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Abstract— Accurate value estimates are important for off-
policy reinforcement learning. Algorithms based on temporal
difference learning typically are prone to an over- or underes-
timation bias building up over time. In this paper, we propose
a general method called Adaptively Calibrated Critics (ACC)
that uses the most recent high variance but unbiased on-policy
rollouts to alleviate the bias of the low variance temporal
difference targets. We apply ACC to Truncated Quantile
Critics [1], which is an algorithm for continuous control that
allows regulation of the bias with a hyperparameter tuned per
environment. The resulting algorithm adaptively adjusts the
parameter during training rendering hyperparameter search
unnecessary and sets a new state of the art on the OpenAl gym
continuous control benchmark among all algorithms that do
not tune hyperparameters for each environment. ACC further
achieves improved results on different tasks from the Meta-
World robot benchmark. Additionally, we demonstrate the
generality of ACC by applying it to TD3 [2] and showing an
improved performance also in this setting.

I. INTRODUCTION

Off-policy reinforcement learning is an important research
direction as the reuse of old experience promises to make
these methods more sample efficient than their on-policy
counterparts. This is an important property for many applica-
tions such as robotics where interactions with the environment
are very time- and cost-intensive. Many successful off-policy
methods make use of a learned Q-value function [2], [3],
[4], [5]. If the action space is discrete the Q-function can be
directly used to generate actions while for continuous action
spaces it is usually used in an actor-critic setting where the
policy is trained to choose actions that maximize the Q-
function. In both cases accurate estimates of the Q-values are
of crucial importance.

Unfortunately, learning the Q-function off-policy can lead
to an overestimation bias [6]. Especially when a nonlinear
function approximator is used to model the Q-function, there
are many potential sources of bias. Different heuristics were
proposed for their mitigation, such as the double estimator in
the case of discrete action spaces [7] or taking the minimum
of two estimates in the case of continuous actions [2]. While
these methods successfully prevent extreme overestimation,
due to their coarse nature, they can still induce under- or
overestimation bias to a varying degree depending on the
environment [8].

To overcome these problems we propose a principled
and general method to alleviate the bias called Adaptively
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Calibrated Critics (ACC). Our algorithm uses the most recent
on-policy rollouts to determine the current bias of the Q-
estimates and adjusts a bias controlling parameter accordingly.
This parameter adapts the size of the temporal difference
(TD) targets such that the bias can be corrected in the
subsequent updates. As the parameter changes slower than the
rollout returns, our method still benefits from stable and low-
variance temporal difference targets, while it incorporates the
information from unbiased but high variance samples from
the recent policy to reduce the bias.

We apply ACC to Truncated Quantile Critics (TQC) [1],
which is a recent off-policy actor-critic algorithm for continuous
control showing strong performance on various tasks. In TQC
the bias can be controlled in a finegrained way with the help of a
hyperparameter that has to be tuned for every environment. ACC
allows to automatically adjusts this parameter online during
the training in the environment. As a result, it eliminates the
need to tune this hyperparameter in a new environment, which
is very expensive or even infeasible for many applications.

We evaluate our algorithm on a range of continuous control
tasks from OpenAl gym [9] and robotic tasks from the meta
world benchmark [10] and exceed the current state-of-the-
art results among all algorithms that do not need tuning of
environment-specific hyperparameters. For each environment,
ACC matches the performance of TQC with the optimal
hyperparameter for that environment. Further, we show that
the automatic bias correction allows to increase the number of
value function updates performed per environment step, which
results in even larger performance gains in the sample-efficient
regime. We additionally apply ACC to the TD3 algorithm
[2] where it also leads to notably improved performance,
underscoring the generality of our proposed method. To
summarize, the main contributions of this work are:

1) We propose Adaptively Calibrated Critics, a new general
algorithm that reduces the bias of value estimates in
a principled fashion with the help of the most recent
unbiased on-policy rollouts.

2) As a practical implementation we describe how ACC can
be applied to learn a bias-controlling hyperparameter of
the TQC algorithm and show that the resulting algorithm
sets a new state of the art on the OpenAl continuous
control benchmark suite.

3) ACC achieves strong performance on robotics tasks.

4) We demonstrate that ACC is a general algorithm with re-
spect to the adjusted parameter by additionally applying
it successfully to TD3.

To allow for reproducibility of our results we describe our



algorithm in detail, report all hyperparameters, use a large
number of random seeds for evaluation, and made the source
code publicly available{ﬂ

II. BACKGROUND

We consider model-free reinforcement learning for episodic
tasks with continuous state and action spaces S and .A. An
agent interacts with its environment by selecting an action
a; € A in state s; € S for every discrete time step ¢. The
agent receives a scalar reward r; and transitions to a new state
S¢+1- To model this in a mathematical framework we use a
Markov decision process, defined by the tuple (S, A, P, R, 7).
Given an action a € A in state s € S the unknown state
transition density P defines a distribution over the next state.
Rewards come from the reward function R and future rewards
are discounted via the discount factor v € [0, 1].

The goal is to learn a policy m mapping a state s to a
distribution over actions such that the sum of future discounted
rewards R, = Z?:t v*~tr; is maximized. We use the term
mg for the policy with parameters ¢ trained to maximize
the expected return J(¢) = E, p ¢;~x[Ro]. The value
function for a given state-action pair (s,a) is defined as
Q™ (s,a) = Eg,~p a;~r[Re]$, a], which is the expected return
when executing action « in state s and following 7 afterwards.

A. Soft Actor Critic

TQC extends Soft Actor-Critic (SAC) [3], which is a strong
off-policy algorithm for continuous control using entropy reg-
ularization. While in the end we are interested in maximizing
the performance with respect to the total amount of reward
collected in the environment, SAC maximizes for an auxiliary
objective that augments the original reward with the entropy
of the policy J(¢) = Es,~p.apnr 32 7V (re + aH(m(-[s0)))].
where H denotes the entropy.

A critic is learned that evaluates the policy 7 in terms of its
Q-value of the entropy augmented reward. The policy—called
actor—is trained to choose actions such that the Q-function
is maximized with an additional entropy regularization

Jx(¢)= E

[Qo(st,ar) — alogmg(as:)]. (1)
st~D,ag~Ty

The weighting parameter o of the entropy term can be

automatically adjusted during the training [11]. Both the

training of actor and critic happen off-policy with transitions

sampled from a replay buffer.

B. Truncated Quantile Critics

The TQC algorithm uses distributional reinforcement
learning [12] to learn a distribution over the future augmented
reward instead of a Q-function which is a point estimate
for the expectation of this quantity. To do so TQC utilizes
quantile regression [13] to approximate the distribution with
Dirac delta functions Zp(s;,a;) = 47 Zﬁf:l 5(0™ (s, at)).
The Diracs are located at the quantile locations for fractions
%,m € {1,...,M}. The network is trained
to learn the quantile locations 6™ (s,a) by regressing the
predictions 8™ (s;, a;) onto the Bellman targets y,, (s, a;) =

Tm —
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7y + (0™ (St41, ar41) — alog my(ars1|si41)) via the Huber
quantile loss.

TQC uses an ensemble of N networks (61, - - - ,0x) where
each network 6,, predicts the distribution Zp, (s, a:) =
& Zf\f:l d(0 (s, at)). A single Bellman target distribution
is computed for all networks. This happens by first computing
all targets for all networks, pooling all targets together in one
set and sorting them in ascending order. Let k € {1,..., M},
then the kN smallest of these targets y; are used to define the
target distribution Y (s;, a¢) = 2 Zﬁvl 0(yi(s¢,ar)). The
networks are trained by minimizing the quantile Huber loss
which in this case is given by

| MN
List, at30n) = 1ot Do (ilse,a) =07 (sea0)) (2)
m,i=1

where pf(u) = |7 — 1(u < 0)|£}(u) and L} (u) is the
Huber loss with parameter 1.

The rationale behind truncating some quantiles from the
target distribution is to prevent overestimation bias. In TQC
the number of dropped targets per network d = M — k is
a hyperparameter that has to be tuned per environment but
allows for a finegrained control of the bias.

The policy is trained as in SAC by maximizing the entropy
penalized estimate of the Q-value which is the expectation
over the distribution obtained from the critic

A
J(p) = Z’I“ED N7 m;:l 07 (s,a) —alogmy(als)|. (3)

IIT. ADAPTIVELY CALIBRATED CRITICS

In this section, we will introduce the problem of estimation
bias in TD learning, present our method ACC and demonstrate
how it can be applied to TQC.

A. Over- and Underestimation Bias

The problem of overestimation bias in temporal differ-
ence learning with function approximation has been known
for a long time [6]. In Q-learning [14] the predicted Q-
value Q(s,a;) is regressed onto the target given by y =
r¢ + ymax, Q(si4+1,a). In the tabular case and under mild
assumptions the Q-values converge to that of the optimal
policy [14] with this update rule. However, using a function
approximator to generate the Q-value introduces an approxi-
mation error. Even under the assumption of zero mean noise
corruption of the Q-value E[e,] = 0, an overestimation bias
occurs in the computation of the target value because of
Jensen’s inequality

max Q(st+1,a) = mciaxE[Q(stH, a) + €4)

<E [m{?,X{Q(SH_l, a) + ea}]. ()
In continuous action spaces it is impossible to take the
maximum over all actions. The most successful algorithms
rely on an actor-critic structure where the actor is trained to
choose actions that maximize the Q-value [2], [3], [15]. So
the actor can be interpreted an approximation to the argmax
of the Q-value.
With deep neural networks as function approximators other
problems such as over-generalization [5], [16] can occur
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where the updates to Q(s¢, a;) also increases the target
through Q(st41,a) for all a which could lead to divergence.
There are many other potential sources for overestimation bias
such as stochasticity of the environment [17] or computing the
Q-target from actions that lie outside of the current training
data distribution [18].

While for discrete action spaces the overestimation can be
controlled with the double estimator [7], [17], it was shown
that this estimator does not prevent overestimation when
the action space is continuous [2]. As a solution the TD3
algorithm [2] uses the minimum of two separate estimators
to compute the critic target. This approach was shown to
prevent overestimation but can introduce an underestimation
bias. In TQC [1] the problem is handled by dropping some
targets from the pooled set of all targets of an ensemble of
distributional critics. This allows for more finegrained control
of over- or underestimation by choosing how many targets are
dropped. TQC is able to achieve an impressive performance
but the parameter d determining the number of dropped targets
has to be set for each environment individually. This is highly
undesirable for many applications since the hyperparameter
sweep to determine a good choice of the parameter increases
the actual number of environment interactions proportional to
the number of hyperparameters tested. For many applications
like robotics this makes the training prohibitively expensive.

B. Dynamically Adjusting the Bias

In the following we present a new general approach to
adaptively control bias emerging in TD targets regardless
of the source of the bias. Let R™(s,a) be the random
variable denoting the sum of future discounted rewards
when the agent starts in state s, executes action a and
follows policy 7 afterwards. This means that the Q-value
is defined as its expectation Q7 (s,a) = E[R"(s,a)]. For
notational convenience we will drop the dependency on the
policy 7 in the following. We start with the tabular case.
Suppose for each state-action pair (s,a) we have a family
{Qs(s, @)} B€[Bmin,Bmas]cr OF estimators for Q(s,a) with
the property that Qs (s,a) < Q(s,a) < Qg,..(s,a),
where (s, a) is the true Q-value of the policy 7 and Qg a
continuous monotone increasing function in 3 .

If we have samples R;(s,a) of the discounted returns
R(s,a), an unbiased estimator for Q(s,a) is given by the
average of the R; through Monte Carlo estimation [19]. We
further define the estimator Q- (s,a), where 8* is given by

arg min

R;i(s,a)|. (5)
BE(BrminBmas] N Z

The following Theorem, which we prove in the appendix,
shows that the estimator is unbiased under some assumptions.

Theorem 1: Let Qs(s,a) be a continuous monotone in-
creasing function in S and assume that for all (s,a) it
holds Qg,,, (s,a) < Q(s,a) < Qp,,..(s,a), the returns
R(s,a) follow a symmetric probability distribution and that
Qs,,..(s,a) and Qp, . (s,a) have the same distance to
Q(s,a). Then Qp- from Equation [5|is an unbiased estimator
for the true value @ for all (s, a).

B*(s,a) = Qs(s,a)

Algorithm 1 ACC - General
Initialize: bias controlling parameter 3, steps between
updates T, tg = 0
for ¢ = 1 to total number of environment steps do
Interact with environment according to m, store tran-
sitions in replay buffer B and store observed returns
R(s,a), increment tg +=1
if episode ended and t3 >= T3 then
Update 8 with Eq. [f] using the most recent experience
and set tg =0
end if
Sample mini-batch b from B
Update ) with target computed from ()3 and b
end for

The symmetry and same distance assumption can be replaced
by assuming that Q. (s,a) < R; < Qg,...(s,a) with
probability one. In this case the proof is straightforward since
(0 can take any value for which R; has positive mass.

We are interested in the case where Q is given by a function
approximator such that there is generalization between state-
action pairs and that it is possible to generate estimates
for pairs for which there are no samples of the return
available. Consider off-policy TD learning where the samples
for updates of the Q-function are sampled from a replay buffer
of past experience. While the above assumptions might not
hold anymore in this case, we have an estimator for all state-
action pairs and not just the ones for which we have samples
of the return. Also in practice rolling out the policy several
times from each state action pair is undesirable and so we
set N = 1 which allows the use of the actual exploration
rollouts. Our proposed algorithm starts by initializing the bias-
controlling parameter 3 to some value. After a number of
environment steps and when the next episode is finished, the
Q-value estimates and actual observed returns are compared.
Depending on the difference B is adjusted according to

5new Bold + Z [ St, at Q(sh at) ) (6)

where « is a step size parameter and (s¢, at)tTﬁl are the T €
N most recent state-action pairs. As a result 3 is decreased in
the case of overestimation, where the Q-estimates are larger
than the actual observed returns, and increased in the case
of underestimation. We assumed that ()g is continuous and
monotonically increasing in 5. Hence, increasing /3 increases
Qs and vice versa. For updating the Q-function the target
will be computed from ().

Only performing one update step and not the complete
minimization from Equation [5] has the advantage that 3 is
changing relatively slow which means the targets are more
stable. Through this mechanism our method can incorporate
the high variance on-policy samples to correct for under- or
overestimation bias. At the same time our method can benefit
from the low variance TD targets. ACC in its general form
is summarized in Algorithm

Other algorithms that attempt to control the bias arising in



TD learning with non-linear function approximators usually
use some kind of heuristic that includes more than one esti-
mator. Some approaches use them to decouple the choice of
the maximizing action and the evaluation of the maximum in
the computation of the TD targets [7]. Alternative approaches
take the minimum, maximum or a combination of both over
the different estimators [2], [8], [20], [21]. All of these have
in common that the same level of bias correction is done
for every environment and for all time steps during training.
In the deep case there are many different sources that can
influence the tendency of TD learning building up bias in
non-trivial ways. ACC is more principled in the regard that
it allows to dynamically adjust the magnitude and direction
of bias correction during training. Regardless of the source
and amount of bias ACC provides a way to alleviate it. This
makes ACC promising to work robustly on a wide range of
different environments.

One assumption of ACC is that there is a way to adjust
the estimated Q-value with a parameter 8 such that 6:25 is
continuous and monotonically increasing in /3. There are many
different functions that are in accordance with this assumption.
We give one general example of how such a Q g can be easily
constructed for any algorithm that learns a Q-value. Let Q
be the current estimate. Then define Qg = ﬁ|Q| /K + 0,
where K is a constant (e.g. 100) and [5,in, Bmaz) iS some
interval around 0. In the following section we will present
an application of ACC in a more sophisticated way.

C. Applying ACC to TQC

As a practical instantiation of the general ACC algorithm
we apply it to adjust the number of targets dropped from the
set of all targets in TQC. Denote with d,,q. € {0,..., M}
some upper limit of targets to drop per network. Define
Bmin =0, ﬁmam = dmaw and let d = dmaa: - ﬁ be the
current number of targets dropped for each network. Further,
we write () for the TQC estimate with dN targets dropped
from the pooled set of all targets. If d,,,,, is set high enough
the TQC estimate without dropped targets (g, . induces
overestimation while the TQC estimate with d,,,,, dropped
targets per net (g, ,, induces underestimation.

In general, 8 € [0, d;q.] is continuous and hence also d
is a continuous value. As the number of dropped targets from
the pooled set of all targets has to be a discrete number in
{0,..., NM?} we round the total number of dropped targets
dN to the nearest integer in the computation of the TD target.
When updating 5 with Equation [} we divide the expectation
by the moving average of the absolute value of the difference
between returns and estimated Q-values for normalization.

IV. EXPERIMENTS

We evaluate our algorithm on a range of continuous control
tasks from OpenAl Gym [9] and the meta world benchmark
[10] that both use the physics engine MuJoCo [22] (version
1.5). First, we benchmark ACC against strong methods that
do not use environment specific hyerparameters. Then we
compare the performance of TQC with a fixed number of
dropped targets per network with that of ACC. Next, we

evaluate the effect of more critic updates for ACC and show
results in the sample efficient regime. Further, we study the
effect of ACC on the accuracy of the value estimate, and
investigate the generality of ACC by applying it to TD3.

We implemented ACC on top of the PyTorch code
published by the author to ensure a fair comparison. While
in general a safe strategy is to use a very high value for
dmag as it gives ACC more flexibility in choosing the right
amount of bias correction we set it to d,,q, = 5, which is
the maximum value used by TQC for the number of dropped
targets in the original publication. At the beginning of the
training we initialize § = 2.5 and set the step size parameter
to oo = 0.1. After Ty = 1000 steps since the last update and
when the next episode finishes, 8 is updated with a batch
that stores the most recent state-action pairs encountered in
the environment and their corresponding observed discounted
returns. After every update of 3 the oldest episodes in this
stored batch are removed until there are no more than 5000
state-action pairs left. This means that on average 3 is updated
with a batch whose size is a bit over 5000. The updates of
[ are started after 25000 environment steps and the moving
average parameter in the normalization of the S—update
is set to 0.05. The first 5000 environment interactions are
generated with a random policy after which learning starts.
We did not tune most of these additional hyperparameters and
some choices are directly motivated by the environment (e.g.
setting T3 to the maximum episode length). Only for o we
tested a few different choices but found that for reasonable
values it does not have a noticeable influence on performance.
All hyperparameters of the underlying TQC algorithm with
N = 5 critic networks were left unchanged.

Compared to TQC the additional computational overhead
caused by ACC is minimal because there is only one update
to [ that is very cheap compared to one training step of the
actor-critic and there are at least T3 = 1000 training steps in
between one update to 3.

During training, the policy is evaluated every 1,000
environment steps by averaging the episode returns of 10
rollouts with the current policy. For each task and algorithm
we run 10 trials each with a different random seed.

A. Comparative Evaluation

We compare ACC to the state of the art continuous
control methods SAC [3] (with learned temperature parameter
[11]) and TD3 [2] on six OpenAl Gym continuous control
environments. To make the different environments comparable
we normalize the scores by dividing the achieved return by
the best achieved return among all evaluations points of all
algorithms for that environment.

Figure [Th) shows the aggregated data efficiency curve over
all 6 tasks computed with the method of [23], where the
interquantile mean (IQM) ignores the bottom and top 25%
of the runs across all games and computes the mean over the
remaining. The absolute performance of ACC for each single
task can be seen in Figure [2] Overall, ACC reaches a much
higer performance than SAC and TD3.

Zhttps://github.com/bayesgroup/tqc_pytorch
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Fig. 1. Sample efficiency curves aggregated from the results over
several environments. The normalized IQM score and the mean of the
success rate respectively is plotted against the number of environment steps.
Shaded regions denote pointwise 95% stratified bootstrap confidence intervals
according to the method of [23]. (a) Aggregated results over the 6 gym
continuous control tasks. (b) Aggregated results over the 12 metaworld tasks.

B. Robotics Benchmark

To investigate, if ACCs strong performance also translates
into robotics environments, we evaluate ACC and SAC on 12
of the more challenging tasks in the Meta-World benchmark
[10], which consists of several manipulation tasks with a
Sawyer arm. We use version V2 and use the following 12
tasks: sweep, stick-pull, dial-turn, door-open, peg-insert-side,
push, pick-out-of-hole, push-wall, faucet-open, hammer, stick-
push, soccer. We evaluate the single tasks in the in the MT1
version of the benchmark, where the goal and object positions
change across episodes. Different to the gym environments, 3
is updated every 500 environment steps as this is the episode
length for these tasks. Figure [Ip) shows the aggregated data
efficiency curve in terms of success rate over all 12 tasks
computed with the method of [23].

The curves demonstrate that ACC achieves drastically
stronger results than SAC both in terms of data efficiency and
asymptotic performance. After 2 million steps ACC already
achieves a close to optimal task success rate which is even
considerably higher than what SAC achieves at the end of
the training. This shows, that ACC is a promising approach
for real world robotics applications.

C. Fixing the Number of Dropped Targets

In this experiment we evaluate how well ACC performs
when compared to TQC where the number of dropped targets
per network d is fixed to some value. Since in the original
publication for each environment the optimal value was one
of the three values 0, 2, and 5, we evaluated TQC with d
fixed to one of these values for each environment. To ensure
comparability we used the same codebase as for ACC. The
results in Figure 2| show that it is not possible to find one
value for d that performs well on all environments. With
d = 0, TQC is substantially worse on three environments
and unstable on the Ant environment. Setting d = 2 is
overall the best choice but still performs clearly worse for

two environments and is also slightly worse for Humanoid.

Dropping d = 5 targets per network leads to an algorithm that

can compete with ACC only on two of the six environments.

Furthermore, even if there would be one tuned parameter that
performs equally well as ACC on a given set of environments
we hypothesize there are likely very different environments

for which the specific parameter choice will not perform well.
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Fig. 2. Learning curves of ACC applied to TQC and TQC with different
fixed choices for the number of dropped atoms d on six OpenAi gym
environments. We used version v3. The shaded area represents mean =+
standard deviation over the 10 trials. For readability the curves showing the
mean are filtered with a uniform filter of size 15.

The principled nature of ACC on the other hand provides
reason to believe that it can perform robustly on a wide range
of different environments. This is supported by the robust
performance on all considered environments.

D. Evaluation of Sample Efficient Variant

In principle more critic updates per environment step should
make learning faster. However, because of the bootstrapping
in the target computation this can easily become unstable.
The problem is that as targets are changing faster, bias can
build up easier and divergence becomes more likely. ACC
provides a way to detect upbuilding bias in the TD targets
and to correct the bias accordingly. This motivates to increase
the number of gradient updates of the critic. In TD3, SAC
and TQC one critic update is performed per environment step.
We conducted an experiment to study the effect of increasing
this rate up to 4. ACC using 4, 2 and 1 updates are denoted
with ACC_4q, ACC_2q and ACC_1q respectively. ACC_1q
is equal to ACC from the previous experiments. We use the
same notation also for TD3 and SAC.

Scaling the number of critic updates by a factor of 4
increases the computation time by a factor of 4. But this
can be worthwhile in the sample efficient regime, where a
huge number of environment interactions is not possible
or the interaction cost dominate the computational costs
as it is the case when training robots in the real world.
The results in Figure [3p) show that in the sample efficient
regime ACC4q further increases over plain ACC. ACC4q
reaches the final performance of TD3 and SAC in less than
a third of the number of steps for five environments and for
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Humanoid in roughly half the number of steps. Increasing
the number of critic updates for TD3 and SAC shows mixed
results, increasing performance for some environments while
decreasing it for others. Only ACC benefits from more updates
on all environments, which supports the hypothesis that ACC
is successful at calibrating the critic estimate.

E. Analysis of ACC

To evaluate the effect of ACC on the bias of the value
estimate, we analyze the difference between the value estimate
and the corresponding observed return when ACC is applied
to TQC. For each state-action pair encountered during
exploration, we compute its value estimate at that time and at
the end of the episode compare it with the actual discounted
return from that state onwards. Hence, the state-action pair
was not used to update the value function at the point when the
value estimate has been computed. If an episode ends because
the maximum number of episode time-steps has been reached,
which is 1,000 for the considered environments, we ignore
the last 100 state-action pairs. The reason is that in TQC
the value estimator is trained to ignore the episode timeout
and uses a bootstrapped target also at the end of the episode.
We normalize for different value scales by computing the
absolute error between the value estimate and the observed
discounted return and divide that by the absolute value of
the discounted return. Every 1,000 steps, the average over
the errors of the last 1,000 state-action pairs is computed.
The aggregated results in Figure [@b) show that averaged over
all environments ACC indeed achieves a lower value error
than TQC with the a fixed number of dropped atoms d. This
supports our hypothesis that the strong performance of ACC
applied to TQC indeed stems from better values estimates.

To better understand the hidden training dynamics of
ACC we show in Figure [dh) how the number of dropped
targets per network d = d,,4 — 3 evolves during training.
Interestingly, the relatively low standard deviation indicates
a similar behaviour across runs for a specific environment.
However, there are large differences between the environments

which indicates that it might not be possible to find a single
hyperparameter that works well on a wide variety of different
environments. Further, the experiments shows that the optimal
amount of overestimation correction might change over time
during the training even on a single environment.

FE. Beyond TQC: Improving TD3 with ACC

To demonstrate the generality of ACC, we additionally
applied it to the actor-critic style TD3 algorithm [2], which
uses two critics. These are initialized differently but trained
with the same target value, which is the minimum over the two
targets computed from the two critics. While this successfully
prevents the overestimation bias, using the minimum of the
two target estimates is very coarse and can instead lead to an
underestimation bias. We applied ACC to TD3 by defining
the target for each critic network to be a convex combination
between its own target and the minimum over both targets. Let
Qi = Qp, (8t+1,75(s¢+1)), we define the k-th critic target

v =7 +7(B Qe+ (1- 8) min Qi)

where 3 € [0,1] is the ACC parameter that is adjusted to
balance between under- and overestimation. The results are
displayed in Figure [3p) and show that ACC also improves
the performance of TD3.

V. RELATED WORK
A. Overestimation in Reinforcement Learning

The problem of overestimation in Q-learning with function
approximation was introduced by [6]. For discrete actions
the double estimator has been proposed [17] where two
Q-functions are learned and one is used to determine the
maximizing action, while the other evaluates the Q-function
for that action. The Double DQN algorithm extended this
to neural networks [7]. However, Zhang et al. [24] observed
that the double estimator sometimes underestimates the Q-
value and propose to use a weighted average of the single
and the double estimator as target. This work is similar to
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uniform filter of size 401 for readability.

ours in the regard that depending on the parameter over- or
underestimation could be corrected. A major difference to
our algorithm is that the weighting parameter is computed
from the maximum and minimum of the estimated Q-value
and does not use unbiased rollouts. Similarly, the weighted
estimator [25], [26] estimates the maximum over actions in the
TD target as the sum of values weighted by their probability
of being the maximum. In continuous action spaces this
can be done through Gaussian process regression [26] and
for discrete actions via dropout variational inference [25].
Different to ACC the weighting is computed from the same
off-policy data used to compute the single quantities while
ACC adjusts the weighting parameter 3 in a separate process
using the latest on-policy rollouts. Lv et al. [27] use a similar
weighting but suggest a stochastic selection of either the
single or double estimator. The probability of choosing one
or the other follows a predefined schedule. Other approaches
compute the weighted average of the minimum and maximum
over different Q-value estimates [21], [18]. However, the
weighting parameter is a fixed hyperparameter. The TD3
algorithm [2] uses the minimum over two Q-value estimates as
TD target. Maxmin Q-learning is another approach for discrete
action spaces using an ensemble of Q-functions. For the TD
target, first the minimum of over all Q-functions is computed
followed by maximization with respect to the action [8].
Decreasing the ensemble size increases the estimated targets
while increasing the size decreases the targets. Similarly to
TQC this provides a way to control the bias in a more fine-
grained way; the respective hyperparameter has to be set
before the start of the training for each environment, however.
Cetin et al. [28] propose to learn a pessimistic penalty to
overcome the overestimation bias.

What sets ACC apart from the previously mentioned works
is that unbiased on-policy rollouts are used to adjust a
term that controls the bias correction instead of using some
predefined heuristic.

B. Combining On- and Off-Policy Learning

There are many approaches that combine on- and off-
policy learning by combining policy gradients with off-policy
samples [29], [30], [31]. In [32] an actor-critic is used where
the critic is updated off-policy and the actor is updated with
a mixture of policy gradient and Q-gradient. This differs
from our work in that we are interested only in better critic
estimates through the information of on-policy samples. To
learn better value estimates by combining on- and off-policy

data prior works proposed the use of some form of importance
sampling [33], [34]. In [35] the TD target is computed by
mixing Monte Carlo samples with the bootstrap estimator.
These methods provide a tradeoff between variance and bias.
They differ from our work in using the actual returns directly
in the TD targets while we incorporate the returns indirectly
via another parameter. Bhatt et al. [36] propose the use of a
mixture of on- and off-policy transitions to generate a feature
normalization that can be used in off-policy TD learning.
Applied to TD3, learning becomes more stable eliminating
the need to use a delayed target network.

C. Hyperparameter Tuning for Reinforcement Learning

Most algorithms that tune hyperparameters of RL algo-
rithms use many different instances of the environment to
find a good setting [37], [38], [39]. There is, however, also
work that adjusts a hyperparameter online during training
[40]. In this work the meta-gradient (i.e., the gradient of the
update rule) is used to adjust the discount factor and the
length of bootstrapping intervals. However, it would not be
straightforward to apply this method to control the bias of
the value estimate. Their method also differs from ours in
that they do not use a combination of on- and off-policy data.

VI. CONCLUSION

We present Adaptively Calibrated Critics (ACC), a general
off-policy algorithm that learns a Q-value function with bias
calibrated TD targets. The bias correction in the targets is
determined via a parameter that is adjusted by comparing
the current value estimates with the most recently observed
on-policy returns. Our method incorporates information from
the unbiased sample returns into the TD targets while keeping
the high variance of the samples out. We apply ACC to TQC,
a recent off-policy continuous control algorithm that allows
fine-grained control of the TD target scale through a hyper-
parameter tuned per environment. With ACC, this parameter
can automatically be adjusted during training, obviating the
need for extensive tuning. The strong experimental results
suggest that our method provides an efficient and general
way to control the bias occurring in TD learning.

Interesting directions for future research are to evaluate
the effectiveness of ACC applied to algorithms that work
with discrete action spaces and when learning on a real robot
where tuning of hyperparameters is very costly.
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- Appendix -

Nicolai Dorka Tim Welschehold

A.1. PROOF OF THEOREM 1

The estimator Qg (s,a) was defined via

A 1
arg min  |Qp(s,a) — — Ri(s,a)|. (T)
ﬁE[ﬂnlinyﬁm,in] N ;

B*(Sv a) =

To declutter the notation we drop the dependencies on the
state-action pairs (s, a) and the policy 7. Further we write
R= % Zf\il R;. First note that the average of symmetrically
distributed random variables is still a symmetric distributed
random variable and hence R is symmetrically distributed.
By assumption Qﬁ and ngmw have the same distance to
the true Q-value which is the mean @ = E[R], i.e. there is
a distance real valued value d such that () = Q Bmin 0=
Qﬁmw d Denote the tail probabilty P(R < ngmm) = py.
Because of the symmetry and the same distance to the mean
we also have that P(R > Qp,..) = p;. In the computation
of E[Qs-] we can differentiate three events. If Qs < R <
Qﬁmm then QB* = R,if Qﬂmm > R then Qg = QBM" and
if QB,””L > R then Qp- = Qﬂmw. We denote the indicator
function with 1[A], which is equal to 1 if the event A is true
and 0 otherwise. Then we get

1[Qp,.n < R < Qp,..]R

|

u—%nEH+mE@M4+m (05.....]
(1—2p)Q + thBmm + thBmw
)
)

E {Qﬁ*} —E

1[Qs,in = R|Qp,in

1{Qp,0. < R Qs

(1—=2p)Q +pe(Q —d) +p:(Q + d)
(1—=2p)Q + 2p,Q + p(d — d)
Q.

A.2. PSEUDOCODE

The pseudocode for ACC applied to TQC is in Algorithm
[2l As the number of dropped targets per network is given
by d = dnax — B, we state the pseudocode in terms of the
parameter d instead of 3.

Joschka Bodecker Wolfram Burgard

Algorithm 2 ACC - Applied to TQC
Initialize: d the bias controlling parameter, « the learning
rate for d, T; the minimum number of steps between
updates to d, ™" the initial steps before d is updated,
Sk the size from which on episodes are removed from
the batch storing the most recent returns, moving average
parameter 74, tg =0
for t =1 to total number of environment steps do
Interact with environment according to 7, store transi-
tions in replay buffer 5 and, increment t; += 1
if episode ended then
Store observed returns R(s,a) and corresponding
state-action pairs (s, a) in Bg
if ty >=T, and t > T, then

¢= Z(s,a,R)eBR [Q(Saa) —R(s,a)|, ma = (1—

Ta)ma + 74C
d= d+a%, clip d in interval [0, d 4], set tg = 0

Remove the oldest episodes from Bpr until there
are at most Sg left
end if
end if
Sample mini-batch from B
Update critic @ as in TQC, where dN (rounded to the
next integer) number of targets are dropped from the set
of pooled targets
Update policy 7 as in TQC
end for

A.3. USING FEWER CRITIC NETWORKS FOR FASTER
RUNTIME

Using 5 critic networks - the default in TQC - to ap-
proximate the value function leads to a high runtime of the
algorithm. It is possible to trade off performance against
runtime by changing the number of critic networks. We
evaluated ACC applied to TQC with 2 networks and compare
it to the standard setting with 5 networks in Figure [5] The
results show that reducing the number of critic networks to 2
leads only to a small drop in performance while the runtime
is more than 2 times faster.

A.4. HYPERPARAMETERS

At the beginning of the training we initialize § = 2.5 and
set the step size parameter to o = 0.1. After T3 = 1000 steps
since the last update and when the next episode finishes, 3 is
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updated with a batch that stores the most recent state-action
pairs encountered in the environment and their corresponding
observed discounted returns. The choice of Tz was motivated
by the fact that the maximum duration of an episode is 1000
steps for the considered environments. After every update
of B the oldest episodes in this stored batch are removed
until there are no more than 5000 state-action pairs left. This
means that on average [ is updated with a batch whose size
is a bit over 5000. The updates of S are started as soon
as 25000 environment steps as completed and the moving
average parameter in the normalization of the S—update is set
to 0.05. The first 5000 environment interactions are generated
with a random policy after which learning starts. Apart from
that all hyperparameters are the same as in TQC with N =5
critic networks. In Table [I| we list all hyperparameters of ACC
applied to TQC.

In the following we also desribe the process of hyper-
parameter selection. The range of values d is allowed to
take is set to the interval [0,5] as it includes the optimal
hyperparameters for TQC from all environments, which are
in the set {0,2,5}. We did not try higher values than 5. The
initial value for number of dropped targets per network was
set to 2.5 as this value is in the middle of the allowed range
and did not evaluated other choices. The learning rate @ of
d was set to 0.1 based on visual inspection of how fast d
changes. We evaluated o = 0.05 for a small subset of tasks
and seeds, but o = 0.1 gave slightly better results. T;; was set
to 1000 as the episode length is 1000 and we did not evaluate
other choices. For Té”” we evaluated the choices 10000 and
25000 on a small subset of environments and seeds and did
not found a big impact on performance. As d changes very
quickly in the beginning we chose T = 25000. For Sg
we evaluated the choices 1000 and 5000 also on a small
subset of environments and seeds and found 5000 to perform

The mean =+ standard deviation over 10 trials. Results with different choices for the number of critic networks for each algorithm.

slightly better. We did not tune the moving average parameter
and set it to 74 = 0.05. For all hyperparameters for which
we evaluated more than one choice we do not have definite
results as the number of seeds and environments were limited.
The hyperparameters shared with TQC were not changed.
For TD3 and SAC we used the hyperparameters from the
respective papers.

A.5. POTENTIAL LIMITATIONS

One limitation of our work is that ACC can not be applied
in the offline RL setting, as ACC also uses on-policy data.
Furthermore, in the stated form ACC relies on the episodic
RL setting. However, we believe that ACC could potentially
be adapted to that setting. It is also not entirely clear how the
algorithm would perform in the terminal reward setting, where
a reward of for example 1 is given upon successful completion
of a specific task. While we do not have experiments for
such environments we imagine that the positive effect of
ACC could diminish as the true Q-values of states closer
to the start of the episode are almost zero because of the
discounting.

A.6. ANALYSIS OF THE ACC PARAMETER

To better understand the hidden training dynamics of ACC
we show in Figure [6] how the number of dropped targets
per network d = d,,4; — 8 evolves during training. To do
so we plotted d after every 5000 steps during the training
of ACC. From the top row the first observation is that per
environment the results are similar over the 10 seeds as can
be seen from the relatively low standard deviation. We show
the single runs for all seeds in the appendix to further support
this observation. However, there are large differences between
the environments which supports the argument that it might
not be possible to find a single hyperparameter that works
well on a wide variety of different environments. Another



TABLE I
HYPERPARAMETERS VALUES.

HYPERPARAMETER ACC
OPTIMIZER ADAM
LEARNING RATE 3x107*
DISCOUNT v 0.99
REPLAY BUFFER SIZE 1x 108
NUMBER OF CRITICS NV 5
NUMBER OF ATOMS M 25
HUBER LOSS PARAMETER 1
NUMBER OF HIDDEN LAYERS IN CRITIC NETWORKS 3
SIZE OF HIDDEN LAYERS IN CRITIC NETWORKS 512
NUMBER OF HIDDEN LAYERS IN POLICY NETWORK 2
SIZE OF HIDDEN LAYERS IN POLICY NETWORK 256
MINIBATCH SIZE 256
ENTROPY TARGET —dim A
NONLINEARITY RELU
TARGET SMOOTHING COEFFICIENT 0.005
TARGET UPDATES PER CRITIC GRADIENT STEP 1
CRITIC GRADIENT STEPS PER ITERATION 1
ACTOR GRADIENT STEPS PER ITERATION 1
ENVIRONMENT STEPS PER ITERATION 1
INITIAL VALUE FOR NUMBER OF DROPPED TARGETS PER NETWORK 2.5
MAXIMUM VALUE FOR d DENOTED dax 5
MINIMUM VALUE FOR d DENOTED dpin 0
LEARNING RATE FOR d DENOTED « 0.1
MINIMUM NUMBER OF STEPS BETWEEN UPDATES TO d DENOTED Ty 1000
INITIAL NUMBER OF STEPS BEFORE d IS UPDATED DENOTED T 25000
LIMITING SIZE FOR BATCH USED TO UPDATE d DENOTED Sg 5000
MOVING AVERAGE PARAMETER Ty 0.05
HYPERPARAMETER IN SAMPLE EFFICIENT EXPERIMENT ACC_1Q ACC.2Q ACC.A4Q
CRITIC GRADIENT STEPS PER ITERATION 1 2 4
ACTOR GRADIENT STEPS PER ITERATION 1 1 1

TARGET UPDATES PER CRITIC GRADIENT STEP

1 1

point that becomes clear from the plots is that the optimal
amount of overestimation correction might change over time
during the training even on a single environment.

In the bottom row of Figure [6] we plotted the evolution of
d for one of the 10 trials in order to shed light on the actual
training mechanics of a single run without lost information
due to averaging. For each environment there is a trend but
d is also fluctuating to a certain degree. While this shows
that the initial value of d is not very important as the value
quickly changes, this also highlights another interesting aspect
of ACC. The rollouts give highly fluctuating returns. The
parameter d = dy,q, — [ is changing more slowly and picks
up the trend. So a lot of the variance of the returns is filtered
out in ACC by incorporating on-policy samples via the detour
over 3. This leads to relatively stable TD targets computed
from ()3 while an upbuilding under- or overestimation is
prevented as 3 picks up the trend. On the other hand, if g
would change too slowly the upbuilding of the bias might
not be stopped.
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