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Abstract— Landing a quadrotor on an inclined surface is a
challenging maneuver. The final state of any inclined landing
trajectory is not an equilibrium, which precludes the use of most
conventional control methods. We propose a deep reinforcement
learning approach to design an autonomous landing controller
for inclined surfaces. Using the proximal policy optimization
(PPO) algorithm with sparse rewards and a tailored curriculum
learning approach, an inclined landing policy can be trained in
simulation in less than 90 minutes on a standard laptop. The
policy then directly runs on a real Crazyflie 2.1 quadrotor and
successfully performs real inclined landings in a flying arena.
A single policy evaluation takes approximately 2.5 ms, which
makes it suitable for a future embedded implementation on the
quadrotor.

I. INTRODUCTION

Modern quadrotors are agile and can perform complex
tasks in difficult-to-reach places. Quadrotor flight and ma-
neuvers are commonly controlled by proportional integral
derivative (PID) control or model predictive control (MPC).
Although these methods are adequate for set-point or tra-
jectory tracking, they fall short when it comes to more
complicated maneuvers that exceed the linearization range
or require long prediction horizons. One such maneuver is
the landing on an inclined surface, which is relevant for
applications like delivery, maintenance, or surveillance. To
facilitate a safe inclined landing, the final attitude of the
quadrotor must match the slope of the landing platform. The
final state of the landing trajectory is not an equilibrium,
which presents a challenge for the control design. Owing
to the under-actuated nature of the system, the landing
trajectory can be long and complex, with an initial motion
away from the landing location. This complicates the use of
standard control methods like MPC with a fixed prediction
horizon and quadratic cost function.

Recent advances in deep reinforcement learning (DRL)
with continuous action spaces have made this approach
suitable also for quadrotor control [1], [2], [3], [4], including
landing controllers [5], [6], [7], [8], [9], [10], [11]. However,
no results have yet been reported for inclined landing. In
this paper, we develop a DRL approach to the inclined
landing problem and validate it in simulations and real
lab experiments with the Crazyflie 2.1 Nano-UAV. To the
best of our knowledge, this is the first deep-learning-based
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controller for inclined landing applied to a real quadcopter.
More specifically, our contributions are:

• We develop two fast Gym-based [12] simulation envi-
ronments for the Crazyflie 2.1 Nano-UAV.3 One three-
dimensional environment can be used with any compati-
ble DRL algorithm to train set-point tracking. The other
two-dimensional environment, restricted to the vertical
xz-plane, can be used with an on-policy algorithm
to train the inclined landing. The resulting policies
adequately transfer to the real Crazyflie.

• Building upon the state-of-the-art model-free proximal
policy optimization (PPO) algorithm [13], we propose a
powerful curriculum learning [14] approach to facilitate
convergence when using sparse rewards, without the
need for applying a multi-goal setting like in hindsight
experience replay [15] or iterated supervised learning
[16].

• We test the trained policy network in simulation and
then deploy it to the real Crazyflie quadrotor to demon-
strate the actual inclined landing in an indoor flying
arena.4

The remainder of the paper is structured as follows. We
first give an overview of the related work in Section II. The
dynamic quadrotor model used for simulation and training
is described in Section III. Next, Section IV presents the
DRL simulation framework that is used to train inclined
landing and set-point tracking. Section V describes the
simulation and lab setup and presents the experimental
results. Section VI contains a discussion of the results and
in Section VII, the conclusions and limitations of this work
are given, along with proposals for future work.

II. RELATED WORK

Deep reinforcement learning methods have been applied to
a variety of quadrotor control problems, including hovering
[3], attitude control [2], set-point tracking, and disturbance
recovery [1], [4]. Specifically for landing, a deep neural
network was employed to learn higher-order interactions to
stabilize the near-ground behavior of a nonlinear quadrotor
controller [5]. A deep Q-learning network (DQN) was used
to detect a marker symbol and perform a landing by using
a downward-facing low-resolution camera [7], [8], [9]. The
work in [8] considers platform inclination, but only in the
context of more involved visual recognition, while the land-
ing is still horizontal. Least-squares policy iteration (LSPI)
was employed to autonomously land on a marker [11] and the

3https://github.com/Jacobkooi/InclinedDroneLander.git
4https://youtu.be/pJ6vVs0BsB8



deep deterministic policy gradient (DDPG) algorithm [17]
was used to navigate a descending quadrotor to land on a
moving platform [10]. Finally, the work in [6] involved a
convolutional neural network to estimate the heading angle
to aid UAV landing in the case of sensor failure. However,
none of the approaches considered inclined landing and none
of the methods developed can be directly applied to this
problem.

Inclined landing has been the topic of several works
outside the deep learning control literature. A nonlinear
hybrid controller was proposed in [18]. A trajectory-tracking
controller first guides the quadrotor above the landing plat-
form and then switches to an attitude-tracking controller
to ensure that the attitude of the quadrotor adjusts to the
slope of the landing platform upon touchdown. This is an ad
hoc local strategy, incapable of generating optimal landing
trajectories from arbitrary initial conditions. Besides, no real-
time control experiments have been reported in this paper.
The method proposed in [19] features a nonlinear MPC to
land a quadrotor on a moving inclined surface. Real-time
experimental results were reported, showing a successful
landing. The limitations of MPC are its computational com-
plexity and the difficulty of parameter tuning, especially of
the prediction horizon, which needs to be long for some of
the landing trajectories, making the method unsuitable for
embedded implementation on the quadrotor. The approach
developed in [20] relies on splitting up the problem in
the generation of dynamically feasible trajectories and their
subsequent trajectory tracking. Perching on slopes of up to
90 degrees has been demonstrated in lab experiments. To
keep the problem tractable, the authors break the desired
trajectory down into segments with a maximum duration of
one second. The overall approach is more complex than the
nonlinear feedback policy approach pursued in this paper.

III. SIMULATION MODEL

The dynamic model of the Crazyflie 2.1 Nano-UAV is
formed by the equations of motion (EOM). We divide them
into the Newton-Euler equations, which govern the axial
accelerations, and an approximation of the body attitude
control loops. The command input vector u to the Crazyflie’s
onboard controller is defined as

u =
[
Θc φc θc ψ̇c

]T
. (1)

Here, Θc is the commanded pulse-width modulation (PWM)
signal representing the total thrust, φc and θc are the com-
manded roll and pitch angles, respectively, and ψ̇c is the
commanded yaw rate [21]. These inputs are bounded by

umin =
[
10000 −30◦ −30◦ −200◦/s

]T
,

umax =
[
60000 30◦ 30◦ 200◦/s

]T
.

(2)

A. Newton-Euler Equations

The quadrotor is modeled as a rigid body, with the axial
accelerations in the inertial frame

[
x y z

]T
:mẍmÿ
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with m the quadrotor’s mass, R the rotation matrix from the
body frame to the inertial frame, Ft the total thrust force and
Fa the drag force. The rotation matrix corresponding to the
coordinate frame representation in Fig. 1 is

R =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcθ sψsθ + cψcθsφ
−cφsθ sφ cφcθ

 (4)

where c is a cosine, s is a sine, and φ, θ and ψ are the roll,
pitch and yaw angles, respectively.

Fig. 1. The quadrotor coordinate system used throughout this paper.
Subscripts B and I represent the body and inertial frame, respectively, and
Fi is the thrust due to rotor i. Adopted from [22].

The relation between the commanded PWM Θc in (1)
and Ft in (3) is modelled by using the discrete-time transfer
function found in [23] for an individual motor i:

Fi(z)

Θc,i(z)
=

7.2345374 · 10−8

1− 0.9695404z−1
(500Hz). (5)

Since the Crazyflie’s onboard controller only takes a single
PWM signal for all four motors, we assume that Ft ≈ 4Fi
with Θc ≈ Θc,i. Multiplying (5) by four and converting it
to continuous-time gives[

Ω̇
Ft

]
=

[
−15.467

1.425 · 10−4

]
Ω +

[
1

2.894 · 10−7

]
Θc (6)

where Ω is an unmeasured state used for simulation purposes
only. The drag force Fa in (3) is expressed as [24]

Fa = KaωΣv (7)

with ωΣ the sum of the rotor velocities, v the body-frame
velocity vector and Ka a diagonal matrix of drag constants
estimated in [23]. Because ωΣ is not known during simula-
tion, we approximate it from Ft with additional conversion
formula’s given in [23].



B. Body Attitude Control Loops

The body attitude rates are modelled by equations that
approximate the dynamics of the attitude control loops [25]:

φ̇ =
1

τφ
(kφφc − φ),

θ̇ =
1

τθ
(kθθc − θ),

ψ̇ = ψ̇c.

(8)

Here τφ, τθ and kφ, kθ are the time and gain constants
for roll and pitch, respectively. The yaw rate is assumed
to instantaneously track the desired yaw rate, which is a
reasonable assumption since the yaw has no effect on the
quadrotor’s position [25]. Because the closed-loop dynamics
are unknown, the parameters kθ, kφ, τθ and τφ need to be
identified. Given the quadrotor’s symmetry, kθ and kφ as
well as τθ and τφ are assumed equal. These parameters are
estimated by fitting the data gathered by a motion-capture
system to the equations (8). We conducted 20 experiments
using square and sine waves ranging from zero to thirty
degrees, which gave an average fit of 85.3% using Matlab’s
nlgreyest function, with the resulting parameters kφ =
kθ = 1.1094 and τφ = τθ = 0.1838 s.

To simulate the quadrotor, the model equations (3) and (8)
are integrated by using the fourth-order Runge Kutta (RK4)
method. The step size is fixed and equal to the sampling
period Ts = 0.02 s.

IV. TRAINING DEEP REINFORCEMENT LEARNING
POLICIES

To train the inclined landing, the quadrotor model of
Section III is used as a simulation environment for model-
free DRL. Additionally, to navigate the quadrotor, we train
set-point tracking in the same fashion. Both policy networks
map quadrotor states to the desired control input in (1), which
makes them directly applicable to the real Crazyflie.

A. Preliminaries

The learning controller (agent) interacts with the model
(environment) through trials. The environment’s state space
is denoted by S and a specific value of the state at time
step k by sk. The agent applies an action ak ∈ A and
subsequently receives a reward rk ∈ R , after which it
observes the next state sk+1. The action ak is chosen by
following a stochastic policy πk(a|s) or a deterministic
policy µk(s). This policy can be optimized in many differ-
ent ways. Most techniques maximize the discounted return
η(πφ) = Eτ [

∑T
t=0 γ

tr(sk, ak)], with τ a trajectory following
the policy πφ and γ the discount factor.

B. Set-Point Tracking

We first train a three-dimensional set-point tracking policy
network to empirically check the simulation-to-reality perfor-
mance of the DRL algorithms and to fly to a desired starting

position for inclined landing. For this task, the states and
actions are defined as follows:

s3d =
[
x y z vx vy vz φ θ

]T
,

a3d =
[
Θc φc θc

]T
.

(9)

Here, v is the velocity in the inertial frame. Note that the yaw
angle is kept constant at zero degrees and can thus be omitted
throughout all our experiments. For set-point tracking, we
use the following reward function:

rk = −ep − 0.2ev − 0.1eφ,θ − 0.1
a2
φ,θ

max(ep, 0.001)
(10)

where ep, ev and eφ,θ are Euclidean distance errors of the
position, velocity, and orientation, respectively, with respect
to the goal state. The term a2

φ,θ is the sum of the squared
roll and pitch actions (normalized between 0 and 1). It is
scaled by the reciprocal of ep to minimize oscillations near
the goal position.

The policy network is a fully connected neural network
with two hidden layers, with 64 neurons each, and the
tanh activation function everywhere except for the output
layer which has a linear activation function. The final output
is subsequently clipped between −1 and 1. We use the
PPO algorithm [13] to train the set-point tracking network.
Other state-of-the-art DRL algorithms like twin delayed
deep deterministic policy gradient (TD3) [26] and soft actor
critic (SAC) [27] converged successfully as well, but PPO
was superior in terms of training time and final policy
performance.

C. Inclined Landing

To keep the state dimensions small and the DRL problem
tractable, the inclined landing is trained in the xz-plane,
representing the three-dimensional model restricted to a two-
dimensional plane. The states and actions used are :

s2d =
[
x z vx vz θ

]T
,

a2d =
[
Θc θc

]T
.

(11)

For the sake of brevity, in the sequel, we refer to s2d

and a2d by s and a, respectively. Because the quadrotor is
under-actuated, an initial swinging motion away from the
landing location is required for some initial conditions. This
characteristic is incompatible with the bias of a Euclidean
distance based reward like the one in (10) generates. The
reward function used for the inclined landing is therefore a
sparse reward defined as follows:

rk =


0 if sk ∈ Sg
−β if sk ∈ So
−2 if sk ∈ Sb
−1 otherwise.

(12)

Here Sg = {s | |si − sg,i| < δg,i, ∀i} is the set of goal
states, defined as a hyperbox around the landing attitude. The
goal threshold vector δg defines the desired landing tolerance
around the goal state sg,i and is set by the user. The landing



platform itself is an obstacle associated with a set of obstacle
states So and a penalty β, and Sb represents the set of states
close to the state space boundaries.

The use of a sparse reward requires extensive exploration
to receive a non-negative reward and often leads to prolonged
or unsuccessful training. We introduce the following curricu-
lum learning [14] procedure to speed up the training and
achieve convergence:

• The training starts without a landing platform and with
a horizontal goal state. Only once the quadrotor reliably
reaches the horizontal goal, we begin slightly tilting the
goal position after each episode. Finally, the landing
platform is introduced into the environment, see Fig. 2.

• We initialize simulations near the goal state and with
each episode expand the set of initial positions. This
eliminates the need for exploration by letting the non-
negative rewards propagate throughout the value net-
work at the beginning of training.

• We start with a large goal hyperbox Sg and as the
training progresses, the hyperbox is gradually reduced
to its desired size.

This learning curriculum requires an on-policy learning
algorithm, such as PPO. Off-policy replay buffers would
inevitably contain samples representing goals that are no
longer relevant. In our experience, off-policy algorithms TD3
and SAC cannot keep up with the curriculum. The policy
network architecture is similar to the one used for set-point
tracking. The input and output layers for inclined landing are
the state and action vectors in (11).

Fig. 2. The progress of the training curriculum for inclined landing. The
red quadrotor represents the agent and the black quadrotor represents the
goal state.

D. Simulation to Reality Transfer

To deploy the policies on the Crazyflie 2.1 Nano-UAV, the
trained Pytorch network is converted to work within a Robot
Operating System (ROS) node, which maps the state to the
control input vector in (1). The positions and velocities come
from a Kalman filter node, which appends the coordinates
from the Optitrack motion capture system with the estimated
inertial frame velocities. The quadrotor’s orientation is taken
from the Crazyflie’s default onboard estimator. An overview
of this process is given in Fig. 3.

Fig. 3. Schematic overview of the Pytorch model deployment.

V. EXPERIMENTS

All simulations, DRL training, and lab experiments are
done on an HP Zbook Studio G4 laptop, with the default
Nvidia Quadro M1200 GPU and an Intel Core i7-7700HQ
CPU. The additional hardware used is the Optitrack motion-
capture system, the standard Crazyflie 2.1 with a small
marker holder, and a Crazyradio PA for communication with
the Crazyflie.

A. Experimental Setup

The simulations and DRL training are implemented in
Python, using the Pytorch package. The quadrotor dynam-
ics are simulated using the EOM of Section III, inte-
grated by the RK4 method. To increase the integration
speed, we compile the EOM functions using Numba’s
Just-in-time (jit) package. By keeping the simulations
and rendering in our own Gym-architecture [12] environ-
ment, we can use well-tuned implementations of exist-
ing model-free algorithms by [28]. Our compact simula-
tor allows for computationally cheap rendering, easy cur-
riculum adjustments and fast simulation. The simulation
bounds are equal to the dimensions of the actual flying
arena with

[
xmin xmax ymin ymax zmin zmax

]
=[

−3.4 3.4 −1.4 1.4 0 2.4
]

m. The actions represent
the multiplication of the clipped policy network outputs (a ∈
[−1, 1]) by the control bounds in (2), with an exception for
the PWM network output which is multiplied by 16500 and



added to the estimated hover PWM of 42000. All simulations
use the control sampling frequency of 50 Hz, with episode
length of 300 time steps, i.e., 6 seconds.

1) Set-Point Simulations: The goal state is taken as sg =[
0 0 1.2 0 0 0 0 0

]T
, which represents the cen-

ter of our physical flying arena. After each episode, the initial
position is set randomly anywhere within the simulation
bounds, with a small margin around the edges. The PPO
implementation of [28] is used, with the discount factor
γ reduced to 0.97 to account for more short-term control
behaviour. We train for a total of 106 time steps representing
27 minutes of training time. For navigation with the resulting
policy, a coordinate change suffices to fly the quadrotor to
an arbitrary position.

2) Inclined Landing Simulations: For inclined landing,
we operate the quadrotor in the xz-plane. The DRL algo-
rithm used is the PPO implementation of [28], where minor
changes have been made to activate the rendering every 50
training iterations and to gradually start increasing γ from
0.97 to 0.99 after 300 training iterations. An episode ends
at 300 time steps or when the state x is within the goal
hyperbox Sg . The landing platform is modeled as a polygon
and appears after 8 · 105 time steps. The goal threshold
vector is defined as δg =

[
δx δz δvx δvz δθ

]
=[

d d min(10d, 1.5) min(10d, 1.5) 0.25d
]
, where d

starts at 0.25 in the beginning of training and gradually
decreases to 0.10 after 2500 episodes with 0.15/5000 per
episode. The box of possible starting positions around the
goal state expands with every episode by 1/6000 m in the
x-direction and by 1/8000 m in the y-direction. Additionally,
the goal state stays horizontal for the first 4 · 105 time steps
and then gradually tilts towards its final inclination of −π/7
at the rate of (−π/7)/6000 radians per episode. The final
goal state is set at sg =

[
0 1.25 0 0 −π/7

]T
. The

obstacle reward constant β is taken as −7, which was found
empirically to be the right trade-off between the goal of
landing on top of the platform and the necessity to avoid the
landing platform base. Training is stopped anywhere between
1.2 · 106 and 3 · 106 time steps (30 to 80 minutes), when
the rendering shows that the policy executes the inclined
landing reliably. Note that rather than monitoring the loss
function, the aforementioned parameters and curricula have
been empirically tuned by frequently rendering. The trend
in the loss function value is quite meaningless, given the
curricula and the discount factor adaptation.

3) Validation on a real quadrotor: The quadrotor used
is the Crazyflie 2.1 Nano-UAV with its original firmware.
A Crazyflie-specific package [21] allows us to publish the
control values in (1) directly to the ROS server, which are
then transmitted with low latency to the Crazyflie over the
Crazyradio PA. The trained policy network is evaluated at
80 Hz, even though it was trained at 50 Hz. This is possible,
as the policy is a function of the physical state only, and
can therefore be evaluated at any frequency. A single policy
evaluation takes approximately 2.5 ms. The coordinates from
the Optitrack motion-capture system come in at 120 Hz

and are combined with the inertial frame velocities by the
Kalman filter node [29]. The orientation is received from
the Crazyflie’s onboard estimator through the Crazyradio
at around 80 Hz. The position, velocity, and orientation
estimates form the policy input. The experiment itself starts
with the drone flying to a position of choice, using the three-
dimensional set-point tracking network. Once it is positioned,
the networks are switched and the drone commences the
inclined landing. The initial state can be at an arbitrary
location in the top half of the flying arena. The landing trial
ends when the quadrotor’s state sk reaches the set of goal
states Sg .

B. Experiment Results

Early experiments showed a vertical offset between the
simulated and real trajectories, caused by a slight inaccu-
racy of the motor thrust equation (6). We compensated for
this offset by increasing the hover PWM to 48000 during
the flying arena testing. The resulting behaviour was very
similar to the simulations, as can be seen in Fig. 4.5 These
trajectories originate from the same policy network, starting
from arbitrary initial positions and ending when sk ∈ Sg
with δg =

[
0.10 0.10 1.5 1.5 0.025

]
.

To further evaluate the performance, we measured the
landing success rate when starting the flight from three
different initial positions. Each position was evaluated 10
times, resulting in the success percentages reported in Table
I. Even if an experiment did not succeed, the agent would
not crash but autonomously fly back and forth, sometimes
succeeding in its second or third attempt. However, these
further attempts were not counted as a successful landing.

TABLE I
COMPARISON OF REAL-WORLD AND SIMULATION EXPERIMENTS

setting success from initial (x, z) total
(0, 2) (−1.5, 1.6) (1.5, 1.8)

Real-World 90% 70% 100% 86.7%
Simulation 90% 90% 100% 93.3%

No simulation-to-reality transfer techniques, such as do-
main randomization, have been employed, as they did not
seem to improve the final performance, while they did com-
plicate the agent’s training. Additionally, we found that using
the Crazyflie’s onboard orientation estimates rather than
the Optitrack orientation estimates resulted in a substantial
improvement in the consistency of performance.

The results show that inclined landing controllers can be
designed by means of DRL. These controllers can transfer
adequately to reality without the need for dynamics ran-
domization, or sensor noise. Furthermore, the same policy
can be executed from a wide variety of initial states. The
performance could further improve by additional system

5Because of a faulty Optitrack measurement, the bottom figure shows a
single misplaced red quad with a corresponding short drop in the PWM
output.
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Fig. 4. Landing trajectories starting from above right (top) and from directly above (bottom) of the inclined goal position (green) at (0, 1.25). The
trajectory ends when the quadrotor is within the set of goal states Sg .

identification of the total motor thrust. The slight mismatch
observed might have been caused by making too strong
assumptions about the scaling of the single motor model in
(5) to the full motor model in (6). However, a perfect thrust
model will never exist, due to the motor wear and tear and
the strong relation of the drone’s battery level to its thrust
output, which was also reported in [1].

VI. DISCUSSION

A. Onboard Controller Dynamics

Using a model that incorporates the inner-loop system
dynamics of the Crazyflie’s onboard controllers allowed

us to fly the quadrotor by using intermediate-level control
commands. Although this requires a quadrotor-specific pa-
rameter identification, the procedure was straightforward (as
also reported in [25]), took a negligible amount of time,
and can be applied to any onboard-controlled quadrotor.
Furthermore, quadrotor end-users usually prefer to keep the
onboard controllers in place, as they provide basic func-
tionality and safety features. This has therefore been the
main reason we conducted the research in this setting. A
drawback of this approach compared to training DRL on
individual motor thrusts [1], [4] has been the limit of 30◦

of the attitude controller, restricting us to maximum landing



angles of around 25.7◦. However, the benefit of using the
closed-loop model is that the policy does not need to stabilize
the quadrotor in the first place, and can focus on using the
quadrotor’s stable dynamics to learn the behaviour needed
for the inclined landing.

B. DRL Algorithms and Curricula

For set-point tracking, PPO was far superior to TD3 or
SAC in terms of performance and training time. For inclined
landing, we have tested these off-policy algorithms with
reduced replay buffers to cope with the changing goal state
(between 1 · 104 and 3 · 104 samples). The resulting policies
were very poor, shaky and not capable of yielding a smooth
landing behaviour in the last curriculum phase.

In the beginning of training, having a larger goal threshold
δg was important for convergence, even when starting at
and around the goal state. Having a too large goal velocity
threshold would however cause strong oscillations during
training, hence the minimum term in the training value for
δvx and δvz . The convergence during the subsequent inclined
landing phase was mostly dependent on the performance
during the horizontal phase. As long as the quadrotor could
adequately reach the horizontal hover position, it would
be able to transition into larger angles by means of small
increments. Interestingly, this is where the quadrotor learns
the swinging behaviour on its own, making use of its inherent
dynamics. The success of the final phase depends on the
obstacle penalty β, where a small value will make the
agent exploit the platform for braking, and a large value
will diminish the incentive to reach the goal state. The
final curriculum works for landing angles of 25.7◦ with an
attitude controller limitation of 30◦, but simulations using a
hypothetical attitude controller limitation of 55◦ have showed
that angles of 50◦ can also be reached within the same time-
span and using the same training procedure.

C. Landing in the vertical xz-plane

Because the landing controller is planar, it will not com-
pensate drift in the y-axis. Since our experiments were
conducted indoors, this problem was negligible. However,
when conducting experiments under disturbances or with
poorly calibrated quadrotors, one could add a basic PID
controller regulating the alignment with the y-axis.

We believe that the planar controller is still very applicable
in real settings. For inclined landings, as we envisage them,
the landing platform will almost always be approachable in
a plane (exceptions would be strong disturbances like side
wind or complicated obstacles in the approach trajectory).
This means that a quadrotor can fly toward the platform,
change its yaw axis accordingly, and perform the inclined
landing using the planar controller.

VII. CONCLUSION AND FUTURE WORK

We have presented a model-free DRL technique to facil-
itate autonomous quadrotor landing on an inclined surface.
We trained a control agent with PPO, using sparse rewards
and a learning curriculum. This allows the agent to gradually

progress toward a more difficult task, i.e., larger inclination
angles of the landing platform. Moreover, we have shown
that the trained policies transfer well to reality, without
employing any simulation-to-reality transfer techniques.

A limitation of this work is the fact that we restricted the
landing trajectory to the xz-plane, which may cause some
drift in the y-direction. A three-dimensional landing policy
could increase precision, albeit at the cost of longer and more
complex training. An extension to such a setting is the topic
of our future work. Preliminary simulation results show that
training a three-dimensional policy is feasible and converges
within a similar time span as the two-dimensional policy.
Additional future work could focus on larger inclination
angles of the landing platform, as long as the onboard attitude
controller would allow them. In this way, one could try to
extend the findings in this paper to a perching behavior
similar to [20]. The goal inclination can also be added
to the quadrotor’s state, which would enable landing on
unknown platforms, using, for instance, a laser measurement
system [18] or an onboard camera system [19]. Another
interesting path for future work is to train a single inclined
landing policy that is applicable on multiple quadrotors with
comparable onboard control architectures, similar to the work
in [4]. Finally, a form of the platform contact dynamics in
[30] could be implemented in our simulator for a more robust
landing and to aid the design of an end-to-end controller,
which would eliminate the need for an external stopping
signal.
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