
Citation: Ugurlu, H.I.; Pham, H.X.;

Kayacan, E. Title. Robotics 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Robotics for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Sim-to-Real Deep Reinforcement Learning for Safe End-to-End
Planning of Aerial Robots
Halil Ibrahim Ugurlu 1 , Huy Xuan Pham 1 and Erdal Kayacan 1,*

1 Artificial Intelligence in Robotics Laboratory (AiR Lab), the Department of Electrical and Computer
Engineering, Aarhus University, 8000 Aarhus C, Denmark; {halil, huy.pham, erdal}@ece.au.dk

* Correspondence: erdal@ece.au.dk

Abstract: In this study, a novel end-to-end path planning algorithm based on deep Reinforcement 1

learning is proposed for aerial robots deployed in dense environments. The learning agent is finding 2

an obstacle-free way around the provided rough global path by only depending on the observations 3

from a forward-facing depth camera. A novel deep reinforcement learning framework is proposed 4

to train the end-to-end policy with the capability of safely avoiding obstacles. Webots open-source 5

robot simulator is utilized for training the policy, introducing highly randomized environmental 6

configurations for better generalization. The training is performed without dynamics calculations 7

through randomized position updates to minimize the amount of data processed. The trained policy is 8

first comprehensively evaluated in simulations involving physical dynamics and software-in-the-loop 9

flight control. The proposed method is proven to have 38% and 50% higher success rate compared to 10

both deep reinforcement learning-based and artificial potential field-based baselines, respectively. 11

The generalization capability of the method is verified in simulation-to-real transfer without further 12

training. Real-time experiments are conducted with several trials in two different scenarios, showing 13

a 50% higher success rate of the proposed method compared to the deep reinforcement learning-based 14

baseline. 15

Keywords: deep reinforcement learning; obstacle avoidance; quadrotors; sim-to-real transfer 16

1. Introduction 17

Autonomous aerial robots are increasingly deployed in applications that require safe 18

path planning in dense environments, such as a greenhouse covered with dense plants, 19

search & rescue operation in an unstructured collapsed building, or navigation in a forest. 20

Traditionally, autonomous navigation is solved under separate problems such as state 21

estimation, perception, planning, and control [1]. This approach may lead to higher latency 22

combining individual blocks and system integration issues. On the other hand, recent 23

developments in machine learning, particularly in reinforcement learning (RL) and deep 24

reinforcement learning (DRL), enable an agent to learn various navigation tasks end-to-end 25

with only a single neural network policy that generates required robot actions directly from 26

sensory input. These methods are promising to solve navigation problems computationally 27

faster since they do not deal with the integration of subsystems that are tuned for their 28

particular goals. 29

This study attempts to address the end-to-end planning problem of a quadrotor UAV 30

in dense indoor environments. The quadrotor deployed with a depth camera is required 31

to find its way around the global trajectory. We propose a DRL-based safe navigation 32

methodology for quadrotor flight. The learned DRL policy, utilizing the depth images 33

and the knowledge of a global trajectory, generates safe waypoints for the quadrotor. We 34

develop a Webots-based simulation environment where the DRL agent is trained with 35

obstacle tracks where the obstacle locations, shapes, and sparsity are randomized for 36

every episode of policy training for better generalization. Furthermore, we introduce 37

safety boundaries to be considered during training besides collision checks. The safety 38

Version December 13, 2022 submitted to Robotics https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0002-1609-5783
https://orcid.org/0000-0002-7143-8777
https://www.mdpi.com/journal/robotics

Version December 13, 2022 submitted to Robotics 2 of 14

boundaries enable the agent to prevent risky situations that make the method more robust 39

to uncertainties. 40

1.1. Contributions 41

The contributions of this paper are fourfold: 42

• A novel DRL simulation framework is proposed for training an end-to-end planner for 43

quadrotor flight, including a faster training strategy using non-dynamic state updates 44

and highly randomized simulation environments. 45

• The impact of continuous/discrete actions and proposed safety boundaries in RL 46

training are investigated. 47

• We open-source the Webots-based DRL framework, including all training and evalua- 48

tion scripts.1 49

• The method is evaluated with extensive experiments in Webots-based simulation envi- 50

ronments and multiple real-world scenarios, transferring the network from simulation 51

to real without further training. 52

The remainder of this paper is organized as follows. Section 2 reviews the related 53

literature. Section 3 explains the end-to-end planning methodology for a quadrotor UAV 54

with the formalization of the RL problem. Section 4 provides the experimental setup and 55

the comprehensive tests of the proposed method in the simulation environment. The 56

section also provides the results of the real-time tests. Finally, Section 5 concludes this work 57

with future research directions. 58

2. Related work 59

As a machine learning paradigm, RL aims to solve sequential decision-making prob- 60

lems through the interaction of a learning agent with its environment [2]. With the success 61

of the deep learning models in machine learning, it is also applied with RL, which brings 62

the DRL field with success in several benchmark problems such as video games [3] or con- 63

tinuous control tasks [4]. Several methods are proposed to optimize deep neural networks 64

to learn the value function [3], policy function [5], or both [4,6] in the RL domain, such as 65

the proximal policy optimization (PPO) [7] algorithm, a state-of-the-art method utilized in 66

this work. RL and its successor DRL have gained attention in robotics applications as it is 67

encouraging a complete framework for intelligent robots to learn by interacting with their 68

environment. 69

Since deep learning-based methods require plenty amount of data, they have empha- 70

sized using simulation data as an alternative to expensive real-world data. The usefulness 71

of simulations becomes more crucial for DRL considering potential hardware failures 72

during exploration in real-world [8]. However, there is a gap between simulation and 73

real-world data, as sensor signal qualities may not be preserved due to the lack of realistic 74

noises. Earlier works have shown that certain data modalities provide a better abstrac- 75

tion for sim-to-real transfer, such as using depth images [9] or applying morphological 76

filters [10]. Another gap between simulation and reality comes from the limitations in 77

modeling real-world dynamics, which is generally coped by domain randomization, e.g., 78

randomizing physical parameters [11] or randomizing observations gathered by visual 79

sensors [12]. 80

Deep neural network-based methods are utilized in the control and navigation of 81

several robotics applications, including real-world demonstrations. Those applications 82

can be classified into two categories considering the input to the neural network: the 83

state information, such as positions and velocities, or raw sensory data, such as color 84

or depth images. Using state information directly, neural network policies have similar 85

functionality with a controller block in quadrotor UAVs, such as in attitude control [13] 86

or position control [11,14] level. Furthermore, various output configurations from motion 87

1 The code, trained models, and simulation environment will be available at https://github.com/open-airlab/
gym-depth-planning

https://github.com/open-airlab/gym-depth-planning
https://github.com/open-airlab/gym-depth-planning

Version December 13, 2022 submitted to Robotics 3 of 14

primitives [15] to lowest level motor voltage commands[16] for the learned policies are also 88

investigated. Compared to conventional control theoretic approaches, those methods are 89

lacking in providing mathematical guarantees such as stability analysis [17]. However, it is 90

an active research area where the most recent works promisingly show that DRL-based 91

cascaded control outperforms classical proportional-integral-derivative (PID) controller [18] 92

and demonstrates challenging control tasks such as high-speed flight control [19]. 93

Prior to deep learning-based methods, the planning methods for robotics have been 94

extensively studied. In particular, graph-based (e.g. A*[20] and D*[21]), potential field- 95

based[22], and sampling-based [23] methods can be counted as subfields of conventional 96

planning algorithms, which require a graph or map representation of the configuration 97

space. Conventional planning algorithms are also an active research area for application 98

of quadrotor flight [24] as well as other fields such as collision avoidance of near-Earth 99

space systems [25]. Unlike conventional planning algorithms, DRL enables the learning of 100

so-called neural network end-to-end planners or visuomotor controllers that can generate 101

actions directly from sensory input without any map. Although several applications for 102

ground robots utilize lidar sensors for obstacle avoidance tasks [26,27], visual sensors 103

are more commonly used in aerial applications such as color or depth images. End- 104

to-end navigation is broadly investigated for quadrotor UAVs in several domains such 105

as corridor following [28], drone racing [1,29], aerial cinematography [30], autonomous 106

landing [31,32] or obstacle avoidance [33,34] which is the application in this paper. A 107

recent study demonstrates the capabilities of DRL in a safety critic mission, leveraging 108

the depth and semantic images for an emergency landing [32]. Similarly, a high-speed 109

quadrotor flight with obstacle avoidance has been shown with imitation learning-based 110

neural network policy recently [35]. In the context of the present study safe navigation is 111

considered rather than agility. Also instead of imitation learning, DRL is studied. More 112

similar to the present study, Camci et al. [36] utilize a quadrotor with a depth camera for 113

obstacle avoidance but with discrete actions. Dooraki et al. [37] also propose a similar 114

application with continuous actions in the position domain. The present research differs 115

by proposing safety boundaries and enabling heading angle steps together with position 116

steps. 117

3. End-to-end motion planning of UAV 118

3.1. Reinforcement learning formalization of the environment 119

An RL problem is generally formalized as a Markov decision process (MDP) with state,
action, and reward components with discrete timesteps, t. For the problem of end-to-end
local planning, the state is defined as multi-modal data containing the depth image and the
vector representing the moving target point,

st = (Idepth,t, pt), (1)

where Idepth,t is 64 × 64 matrix representing depth image and pt = [xt, yt]T is 2 × 1 vector 120

representing the position of the target point with respect to the body frame. As shown in 121

Figure 1c, x-axis and y-axis represent the forward and the left direction, respectively. 122

The MDP environment is constructed for both continuous and discrete action spaces
for comparison purposes. For the formation of continuous action space, a vector of length
two is selected,

at ∈ {[a1, a2]
T | − π/8 ≤ a1, a2 ≤ π/8, a1, a2 ∈ R} (2)

where a1 defines the direction of 1m position step and a2 defines the rotation in yaw angle 123

with respect to the current body frame. The distribution of actions is illustrated in Figure 124

1a. The boundaries of action space are selected to meet with the information from the 125

single-depth camera by assuring that all the actions are taken into a known area. On the 126

other hand, yaw angle change enables a sharper turn around an obstacle as well as a change 127

of point of view if required. 128

Version December 13, 2022 submitted to Robotics 4 of 14

The discrete action space, which is a subset of the aforementioned continuous action 129

set, is comprised of seven actions, defined as a combination of 1m position step in three 130

possible directions and a turn in yaw angle with respect to the drone’s reference frame, as 131

shown in Table 1. The possible actions are also illustrated in Figure 1b. Both the direction 132

of position step and heading angle are a combination of spatial limits of continuous action 133

set and forward direction while moving and turning opposite sides are neglected. The 134

discrete action set is mainly constructed for comparison with previous work [36] with some 135

modifications. First, the position step direction, a1, is kept small in order to fit with the field- 136

of-view (FOV) of the depth camera so that the UAV does not hit an unseen object. Second, 137

yaw angle change is enabled to match the capabilities of continuous actions. Finally, since 138

we restrict the problem definition for constant altitude flight, we disable the actions that 139

change altitude. We believe these updates facilitate a fair comparison between continuous 140

and discrete action selections in such a problem domain. 141

An episode begins when the UAV is at the beginning of a track defining a global 142

trajectory of length L and obstacles placed. At each timestep, an action is applied to the 143

UAV, then the depth image and next target point are obtained as the new state. Figure 2 144

illustrates the selection of the target point projected on the global path and 5m ahead of 145

the drone for consecutive timesteps. The episode is terminated under three conditions: 146

crashing into an obstacle, deviating from the global trajectory, and finalizing the route. 147

A circular boundary is defined around the quadrotor with the diameter of 1m to 148

encounter collisions. Whenever a part of this boundary is violated by an obstacle, the 149

collision is counted and the episode is terminated. In addition to the collision boundary, 150

two safety boundaries, major and minor, are defined with diameters 2m and 3m, centered 151

at [0.5, 0, 0] and [1, 0, 0] at quadrotor body frame. These safety boundaries are located 152

toward the frontal area of the drone to detect risky objects in the short-term action path 153

a1

a2

(a) Continuous actions. (b) Discrete actions.

x

y

z

minor safety boundary

major safety boundary

collision boundary

(c) Safety boundaries.
Figure 1. The actions and the safety boundaries of the end-to-end planning agent are illustrated.
(a) Continuous actions from the top view are defined by two angles: a1 represents the direction of
the position step (dashed lines), and a2 represents the heading angle (red arrow). FOV of the depth
camera is presented as blue lines. (b) Seven possible discrete actions: position and yaw angle steps.
(c) Illustration of quadrotor body reference frame where the x-axis is the forward-looking direction
and circular safety and collision boundaries considered in the simulation environment. The diameter
of collision, major and minor safety boundaries are 1, 2, and 3 meters, respectively.

Table 1. Discrete actions: each action is applied as a position step and a turn in heading angle with
respect to the drone’s reference frame.

Choice Corresponding continuous action [a1, a2]

Action 1 [π/8, π/8]
Action 2 [π/8, 0]
Action 3 [0, π/8]
Action 4 [0, 0]
Action 5 [0,−π/8]
Action 6 [−π/8, 0]
Action 7 [−π/8,−π/8]

Version December 13, 2022 submitted to Robotics 5 of 14

as shown in Figure 1c. Unlike the collision, violation of safety boundaries is not resulting 154

in the termination of the episode, but it adds a negative reward to avoid being close to 155

obstacles. Since the quadrotor motion is considered in the forward direction, these safety 156

boundaries are chosen to be tangent with the collision boundary from the reverse direction. 157

The diameters of major and minor safety boundaries are chosen to occupy the regions in 158

two and three consecutive action steps, respectively. 159

The reward signal is based on the UAV’s relative motion and the occupation of safety
boundaries at every timestep if the episode is not terminated. For termination of an episode,
both the collision and excessive deviation are punished with constant values. On the other
hand, finishing a route without a crash is rewarded. The reward signal is defined as,

rt =


2∆x − dy − 0.3dθ − 101major−sa f ety − 21minor−sa f ety, for non-terminal steps,
Rdp, for dy > 5m,
Rcp, for collision,
R f r, for finishing normally,

(3)

where ∆x, dy and dθ are the distance traveled forward, the distance to the global trajectory 160

and yaw angle difference from forward-looking, Rdp = −10, Rcp = −20 and R f r = 20 are 161

punishment for excessive deviation, punishment for collision, and reward for finishing an 162

episode without any crash, 1major−sa f ety and 1minor−sa f ety are indicator functions returning 163

one or zero when corresponding safety boundary is occupied or not. This reward logic 164

enables the agent to learn to avoid obstacles while quickly navigating to the goal as well as 165

keeping distance from obstacles thanks to safety boundaries. 166

3.2. Randomization of the environment 167

For every episode of training, the obstacles in the environment are randomized. The 168

randomization strategy is summarized in Algorithm 1. The algorithm randomly creates a 169

corridor and places obstacles with varying shapes, sizes, orientations, and locations. 170

3.3. Deep reinforcement learning: actor and critic network architecture 171

The actor and critic networks trained by PPO[7] rely on the same feature extractor.
PPO is a policy gradient algorithm that optimizes the parameterized policy (actor) function,
πθ(at|st), with parameters, θ, using the clipped objective [7],

JCLIP = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)], (4)

where rt(θ) =
πθ(at |st)

πθold
(at |st)

measures how different the new and old policy parameters. Ât is 172

the advantage estimate in the given timestep, which measures how much a certain action 173

time step:

x

y
5m

1 2

5m

3

5m

k

Obstacle
Target point
UAV
Global path

Figure 2. Moving target generation for the end-to-end agent. The target point is located 5m in
advance of the current location of the UAV projected onto the global path. The obstacles, generated
target points, UAV, and the global path are represented as shown in the legend. The UAV takes a
position step at each timestep and is informed with the vector showing the generated target point.
The overall trajectory is demonstrated at the k’th timestep.

Version December 13, 2022 submitted to Robotics 6 of 14

Algorithm 1 Randomize obstacle environment

with_wall ∼ U ({True, False})
if with_wall then

wall_width ∼ U (4, 10)
end if
#obstacles ∼ U (2, 7)
for each obstacle do

obstacle_shape ∼ U ({Box, Sphere, Cylinder})
obstacle_position.x ∼ U (3, L)
obstacle_position.y ∼ N (0, 2.5)
obstacle_position.z ∼ U (2, 3)
randomize_obstacle_orientation()
if obstacle_shape is cylinder then

radius ∼ U (0.5, 1.5)
height ∼ U (1, 3)

end if
if obstacle_shape is box then

length ∼ U (0.5, 2.5)
end if
if obstacle_shape is sphere then

radius ∼ U (0.5, 1.5)
end if

end for

acquires an extra long-term reward return using the parameterized value (critic) function. 174

The optimization runs after every rollout of nsteps number of timesteps. Using this objective 175

function, PPO increases the probability of good action decisions while suppressing bad 176

decisions, similar to a previous DRL method trust region policy optimization (TRPO) [5] 177

which uses only the expected value of rt(θ)Ât. PPO introduces the clipped objective, which 178

prevents large policy updates with only first-order optimization. 179

The actor-critic neural network feeds the depth image to three convolutional layers 180

with the number of filters, kernel size, stride, and activation functions as given in Figure 181

3. The convolutional layer is flattened and then reduced to a tensor of 256 neurons by a 182

fully connected layer. This tensor is concatenated with the moving target input to create the 183

feature vector that is shared by both actor and critic networks. The critic network utilizes 184

two fully connected layers with 64 neurons each and a tangent hyperbolic (tanh) activation 185

to regress the value function. The actor (policy) network has similar hidden layers to the 186

critic network, but the output layer consists of na neurons where na is equal to two for 187

continuous actions and seven for discrete actions. 188

4. Experiments and results 189

4.1. Simulation setup 190

A Webots-based simulation environment has been developed to train and test the 191

proposed algorithms. Webots [38] is an open-source robot simulator that allows different 192

programming interfaces, such as python, or robot operating system (ROS), for several 193

kinds of robots. The 2021a release of Webots has been utilized to develop the cluttered 194

environment and deploy the UAV with the required sensory equipment. A third-party 195

software package, ArduPilot, is selected to implement a quadrotor UAV in Webots to benefit 196

from its MAVLink extendable communication featured stable and reliable UAV with its 197

Webots SITL extension. The UAV robot is then equipped with a depth camera to provide 198

the required information to carry out end-to-end planning operations. The environment 199

needs to be reset every time a collision occurs in training which is a benefit we can have in 200

simulation throughout the trial and error process. 201

Version December 13, 2022 submitted to Robotics 7 of 14

1024

64 64
na

256

2

258
Depth Image
(Size: 64x64)

xt

yt

Moving
Target

64
4x4
2

relu

64
3x3
1

relu

no. filters:
kernel size:
stride:
activation:

32
8x8
4

relu []

Shared feature extractor Actor

Critic

64 64
1

flat relu

tanh

tanh

Figure 3. Actor-critic network structure of the end-to-end local planner. The actor network takes
inputs as depth images through convolutional layers and the moving target through fully connected
layers and outputs next actions as position and yaw angle. The critic network shares the same feature
extractor and outputs the value estimation.

The simulation environment is wrapped as an OpenAI gym environment [39] to allow 202

the required communication between the DRL algorithm and the environment. ROS [40] 203

handles this communication between the gym wrapper and the simulation. Specifically, the 204

MAVROS package is used to acquire the state estimation of the quadrotor UAV and send 205

position commands. The remaining information, such as depth images and collision, is 206

communicated directly by individual Webots ROS topics. The gym environment interfaces 207

with the simulation environment as an MDP for the DRL algorithm, as explained in Section 208

3.1. 209

4.2. Training in simulation 210

The agent is trained in Webots with randomized obstacle environments to present a 211

variety of data for the deep network. The agent is subject to different obstacle shapes, sizes, 212

locations, and densities for every episode of training. The randomization enables the agent 213

to generalize the experience during RL training. Each episode begins on a randomly created 214

route and terminates either at the end of the route or in a collision. Sample environment 215

configurations, used for evaluation purposes, is shown in Figure 4. 216

Since the policy network generates waypoints to travel, the robot is transported in the 217

training simulations to acquire a new observation. This method reduces the computational 218

burden for physical dynamics in each update step, thus fastening the overall training time. 219

The transportation is also randomized in position and orientation in order to improve 220

the variety of the training data as well as to address the possible poor performance of the 221

controller in following the waypoints. 222

The policy network is trained with PPO algorithm implementation in stable-baselines3 223

[41]. The number of steps to run per update, nsteps, hyperparameter is set to 1024 while other 224

hyperparameters are kept as default. The algorithm is trained through 100000 timesteps, 225

and the best network is stored during training based on the reward performance in the 226

recent 20 episodes. 227

4.3. Simulation results 228

The same randomization method is used for creating the evaluation routes. A set of 229

six unique routes has been determined to test and compare the methods fairly, as shown 230

in Figure 4. The routes are numbered with increasing order of the number of obstacles 231

contained which roughly makes the route more challenging. Also, each route starts with a 232

random offset of ±0.5m in the horizontal positioning of the drone for evaluation purposes. 233

Each method is evaluated ten times in each lane. The success and the distance traveled 234

without collision are recorded for every trial. In Table 2, the success rate and average 235

Version December 13, 2022 submitted to Robotics 8 of 14

traveled distance are listed for ten trials in each route. In addition, a safety cost is measured 236

based on the inverse distance of the objects closer than 3m, and the average of this safety 237

cost over all runs are reported. 238

The proposed method, the safe continuous depth planner (SCDP), is compared with 239

two DRL-based versions and a potential field-based planner. The continuous depth planner 240

(CDP) considers the same method without introducing safety boundaries. The discrete 241

depth planner (DDP) is considered as a baseline which is a modified version of previous 242

research [36] using a discrete action domain as explained in Section 3.1. An artificial 243

potential field-based planner (APF) is also implemented as a conventional baseline method 244

[22]. The chosen baselines represent two important classes of motion planning algorithms 245

for quadrotors: learning-based and model-based methods. 246

In the implementation of APF, each pixel in the middle row of the depth image creates 247

a repulsive force, and the moving target creates an attractive force. As such, APF uses the 248

same observation for the end-to-end planner. The action is also selected from the continuous 249

action set according to the direction of the common artificial force in the reference frame 250

of the UAV. The angle of the artificial force is mapped to the action set. When the angle is 251

above π/8 in magnitude, it also activates yaw angle turning actions. The parameters of 252

attractive and repulsive forces are tuned on the training routes and then tested to fairly 253

compare with the proposed method. 254

As can be seen from Table 2, the proposed safety boundaries demonstrate better 255

performance than the plain case in terms of the success rate. It is also observed that the 256

final policy avoids getting closer to the obstacles, considering the reported safety cost 257

because the rewards encountered with safety boundaries help the agent to avoid dangerous 258

situations. The same observations are valid when the continuous action set is compared 259

against the discrete set. The continuous depth planner is significantly more capable of 260

handling dense obstacle scenarios, such as routes #5 and #6, since it can generate finer 261

trajectories. Lastly, the learning-based end-to-end planners are performing better than the 262

baseline artificial potential field method because of their learning capabilities to handle 263

uncertainties. 264

In order to provide a qualitative comparison, sample trajectories obtained from route 265

#6 are presented in Figure 5. In parallel with the observations in the comparison table, 266

SCDP tries to avoid risky situations. Additionally, the generated path by SCDP is smoother, 267

implying consistency in the sequential actions. Intuitively having a smoother trajectory 268

reduces the controller effort to follow provided waypoints which is another advantage of 269

SCDP against other methods. 270

4.4. Real-time experiments 271

The trained model is deployed for real-time experiments in a custom quadrotor 272

carrying an Intel Realsense D435i depth camera, as shown in Figure 6. The drone is 273

controlled by a Pixhawk autopilot [42]. The overall framework runs entirely onboard on an 274

NVIDIA Jetson TX2 computer, except that the robot’s localization is provided by a motion 275

capture system. The overall pipeline can run up to 8Hz. A geometric controller [43] is used 276

to track the poses generated by the policy accurately with the linear speed of around 1 m/s. 277

Route 2 Route 3 Route 4 Route 5 Route 6Route 1

Figure 4. Six evaluation routes generated by the proposed environment randomizer. The black lines
represent the projection of a 30m global trajectory on the ground.

Version December 13, 2022 submitted to Robotics 9 of 14

Table 2. Average travel distance (in meters) and success rate (in percentage) of methods -safe
continuous depth planner (SCDP), continuous depth planner (CDP), discrete depth planner (DDP),
and artificial potential field (APF)- over 10 runs at 6 test routes.

Route
1

Route
2

Route
3

Route
4

Route
5

Route
6 Overall Safety

cost

SCDP distance 30 30 30 25.8 30 30 29.7 0.51success rate 100 100 100 70 100 90 93

CDP distance 30 30 30 19.4 30 27.4 28.0 0.52success rate 100 100 100 0 100 80 80

DDP distance 30 28.8 8.93 16.6 28.0 25.8 23.1 0.57success rate 100 90 0 0 80 60 55

APF distance 27.5 24.7 29.0 10.7 9.7 20.7 20.4 0.87success rate 90 10 90 10 0 60 43

0 5 10 15 20 25 30

−4

−2

0

2

4 Flight direction SCDP
CDP
DDP

x (m)

y (m)

Global path

Figure 5. Comparison of the sample trajectories collected in route #6

Intel Realsense
D435i

Nvidia Jetson TX2

Pixhawk 4
flight controller

Vicon motion
capture system Drone pose

Policy Waypoint
controller

Depth image Action

Attitude
commands

Figure 6. Custom drone used in real-time experiments. The depth images are acquired from an Intel
Realsense D435i depth camera. The end-to-end planner is running onboard by an NVIDIA Jetson
TX2. Pixhawk 4 flight controller is utilized for following the waypoints.

To cope with noisy real depth data, input images are enhanced by using a fast depth 278

dilation algorithm [44] and then resized by cropping the top part of the image to 64 × 64 279

to feed the policy network. We find that processed depth images help to bridge the gap 280

between simulation and the real world. Unlike the simulations, the generated actions 281

are applied at the same frequency before reaching the waypoint to prevent the quadrotor 282

from stopping after each action which causes a lot of noise due to pitch movements. 283

Additionally, the quadrotor can track the trajectory faster and smoother. Furthermore, the 284

applied action is calculated as the mean of the recent two actions generated, which prevents 285

Version December 13, 2022 submitted to Robotics 10 of 14

the robot from applying oscillating actions which might cause a failure due to noise. The 286

oscillating consecutive actions are especially expected in narrow passages where the drone 287

successively observes the obstacles on the right and left and so decides to switch direction. 288

The real-time experiments are conducted in two different scenarios, as shown in Figure 289

7. For the first scenario, a moderate-level experimental setup is designed by grouping 290

obstacles into two groups having wider free space and making the obstacles larger and 291

hence easier to observe. The second scenario is denser and more complex, using eight 292

obstacles distributed around the global trajectory. The obstacles are created with cardboard 293

boxes grouped in various configurations. Additionally, a wall-like structure is created using 294

banners on the right side of the flight route.2 295

SCDP and DDP methods are executed five times each in both moderate and difficult- 296

level scenarios. Table 3 presents the comparison of two methods in both scenarios. Similar 297

to the simulations, the drone successfully navigates through obstacles, with the narrowest 298

passage being approximately three times the drone’s size. SCDP method succeeds in 299

all trials in the moderate scenario while one collision is observed with DDP. Similarly, 300

SCDP outperforms in the difficult scenario yet encounters one collision. Although the 301

DDP method also successfully avoids obstacles in most cases, the track cannot be finalized 302

successfully; instead, the drone exits the global trajectory, which shows our framework 303

handles the noisy and complicated inputs better by learning confident actions. 304

The trajectories obtained with each method and each scenario are visualized in Figure 305

8. Although it is practically more challenging to obtain the variety of obstacle configura- 306

tions in real experiments than in simulation, the difficult scenario is observed to contain 307

significant challenges to benchmark algorithms considering how various of the resulting 308

five trajectories are. In contrast, in the moderate scenario, all trajectories follow a simi- 309

lar pattern. Together with the challenge of higher maneuverability, the difficult scenario 310

also introduces more diversity in depth observations. Similar to simulation results, the 311

trajectories obtained by SCDP are smoother than the baseline method. 312

5. Conclusion 313

In this work, an end-to-end planner is trained with DRL for safe navigation in clut- 314

tered obstacle environments. The end-to-end planning algorithm is trained and tested in 315

comprehensive simulations developed in Webots. While the training of the policy network 316

is handled without dynamics and control to save time, it is successfully sim-to-real trans- 317

ferred for physical evaluations. Moreover, safety boundaries for training are introduced, 318

which successfully prevents the quadrotor from being in hazardous situations. The method 319

is also deployed in real-world indoor environments successfully. The end-to-end planner 320

outperforms a baseline implementation based on the artificial potential field method, which 321

has a lower success rate, especially in cluttered obstacle settings. This shows that SCDP 322

has learned to make better long-term decisions. The real-world experiments demonstrate 323

that the proposed UAV planner trained solely with simulation can directly work in a real 324

environment. 325

2 The video can be found: https://youtu.be/HPXXc_R3re8

Table 3. Comparison of the SCDP and DDP in real-time experiments. The moderate and difficult-level
scenarios are evaluated five times for both methods.

Moderate scenario Difficult scenario

SCDP
success rate 100% 80%

collision rate 0% 20%
distance (meters) 8 7.4

DDP
success rate 80% 0%

collision rate 20% 20%
distance (meters) 7.7 7.1

https://youtu.be/HPXXc_R3re8

Version December 13, 2022 submitted to Robotics 11 of 14

(a) Real-time evaluation track with moderate-
level obstacle configuration.

(b) Visualization of the moderate-level obstacle
configuration and a sample trajectory in RVIZ.

(c) Real-time evaluation track with difficult-level
obstacle configuration.

(d) Visualization of the difficult-level obstacle con-
figuration and a sample trajectory in RVIZ.

Figure 7. Moderate and difficult-level real-time experimental setups.

(a) SCDP in the moderate scenario. (b) DDP in the moderate scenario.

(c) SCDP in the difficult scenario. (d) DDP in the difficult scenario.
Figure 8. Trajectories acquired by five runs in the moderate and difficult scenario by SCDP and DDP
methods.

There are also certain limitations of the proposed method to be addressed in future 326

work. First, although the proposed planning method does not require the computation of a 327

map, the neural network-based method still requires significant computational resources 328

Version December 13, 2022 submitted to Robotics 12 of 14

in training and also in deployment. Currently, the inference time of the used network is 329

not suitable for real-time robot control. If the algorithm can run continuously in real-time, 330

there is a possibility to provide lower-level control commands, instead of waypoints, to 331

the UAV, which can improve the tracking performance of the robot. Second, due to the 332

black box characteristics of neural networks, the planner cannot be theoretically analyzed 333

similarly to conventional planning methods such as its completeness. 334

Author Contributions: Conceptualization, H.I.U. and E.K.; methodology, H.I.U.; software, H.I.U.; 335

validation, H.I.U.; formal analysis, H.I.U.; investigation, H.I.U. and H.X.P; resources, E.K.; data 336

curation, H.I.U.; writing—original draft preparation, H.I.U.; writing—review and editing, H.I.U; 337

visualization, H.I.U; supervision, E.K.; project administration, E.K.; funding acquisition, E.K. All 338

authors have read and agreed to the published version of the manuscript. 339

Funding: This research was funded by European Union’s Horizon 2020 Research and Innovation 340

Program (OpenDR) grant number 871449. This publication reflects the authors’ views only. The 341

European Commission is not responsible for any use that may be made of the information it contains. 342

Institutional Review Board Statement: Not applicable 343

Informed Consent Statement: Not applicable 344

Data Availability Statement: All the codes and data will be available at https://github.com/open- 345

airlab/safe-continuous-depth-planning.git 346

Acknowledgments: The authors would like to thank Abdelhakim Amer for his technical support in 347

conducting real-time experiments. 348

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, 349

or interpretation of data; in the writing of the manuscript; or in the decision to publish the results 350

Abbreviations 351

The following abbreviations are used in this manuscript: 352

353

DRL Deep reinforcement learning
UAV Unmanned aerial vehicle
PPO Proximal policy optimization
FOV Field of view
PID Proportional-integral-derivative
MDP Markov decision process
SITL Software-in-the-loop
ROS Robot operating system
SCDP Safe continuous depth planner
CDP Continuous depth planner
DDP Discrete depth planner
APF Artificial potential field

354

Appendix A 355

Appendix A.1 356

The following variables are used in this manuscript: 357

358

Table A1. Common variables in the manuscript.

t discrete timestep
st state at timestep t
at action at timestep t
rt reward at timestep t

Idepth Matrix representing the depth image
L Length of the global trajectory
U Uniform distribution
N Normal distribution

https://github.com/open-airlab/safe-continuous-depth-planning.git
https://github.com/open-airlab/safe-continuous-depth-planning.git
https://github.com/open-airlab/safe-continuous-depth-planning.git

Version December 13, 2022 submitted to Robotics 13 of 14

References 359

1. Pham, H.X.; Ugurlu, H.I.; Le Fevre, J.; Bardakci, D.; Kayacan, E. Deep learning for vision-based navigation in autonomous drone 360

racing. In Deep Learning for Robot Perception and Cognition; Elsevier, 2022; pp. 371–406. 361

2. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT press, 2018. 362

3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; 363

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. nature 2015, 518, 529–533. 364

4. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep 365

reinforcement learning. arXiv preprint arXiv:1509.02971 2015. 366

5. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International 367

conference on machine learning. PMLR, 2015, pp. 1889–1897. 368

6. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a 369

stochastic actor. In Proceedings of the International conference on machine learning. PMLR, 2018, pp. 1861–1870. 370

7. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv preprint 371

arXiv:1707.06347 2017. 372

8. Muratore, F.; Ramos, F.; Turk, G.; Yu, W.; Gienger, M.; Peters, J. Robot learning from randomized simulations: A review. Frontiers 373

in Robotics and AI 2022, 9. 374

9. Hoeller, D.; Wellhausen, L.; Farshidian, F.; Hutter, M. Learning a state representation and navigation in cluttered and dynamic 375

environments. IEEE Robotics and Automation Letters 2021, 6, 5081–5088. 376

10. Pham, H.X.; Sarabakha, A.; Odnoshyvkin, M.; Kayacan, E. PencilNet: Zero-Shot Sim-to-Real Transfer Learning for Robust Gate 377

Perception in Autonomous Drone Racing. arXiv preprint arXiv:2207.14131 2022. 378

11. Molchanov, A.; Chen, T.; Hönig, W.; Preiss, J.A.; Ayanian, N.; Sukhatme, G.S. Sim-to-(multi)-real: Transfer of low-level robust 379

control policies to multiple quadrotors. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and 380

Systems (IROS). IEEE, 2019, pp. 59–66. 381

12. Morales, T.; Sarabakha, A.; Kayacan, E. Image generation for efficient neural network training in autonomous drone racing. In 382

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8. 383

13. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement learning for UAV attitude control. ACM Transactions on 384

Cyber-Physical Systems 2019, 3, 1–21. 385

14. Ugurlu, H.I.; Kalkan, S.; Saranli, A. Reinforcement Learning versus Conventional Control for Controlling a Planar Bi-rotor 386

Platform with Tail Appendage. Journal of Intelligent & Robotic Systems 2021, 102, 1–17. 387

15. Camci, E.; Kayacan, E. Learning motion primitives for planning swift maneuvers of quadrotor. Autonomous Robots 2019, 388

43, 1733–1745. 389

16. Dooraki, A.R.; Lee, D.J. An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly using 390

reinforcement learning. Robotics and Autonomous Systems 2021, 135, 103671. 391

17. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe learning in robotics: From learning-based 392

control to safe reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems 2022, 5, 411–444. 393

18. Han, H.; Cheng, J.; Xi, Z.; Yao, B. Cascade Flight Control of Quadrotors Based on Deep Reinforcement Learning. IEEE Robotics 394

and Automation Letters 2022. 395

19. Kaufmann, E.; Bauersfeld, L.; Scaramuzza, D. A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight. 396

In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 10504–10510. 397

20. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on 398

Systems Science and Cybernetics 1968, 4, 100–107. 399

21. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent unmanned ground vehicles; Springer, 400

1997; pp. 203–220. 401

22. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the Proceedings. 1985 IEEE 402

International Conference on Robotics and Automation. IEEE, 1985, Vol. 2, pp. 500–505. 403

23. LaValle, S.M. Rapidly-exploring random trees: A new tool for path planning 1998. 404

24. Zhou, D.; Wang, Z.; Schwager, M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual 405

structures. IEEE Transactions on Robotics 2018, 34, 916–923. 406

25. Raigoza, K.; Sands, T. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance. 407

Sensors 2022, 22, 7066. 408

26. Feng, S.; Sebastian, B.; Ben-Tzvi, P. A Collision Avoidance Method Based on Deep Reinforcement Learning. Robotics 2021, 10. 409

27. Dooraki, A.R.; Lee, D.J. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in 410

unknown environments. Sensors 2018, 18, 3575. 411

28. Kang, K.; Belkhale, S.; Kahn, G.; Abbeel, P.; Levine, S. Generalization through simulation: Integrating simulated and real data 412

into deep reinforcement learning for vision-based autonomous flight. In Proceedings of the 2019 international conference on 413

robotics and automation (ICRA). IEEE, 2019, pp. 6008–6014. 414

29. Bonatti, R.; Madaan, R.; Vineet, V.; Scherer, S.; Kapoor, A. Learning visuomotor policies for aerial navigation using cross-modal 415

representations. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 416

2020, pp. 1637–1644. 417

Version December 13, 2022 submitted to Robotics 14 of 14

30. Bonatti, R.; Wang, W.; Ho, C.; Ahuja, A.; Gschwindt, M.; Camci, E.; Kayacan, E.; Choudhury, S.; Scherer, S. Autonomous aerial 418

cinematography in unstructured environments with learned artistic decision-making. Journal of Field Robotics 2020, 37, 606–641. 419

31. Polvara, R.; Patacchiola, M.; Hanheide, M.; Neumann, G. Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks and 420

Domain Randomization. Robotics 2020, 9. 421

32. Bartolomei, L.; Kompis, Y.; Pinto Teixeira, L.; Chli, M. Autonomous Emergency Landing for Multicopters Using Deep Rein- 422

forcement Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), 423

2022. 424

33. Muñoz, G.; Barrado, C.; Çetin, E.; Salami, E. Deep reinforcement learning for drone delivery. Drones 2019, 3, 72. 425

34. Doukhi, O.; Lee, D.J. Deep reinforcement learning for end-to-end local motion planning of autonomous aerial robots in unknown 426

outdoor environments: Real-time flight experiments. Sensors 2021, 21, 2534. 427

35. Loquercio, A.; Kaufmann, E.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Learning High-Speed Flight in the Wild. In 428

Proceedings of the Science Robotics, 2021. 429

36. Camci, E.; Campolo, D.; Kayacan, E. Deep reinforcement learning for motion planning of quadrotors using raw depth images. In 430

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–7. 431

37. Dooraki, A.R.; Lee, D.J. A Multi-Objective Reinforcement Learning Based Controller for Autonomous Navigation in Challenging 432

Environments. Machines 2022, 10, 500. 433

38. Michel, O. Cyberbotics Ltd. Webots™: professional mobile robot simulation. International Journal of Advanced Robotic Systems 434

2004, 1, 5. 435

39. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv preprint 436

arXiv:1606.01540 2016. 437

40. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y.; et al. ROS: an open-source Robot Operating 438

System. In Proceedings of the ICRA workshop on open source software. Kobe, Japan, 2009, Vol. 3, p. 5. 439

41. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning 440

Implementations. Journal of Machine Learning Research 2021, 22, 1–8. 441

42. Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M. Pixhawk: A system for autonomous flight using onboard computer vision. 442

In Proceedings of the 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011, pp. 2992–2997. 443

43. Faessler, M.; Franchi, A.; Scaramuzza, D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of 444

high-speed trajectories. IEEE Robotics and Automation Letters 2017, 3, 620–626. 445

44. Ku, J.; Harakeh, A.; Waslander, S.L. In Defense of Classical Image Processing: Fast Depth Completion on the CPU. In Proceedings 446

of the 2018 15th Conference on Computer and Robot Vision (CRV). IEEE, 2018, pp. 16–22. 447

	Introduction
	Contributions

	Related work
	End-to-end motion planning of UAV
	Reinforcement learning formalization of the environment
	Randomization of the environment
	Deep reinforcement learning: actor and critic network architecture

	Experiments and results
	Simulation setup
	Training in simulation
	Simulation results
	Real-time experiments

	Conclusion
	Appendix A
	Appendix A.1

	References

