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Learning to ignore: rethinking attention in CNNs
Firas Laakom*, Kateryna Chumachenko*, Jenni Raitoharju, Alexandros Iosifidis, and Moncef Gabbouj

Abstract—Recently, there has been an increasing interest in applying attention mechanisms in Convolutional Neural Networks (CNNs)
to solve computer vision tasks. Most of these methods learn to explicitly identify and highlight relevant parts of the scene and pass the
attended image to further layers of the network. In this paper, we argue that such an approach might not be optimal. Arguably, explicitly
learning which parts of the image are relevant is typically harder than learning which parts of the image are less relevant and, thus,
should be ignored. In fact, in vision domain, there are many easy-to-identify patterns of irrelevant features. For example, image regions
close to the borders are less likely to contain useful information for a classification task. Based on this idea, we propose to reformulate
the attention mechanism in CNNs to learn to ignore instead of learning to attend. Specifically, we propose to explicitly learn irrelevant
information in the scene and suppress it in the produced representation, keeping only important attributes. This implicit attention
scheme can be incorporated into any existing attention mechanism. In this work, we validate this idea using two recent attention
methods Squeeze and Excitation (SE) block and Convolutional Block Attention Module (CBAM). Experimental results on different
datasets and model architectures show that learning to ignore, i.e., implicit attention, yields superior performance compared to the
standard approaches.

Index Terms—Computer vision, CNNs, attention mechanisms, CBAM, SE
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1 INTRODUCTION

INSPIRED by the properties of the human visual system,
attention mechanisms have been recently applied in the

field of deep learning, resulting in improved performance
of the existing models across multiple applications. In the
context of computer vision, learning to attend, i.e., learning
to highlight and emphasize relevant attributes of images,
have led to development of novel approaches [1], [2] in
Convolutional Neural Networks (CNNs), improving their
capabilities in many tasks [3], [4], [5].

Related to the concept of attention, recent studies in neu-
roscience suggest that the ability of humans to successfully
perform visual tasks is related to the ability to ignore and
suppress distractive information [6], [7], [8]. For example,
the authors of [7] show that differences in visual working
memory capacity, i.e., ability to remember visual features
of multiple objects, are specifically related to distractor-
suppression activity in visual cortex. This idea is reinforced
in [8], where the authors provide evidence on an inhibitory
mechanism of suppression of salient distractors aimed at
preventing them from capturing attention and being further
processed by humans. Additional studies [9] report that
ignoring the irrelevant information is a powerful learning
tool for human cognition with ubiquitous effectiveness.
Inspired by these findings, we investigate the intuition of
learning to explicitly ignore irrelevant information in the
field of computer vision and reformulate attention mecha-
nisms commonly utilized in CNNs under the framework of
learning to ignore rather than learning to attend.

Existing attention mechanisms used in CNNs learn the
attention masks by directly optimizing for the high re-
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sponse of attributes of the image that are important for
the prediction and, thus, should be focused on more. The
learned attention masks are applied to feature representa-
tions, leading to higher emphasis put on the attributes of
interest, and, therefore, resulting in implicit ignoration of
the irrelevant features. In our work, we propose to rethink
this logic and instead explicitly focus on ignoring irrelevant
regions, hence achieving the attention to important regions
implicitly. We argue that learning of features that should
be ignored is an easier task than learning to attend and,
therefore, optimization with such an objective leads to better
training. Arguably, discriminative features of samples of
different classes are harder to capture and often require
more advanced feature learning. On the other hand, irrel-
evant attributes or attributes common between classes are
often related to easy-to-identify patterns, such as borderline
locations on the image or background features that can
already be learned at early stages of training. Following
this intuition, we design our method to explicitly optimize
which attributes of the image should be ignored, and based
on this, the important attributes that should be attended
are derived implicitly. We validate this idea using two
recent attention methods Squeeze and Excitation (SE) block
and Convolutional Block Attention Module (CBAM) and
show that indeed our intuition holds and explicitly learning
features to ignore leads to better model performance.

Our contributions can be summarized as follows:

• We propose a new perspective on attention in com-
puter vision where the main aim is to learn to ignore
instead of learning to attend.

• We propose an implicit attention scheme which ex-
plicitly learns to identify the irrelevant parts of the
scene and suppress them. The proposed approach
can be incorporated into any existing attention mech-
anism.

• We validate this idea using two attention mech-
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anisms. Specifically, we reformulate Squeeze-and-
Excitation (SE) block and Convolutional Block At-
tention Module (CBAM) using our paradigm, i.e.,
learn to ignore, and show the superiority of such an
approach.

2 RELATED WORK

Attention mechanisms in vision. The idea of attention in
vision tasks stems from the properties of selective focus in
the human visual system, i.e., that humans do not perceive
images as a whole, but rely on certain salient parts of
them. This property gave rise to a variety of attention-based
learning mechanisms aimed to enhance the performance in
computer vision domain [3], [4], [10], finding its applications
in a variety of tasks, including sequence learning [11], image
captioning [5], and others [12], [13]. A subset of attention-
driven methods is directed at CNNs and aims at selecting
and highlighting relevant attributes in the feature space
during training [1], [2]. Conventionally, this is achieved by
learning attention masks over feature representations that
encode the importance of different attributes in form of
weights and applying these masks on intermediate feature
representations. This results in higher influence of features
relevant for decision making in subsequent layers.

Other tasks adjacent to this line of research include
saliency estimation, image segmentation, and weakly-
supervised object localization. In saliency estimation, the
goal is to estimate salient, i.e., significant regions of the scene
without any prior knowledge on the scene in unsupervised
[14], [15] or supervised manner [16], [17], [18]. In image
segmentation, the task is to partition a given image into
a set of segments, based on either semantics (semantic
segmentation) or individual objects (instance segmentation)
[19]. In weakly-supervised object localization, the goal is
to predict the location of the object given only image-level
labels [20].

Within the attention mechanisms utilized in CNNs, two
of the notable ones include Squeeze-and-Excitation block
(SE) [1] and Convolutional Block Attention Module (CBAM)
[2]. In SE, an attention mask is learned channel-wise based
on global average-pooled features of intermediate represen-
tations and applied at multiple layers of the ResNet archi-
tecture [21]. A further extension is the CBAM method that
enriches the SE mechanism by additional max-pooled input
and learns spatial attention in addition to channel-wise
one. The learned attention weight masks are then applied
channel-wise or pixel-wise to corresponding feature maps.
These methods were shown to lead to superior performance
across various domains and can be incorporated in any
CNN architecture.

Learning by ignoring. Learning by ignoring is a pow-
erful learning paradigm, which has been used in various
machine learning applications [22], [23], [24]. It has been
leveraged in the context of saliency estimation [14], [23],
[25], [26]. For example, the authors of [14] propose an unsu-
pervised graph-based saliency estimation approach, where
auxiliary variables are used to encode prior knowledge on
regions to be ignored, such as dark regions, as it is assumed
that they are less-likely to contain salient object. A similar
approach was proposed for the color constancy problem

[27]. In the context of machine translation, it has been shown
that learning to ignore spurious correlations in the data
can improve the performance of neural networks in zero-
shot translation [22]. In the context of domain adaptation,
a learning framework assigning and learning an ’ignoring’
score for each training sample and re-weighting the total
loss based on these scores was proposed in [24].

3 LEARNING TO IGNORE IN CNNS

Attention in CNNs is generally formulated in a form of a
learned attention mask that emphasizes relevant informa-
tion in a feature map. Formally, given a feature map F,
attention can be defined as follows:

F′ = F⊗ fθ(F), (1)

where F′ is the attended feature map output, ⊗ is the
element-wise multiplication and fθ(·) is an attention func-
tion with learnable parameters θ, which takes as input a
feature map F and returns an attention mask fθ(F) ∈ [0, 1].
This mask is then element-wise multiplied with the original
map F in order to produce the output map F′. The mask
fθ(F) is expected to identify relevant spatial or channel
information and output the ’importance score’ for each
attribute, producing high response for most relevant regions
and smaller values for regions of lesser interest. This can be
seen as an explicit attention mechanism, where the model
fθ(·) learns to directly identify and highlight relevant infor-
mation.

In this work, we develop a new formulation of the
concept of attention in CNNs, where the main target is
learning to ignore instead of learning to attend. By training
the model to predict irrelevance of features, rather than their
importance, we expect to simplify the training objective and,
hence, to improve the learning of the model. Our approach
consists of a function which learns to identify irrelevant
or confusing parts of the feature map in order to suppress
them, followed by inversion of predicted irrelevance scores.
Formally, this can be formulated as follows:

F′ = F⊗ T (gθ(F)), (2)

where gθ(·) is a function with learned parameters θ that
is expected to learn to highlight information in the feature
map that is irrelevant or confusing for the prediction. This
can be seen as an ignoring mask that outputs high values
for attributes and regions that should be suppressed in the
feature map. The function T (·) is a function with an output
T (x) inversely proportional to x, hence flipping the learned
ignoring mask and transforming it into an attention mask.
Similarly to Eq. (1), the final feature map F′ is obtained
by element-wise multiplication of the input map F and the
flipped ignoring mask T (gθ(F)).

Given an ignoring mask gθ(F), the function T (·) can
be any function satisfying the condition of being inversely
proportional to its input and bounded between [0, 1]. In this
work, we propose three variants:

T1(x) = 1− αx, (3)

T2(x) = sigmoid(
1

x
), (4)
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T3(x) = sigmoid(−x). (5)

The first variant T1(·) linearly converts the ignoring mask
to an attention one, and α is a hyper-parameter controlling
this linear scaling. The extreme case α = 0 corresponds
to the extreme case F′ = F, i.e., none of the features
are emphasized or suppressed. For the second and third
variants T2 and T3, a sigmoid function is applied to ensure
that the output is bounded between [0, 1].

We argue that formulating the objective as learning of
irrelevant features that should be ignored, as opposed to
focusing on important features, is beneficial, as optimization
of a model with such an objective is easier. This is due
to potential presence of many easy-to-identify patterns of
irrelevant attributes, such as borderline pixel locations, color
and lighting perturbations, or background properties that
are not correlated with the groundtruth labels. At the same
time, information responsible for predictions is generally
label-specific and harder to capture. Moreover, learning of
discriminative attributes that can be regarded as important
often requires learning of complex feature representations
that can be achieved only at latter stages of training, while
patterns irrelevant for decision making can often be identi-
fied already at the early stages.

It can be argued that standard attention, i.e., Eq. (1),
is also learning to ignore as it is expected to indirectly
assign smaller values for less important regions. However,
function fθ(·) is optimized directly for highlighting relevant
information and, hence, this can be seen as an implicit and
indirect strategy of learning to ignore. In our approach,
Eq. (2), the model gθ(·) is explicitly optimized for identifying
the irrelevant or confusing parts and the function T (·)
suppresses them. This can be seen as an implicit learning
to attend approach and explicit learning to ignore approach,
as opposed to the standard attention which has an explicit
learning to attend formulation.

As can be seen, the main difference between implicit
and explicit attention formulations is the presence of a
flipping function T (·). It can be seen from Eq. (1) and
Eq. (2) that fθ(·) can be directly replaced by T (gθ(·)). This
makes it straightforward to reformulate any existing explicit
attention method to learn to ignore instead of learning to
attend by applying an inversion function T (·) on top of the
learned mask. This way, the model gθ(·) can be learned as
the model fθ(·) in conventional attention methods, while
its parameters will be optimized to detect irrelevant or
confusing regions instead of relevant ones. In this paper, for
the choice of the function fθ(·), we consider two state-of-
the-art attention mechanisms, namely SE [1] and CBAM [2]
, and we show how to reformulate them using our paradigm
in the following subsections.

3.1 Ignoring with Squeeze-and-Excitation blocks

Squeeze-and-Excitation (SE) block [1] presents a mechanism
to learn channel-wise attention, focusing on which features
of the representation are important for prediction. This
is achieved by squeezing the spatial information into a
channel representation, followed by an excitation operation
that highlights important channels via a bottleneck block.
Formally, given a feature map F, this is defined as follows:

fθ(F) = σ(W2δ(W1GAP (F))), (6)

where GAP (·) denotes Global Average Pooling, δ is a ReLU
activation, σ is the sigmoid function, W1 ∈ Rc× c

r and
W2 ∈ R c

r×c are linear layers, c is the number of channels
in F, and r is the reduction rate in the bottleneck block.
Given the output fθ(F), the attended feature map is ob-
tained by applying the learned mask element-wise between
corresponding channels.

To incorporate our ignoring paradigm into SE, we
apply T (·) to the output fθ(F), hence transforming its
objective into learning features that should be ignored.
Specifically, we define the three variants as: f1θ (F) = 1 −
ασ(W2δ(W1GAP (F))); f2θ (F) = σ( 1

σ(W2δ(W1GAP (F))) );
f3θ (F) = σ(−W2δ(W1GAP (F))) using the definitions of
T1, T2, and T3, respectively. As can be noticed, in the first
two variants T (·) is applied directly on fθ(F), while in the
third case it is applied on pre-sigmoid output to ensure
sufficiently wide range for attention scores.

3.2 Ignoring with Convolutional Block Attention Mod-
ules

Following the approach of SE, Convolutional Block Atten-
tion Module (CBAM) [2] extends it to incorporate spatial
attention as well as to enrich channel attention with an
additional input representation. Under the definition of
attention in Eq. (1), this is formulated as follows:

f ch(F) = σ(W2δ(W1(GAP (F))) +W2δ(W1(GMP (F)))),

Fch = F⊗ f ch(F),
fsp(Fch) = σ(Conv7×7(GAP (Fch)_ GMP (Fch))),

(7)
where f ch and fsp denote channel and spatial attention,
respectively, GAP (·) and GMP (·) correspond to Global
Average Pooling and Global Max Pooling, respectively, δ is
a ReLU activation, σ is the sigmoid activation, W1 ∈ Rc× c

r

and W2 ∈ R c
r×c are linear layers, c is the number of

channels in F, and r is the reduction rate in the bottleneck
block, similarly to SE. Fch is the channel-wise attended
feature map, Conv7×7 denotes a convolutional layer with
7× 7 kernel, and _ denotes concatenation.

As can be seen, channel and spatial attention masks are
applied sequentially and channel-attended feature represen-
tations are used as input to compute spatial attention. Fol-
lowing this, we transform CBAM for ignoring by addition
of inversion function T (·) on top of both channel function
f ch(·) and spatial function fsp(·) to reformulate their objec-
tives as learning of features and regions to ignore. In both
cases, variants of T1(·) and T2(·) are applied directly on the
output of corresponding functions, and T3(·) is applied on
pre-sigmoid output.

4 EXPERIMENTAL RESULTS

4.1 CIFAR10 & CIFAR100

We start by validating our approach on image classification
task using CIFAR10 and CIFAR100 [28] datasets. To show
invariance of the proposed approach to specific model ar-
chitectures, we evaluate two state-of-the-art CNNs, namely,
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ResNet50 [21] and DenseNet [29] architectures. We report
the results of standard models with no attention, models
with applied CBAM and SE attention blocks, and models
with our proposed ignoring approach with both CBAM
and SE variants with the three inversion function variants
presented in Section 3.

All the models are optimized using Stochastic Gradient
Descent (SGD) [30] with a momentum of 0.9 [31], weight
decay of 0.0001 [32], and a batch size of 128. The initial
learning rate is set to 0.1 and is then decreased by a factor
of 5 after 60, 120, and 160 epochs, respectively. The models
are trained for 200 epochs with the best performance on the
validation set used for testing. Each experiment is repeated
three times and the average performance is reported. 40k
images are used for training and 10k for validation. Stan-
dard data augmentation is used [33], [34].

In Table 1, we report the experimental results of the
standard model, i.e., no attention, SE, and our different
SE-based variants, namely, SE-Igni where i indicates the
flipping function used (T1 or T2 or T3). For the first variant,
i.e., SE-Ign1, we experiment with three different values
of hyper-parameter α: 1, 0.8, and 0.5. We note that for
both architectures applying an explicit or implicit attention
mechanism consistently outperforms the standard model.
On CIFAR10, the best performance is achieved using our
third variant, i.e., SE-Ign3, which improves the results by
1% compared to standard and +0.3% compared SE using
ResNet50 architecture. On CIFAR100, the lowest top1-%
error rates are achieved by SE-Ign3 and SE-Ign1(α=0.5) for
ResNet50 and DenseNet architectures, respectively. In fact,
on this dataset our third variant boosts the accuracy by 4%
compared to the standard and 1.85% compared to SE. This
can be explained by the fact that for this dataset only 500
training samples per class are available, thus making it hard
to directly learn the relevant visual features for each class.
At the same time, the irrelevant features are more universal
and typically independent of the class, thus making them
easier to learn in a scarce data context.

In Table 2, we report the empirical results for the dif-
ferent CBAM-based variants. As can be seen, the results
with this attention variant are consistent with our findings
using SE. For both datasets and for both architectures,
learning to ignore yields better performance compared to
both the standard model and the SE attention. The top
performance is achieved by either by CBAM-Ign1(α=0.5)

or CBAM-Ign1(α=0.8) variant. More results can be found
Supplementary material Table 1.

4.2 ImageNet

To further validate the effectiveness of our learning to
ignore framework, we perform additional experiments on
ImageNet dataset [35] using ResNet50. For training on
ImageNet, optimization is done with SGD with the same
weight decay and momentum as used for CIFAR datasets.
The initial learning rate is set to 0.1 and reduced by a factor
of 10 after 30, 60, and 80 epochs, respectively. The models
are trained for 90 epochs with batch size of 256 with the
results reported on the validation set.

Table 3 shows the results on ImageNet dataset, where
Top-1 and Top-5 errors are reported. As can be seen, our

results are consistent with findings on CIFAR10 and CI-
FAR100 datasets. Specifically, we find that applying at-
tention, whether explicit or implicit, outperforms standard
model. At the same time, the proposed framework based on
ignoring outperforms the conventional attention in a vast
majority of cases. In SE variant, SE-Ign1(α=1) and SE-Ign3

outperform the conventional approach, while other variants
report competitive results with minimal gap. Best result
of SE-Ign3 outperforms the standard model by 1.1%. In
CBAM, all variants of CBAM-Ign1 outperform conventional
approach on both Top-1 and Top-5 metric, and CBAM-Ign2

and CBAM-Ign3 outperform conventional CBAM on Top-
5 metric, while being competitive on Top-1 metric. More
results can be found Supplementary material Table 2.

4.3 NTU-RGBD
To further demonstrate the effectiveness of our approach,
we additionally evaluate the proposed method in the mul-
timodal fusion setting. Here, we rely on the Multimodal
Transfer Module (MMTM) [36] architecture for our eval-
uation. MMTM is a method for fusing information from
multiple modalities in multiple-stream architectures, which
has recently shown good performance in a variety of tasks,
including activity recognition, gesture recognition, and au-
diovisual speech enhancement.

The method relies on an architecture inspired from
Squeeze-and-Excitation blocks placed between network
branches. Specifically, considering a two-stream scenario,
intermediate feature representations from two network
branches corresponding to two modalities are first spatially
squeezed into channel descriptors by applying global av-
erage pooling in each branch. The squeezed representa-
tions are subsequently concatenated and projected into a
joint lower-dimensional space. The resulting features are
transformed with two projection matrices corresponding
to each of the two modalities to the spaces of original
dimensionalities, and sigmoid activation is then applied to
obtain attention masks. The masks are further multiplied
element-wise with original feature representations in each
branch.

As can be seen, the fusion module is essentially a multi-
modal SE-block with joint squeeze and modality-specific ex-
citation operations, to which we apply our ignoring frame-
work as described in Section 3.1. We perform experiments
on NTU-RGBD dataset [37] for human action recognition,
where we fuse the skeleton and RGB modalities, similarly to
MMTM [36]. We follow our ignoring paradigm and replace
the SE attention mask in each branch with our proposed
approach. The rest of the architecture and training protocol
follows that of MMTM. We initialize the model from Ima-
geNet+Kinectics pretrained weights, finetune for 10 epochs
with batch size 8, and report the test set performance of the
model that performed best on validation set. The results are
reported in Table 4. As can be seen, the proposed ignoring
approaches outperform the baseline in the vast majority of
cases.

4.4 Discussion
As can be seen from the experimental results in previous
sections, learning to ignore consistently yields superior per-
formance compared to the baselines. We argue that this
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CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50

Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
SE 07.63 ± 0.37 32.80 ± 0.11 09.97 ± 0.50
SE-Ign1(α=1) 07.42 ± 0.29 32.50 ± 0.26 09.92 ± 0.37
SE-Ign1(α=0.5) 07.61 ± 0.46 31.40 ± 0.68 09.39 ± 0.19
SE-Ign1(α=0.8) 07.76 ± 0.73 32.71 ± 1.15 10.07 ± 0.64
SE-Ign2 07.66 ± 0.13 32.78 ± 0.77 10.11 ± 0.56
SE-Ign3 07.28 ± 0.17 30.95 ± 0.08 09.49 ± 0.36

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
SE 06.96 ± 0.05 29.43 ± 0.44 08.36 ± 0.33
SE-Ign1(α=1) 06.94 ± 0.07 29.17 ± 0.07 08.22 ± 0.13
SE-Ign1(α=0.5) 06.69 ± 0.04 27.64 ± 0.30 07.30 ± 0.10
SE-Ign1(α=0.8) 06.95 ± 0.14 27.73 ± 0.41 07.39 ± 0.07
SE-Ign2 06.80 ± 0.09 28.08 ± 0.35 07.39 ± 0.23
SE-Ign3 06.41 ± 0.08 27.77 ± 0.54 07.65 ± 0.20

TABLE 1
Results of SE variants on CIFAR10 and CIFAR100 datasets.

CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50

Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
CBAM 08.04 ± 0.03 31.46 ± 0.20 09.32 ± 0.15
CBAM-Ign1(α=1) 07.78 ± 0.28 31.03 ± 0.25 09.28 ± 0.27
CBAM-Ign1(α=0.5) 07.17 ± 0.05 30.58 ± 0.20 09.25 ± 0.23
CBAM-Ign1(α=0.8) 07.40 ± 0.23 30.28 ± 0.39 09.08 ± 0.33
CBAM-Ign2 07.53 ± 0.29 31.42 ± 0.58 09.27 ± 0.21
CBAM-Ign3 07.60 ± 0.10 30.88 ± 0.22 09.38 ± 0.32

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
CBAM 07.21 ± 0.23 30.63 ± 0.23 08.90 ± 0.14
CBAM-Ign1(α=1) 07.19 ± 0.26 29.63 ± 0.46 08.37 ± 0.39
CBAM-Ign1(α=0.5) 06.53 ± 0.14 27.92 ± 0.19 07.58 ± 0.27
CBAM-Ign1(α=0.8) 06.40 ± 0.14 27.11 ± 0.08 07.33 ± 0.19
CBAM-Ign2 06.80 ± 0.02 27.88 ± 0.59 07.62 ± 0.05
CBAM-Ign3 06.68 ± 0.05 27.94 ± 0.10 07.78 ± 0.21

TABLE 2
Results of CBAM variants on CIFAR10 and CIFAR100 datasets.

Top-1 Error% Top-5 Error%
Standard 23.73 06.85
SE 22.70 06.35
SE-Ign1(α=1) 22.60 06.29
SE-Ign1(α=0.5) 23.03 06.58
SE-Ign1(α=0.8) 22.88 06.30
SE-Ign2 23.16 06.55
SE-Ign3 22.59 06.32
CBAM 22.91 06.58
CBAM-Ign1(α=1) 22.84 06.50
CBAM-Ign1(α=0.5) 22.84 06.52
CBAM-Ign1(α=0.8) 22.84 06.40
CBAM-Ign2 23.02 06.39
CBAM-Ign3 23.10 06.44

TABLE 3
Results of CBAM and SE with variants of ignoring on ImageNet dataset

stems from the fact that learning irrelevant information
is easier than identifying what should be attended. For
example, in order to learn features that should be attended
to, the model needs to first learn to extract patterns such as
lines and edges and make associations with the class labels
in order to produce a meaningful attention mask. On the
other hand, irrelevant patterns, such as background textures
and borderline pixels, are often shared across the dataset, are
persistent and independent of the class labels, which makes
them easier to learn. Therefore, it should be possible to learn
them already in the early stages of training. Figure 1 shows

the validation loss curves of the baseline attention methods
and the best-performing ignoring methods with ResNet50
on CIFAR100 dataset (more training curves can be found
in supplementary material). As can be seen, especially at
the earlier stages of training, our approach results in lower
loss with less fluctuations and more stable training, hence
supporting our claim. From an optimization point of view,
in the case of α=1, only the gradient of the attention blocks
are flipped, and thus in the back-propagation, when they
are summed with the gradient of the main block (which are
not flipped), the total feedback carried to the earlier layers
is different and does not correspond to a flipped version of
the total sum of the standard attention. Thus, this yields dif-
ferent feedback and leads to a different optimal solution in
the end of the training (Figure 7 in supplementary material).

Moreover, in Figure 2, we provide visual results of the
class activation maps [38] produced by the different models
on three different samples from validation set of ImageNet.
As can be seen, the learning to ignore formulation leads to
different attention maps compared to the explicit attention,
i.e., learning to attend. Noticeably, standard CBAM attention
tries to capture the relevant parts of the image directly,
leading to the prediction being made based on the small
part of the input that is considered by the model as the most
important. This leads to the possibility that the model can
miss some important parts of the class of interest on the
image. As an example, only one of the plants on the lower
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MMTM Ign1(α=1) Ign1(α=0.5) Ign1(α=0.8) Ign2 Ign3

NTU-RGBD 89.98 89.99 90.52 88.70 90.21 90.36
TABLE 4

Accuracy on NTU-RGBD dataset

Fig. 1. Validation loss curves of ResNet50 on CIFAR100 using the different attention approaches.

figure is considered in CBAM model, as well as only a side
of the bus in the middle image. On the other hand, our ap-
proach by learning to identify the non-relevant background
regions first and subsequently suppressing them, simplifies
the problem and typically results in an attention mask that
is broader and captures the object of interest better, hence
reducing the risk of suppressing relevant attributes of it.

5 CONCLUSION

In this paper, we provide a new perspective on attention in
CNNs where the main target is learning to ignore instead
of learning to attend. To this end, we propose an implicit
attention scheme with three variants which can be incorpo-
rated into any existing attention mechanism. The proposed
approach explicitly learns to identify the irrelevant and con-
fusing parts of the scene and suppresses them. In addition,
we reformulate two state-of-the-art attention approaches,
namely SE and CBAM, using our learning paradigm. Exper-
imental results on three image classification datasets show
that learning to ignore, i.e., implicit attention consistently
outperforms standard attention across multiple models.
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