./Both* entry indicates that the detector
has been finetuned using the COCO ‘person’ subset and
the negative/positive/all samples of the target dataset. First,
training with negative only samples, increases the precision in
comparison to both the pretrained model on COCO, as well
as the finetuned models reported in Table Furthermore,
training with positive samples significantly improves both the
precision and recall scores, at the cost of 2.1% AP in the per-
son class of COCO. Adding both positive and negative samples
preserves the most pre-existing knowledge, as indicated by the
small loss in person AP, as well as the 3.1% improvement
in recall in the AGI dataset, in comparison to using only
positive samples. These results indicate that combining source
and target domain can always increase the precision compared
to using data only from the target domain, as well as minimize
the impact of catastrophic forgetting phenomena.

C. Qualitative Results

Figure (3] shows examples of detections made using our
COCO+Both detector, on the same images as shown in Fig-
ure [I] for the pretrained model. Note that there are a lot of
false positive detections using the pretrained model, which are
corrected when training with the source (COCO) dataset plus
the full annotated target domain dataset.



V. CONCLUSIONS

A dataset for human detection in fields was introduced,
for the purposes of agricultural robotics applications. Various
detection models pretrained on the VOC and COCO datasets
were evaluated on this dataset, and the results indicated a
severe impact of the domain shift problem. Thus, the impor-
tance of annotation of the collected images was examined, by
evaluating three distinct sets of training data: a) only negative
samples, i.e., no depicted humans, b) only positive samples,
i.e., only images which depict humans, and c) both negative
and positive. The results indicated that good performance
can be achieved even when using only negative samples.
However, to achieve better localization, using positive samples
only is the better option. The findings of this work, along
with the openly available annotated dataset, pave the way
for developing methods that can work under the challenging
settings that are often encountered in agricultural applications.

(a) Positive sample depicting two humans (front
camera).

(b) Positive sample depicting one human (back cam-
era).

Fig. 3: Examples of detections using our COCO+Both model:
(a) Image depicting two humans, captured by the front camera
of the robot, (b) Image depicting one human, captured by the
back camera of the robot.
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