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Abstract

Early stopping based on the validation set performance is a popular approach to
find the right balance between under- and overfitting in the context of supervised
learning. However, in reinforcement learning, even for supervised sub-problems
such as world model learning, early stopping is not applicable as the dataset
is continually evolving. As a solution, we propose a new general method that
dynamically adjusts the update to data (UTD) ratio during training based on under-
and overfitting detection on a small subset of the continuously collected experience
not used for training. We apply our method to DreamerV2, a state-of-the-art model-
based reinforcement learning algorithm, and evaluate it on the DeepMind Control
Suite and the Atari 100k benchmark. The results demonstrate that one can better
balance under- and overestimation by adjusting the UTD ratio with our approach
compared to the default setting in DreamerV2 and that it is competitive with an
extensive hyperparameter search which is not feasible for many applications. Our
method eliminates the need to set the UTD hyperparameter by hand and even leads
to a higher robustness with regard to other learning-related hyperparameters further
reducing the amount of necessary tuning.

1 Introduction

In model-based reinforcement learning (RL) the agent learns a predictive world model to derive the
policy for the given task through interaction with its environment. Previous work has shown that
model-based approaches can achieve equal or even better results than their model-free counterparts [7,
12, 20, 23]. An additional advantage of using a world model is, that once it has been learned for
one task, it can directly or after some finetuning be used for different tasks in the same environment
potentially making the training of multiple skills for the agent considerably cheaper. Learning a world
model is in principle a supervised learning problem. However, in contrast to the standard supervised
learning setting, in model-based RL the dataset is not fixed and given at the beginning of training but
is gathered over time through the interaction with the environment which raises additional challenges.

A typical problem in supervised learning is overfitting on a limited amount of data. This is well
studied and besides several kinds of regularizations a common solution is to use a validation set that is
not used for training but for continual evaluation of the trained model during training. By considering
the learning curve on the validation set it is easy to detect if the model is under- or overfitting the
training data. For neural networks a typical behavior is that too few updates lead to underfitting while
too many updates lead to overfitting. In this context, the validation loss is a great tool to balance
those two and to achieve a small error on unseen data.

For learning a world model on a dynamic dataset there unfortunately is no established method to
determine if the model is under- or overfitting the training data available at the given point in time.
Additionally, in model-based RL a poorly fit model can have a dramatic effect onto the learning result
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as from it the agent derives the policy, which influences the future collected experience which again
influences the learning of the world model. So far, in model-based RL this is commonly addressed
with some form of regularization and by setting an update-to-data (UTD) ratio that specifies how
many update steps the model does per newly collected experience, similar to selecting the total
number of parameter updates in supervised learning. Analogously to supervised learning, a higher
UTD ratio is more prone to overfit the data and a lower one to underfit it. State-of-the-art methods set
the UTD ratio at the beginning of the training and do not base the selection on a dynamic performance
metric. Unfortunately, tuning this parameter is very costly as the complete training process has to be
traversed several times. Furthermore, a fixed UTD ratio is often sub-optimal because different values
for this parameter might be preferable at different stages of the training process.
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Figure 1: Overview of DUTD. A small
subset of the experience collected from
the environment is stored in a valida-
tion set not used for training. The world
model is trained for one update after every

1
UTD ratio many environment steps. From
time to time, e.g., after an episode ended,
the UTD ratio is adjusted depending on
the detection of under- or overfitting of
the world model on the validation data.
The policy is obtained from the world
model either by planning or learning and
collects new data in the environment.

In this paper, we propose a general method – called
Dynamic Update-to-Data ratio (DUTD) – that adjusts
the UTD ratio during training. DUTD is inspired by us-
ing early stopping to balance under- and overfitting. It
stores a small portion of the collected experience in a
separate validation buffer not used for training but in-
stead used to track the development of the world models
accuracy in order to detect under- and overfitting. Based
on this, we then dynamically adjust the UTD ratio.

We evaluate DUTD applied to DreamerV2 [12] on the
DeepMind Control Suite and the Atari100k benchmark.
The results show that DUTD improves the world model
and as a result increases the overall performance relative
to the default DreamerV2 configuration. Most impor-
tantly, DUTD makes searching for the best UTD rate
obsolete and is competitive with the best value found
through extensive hyperparameter tuning of DreamerV2.
Further, our experiments show that with DUTD the world
model becomes considerably more robust with respect to
the choice of the learning rate.

In summary, this paper makes the following contributions:
i) we introduce a method to detect under- and overfitting
of the world model online by evaluating it on hold-out
data; ii) We use this information to dynamically adjust the
UTD ratio to optimize world model performance; iii) Our
method makes tuning the UTD hyperparameter obsolete;
iv) We exemplarily apply our method to a state-of-the-
art model-based RL method and show that it leads to an
improved overall performance and higher robustness. We
will make the source code of our implementation publicly
available upon publication.

2 Related Work

In reinforcement learning there are two forms of generalization and overfitting. Inter-task overfitting
describes overfitting to a specific environment such that performance on slightly different environ-
ments drops significantly. This appears in the context of sim-to-real, where the simulation is different
from the target environment on which a well performing policy is desired, or when the environment
changes slightly, for example, because of a different visual appearance [16, 18, 24, 30, 32]. In contrast,
intra-task overfitting appears in the context of learning from limited data in a fixed environment
when the model fits the data too perfectly and generalizes poorly to new data. We consider intra-task
opposed to inter-task generalization.

In model-based reinforcement learning, there is also the problem of policy overfitting on an inaccurate
dynamics model. As a result, the policy optimizes over the inaccuracies of the model and finds
exploits that do not work on the actual environment. One approach is to use uncertainty estimates
coming from an ensemble of dynamics models to be more conservative when the estimated uncertainty
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is high [7]. Another approach to prevent the policy from exploiting the model is to use different
kinds of regularization on the plans the policy considers [3]. In contrast to these previous works, we
directly tackle the source of the problem by learning a better dynamics model. Consequently, our
method is orthogonal to and can easily be combined with the just mentioned line of work.

Directly targeting the overfitting of the dynamics model can be done through the usage of a Bayesian
dynamics model and the uncertainties that come with such a model. Gaussian processes have been
used successfully in this context [8] although it is difficult to scale this to high-dimensional problems.
Another way to reduce overfitting of the dynamics model is to use techniques from supervised
learning. This includes for example regularization of the weights, dropout [25], or data augmentation
[14, 22]. All of these are also orthogonal to our method and can be combined with it to learn an even
better dynamics model. Another popular approach is early stopping [2, 15, 26], where the training
is stopped before the training loss converges. Our method can be regarded as the analogy of early
stopping in a dynamic dataset scenario.

It is also possible to reduce the amount of model parameters for less overfitting but this comes with
the risk of reduced performance if the right amount of training steps would have been performed. Our
method overcomes this problem by automatically choosing the right amount of training steps for a
given network.

Hyperparameter optimization for RL algorithms is also related to our work. For example, AlphaStar
[23] has been improved by using Bayesian optimization [6]. Zhang et al. [31] demonstrated that
model-based RL algorithms can be greatly improved through automatic hyperparameter optimization.
A recent overview on automated RL is given by Parker-Holder et al. [17]. However, most of these
approaches improve hyperparameters by training the RL agent on the environment in an inner loop
while keeping the hyperparameters fixed during each run. Our work deviates from that by adapting a
hyperparameter online during training of a single run. An approach that also falls into this category
is from Schaul et al. [19], where behavior-related parameters such as stochasticity and optimism
are dynamically adapted. Similarly, the algorithm Agent57 [4] adaptively chooses from a set of
policies with different exploration strategies and achievs human level performance on all 57 Atari
games [5]. Another approach adapts a hyperparameter that controls under- and overestimation of the
value function online resulting in a model-free RL algorithm with strong performance on continuous
control tasks [9].

In contrast to these approaches, we propose a method that directly learns a better world model by
detecting under- and overfitting online on a validation set and dynamically adjusts the number of
update steps accordingly. This renders the need to tune the UTD ratio hyperparameter unnecessary
and further allows to automatically have it’s value being adapted to the needs of the different training
stages.

3 The DUTD Algorithm

In this section, we will first introduce the general setup, explain early stopping in the context of
finding the right data fit and propose a new method that transfers this technique to the online learning
setting. Lastly, we explain how the method can be applied to DreamerV2.

3.1 Model-Based Reinforcement Learning

We use the classical reinforcement learning framework [27] assuming a Markov decision process
(S,A,P,R). In this framework, the agent sequentially observes the current state st ∈ S in which
it executes an action at ∈ A, receives a scalar reward rt according to the reward function R, and
transitions to a next state st+1 generated by the unknown transition dynamics P . The goal is to learn
a policy that selects actions in each state such that the total expected return

∑T
i=t ri is maximized.

Model-based reinforcement learning approaches learn a world model P̂(st+1 | st, at) – also called
dynamics model – and a reward model R̂(rt | st) that attempt to reflect their real but unknown
counterparts. These models can then be used to learn a good policy by differentiating through the
world models or by generating imaginary rollouts on which a reinforcement learning algorithm can
be trained. Alternatively, the learned model can be used in a planning algorithm to select an action in
the environment.
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3.2 Under- and Overfitting

A well-known problem in supervised learning is that of overfitting, which typically corresponds to
a low error on the training data and a high error on test data not seen during training. Usually, this
happens if the model fits the training data too perfectly. In contrast to this, underfitting corresponds
to the situation in which the model even poorly fits the training data and is characterized by both a
high training and test error. To measure the performance of the model on unseen data, the available
data is often split into a training and a validation set. Generally, only the training set is used to train
the model while the validation set is used to evaluate its performance on new data.

For iterative training methods – like gradient descent based methods – overfitting is often detected
by observing the learning curves for training and validation error against the number of training
steps. A typical behavior is that in the beginning of the training both training and validation loss
are decreasing. This is the region where the model is still underfitting. At some point, when the
model starts overfitting the training data, only the training loss decreases further while the validation
loss starts to increase. The aforementioned early stopping method balances under- and overfitting by
stopping the training once the validation loss starts to increase.

While in supervised learning one can easily select a well fit model by using the validation loss, in
reinforcement learning one cannot apply this technique as the dataset is not fixed but dynamic and is
constantly growing or changing. Furthermore, the quality of the current policy influences the quality
of the data collected in the future. Even though learning a world model is in principle a supervised
task, this problem also occurs in the model-based RL framework.

3.3 Dynamic Update-to-Data Ratio

A typical hyperparameter in many RL algorithms is the update-to-data (UTD) ratio which specifies
the number of update steps performed per environment step (i.e., per new data point). This ratio can
in principle be used to balance under- and overfitting as one can control it in a way that not too few or
too many updates steps are done on the currently available data. However, several problems arise
while optimizing this parameter. First, it is very costly to tune this parameter as it requires to run
the complete RL training several times making it infeasible for many potential applications. Second,
the assumption that one fixed value is the optimal choice during the entire training duration does not
necessarily hold. For example, if data from a newly explored region of the environment is added to
the replay buffer it might be beneficial to increase the number of update steps.

To address these problems, we propose – DUTD – a new method that dynamically adjusts the
UTD ratio during training. It is inspired by the early stopping criterion and targets at automatically
balancing under- and overfitting online by adjusting the number of update steps. As part of the method,
we store some of the experience in a separate validation buffer not used for training. Precisely, every
d environment steps we collect s consecutive transitions from a few separate episodes dedicated to
validation and every k environment steps the world model is evaluated on the validation buffer, where
k should be much smaller than d. As the world model learning task is supervised this is easily done
by recording the loss of the world model on the given validation sequences. The current validation
loss is then compared to the validation loss of the previous evaluation. If the loss has decreased, we
assume the model is still in the underfitting regime and increase the UTD rate by a specified amount.
If the loss has increased, we assume the model to be in an overfitting regime and hence reduce the
UTD rate. To allow for a finer resolution at the high-update side of the allowed interval we adjust the
UTD rate in log-space, meaning it is increased or decreased by multiplying it with a value of c or 1/c
respectively, where c is slightly larger than 1. The update formula at time step t then becomes

utd_ratiot = utd_ratiot−k · b; b =

{
c, if validation_losst < validation_losst−k,
1
c , if validation_losst ≥ validation_losst−k.

(1)

DUTD is a general method that can be applied to any model-based RL algorithm that learns a world
model in a supervised way. The implementation can be either in terms of the UTD ratio or the
data-to-update ratio which is its inverse and which we call IUTD (i.e., the number of environment
steps per update step). It is more convenient to use the UTD ratio if several updates are performed
per environment step and the IUTD if an update step is only performed after some environment steps.
Methodologically, the two settings are the same as the two ratios describe the same quantity and are
just the inverse of each other.
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A high-level overview of DUTD is shown in Figure 1 and the pseudocode is described in Algorithm 1,
both explained in terms of the IUTD ratio as we will apply DUTD to an algorithm for which several
update steps per environment steps becomes computationally very costly. However, in both framework
both scenarios can be addressed by letting the ratio be a fractional. In the next section we will explain
how DUTD can be applied specifically to the DreamerV2 algorithm [12].

3.4 Applying DUTD to DreamerV2

Algorithm 1 DUTD (in terms of inverted UTD ratio)
Input: Initial inverted UTD ratio iutd_ratio; number
of steps after which additional validation data is col-
lected d, number of validation transitions collected
s, steps after which the iutd_ratio is updated k, iutd
update increment c
for t = 1 to total_num_of_env_steps do

Act according to policy π(a | s) and observe next
state
if t mod d == 0 then

Collect s transitions and store experience in a
separate validation buffer; increment t = t+ s

end if
if t mod iutd_ratio == 0 then

Perform one training step of the transition model
end if
if t mod k == 0 then

Compute model loss L on validation dataset
if L ≥ Lprevious then # Overfitting
iutd_ratio = iutd_ratio · c

else # Underfitting
iutd_ratio = iutd_ratio/c

end if
Lprevious = L

end if
end for

We apply DUTD to DreamerV2 [12],
which is a model-based RL algorithm that
builds on Dreamer [11] which again builds
on PlaNet [10]. DreamerV2 learns a world
model through latent imagination. The pol-
icy is learned purely in the latent space of
this world model through an actor-critic
framework. It is trained on imaginary roll-
outs generated by the world model. The
critic is regressed onto λ-targets [21, 27]
and the actor is trained by a combination of
Reinforce [29] and a dynamics backprop-
agation loss. The world model learns an
image encoder that maps the input to a cat-
egorical latent state on which a Recurrent
State-Space Model [10] learns the dynam-
ics. Three predictors for image, reward,
and discount factor are learned on the latent
state. The total loss for the world model is
a combination of losses for all three predic-
tors and a Kullback–Leibler loss between
the latents predicted by the dynamics and
the latents from the encoder.

To apply DUTD we evaluate the image
reconstruction loss on the validation set.
Other choices are also possible but we spec-
ulate that the image prediction is the most
difficult and important part of the world
model. One could also use a combination
of different losses but then one would po-
tentially need a scaling factor for the different losses. As we want to keep our method simple and
prevent the need of hyperparameter tuning for our method, we employ the single image loss.

4 Experiments

We evaluate DUTD applied to DreamerV2 on the Atari 100k benchmark [13] and the DeepMind
Control Suite [28]. For each of the two benchmarks we use the respective hyperparameters provided
by the authors in their original code base. Accordingly, the baseline IUTD ratio is set to a value of 5
for the control suite and 16 for Atari which we also use as initial value for our method. This means
an update step is performed every 5 and 16 environment steps respectively. For both benchmarks we
set the increment value of DUTD to c = 1.3 and the IUTD ratio is updated every 500 steps which
corresponds to the length of one episode in the control suite (with a frame-skip of 2). Every 100, 000
steps DUTD collects 3, 000 transitions of additional validation data. We cap the IUTD ratio in the
interval [1, 15] for the control suite and in [1, 32] for Atari. This is in principle not necessary and we
find that most of the time the boundaries, especially the upper one, is not reached. A boundary below
1 would be possible by using fractions and doing several updates per environment step, but this would
be computationally very expensive for DreamerV2. All other hyperparameters are reported in the
Appendix. They were not extensively tuned and we observed that the performance of our method is
robust with respect to the specific choices. The environment steps in all reported plots also include
the data collected for the validation set.
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Figure 2: Aggregated metrics over 5 random seeds on the 26 games of Atari 100k with 95% confidence
intervals according to the method presented in Agarwal et al. [1]. The intervals are estimated by the
percentile bootstrap with statified sampling. Higher mean, median, interquantile mean (IQM) and
lower optimality gap are better.

The Atari 100k benchmark [13] includes 26 games from the Arcade Learning Environment [5] and
the agent is only allowed 100, 000 steps of environment interaction per game, which are 400, 000
frames with a frame-skip of 4 and corresponds to roughly two hours of real-time gameplay. The final
performance per run is obtained by averaging the scores of 100 rollouts with the final policy after
training has ended. We compute the human normalized score of each run as agent score−random score

human score−random score .
The DeepMind Control Suite provides several environments for continuous control. Agents receive
pixel inputs and operate with a frame-skip of 2 as in the original DreamerV2. We trained for 2
million frames on most environments and to save computation cost for 1 million frames if standard
DreamerV2 already achieves its asymptotic performance well before that mark. The policy is
evaluated every 10, 000 frames for 10 episodes. For both benchmarks, each algorithm is trained with
5 different seeds on every environment.

Our experiments are designed to demonstrate the following:

• The UTD ratio can be automatically adjusted using our DUTD approach

• DUTD generally increases performance (up to 300% on Atari100k) by learning an improved
world model compared to the default version of DreamerV2

• DUTD increases the robustness of the RL agent with regard to learning-related hyperparameters

• DUTD is competitive with the best UTD hyperparameter found by an extensive grid search

4.1 Performance of DUTD compared to Standard DreamerV2

0.0 0.5 1.0 1.5 2.0
Environment Steps (in millions)

0

200

400

600

800

IQ
M

 S
co

re

DreamerV2-IUTD_5
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Figure 3: Sample efficiency curves ag-
gregated from the results for ten environ-
ments of the DeepMind Control Suite
for DreamerV2 with the default UTD ra-
tio and when it is adjusted with DUTD.
The IQM score at different training steps
is plotted against the number of envi-
ronment steps. Shaded regions denote
pointwise 95% stratified bootstrap confi-
dence intervals according to the method
by Agarwal et al. [1].

For Atari100k, Figure 2 shows results aggregated over the
26 games with the method of Agarwal et al. [1], where the
interquantile mean (IQM) ignores the bottom and top 25%
of the runs across all games and computes the mean over
the remaining. The optimality gap describes the amount
by which a minimal value of human level performance
has not been achieved. In Figure 10 of the Appendix we
present the learning curves for each environment. The
results show that DUTD increases the performance of
DreamerV2 drastically on all considered metrics. It in-
creases the interquantile mean (IQM) score by roughly
300% and outperforms the human baseline in terms of
mean score without any data augmentation.

Figure 3 shows the aggregated results for two million
frames over ten environments of the Control Suite, which
we list in the Appendix. The curves per environment are
presented in Figure 11 of the Appendix further including
results for ten more environments on which the algorithms
run until one million frames. Compared to the manually
set default UTD ratio, DUTD matches or improves the
performance on every environment. Overall, DUTD im-
proves the performance significantly although its average
IUTD rate over all games and checkpoints is 5.84 similar
to the default rate of 5 showing that DUTD better exploits
the performed updates.
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Figure 4: Learning curves for five environments of the Control Suite for DUTD-DreamerV2 and
standard DreamerV2 when non-default learning rates are used. The first row shows the results for a
lower than default learning rate of 0.0001 and the second row for a higher one of 0.001. The default
learning rate is 0.003 and its results are shown in Figure 11. The solid line represents the mean and
the shaded region a pointwise standard deviation in each direction computed over 5 runs.
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Figure 5: Aggregated metrics over 5 random seeds on the 26 games of Atari 100k, cf. Figure 2 for
the methodology. DUTD is compared to Dreamer with different choices for the IUTD rate.

4.2 Increased Robustness with DUTD

As DUTD dynamically adjusts the UTD ratio which allows to modify the training process online, we
formed the hypothesis that with DUTD the underlying RL algorithm is more robust to suboptimal
learning hyperparameters. Similar to supervised learning on a fixed dataset the optimal number of
updates to tradeoff between under- and overfitting will be highly dependent on hyperparameters like
the learning rate. To investigate this, we evaluated DreamerV2 with and without our method for
different learning rates of the dynamics model. The standard learning rate on the control suite is
0.0003. Hence, we trained with both a higher learning rate of 0.001 and a lower one of 0.0001 on
a subset of the environments. The resulting learning curves are displayed in Figure 4. While the
performance for a learning rate of 0.001 is overall rather similar, for a learning rate of 0.0001 the
performance decreases substantially with the standard fixed IUTD ratio of 5. However, using DUTD
the algorithm achieves considerably stronger results. This shows that using DUTD the algorithm is
more robust to the learning rate, which is an important property when the algorithm is applied in real
world settings such as robotic manipulation tasks, since multiple hyperparameter sweeps are often
infeasible in such scenarios. The need for more robustness as offered by DUTD is demonstrated by
the performance drop of DreamerV2 with a learning rate differing by a factor of 3 and the fact that on
Atari a different learning rate is used.

4.3 Comparing DUTD with Extensive Hyperparameter Tuning

In the previous sections, we showed that DUTD improves the performance of DreamerV2 with its
default IUTD rate significantly. Now we want to investigate the question of how well DUTD compares
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Figure 7: IUTD ratio against environment steps for DUTD and the standard DreamerV2 on five
environments. For each environment the mean over 5 runs is plotted as the solid line and the shaded
region represents one pointwise standard deviation in each direction.

to the best hyperparameter value for IUTD that can be found through an extensive grid search on
each benchmark. While for many applications such a search is not feasible we are interested in what
can be expected of DUTD relative to what can be regarded as the highest achievable performance.
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Figure 6: Sample efficiency curves show-
ing the IQM score aggregated from the
results for ten environments of the Deep-
Mind Control Suite for DreamerV2 with
different choices for the IUTD ratio.
Shaded regions denote pointwise 95%
stratified bootstrap confidence intervals.

On the Atari 100k benchmark we evaluate DreamerV2
with IUTD rates of 1, 2, 4, 7, 10 and 16 (the default value)
and denote the algorithms with DreamerV2-IUTD_1,
DreamerV2-IUTD_2, etc. The aggregated results over
all games and seeds in Figure 5 show an increase in per-
formance when the number of updates increases up to an
IUTD rate of 2. Increasing it further to 1 leads to declin-
ing results. Thus, there is a sweet spot and one can not
simply set the IUTD rate very low and expect good results.
Averaged over all runs and checkpoints the IUTD rate of
DUTD is at 3.91 which is in the region of the best per-
forming hyperparameters of 2 and 4. This is also reflected
by the fact that DUTD achieves similar performance to
these two optimal choices.

We further evaluate DreamerV2 with IUTD rates of 2, 5
(the default one), 10, and 15 on ten environments of the
control suite. An IUTD value below 2 is not possible
as a single run would take roughly two weeks to run on
our hardware. The aggregated sample efficiency curves
in Figure 6 further support the hypothesis that DUTD is
competitive with the results of an extensive grid search.
Only an IUTD choice of 2 gives slightly better sample
efficiency but reaches a lower final performance. To further investigate the behaviour of DUTD
we report the adjusted inverted UTD ratio over time for five environments in Figure 7, and for
all environments in Figure 12 in the Appendix. Interestingly, the behavior is similar for all the
environments. At the start of the training, the ratio is very low and then it quickly oscillates around a
value of roughly 5 for most environments and an even higher value for a few others. On cheetah_run
and hopper_hop, the IUTD oscillates around the default value of 5 most of the time and still, DUTD
reaches a higher performance than Dreamer as can be seen in the single environment plot in Figure
11 of the Appendix. This result supports the hypothesis that a static IUTD rate can be suboptimal for
some environments and that DUTD successfully balances over- and underfitting during the training
process.

4.4 Evaluating World Model Performance

Next we want to explore if the improved performance with DUTD actually originates from an
improved world model that better generalizes to new data. To this end, we designed an experiment
where the accuracy of the world model is constantly evaluated on a held out test set that is neither
used for training nor validation. We evaluate each algorithm on 5 environments for 5 random seeds.
For every combination of environment and seed we collect a test set with 20 episodes of random
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Figure 8: Image reconstruction loss of the world model on a held out test set for five environments of
the DeepMind Control Suite. The solid line represents the mean and the shaded region a pointwise
standard deviation in each direction computed over 5 runs.

interactions before the training starts. This test set is the same for our approach and the baseline to
ensure the data selection procedure avoids bias in the test data induced through the respective world
models and policies. In Figure 8 we plot the image prediction loss on the test set averaged over the
5 seeds for DreamerV2 with the default UTD rate and when using DUTD. The curves validate our
hypothesis that with DUTD the world model achieves on average a better accuracy and hence that
the validation data is indeed useful for balancing under- and overfitting. For the acrobot, cartpole,
and cheetah environment, the accuracy with DUTD is better in the beginning and then becomes
similar which, according to our opinion, is due to the fact that the asymptotic performance of the
corresponding policy is also reached quickly on those environments. On hopper, the accuracy is
better during the whole learning process which is also reflected in a better performing policy (cf.
Figure 11). These results indicate that the performance increase originates indeed from an improved
world model.

5 Discussion

We presented a novel and general method denoted as DUTD that is designed to detect under- and
overfitting on evolving datasets and is able to dynamically adjust the typically hand-set UTD ratio in
an automated fashion. As in early stopping, the underlying rationale is that too many updates can lead
to overfitting while too few updates can lead to underfitting. DUTD quickly identifies such trends by
tracking the development of the world model performance on a validation set. It then accordingly
increases or decreases the UTD ratio in the case of underfitting or overfitting.

In our experiments, we demonstrated how to successfully apply DUTD to a model-based RL algorithm
like DreamerV2. The experiments show that DUTD can automatically balance between the under-
and overfitting of the world model by adjusting the UTD ratio. As a result, DUTD removes the
burden of manually setting the UTD ratio, which otherwise needs to be tuned for new environments
making it prohibitively expensive to apply such algorithms in many domains. At the same time,
DUTD increases the performance of DreamerV2 significantly compared to its default UTD rate and is
competitive with the best hyperparameter found for each domain through an extensive hyperparameter
search. Moreover, a notable property of DUTD-DreamerV2 is its robustness to changes in the learning
rate. This is important, as the learning rate often has to be tuned for new environments. For example,
in DreamerV2 the default learning rate differs between Atari and the DeepMind Control Suite. In the
context of real world problems such tuning is undesirable and often too costly. At the same time, the
hyperparameters of DUTD can easily be set and do not have a big influence on the final performance.
We recommend updating the UTD rate after a fixed time interval that is similar to the average episode
length. The data used for validation should not exceed 10% of all data.

An interesting avenue for future work would be to explore non-supervised objectives for model-free
RL algorithms that can be used for evaluation on the validation set. This would allow the usage of
DUTD to adjust the UTD ratio of such algorithms.

We are convinced that DUTD is a further step in the direction of autonomy and the easy applicability
of RL algorithms to new real world problems without the need to tune any hyperparameters in an
inner loop.
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A Further Results

The ten environments of the DeepMind Control Suite used to generate the aggregated curves in the
Figures 3 and 6 are: acrobot_swingup, cheetah_run, finger_turn_easy, finger_turn_hard, hopper_hop,
quadruped_run, quadruped_walk, reacher_hard, walker_walk, and walker_run.

In the Figures 9, 10, 11 and 12 we present the more detailed results of our experiments for each single
environment.
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Figure 9: Learning curves for different choices of the IUTD ratio for each of the environments. The
solid line is the mean over 5 seeds and the shaded area represents one pointwise standard deviation.
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Figure 10: Learning curves for DreamerV2 with and without DUTD on the 26 environments of the
Atari 100k benchmark. The solid line is the mean over 5 seeds and the shaded area represents one
pointwise standard deviation.
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Figure 11: Learning curves for DreamerV2 with and without DUTD for 20 environments of the
DeepMind Control Suite. The solid line is the mean over 5 seeds and the shaded area represents one
pointwise standard deviation.
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Figure 12: IUTD ratio against environment steps for DUTD and the standard DreamerV2 on all
environments. For each environment the mean over 5 runs is plotted as the solid line and the shaded
region shows represents one pointwise standard deviation in each direction.
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B Hyperparameters

In Table 1 we give an overview of all hyperparameters related to DUTD. All other hyperparameters
are the standard DreamerV2 hyperparameters as given in the open source codebase 1. On the DM
Control Suite we reduced the number of steps d after which to collect new data for the validation set
by a half during the first 400k steps as for some environments a strong policy is learned very quickly
and hence a validation set with more recent transitions that better represent the kind of transitions the
agent encounter makes more sense. We have because we started our first experiments with this but
from some limited additional experiments it seems not to have a big impact on performance.

Table 1: Hyperparameters values for DUTD applied to DreamerV2 and the corresponding hyperpa-
rameter in the original DreamerV2.

HYPERPARAMETER ATARI DM CONTROL

INITIAL IUTD RATIO 16 5
LOWER BOUNDARY FOR THE IUTD RATIO 1 1
UPPER BOUNDARY FOR THE IUTD RATIO 32 15
IUTD UPDATE INCREMENT | c 1.3 1.3
NUMBER OF STEPS AFTER WHICH TO UPDATE THE IUTD RATIO | k 500 500
VALIDATION SET MAXIMUM SIZE | k 12,000 10,000
NUMBER OF STEPS AFTER WHICH TO COLLECT NEW DATA FOR
THE VALIDATION SET | d 100,000 100,000
NUMBER OF ADDITIONAL TRANSITIONS FOR THE
VALIDATION SET EACH TIME NEW VALIDATION DATA IS COLLECTED | s 3,000 3,000

STANDARD DREAMERV2

IUTD RATIO 16 5

1https://github.com/danijar/dreamerv2
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