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Abstract

Early exits are capable of providing deep learning models with adaptive computational graphs that

can readily adapt on-the-fly to the available resources. Despite their advantages, existing early exit

methods suffer from many limitations which limit their performance, e.g., they ignore the information

extracted from previous exit layers, they are unable to efficiently handle feature maps with large sizes,

etc. To overcome these limitations we propose a Bag-of-Features (BoF)-based method that is capable

of constructing efficient hierarchical early exit layers with minimal computational overhead, while also

providing an adaptive inference method that allows for early stopping the inference process when the

network is confident enough for its output, leading to significant performance benefits. To this end,

the BoF model is extended and adapted to the needs of early exits by constructing additive shared

histogram spaces that gradually refine the information extracted from the various layers of a network,

in a hierarchical manner, while also employing a classification layer reuse strategy to further reduce

the number of parameters needed per exit layer. Note that the proposed method is generic and can be

readily combined with any neural network architecture. The effectiveness of the proposed method is

demonstrated using five different image datasets, proving that early exits can be readily transformed

into a practical tool, which can be effectively used in various real-world embedded applications.

Keywords: Adaptive Inference, Early Exits, Bag-of-Features, Deep Convolutional Neural Networks,

Hierarchical Representations

1. Introduction

The advent of Deep Learning (DL) led to spectacular applications, including but not limited to

autonomous cars [1], accurate medical diagnosis and disease prognosis [2, 3], intelligent buildings [4],

and powerful methods for human-computer interaction [5, 6]. Despite its enormous success in the

aforementioned domains, DL suffers from a significant drawback: DL models often consist of millions5

of parameters and, as a result, they require using powerful and energy-consuming hardware both
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for training and deployment. This limitation significantly reduces their flexibility, increases the de-

ployment costs, and slows down the penetration of DL in many domains, where these requirements

cannot be satisfied. Many methods have been proposed in the literature for overcoming the aforemen-

tioned drawbacks, ranging from quantization and model compression approaches [7] to neural network10

pruning [8] and knowledge distillation methods [9, 10, 11].

Even though these methods can indeed lead to developing faster and more lightweight DL mod-

els, they also often lead to models that perform worse than the original ones (in terms of accuracy).

Furthermore, the developed models are static, i.e., they are unable to adapt to the available compu-

tational resources on the fly. However, in many applications there is a need for dynamic networks15

that are able to adapt on demand to the current conditions. This can be better understood by the

following example. Consider a real-time face recognition system, where the faces that are depicted in

an acquired frame must be accurately recognized under strict real time constraints. Note that the time

that will be spent for the recognition process is proportional to the number of faces that appear in a

given frame. If an estimate for the maximum number of persons that will appear in a frame is known20

beforehand, then we can appropriately design a lightweight DL model that will always work within

the given time constraints. However, what will happen if more persons appear in a given frame? Most

of the existing methods will spend the predefined portion of time for recognizing the depicted faces

and then either stop without recognizing the rest of the people or spend more time than the allowed

for the recognition, reducing the quality of service. On the other hand, a dynamic model would be25

able to adapt to the available load by reducing the time needed for the recognition of each person,

possibly by providing slightly less refined and accurate predictions, meeting the real time constraints

of the system.

Therefore, in such applications we need models that will be able to dynamically adapt to the

available load, e.g., by being able to provide faster (and possibly less accurate) predictions when the30

load is higher (e.g., when a lot of persons appear in a frame) and more refined and accurate (yet

slower) predictions when the load is lower (e.g., when only a few persons appear in a frame). It is

worth noting that apart from this case, the need for dynamically adapting a model to the current

computational resources without retraining occurs in many other applications, e.g., deploying mobile

applications on smartphones where it is usually infeasible to train separate models according to the35

computational resources available to the vast variety of different phone models [12].

Among the most promising approaches for overcoming these limitations are DL models with adap-

tive computational graphs, such as [13, 14, 15]. These models provide an easy and straightforward

way to dynamically adapt the model on-the-fly to the available computational resources by altering

the complexity of the model’s graph, i.e., by choosing a different computational path according to40
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the available resources. One straightforward way to achieve this is by adding early exits at various

layers of the network [12, 13, 15]. These early exits allow for estimating the final output of the net-

work at various points of the inference process, without having to feed-forward through the whole

network. Early exits provide, in theory, a solid way to adapt the inference to the available resources.

Unfortunately, they do not always lead to acceptable performance [15], since they have to deal with45

enormous feature maps (especially for the earlier layers of a convolutional neural network). To this

end, aggressive subsampling methods are usually employed, e.g., global average pooling [16]. As a

result, these methods ignore both the spatial information and the distribution of the extracted feature

vectors, reducing the performance of early exits (in terms of accuracy). Even though this problem is

partly addressed in [12] by using a series of densely connected structures, this also requires a significant50

number of structural changes in the architecture of a network and cannot be easily used with existing

neural networks. Furthermore, most of the existing early exit-based approaches completely ignore the

information extracted by the previous exit layers, throwing away information that is readily available

and can be potentially used to further increase the prediction accuracy for the subsequent exit layers.

In this work we propose using the Bag-of-Features (BoF) model [17], for compiling compact,55

yet rich and discriminative representations from the feature maps of each layer where an early exit

is used. The BoF model was originally proposed to provide compact representations for complex

objects that consist of multiple feature vectors, while keeping as much information as possible about

the corresponding object. More specifically, BoF works as follows: a) A feature extractor is used to

extract feature vectors from an object, e.g., multiple SIFT vectors can be extracted from an image [18].60

b) Then, the extracted feature vectors are quantized into a number of bins, defined by a set of vectors

called codewords. c) Finally, a compact histogram representation is extracted for each object simply by

counting the number of feature vectors that were quantized into each bin. In this way, BoF provides an

efficient way to compress large collections of feature vectors, such as those extracted from the earlier

layers of a neural network, into compact histogram representations that can overcome the limitations65

of the existing methods used for providing early exits.

However, using the BoF model for providing efficient early exit implementations is not straightfor-

ward. First, note that the histogram space compiled at each exit layer is different, which can prohibit

the efficient construction of hierarchical representations that take into account the representations ex-

tracted from the previous early exits, significantly limiting the performance of the model. To overcome70

this limitation we propose extracting additive hierarchical histogram representations, that gradually

refine the estimations from the previous layers, by implicitly constructing a shared histogram space

for all the exit layers. Thus, the codewords are learned in such way that the histogram representations

extracted from the various levels of the network are compatible with each other. This also allows for
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having a common classification layer, which is shared among all the early exits, further reducing the75

number of parameters needed for adding an early exit to the network. Furthermore, the proposed

method also supports dynamic adaptive inference that allows for stopping the inference process at an

early exit, if the network is confident enough for its decision. This allows for spending less time for

classifying easy input samples, while spending more time processing the harder ones. As it is demon-

strated through this paper, these modifications lead to enormous improvements over both traditional80

static DL models, as well as over existing early exit approaches.

The main contribution of this work is proposing a Bag-of-Features-based approach, fully adapted

to the needs of early exits, overcoming most of the limitations of existing related approaches. More

specifically, in this paper:

1. A BoF-based formulation [19], which is capable of a) maintaining more information regarding85

the distribution of the extracted feature vectors and b) keeping more spatial information in the

extracted representation, than the existing early exit methods, is proposed. Note that the latter

is especially important for earlier exits, where the receptive field of the convolutional layers is

usually smaller.

2. An efficient hierarchical aggregation scheme, that works by implicitly constructing a common90

histogram representation space and then gradually refining the estimations of the network, is

proposed. This allows for taking into account the information that was already extracted by the

earlier layers. Note that most of the existing formulations ignore this information [15].

3. A classification layer reuse approach is employed to further reduce the number of parameters

required for each early exit, minimizing the cost of adding additional exit layers.95

4. An adaptive classification approach, that allows for selecting the most appropriate early exit

according to the difficulty of each input sample, is proposed, allowing for reducing the load to

the system, as well as reducing the energy consumption of DL models.

It is worth noting that the proposed method can be readily combined with any neural network ar-

chitecture, since it requires no model-specific changes to the base network. Finally, the ability of the100

proposed method to transform early exits into a practical tool, that can be applied in many challenging

real-world applications, is demonstrated using extensive experiments on five datasets.

The rest of this paper is structured as follows. First, the related work is briefly discussed in

Section 2, while the proposed method is analytically derived in Section 3. Then, the proposed method

is extensively evaluated in Section 4, while conclusions are drawn in Section 5.105
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2. Related Work

This work is related to DL models with adaptive computational graphs, which allow for dynamically

adapting the model to the available computational resources/difficulty of the input samples. Using

early exits is perhaps the most straightforward way to provide DL models with adaptive computational

graphs [14], as demonstrated in [12, 13, 15, 16]. BranchyNet [13] proposed to include exit layers at110

various points of the computational graph of the model by including branches that are composed

of 3 × 3 convolution layers, followed by the appropriate classification layers. A similar approach,

which skips the added complexity of convolutional layers by employing global average pooling layers

to downsample the input to the each early exit was further examined in Elastic Networks [15, 16].

However, these methods often do not lead to acceptable performance, since they discard valuable115

spatial information, as well as useful information regarding the distribution of the extracted feature

vectors, as experimentally demonstrated in Section 4. Even though this problem is partly addressed

in [12] by using a series of densely connected structures, this also requires a significant number of

structural changes in the architecture of a network and cannot be easily used with existing neural

networks, rendering this approach significantly harder to implement compared to the rest of the120

proposed early exit approaches.

In this work we provide a powerful method that can overcome these limitations by proposing a

hierarchical BoF-based approach that can also keep all the information extracted from the various

exit layers of a neural network with minimal additional overhead. Also, it is worth noting that early

exits have been used in past for a different purpose: early exits were used for reinforcing the gradients125

at various layers, reducing in this way the training problems that are related to vanishing gradient

phenomena [20]. This work is also related to the traditional dictionary learning methods for the

BoF model, for which a very rich literature exists [21, 22, 23]. However, these approaches have not

been designed to work with early exits, i.e., dealing with features extracted from various levels of

a network, constructing common representation spaces for these features, using additive hierarchical130

representations and reusing the same classification layers at various points of the same network in order

to provide efficient early exit implementations. In [24], the use of BoF-based pooling was examined for

the first time in the context of early exits. However, compared to the proposed method, this approach

leads to significantly larger intermediate representations and requires more parameters, especially

when applied in a hierarchical setting, as also demonstrated in the sensitivity analysis provided in135

Section 4.

To the best of our knowledge, this is the first work in which a hierarchical BoF-based formulation

is employed for constructing additive histogram representation spaces that can be used for providing

efficient hierarchical early exits. At the same time, the proposed method also provides an efficient
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adaptive inference mechanism that allows for effectively selecting the most appropriate early exit,140

given that the network is confident enough for its classification decision.

3. Proposed Method

First, the necessary background and notation are introduced in Subsection 3.1. Then, the proposed

Bag-of-Features-based method for providing efficient early exit implementations is analytically derived

in Subsection 3.2. Furthermore, a powerful, yet efficient hierarchical early exit scheme, that builds145

upon the proposed BoF method, is described in Section 3.3. Finally, an adaptive inference method,

that allows for early stopping the inference process when the network is confident enough, is proposed

in Subsection 3.4.

3.1. Background and Notation

Let fW(x, i) denote the output of the i-th layer of a neural network composed of m layers, where150

the notation W is used to denote the parameters of the network and x denotes the input to the neural

network. This work focuses on convolutional neural networks, where the input to the neural network

is an image, i.e., x ∈ RW×H×C , where W , H and C are the width, height and number of channels

of the image respectively. Note that this is without loss of generality, since the proposed method can

be also readily applied for networks operating on other signals, such as audio [25], time-series [26],155

etc. Also, note that the output of the i-th convolutional layer is a feature map that is also denoted by

y(i) = fW(x, i) ∈ RWi×Hi×Ci , where Wi and Hi are the width and height of the feature map extracted

from the i-th layer of the network, while Ci denotes the number of filters used in the corresponding

convolutional layer. The final output of the neural network, denoted by y = fW(x,m) ∈ RNC , is a

vector containing the probabilities that the input image x belongs to each of the NC classes. Note160

that even though the aforementioned setup considers only classification problems, it is straightforward

to extend it to handle other tasks as well, such as regression tasks.

Given a training set of N images X = {x1,x2, . . . ,xN}, along with a target vector ti ∈ RNC , which

encodes the classification label for each image, then the network is trained using back-propagation to

minimize a loss function L:

W′ = W − η
N∑
j=1

∂L(fW(xj ,m), tj)

∂W
, (1)

where the notation W′ is used to denote the updated parameters of the neural network and η is the

used learning rate. Usually the optimization is performed in batches, the classification target ti is

a one-hot encoding of the class of each sample, while the cross-entropy loss is employed as the loss
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Figure 1: Comparing three different ways to use early exits. Fig. 1a demonstrates one typical way to use early exits

to estimate the final output of the network at various points of its computational graph. Early exits can be improved

by replacing global average pooling with the Bag-of-Features model to compile hierarchical early exits, as shown in

Fig. 1b. Early exits can be further improved by sharing the same classification layer among different early exits and

using additive histogram representations, as shown in Fig. 1c. This allows for reducing the number of parameters and

forming implicit common representations spaces.

function:

L(y, t) = −
NC∑
i=1

[t]i log([y]i), (2)

where the notation [y]i is used to refer to the i-th element of vector y.

3.2. Efficient Early Exits using Bag-of-Features Aggregation

Employing early exits provides a way to estimate the final output of the network at various points

of its computational graph, without having to feed-forward the whole network [15]. That is, an

additional estimator:

g
(i)
Wi

(
y(i)
)

= g
(i)
Wi

(fW (x, i)) ∈ RNC (3)

is employed at the i-th layer to estimate the final output of the network without feed-forwarding165

the network until the last layer. This process is illustrated in Fig. 1a. The notation Wi is used to

refer to the parameters of the i-th early exit. Each early exit usually employs a feature aggregation

method, e.g., global average pooling, to extract a compact representation from each feature map,

and a classification layer that estimates the final output of the network. Using an efficient feature

aggregation approach is of crucial importance, since directly using the raw feature maps would lead170

to enormous classification layers (due to the large size of the feature maps, especially for the early

layers of the network).

Existing methods usually apply global average pooling to extract a compact representation s(i,avg)
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out of the intermediate feature maps of the i-th layer of a network:

s(i,avg) =
1

WiHi

Wi∑
k=1

Hi∑
l=1

[y(i)]kl ∈ RCi , (4)

where the notation [y(i)]kl is used to refer to the feature vector extracted from the location (k, l) of the

feature map of the i-th layer. The extracted averaged representation is then fed to a fully connected

layer that is trained to estimate the final classification output of the network, as shown in Fig. 1a.175

However, using plain global average pooling possibly discards a great amount of valuable infor-

mation, as also discussed in Section 1 and experimentally demonstrated in Section 4. Therefore, to

overcome this limitation, in this work a trainable BoF-based aggregation scheme is used to compile a

compact representation that can be then fed to the used fully connected classification layer. First, a

set of prototype vectors (also known as codewords) vij ∈ RCi are used to model the distribution of the

feature vectors extracted from the i-th layer. The set of these vectors Vi = {vi1,vi2, . . . ,viNK}, where

NK is the number of codewords used, is called dictionary or codebook. Note that a different codebook

Vi must be used for each exit layer, since the distribution of the feature vectors extracted from each

layer is different. Then, we can estimate the probability of observing each feature vector [y(i)]kl,

extracted from the i-layer of the network, for a given image x using Kernel Density Estimation [27]

as:

p([y(i)]kl|x) =

NK∑
j=1

[s(i)]jK([y(i)]kl,vij) ∈ [0, 1], (5)

where K(·) is a kernel function and s(i) ∈ RNK are the parameters that control the density estimation.

Employing a maximum likelihood estimator allows for estimating these parameters as:

s(i) = arg max
s

Wi∑
k=1

Hi∑
l=1

log

NK∑
j=1

[s]jK([y(i)]kl,vij)

 ∈ RNK . (6)

Indeed, as demonstrated in [27], these image specific parameters can be trivially calculated, giving

rise to the well known soft-BoF formations [22, 28]. Therefore, the representation extracted from the

i-th layer of the network is calculated as:

s(i) =
1

WiHi

Wi∑
k=1

Hi∑
l=1

uikl ∈ RNK , (7)

where [uikl]j =
K([y(i)]kl,vij)∑NK

m=1K([y(i)]kl,vim)
∈ [0, 1]. The histogram vector s(i) essentially provides a compact

summary that describes the semantic content of an image at various levels of granularity, maintaining

more information regarding the actual distribution of the vectors [y(i)]kl than the average representa-

tion (s(i,avg)).

To implement the BoF model a normalized RBF layer, followed by a recurrent accumulation layer,

is employed, as proposed in [19]. Furthermore, to simplify the implementation we also use a hyperbolic
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(sigmoid) kernel in order to calculate the similarity between each the codeword and each extracted

feature vectors [29]:

K([y(i)]kl,v) =
1

2

(
tanh(c1[y(i)]Tklv + c2) + 1

)
(8)

where tanh(x) = ex−e−x
ex+e−x , and c1 and c2 are the kernel parameters (typically set to c1 = 1 and c2 = 0).180

Note that the kernel is appropriately scaled to 0 . . . 1, ensuring its compatibility with the quantization

process.

The proposed BoF-based aggregation scheme is shown in Fig. 1b, where first we employ BoF-

based aggregation to compile a compact representation s(i) for each image out of each layer, which

is subsequently fed to the final fully connected early classification layer (Early classification layers185

#1, #2 and #3). Furthermore, note that the quantization process can be applied at various spatial

levels, as in various spatial pyramid aggregation schemes [30], giving rise to the Spatial BoF [19]. This

process allows for retaining more spatial information, which can provide a significant benefit for the

exits placed on earlier layers, where the effective receptive field of the convolutional layers is smaller.

Each early exit is trained to estimate the same targets using a representation extracted from the

output of the i-th layer of the network y(i), i.e.,

W′
i = Wi − η

N∑
j=1

∂L
(
g
(i)
Wi

(yj), tj

)
∂W

. (9)

Note that early exits can be either trained after training the base network or by simultaneously training

both the base network and the early exits. Even though the latter option can allow the network to

adapt to the added early exits (and, as a result, lead to better accuracy for the early exits), it can

potentially harm the classification performance for the main network, e.g., if too many early exits are

used. To avoid this issue, in this work we first train the base network, we fix its parameters W, and

then train all the exit layers simultaneously. It is also worth noting that the network can be directly

trained to predict a soft target vector, as produced by the neural network, instead of the binary target

tj , following the neural network distillation principle [31]:

W′
i = Wi − η

N∑
j=1

∂L
(
g
(i)
Wi

(yj), fW(xj)
)

∂W
. (10)

In this way, the network can be trained to directly estimate the actual output of the network, instead190

of being trained to predict the same targets as the output of the classification layer of the network.

3.3. Hierarchical Bag-of-Features Aggregation

The BoF-based aggregation method proposed in the previous Subsection is capable of extracting

rich and discriminative representations from the feature map of each layer. However, all the informa-

tion that exists in the representations extracted from the earlier exit layers is discarded at each exit
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layer. Therefore, instead of merely relying on the representation extracted from the current layer, in

this paper we propose compiling an incremental hierarchical representation that exploits the represen-

tations extracted from the previous exit layers, effectively overcoming the aforementioned limitation.

To this end, the final representation s(i,h) extracted from the i-th layer is calculated as:

s(i,h) =

s(i) if i = 1

s(i) _ s(i−1,h) if i > 1

, (11)

where the notation a _ b is used to denote the concatenation of vectors a and b. This process

is depicted in Fig. 1b (Classification Layer #4 and #5). It is worth noting that the representation

extracted from the previous early exits can be cached and directly reused for the following early exits195

with no additional cost. As a result, this approach provides an easy and straightforward way to further

refine the predictions of the early exits, increasing the classification accuracy of the network, as also

demonstrated in Section 4.

However, this hierarchical approach can lead to increasingly larger exit layers as more exits are

used, since the length of the representation s(i,h) gradually increases by NK as the number of exit

layers increases. To maintain the advantage of using hierarchical representations, without the added

complexity of using increasingly larger exit layers we propose a simple, yet efficient, aggregation ap-

proach. Instead of simply concatenating the representations together, we propose forming an additive

common histogram representation space for all the exit layers. That is, the updated histograms are

calculated as:

s(i,ch) =

s(i) if i = 1

s(i) + αs(i−1,ch) if i > 1

, (12)

where α is a decaying factor for the previous histogram (typically set to α = 1 when only a few exit

layers are used). This approach allows for gradually refining the histogram estimation, while keeping200

the potentially useful information extracted from the previous layers. Finally, this additive method

allows for using a single classification layer that can be reused for all the exit layers, instead of learning

separate classification layers for each early exit, which further promotes forming common representa-

tion spaces and reduces the number of parameters required for the early exits. This approach indeed

leads to a significant reduction of the number of parameters required (since only one classification layer205

is required regardless of the number of exit layers used), with minimal impact on the classification

accuracy, as also experimentally demonstrated in Section 4. The proposed classification layer sharing

approach is shown in Fig. 1c. Note that each early exit is still equipped with a separate codebook used

for appropriately constructing the corresponding histogram s(i). Also, the hyper-parameter α can be

set to lower values to prevent significant distribution shifts that could negatively affect the shared210
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classification layers. Nonetheless, this behavior was not observed during the conducted experiments.

Therefore, α = 1 was used for all the conducted experiments.

3.4. Adaptive Inference with Early Exits

There are several ways to feed-forward a network that is equipped with early exits. Perhaps the

most straightforward approach is to use a specific early exit according to the available computational215

resources. Therefore, an earlier early exit is used when there are limited computational resources

available, while latter early exits are used when more computational resources are available. For

example, we can consider a real-time embedded system designed to perform face recognition from

CCTV footage using a deep neural network. When more people appear in a frame then the time

required to perform face recognition increases, since each face must be fed to the network. However,220

using early exits allows for dynamically reducing the number of calculations required for the recognition

by appropriately selecting an early exit, allowing for meeting the real-time constraints by slightly

reducing the quality of service without over-engineering the system, e.g., using an unnecessary powerful

processor to handle every possible number of faces in real time.

The proposed method can be also used to reduce the load, and as a result the energy consumption,

of a system by dynamically feed-forwarding through the network according to the difficulty of each

training sample and the prediction uncertainty of each exit layer for the specific sample. To this end,

we calculate the average class activations at each exit layer i as:

µi =
1

N

1

NC

NC∑
k=1

N∑
j=1

[g
(i)
Wi

(yj)]k, (13)

where g
(i)
Wi

is the classification output of the corresponding early exit. The average activations can

be calculated either using the training set or, in order to acquire a more robust estimation, using

a validation set. Then, the user specifies a confidence hyper-parameter β that controls when the

inference process can stop early at the i-th exit layer, without having to feed-forward through the

rest of the network. Therefore, the inference process can stop at the i-th layer when the maximum

activation exceeds by β the average activation :

[g
(i)
Wi

(yj)]k > βµi, (14)

where k = arg max g
(i)
Wi

(yj). Note that setting different values for the hyper-parameter β allows for225

controlling the trade off between the classification accuracy of the network and the number of resources

needed for classifying one input image. Larger values for the hyper-parameter β lead to more accurate

classification decisions, while smaller values leads to faster (since the inference process can stop early),

but less accurate classification decisions. It is worth noting that, as it is demonstrated in Section 4,
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the inference process can be stopped early for many input samples with a minimal impact on the230

classification accuracy.

4. Experimental Evaluation

The proposed method is extensively evaluated in this Section. First, the used datasets, evaluation

setup, and network architectures are described in Subsection 4.1, while the evaluation results are

provided and discussed in Subsection 4.2.235

4.1. Datasets and Evaluation Setup

Five datasets were used for evaluating the proposed method: a) the MNIST image classification

dataset [32], b) the Fashion MNIST fashion product classification dataset [33], as well as the more

challenging c) CIFAR-10 object recognition dataset [34], d) FER-2013 facial expression dataset [35],

and e) PlantVillage dataset [36], which contains leaf images from healthy and infected plants.240

Three different neural network architectures were also employed for the evaluation. The first

one, called “CNN-1”, was used for the experiments conducted with the MNIST dataset. CNN-1 is

composed of a 3 × 3 convolution layer with 32 filters, followed by 2 × 2 max pooling layer, a 3 × 3

convolution layer with 64 filters, another 2 × 2 max pooling layer, a fully connected layer with 1024

neurons, dropout with rate p = 0.5, and a final fully connected classification layer. For the Fashion245

MNIST dataset we used a more powerful network that uses twice the number of filters in the first

two convolutional layers. Therefore, this network, called “CNN-2”, is composed of a 3×3 convolution

layer with 64 filters, followed by a 2× 2 max pooling layer, a 3× 3 convolution layer with 128 filters,

another 2 × 2 max pooling layer, a fully connected layer with 1024 neurons layer, dropout with rate

p = 0.5, and a final fully connected classification layer. The ReLU activation function was used for250

all the layers. For the CIFAR-10 and FER-2013 datasets a more powerful network, the MobileNet

v.2 [37], was employed, after appropriately tuning the filter size of the first convolutional layer for each

dataset. Images from the PlantVillage dataset were resized to 32× 32 pixels, while random rotations

(up to 30 degrees) and horizontal flips were used to augment the training dataset. We used classes

that are related to the three following plants: “Pepper bell” (2 classes), “Potato” (3 classes), and255

“Tomato” (10 classes). Finally, the CNN-2 architecture was used for all the conducted experiments

using this dataset. The categorical cross-entropy loss was used for training all the networks, combined

with the Adam optimizer. The CNN-1 and CNN-2 models were trained for 50 epochs with learning

rate 0.001, while the MobileNets and the networks used for the PlantVillage dataset were trained for

50 epochs with a learning rate of 0.001, followed by additional 50 training epochs with a learning rate260

of 0.0001.
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Table 1: Comparing the classification error and computational overhead for different variants of the proposed method.

The classification error (%), computational complexity (MMAC) and required number of additional parameters is

reported. The notation “AH-BoF (F, X)” refers to using the proposed method with X codewords, while “AH-BoF (S,

X)” refers to employing additive histogram spaces and re-using the employed classification layer. When the “AH-SBoF”

variant is used, then spatial segmentation into four regions is enabled.

Early Exit - 1 Early Exit - 2 Hierarchical Exit

Method Error MMAC Error MMAC Error MMAC
# Added

Parameters.

MNIST Dataset (CNN-1)

AH-BoF (F, 16) 15.19% 0.31 (8%) 5.37% 2.48 (61%) 3.79% 2.57 (63%) 2.25k

AH-BoF (S, 16) 16.79% 0.31 (8%) 6.05% 2.48 (61%) 4.38% 2.57 (63%) 1.75k

AH-SBoF (F, 8) 5.00% 0.26 (6%) 3.03% 2.47 (60%) 1.86% 2.51 (61%) 2.10k

AH-SBoF (S, 8) 6.11% 0.26 (6%) 3.92% 2.47 (60%) 2.57% 2.51 (61%) 1.12k

AH-SBoF (F, 32) 2.85% 0.40 (10%) 2.63% 2.51 (61%) 1.81% 2.69 (66%) 8.30k

AH-SBoF (S, 32) 3.48% 0.40 (10%) 2.67% 2.51 (61%) 1.57% 2.69 (66%) 4.43k

Fashion MNIST Dataset (CNN-2)

AH-BoF (F, 16) 17.05% 0.61 (5%) 15.26% 9.42 (74%) 12.98% 9.60 (76%) 3.78k

AH-BoF (S, 16) 18.70% 0.61 (5%) 16.21% 9.42 (74%) 13.95% 9.60 (76%) 3.28k

AH-SBoF (F, 8) 15.55% 0.52 (4%) 14.51% 9.40 (74%) 11.54% 9.48 (75%) 2.87k

AH-SBoF (S, 8) 17.61% 0.52 (4%) 15.94% 9.40 (74%) 14.18% 9.48 (75%) 1.89k

AH-SBoF (F, 16) 13.34% 0.61 (5%) 12.93% 9.42 (74%) 10.54% 9.60 (76%) 5.70k

AH-SBoF (S, 16) 14.22% 0.61 (5%) 13.52% 9.42 (74%) 11.30% 9.60 (76%) 3.76k

CIFAR-10 Dataset (MobileNet v.2)

AH-BoF (F, 16) 17.68% 44.41 (47%) 11.05% 64.25 (68%) 10.81% 64.32 (68%) 3.27k

AH-BoF (S, 16) 18.36% 44.41 (47%) 11.57% 64.25 (68%) 11.19% 64.32 (68%) 2.77k

AH-BoF (F, 32) 14.55% 44.48 (47%) 10.05% 64.35 (68%) 9.90% 64.48 (68%) 6.50k

AH-BoF (S, 32) 14.92% 44.48 (47%) 10.61% 64.35 (68%) 9.78% 64.48 (68%) 5.52k

AH-BoF (F, 128) 11.76% 44.88 (47%) 9.14% 64.95 (69%) 8.82% 65.48 (69%) 25.89k

AH-BoF (S, 128) 11.90% 44.88 (47%) 9.47% 64.95 (69%) 8.99% 65.48 (69%) 22.03k

FER-2013 Dataset (MobileNet v.2)

AH-BoF (F, 16) 50.35% 98.60 (47%) 44.33% 143.24 (68%) 43.61% 143.39 (68%) 3.07k

AH-BoF (S, 16) 52.55% 98.60 (47%) 45.17% 143.24 (68%) 44.39% 143.39 (68%) 2.72k

AH-BoF (F, 32) 48.70% 98.75 (47%) 43.66% 143.46 (68%) 42.57% 143.76 (68%) 6.11k

AH-BoF (S, 32) 51.62% 98.75 (47%) 45.17% 143.46 (68%) 43.13% 143.76 (68%) 5.42k

AH-BoF (F, 128) 48.39% 99.64 (47%) 43.83% 144.80 (69%) 42.69% 146.00 (69%) 24.35k

AH-BoF (S, 128) 48.51% 99.64 (47%) 44.97% 144.80 (69%) 42.13% 146.00 (69%) 21.65k

The percentage of MMAC with the respect to the total MMAC required to feed-forward the network are reported in parenthesis.

The best results for each early exit are reported in bold, while the best overall results for each dataset are underlined.
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Table 2: Comparing the proposed “AH-(S)BoF” method to two competitive early-exit approaches (ElasticNet and

BranchyNet). The same notation as in Table 1 is used for the proposed method.

Early Exit - 1 Early/Hierarchical Exit - 2 # Added

Method Dataset Error MMAC Error MMAC Parameters.

ElasticNet MNIST 49.99% 0.22 (5%) 7.07% 2.45 (60%) 1.95k

BranchyNet MNIST 18.48% 0.36 (9%) 3.01% 2.48 (60%) 3.65k

AH-SBoF (S, 8) MNIST 6.11% 0.26 (6%) 2.57% 2.51 (61%) 1.12k

ElasticNet FashionMNIST 32.51% 0.43 (3%) 16.91% 9.37 (74%) 3.87k

BranchyNet FashionMNIST 25.02% 0.71 (6%) 12.51% 9.41 (74%) 7.11k

AH-SBoF (S, 16) FashionMNIST 14.22% 0.61 (5%) 11.30% 9.60 (76%) 3.76k

ElasticNet CIFAR-10 Dataset 27.04% 44.34 (47%) 15.74% 64.15 (68%) 3.23k

BranchyNet CIFAR-10 Dataset 16.65% 44.51 (47%) 11.82% 64.40 (68%) 11.89k

AH-BoF (S, 32) CIFAR-10 Dataset 14.92% 44.48 (47%) 9.78% 64.48 (68%) 5.52k

ElasticNet FER-2013 Dataset 59.88% 98.45 (47%) 51.40% 143.01 (68%) 2.26k

BranchyNet FER-2013 Dataset 49.21% 98.68 (47%) 44.41% 143.36 (68%) 5.96k

AH-BoF (F, 32) FER-2013 Dataset 48.70% 98.75 (47%) 42.57% 143.76 (68%) 6.11k

ElasticNet PlantVillage 29.72% 4.04 (23%) 5.54% 14.09 (81%) 4.85k

BranchyNet PlantVillage 21.48% 4.38 (25%) 6.59% 14.32 (82%) 12.06k

AH-BoF (S, 32) PlantVillage 12.37% 4.25 (24%) 5.26% 14.40 (83%) 5.69k

The percentage of MMAC with the respect to the total MMAC required to feed-forward the network are reported in parenthesis.

For all the conducted experiments two early exits were employed, together with one hierarchical

exit that combines the information extracted from these two exits. For both the CNN-1 and CNN-2

models, the first early exit layer was placed after the 1st convolutional layer, while the second early

exit layer was placed after the 2nd convolutional layer. The early exits were placed at the 5th and 7th265

convolutional layers, respectively, for the MobileNet model. The proposed method is called Adaptive

Hierarchical BoF, abbreviated as “AH-BoF” for the rest of the paper. When a spatial segmentation

scheme into 4 regions is used, the proposed method is abbreviated as “AH-SBoF”. Note that when

the Spatial BoF method is used, then the size of the extracted representation is increased by a factor

of 4, since four different histograms are extracted (one for each spatial region). Two different variants270

of the proposed method are evaluated: a) concatenating the hierarchical representations (as described

in (11)) and using separate classification layers for each early exit (denoted by “AH-(S)BoF (F, X)”,

where X refers to the number of used codewords), and b) using additive histogram spaces (as described

in (12)) and classification layer reuse (denoted by “AH-(S)BoF (S, X)”). The proposed method is also

compared to using global average pooling aggregation, as proposed in [16] (denoted by “ElasticNet”),275

as well as to using an additional convolutional layer before performing the aggregation proposed for

early exits (denoted by “BranchyNet”) [13]. Note that all the experiments were conducted using the

PyTorch framework [38].
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Table 3: Evaluating the proposed adaptive inference classification strategy for three different settings. The classification

error and the average complexity for classifying each input sample (“Avg. MMAC”) are reported.

Adaptive Inference Adaptive Inference Adaptive Inference

(High Speed) (Balanced) (High Precision)

Method Error Avg. MMAC Error Avg. MMAC Error Avg. MMAC

MNIST Dataset (CNN-1)

Static Inference 0.68% 4.10

AH-BoF (F, 16) 4.16% 1.08 1.86% 2.07 0.73% 3.60

AH-BoF (S, 16) 4.45% 1.14 1.79% 2.23 0.72% 3.79

AH-SBoF (F, 8) 1.32% 0.69 0.94% 0.98 0.76% 1.69

AH-SBoF (S, 8) 1.61% 0.78 0.97% 1.19 0.70% 2.29

AH-SBoF (F, 32) 1.09% 0.67 0.74% 0.97 0.68% 1.90

AH-SBoF (S, 32) 1.06% 0.74 0.78% 1.08 0.68% 2.43

Fashion MNIST Dataset (CNN-2)

Static Inference 7.82% 12.66

AH-BoF (F, 16) 10.10% 4.04 8.55% 5.86 7.85% 9.55

AH-BoF (S, 16) 10.18% 4.59 8.45% 6.84 7.84% 10.42

AH-SBoF (F, 8) 9.54% 3.62 8.38% 5.14 7.81% 9.11

AH-SBoF (S, 8) 10.45% 4.30 8.46% 6.34 7.84% 10.17

AH-SBoF (F, 16) 8.95% 3.52 8.17% 4.76 7.82% 9.92

AH-SBoF (S, 16) 9.13% 3.91 8.18% 5.50 7.82% 10.53

CIFAR-10 (MobileNet v.2)

Static Inference 7.81% 94.61

AH-BoF (F, 16) 10.23% 53.20 8.81% 63.14 7.76% 77.03

AH-BoF (S, 16) 10.38% 53.32 8.72% 65.42 7.77% 80.75

AH-BoF (F, 32) 9.05% 52.73 8.25% 60.90 7.78% 70.77

AH-BoF (S, 32) 9.13% 52.84 8.37% 62.80 7.84% 74.84

AH-BoF (F, 128) 8.12% 52.09 8.03% 58.26 7.82% 64.33

AH-BoF (S, 128) 8.16% 52.36 7.98% 59.91 7.77% 67.21

FER-2013 (MobileNet v.2)

Static Inference 38.84% 211.52

AH-BoF (F, 16) 43.58% 131.27 38.92% 184.97 39.03% 209.11

AH-BoF (S, 16) 43.86% 130.37 39.34% 193.07 39.20% 211.01

AH-BoF (F, 32) 41.73% 131.75 38.59% 182.56 38.62% 207.08

AH-BoF (S, 32) 44.36% 129.07 39.67% 189.62 39.73% 211.31

AH-BoF (F, 128) 41.32% 133.32 39.06% 176.74 39.26% 205.13

AH-BoF (S, 128) 41.74% 135.00 38.62% 182.47 38.70% 208.46

PlantVillage (CNN-2)

Static Inference 1.24% 17.38

AH-BoF (F, 32) 3.28% 7.06 1.84% 8.96 1.27% 14.90

AH-BoF (S, 32) 3.60% 7.55 1.54% 10.40 1.24% 16.42

AH-BoF (F, 64) 2.52% 6.92 1.55% 8.43 1.28% 14.14

AH-BoF (S, 64) 2.75% 7.27 1.61% 9.41 1.25% 15.72
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4.2. Evaluation Results

First, we provide a sensitivity analysis, where we evaluate the effect of different design choices280

on the performance of the proposed method. The evaluation results are reported in Table 1. The

total multiply-accumulate operations (Million MAC, MMAC) are also reported for each network up

to the corresponding exit, while the column “# Added Parameters” refers to the number of added

parameters to the network due to the early exits. The number in parenthesis for the MMAC refers to

the percentage of MMAC for the current early exit with respect to the total number of MMAC required285

to feed-forward the whole network. Note that even with spending as little as 5% of the total MMAC

(Fashion MNIST combined with “AH-SBoF(F, 16)”) leads to adequate results (classification accuracy

< 14%). As it will be also demonstrated later, this allows for early stopping the inference process at

the earlier exits, allowing for acquiring significant performance benefits. The two different variants of

the proposed method, namely the AH-BoF with concatenated histogram spaces (“F” variant) and the290

AH-BoF with additive histogram spaces and classification layer reuse (“S” variant), are also compared

in Table 1. The lightweight “S” variant is capable of significantly reducing the number of parameters

in all the cases, with only a minimal impact on the classification accuracy for the first two early exits.

On the other hand, the lightweight “S” variant is actually outperforming the other methods for the

hierarchical exit that combines the information extracted from the other two early exits for two of the295

evaluated datasets (MNIST and FER-2013 datasets).

There are also several interesting conclusions that can be drawn regarding the parameters of the

BoF model. First, note that by appropriately tuning the number of used codewords we can effectively

control the trade-off between the added parameters and the classification accuracy of the network.

Also, note that the added early exits have a minimal effect on the computational complexity, since300

regardless the complexity of the used BoF model, the number of MMAC remains almost the same

(especially for the more complex MobileNet network). Furthermore, in almost any case, increasing

the number of codewords seems to have a positive effect on the classification accuracy. At the same

time, using spatial segmentation (“SBoF”) seems to be especially important when the early exits are

used on convolutional layers with smaller receptive fields, e.g., CNN-1 and CNN-2.305

The proposed method is also compared to the ElasticNet and BrancyNet approaches in Table 3.

We selected the most competitive variant of the proposed method that is closer to the number of

parameters used by the rest of the evaluated methods. Furthermore, we also tuned the number of

filters in the BranchyNet model in order to avoid significantly exceeding the number of parameters

used by the rest of the methods. Note that this is not always straightforward, since 3×3 convolutions310

are used in BranchyNet instead of 1 × 1, as the proposed method does, leading to 9-fold increase in

the required number of parameters. The proposed method always leads to improved accuracy over
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the two evaluated methods, while requiring about the same number of parameters (or significantly

less compared to some BranchyNet variants).Note that this is also true for many other variants of the

proposed method, as reported in Table 1.315

Next, we evaluated the effect of using the proposed adaptive inference strategy for early stopping

the inference process when the network is confident enough. The evaluation results are reported in

Table 3. Three different inference strategies were used, namely “High Speed” (β = 1), “Balanced”

(β =
1+c 1

µ0

1+c ) and “High Accuracy” (β = c
µ0

), where µ0 (calculated as in (13)) is used to estimate the

uncertainty of the neural network at the first early exit and c is a hyper-parameter that controls the320

uncertainty limit for stopping at an early exit (c = 0.99 were used for all the conducted experiments).

The “Static Inference” baseline refers to using the final classification layer of the network, without

adding any early exit. Several interesting conclusions can be drawn from the results reported in

Table 3. First, adding early exits and using the proposed method allows for significantly reducing

the average inference time without harming the classification accuracy. For example, for the MNIST325

dataset the proposed method reduced the average MMAC by 4 times, while achieving the same

classification performance. For the Fashion MNIST the error is slightly reduced to 7.81%, while the

number of MMAC are reduced from 12.66 to 9.11. For the CIFAR-10 and FER-2013 datasets, using

the proposed approach actually achieves lower classification error than the original network, hinting

that earlier layers may contain useful information discarded by many neural network architectures,330

as also suggested by recent neural network architectures [39]. Furthermore, note that for the FER-

2013 dataset the best results are obtained using an inference strategy that tends to stop at an earlier

layer. The proposed adaptive inference method was capable of reducing the MMAC while achieving

competitive classification performance for almost every evaluated case, demonstrating the practical

usefulness of the proposed method for adaptively altering the computational graph of a DL model335

according to the difficulty of the input samples.

5. Conclusion

Deep learning models equipped with early exits are capable of providing adaptive computational

graphs that allow for directly adapting a model to the currently available computational resources.

However, existing methods for implementing early exits mainly employ naive aggregation methods,340

such as global average pooling, significantly restricting their performance. At the sample time, they

usually ignore all the information that is extracted by the earlier exits, despite the fact that this

information is often already extracted and available at no additional cost. In this paper, we proposed

a Bag-of-Features (BoF)-based method that is capable of overcoming these limitations. To this end,

the proposed method constructs efficient hierarchical early exit layers with minimal computational345
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overhead, since it employs additive shared histogram spaces, that gradually refine the information

extracted from the various layers of a network, in a hierarchical manner. At the same time, it employs

a classification layer reuse strategy that allows for further reducing the number of parameters needed

per exit layer. The proposed method can be further combined with an adaptive inference strategy

that allows for early stopping the inference process when the network is confident enough for its350

output, leading to further performance benefits. It is worth noting that the proposed method is

generic and can be readily combined with any neural network architecture, leading to a practical tool

that can be effectively used in various real-world embedded applications, as demonstrated through

the conducted experiments on five different datasets. At the same time, the significant improvements

obtained using the proposed approach pave the way for developing more sophisticated and advanced355

methods for designing and implementing early exits. Among them, adaptive methods for selecting

the most appropriate early exit for each input sample can be developed, instead of relying on a fixed

and pre-defined threshold, allowing for potentially further increasing the efficiency and accuracy of

the proposed method.
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