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ABSTRACT

Driving a wheeled differential-drive robot to a target can be a
complicated matter when trying to also avoid obstacles. Usu-
ally, such robots employ a variety of sensors, such as LiDAR,
depth cameras, and others, that can be quite expensive. To
this end, in this paper, we focus on a simple differential-drive
wheeled robot that uses only inexpensive ultrasonic distance
sensors and touch sensors. We propose a method for training a
Reinforcement Learning (RL) agent to perform robot naviga-
tion to a target while avoiding obstacles. In order to increase
the efficiency of the proposed approach we design appropri-
ate action masks that can significantly increase the learning
speed and effectiveness of the learned policy. As we experi-
mentally demonstrated, the proposed agent can robustly navi-
gate to a given target even in unknown procedurally generated
environments, or even when denying part of its sensor input.
Finally, we show a practical use-case using object detection to
dynamically search for, and move to objects within unknown
environments. The code used for conducted experiments is
available online on Github.

Index Terms— Robot Navigation, Low-Cost Robot Sen-
sors, Deep Reinforcement Learning, Action Masking

1. INTRODUCTION

Autonomous navigation of mobile robots has been a popu-
lar research topic in the field of robotics for decades. The
ability to navigate in complex and dynamic environments is
essential for many applications, such as search and rescue,
logistics, and home care. One of the most common and ver-
satile types of mobile robots is the differential-drive wheeled
robot. These robots are easy to build and control, and their
differential-drive system allows them to turn on the spot and
move in any direction. At the same time, Deep Reinforce-
ment Learning (DRL) [1] has also emerged as a promising
technique for training autonomous agents to perform complex
tasks, leading to several robotics applications [2], including
navigation, manipulation, and control.

Recent research mainly targets robots that use multiple
sensors and relatively expensive configurations with LiDAR,
depth cameras and others. One such example is in [3], where
the authors used a Jetson Nano for obstacle avoidance us-
ing a monocular camera. In another work [4], the authors
used the Turtlebot 3 Waffle Pi, and trained a Double DQN [5]
agent to navigate to a target. In a more recent work using
the same robot [6], a mapless local path planning approach
was presented, that used variants of Deep Q-Network [7] to
increase success rates, proposing the n-Step Dueling Double
DQN with Reward-Based ϵ-Greedy (RND3QN) algorithm. In
[8], the authors successfully used Deep Deterministic Policy
Gradient [9] to train an agent to drive a differential-drive robot
to a target, improving on this paper’s authors’ earlier work in
[10]. They used curriculum learning [11] to gradually train
the agent on a small set of increasingly difficult maps. An-
other more generic example is the established Robot Oper-
ating System (ROS)1 navigation stack, which while it can
work with inexpensive ultrasonic distance sensors, it is more
well-suited to work with LiDAR and depth sensors. As a re-
sult, many DRL stacks are designed exclusively for high-end
robotic hardware, which limits their potential impact in a wide
range of applications, from education to low-cost mass pro-
duction robots. At the same time, training DRL agents with
low-fidelity and noisy sensors can worsen sample efficiency.
This necessitates the use of more sample-efficient paradigms
in such applications.

In this paper, we propose a method for training an agent to
drive a low-cost differential-drive wheeled robot navigating to
a target while avoiding obstacles, using the well-established
Proximal Policy Optimization (PPO) [12] RL algorithm. To
improve training efficiency we employ invalid action mask-
ing [13], also known as Maskable PPO, after appropriately
designing two masks that can lead to increased performance.
This work a) introduces a more systematic and effective ap-
proach to perform action masking, as well as b) paves the
way for introducing a state-of-the-art DRL approach using

1https://www.ros.org/
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low-cost sensors in the robotic navigation domain. The agent
used, apart from its sensor values, takes only the relative an-
gle and distance to its target and not its own or the target’s
absolute position, and thus can act as a local path planner and
navigate dynamically in unknown environments. We devel-
oped a randomized procedural map generation method within
the Webots robotics simulator [14], to be able to train and re-
alistically evaluate the agent in complex environments with
obstacles of various challenging shapes, using realistic noisy
sensors. The code used for conducted experiments is avail-
able online2.

The rest of the paper is structured as follows. The pro-
posed method is provided in Section 2, while the experimen-
tal evaluation is provided in Section 3. Finally, Section 4 con-
cludes the paper.

2. PROPOSED METHOD

2.1. Background and Setup

In this work, we employ a custom robot, as shown in Fig. 1a.
This robot is created in Webots and consists of two motors
connected to wheels providing differential drive, a forward-
placed bumper that is split between two touch sensors, one left
and one right, and 13 forward-facing ultrasonic distance sen-
sors that are placed in equal-spaced angles between [−π, π].
The ultrasonic distance sensors have a range of 1m and return
valid values when their ray angle of incidence to obstacles
is close to vertical. Moreover, the values returned are noisy,
simulating real ultrasonic distance sensors.

We used a discrete action space with a set of five actions
that cumulatively control the motor speeds of the robot. The
first one increases both motor speeds by a fixed amount up to a
limit, the second decreases them, the third and fourth increase
one motor speed but decrease the other and the fifth action
does not cause any changes to the motor speeds. We refer
to these actions as “forward”, “backward”, “left”, “right” and
“no action”.

The observation space of the agent is primarily described
by the following vectors:

at = [dt, at,ml,t,mr,t, tsl,t, tsr,t], (1)

where dt is the current Euclidean distance to the target, at is
the current angle to the target in regards to the facing angle of
the robot, ml,t and mr,t are the current left and right motor
speeds, and finally tsl,t and tsr,t are the left and right touch
sensor values, for timestep t and

bt = [ac0,t, ..., ac4,t, ds0,t, ..., ds12,t], (2)

where aci,t for i ∈ [0, 4] is the one-hot vector representing the
previous action, and dsj,t for j ∈ [0, 12] represents the latest
distance sensors values.

2https://github.com/aidudezzz/deepworlds/tree/
dev/examples/find_and_avoid_v2
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Fig. 1. (a) the robot used, (b) random map with all 25 obsta-
cles, (c) corridor map with 2 rows of obstacles, (d) corridor
map with 4 rows of obstacles.

To construct the full observation ot at each timestep t, we
concatenate at and bt with at−w and bt−w, where at−w and
bt−w are the vectors containing the values of timestep t − w
approximately one second before timestep t. Therefore, the
full observation is defined as:

ot = [dt, at, ..., ds12,t, dt−w, at−w, ..., ds12,t−w], (3)

where w = ⌈ 1000
s ⌉ and s is a single timestep time defined in

milliseconds. This way, even though the agent uses a simple
feed forward neural network, it takes a time window as ob-
servation giving it insight into how the observation values are
changing over time, which experimentally provided the best
results. All values are normalized appropriately in the [−1, 1]
range.

The reward R is defined as R = wdrdr + warar +
wdsrdsr + wrtrrtr + wcrcr, where dr is the distance to
target reward, ar is the angle to target reward, dsr is the
distance sensors reward, rtr is the reach target reward and cr
is the collision reward, who all lie within or are normalized
in the range [−1, 1]. Then every sub-reward is multiplied by
their corresponding weights (experimentally) set as wdr =
1.0, war = 1.0, wdsr = 10.0, wrtr = 1000.0, wcr = 100.0.
The distance to target reward is comprised of two components
itself, one continuous that penalizes the agent the farther away
it is from the target, and one discrete that rewards the agent
every time it achieves a new minimum distance to the target.
The agent is rewarded when facing the target or when it turns
towards the target, and penalized when it turns away from the
target. The angle reward is zeroed out when there are obsta-
cles detected nearby, to enable the agent to turn away from
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Fig. 2. The proposed mask flowchart.

the target to avoid them. The distance sensors reward penal-
izes the agent when the sensors are reading below a threshold
value and rewards it otherwise. When the agent reaches the
target it is rewarded, but the reward is scaled based on the
episode time elapsed, i.e. when the agent instantaneously
reaches the target the reward is 1.0 and when it reaches the
target just before the episode ends it is rewarded with 0.5.
Finally, the agent is penalized when it collides with obstacles
as detected by its touch sensors. An episode is terminated
when the agent either reaches the target or it collides with
obstacles for 4, 096 steps.

2.2. Proposed Action Masking

Invalid action masking [13] is a technique used with PPO to
handle tasks involving invalid or forbidden actions. It pre-
vents the agent from selecting invalid actions during training
and evaluation by setting their probability to zero. This leads
to more efficient policies, especially in tasks with common
invalid actions or severe consequences. It can be applied to
both large and small action spaces. The technique has been
most notably, successfully used in Dota 2 [1].

In this work we propose two different masking ap-
proaches, a “simple” baseline action mask and a more so-
phisticated “advanced” mask. Typically, the masks provide
a vector of truth values, one for each action, that are either
true, enabling or unmasking the action, or are false, disabling
or masking the action. These vectors are calculated for every
simulation step.

The simple mask developed initially, masks the forward
action when close to obstacles or masks the backward action
when no obstacles are detected. This prevents unnecessary

collisions and unwarranted backwards driving. The mask also
prevents turning into obstacles by masking left or right actions
when respective sensors detect low values.

The advanced mask flowchart is provided in Fig. 2. This
method runs in every simulation step starting with all actions
unmasked and returns the final mask for the next step. As
can be seen in the flowchart, the mask method is split into
two components, one using the distance sensors and one us-
ing the touch sensors. As long as nothing is detected with the
touch sensors, the robot’s actions are masked via the relative
current target angle and distance sensors. When the distance
sensors component fails and a collision is detected, the touch
sensors component takes over until the robot is clear of obsta-
cles. Thus, the robust touch sensors act as a fallback for the
ultrasonic distance sensors which are quite unreliable, as the
incidence angle of their rays to the obstacles must be close to
vertical to return a valid value. However, obstacles that can
be detected via distance sensors can be effectively avoided.

3. EXPERIMENTAL EVALUATION

3.1. Training

For all the conducted experiments we used a simple feed
forward neural network that has three hidden layers with
[1024, 512, 256] neurons for the actor and [2048, 1024, 512]
for the critic. To this end, we utilized the RL implementation
provided by stable-baselines33. All other network architec-
ture values and training parameters are left at their default
values apart from γ set to 0.999, entropy coefficient set to

3https://github.com/DLR-RM/stable-baselines3
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Fig. 3. The training results for the three masks used over
training steps: (a) the average success percentage, (b) the av-
erage episode reward, (c) the average episode length. Each
masking method was trained for 6 different seeds and the av-
erage results are presented.

0.001 and base learning rate set to 3e-4 and decaying with a
linear schedule.

We leveraged the open-source robotics simulator We-
bots [14] to create a randomizable environment for training
and evaluating the agents. The stable-baselines3 agent im-
plementation was integrated with the simulator through the
deepbots [10] framework, which enables the creation of cus-
tom OpenAI gym-compliant4 RL environments in Webots.
The training and evaluation maps consist of walled arenas
with various shapes of obstacles, known as “random maps”.
The number of obstacles can be customized, and the robot
and target are placed randomly in free spaces with varying
distances between them. An example map can be seen in
Fig. 1b. Moreover, the map can be randomly generated as a
corridor with adjustable number of rows of obstacles between
the robot and the target, referred to as “corridor map”, as can
be seen in Fig. 1c, d.

The agents undergo a total of 3, 407, 872 training steps,
with each new map serving as an episode lasting 16, 384
steps. We employed curriculum learning [11] during train-
ing, gradually increasing the difficulty. Initially, for 262, 144
steps, we used the “random map” configuration with 10 ran-
dom obstacles. The target was placed at a Manhattan distance
of 10 from the robot. This setup provided open maps with
few obstacles and wide paths, making it the easiest starting
point for the agents. Subsequently, we introduced a series

4https://github.com/openai/gym

of “corridor maps” of increasing difficulty, with the agents
trained for 524, 288 steps on each difficulty level. They start
out with 1 row of 2 obstacles and end up with 5 rows of 10
obstacles between the target and the robot. Fig. 1d illustrates
the challenging nature of corridor maps, which feature dead
ends and intricate paths to navigate. Moreover, even in its
easiest configuration the “corridor map” puts obstacles be-
tween the robot and the target, forcing the agents to learn to
traverse around the obstacles. Finally, the agents are trained
for another 1, 048, 576 steps on a “random map” with all 25
available obstacles and the target Manhattan distance set to
a random value between 10 and 12. This configuration pro-
vides the agents with a more realistic environment with many
obstacles spread around.

The training results can be seen in Fig. 3. The average
success percentage over the timesteps seen in Fig. 3a is the
ratio of episodes that the robot reached the target over the to-
tal number of episodes. The agent without any mask only
ever achieves ≈ 47.0% success percentage before decaying
to under ≈ 30% at the end of its training with its average
reward collapsing. The episodes terminate early due to colli-
sions, thus achieving a lower average episode length than the
simple-mask agent. The agent that uses the simple mask has
much better performance, as it begins with a success percent-
age of ≈ 80% and drops to just under 60% before the training
ends. The proposed method with the advanced mask quickly
achieves a success percentage of close to 100% in the initial
easy maps and decays over time to 98.5%, as the curriculum
gets harder. As expected, all methods have sharp drops in
their initial average episode length as the agents get better at
reaching the target efficiently, and increase over time as the
maps get more and more complicated.

3.2. Evaluation

Baseline Proposed Proposed
(no mask) (simple mask) (advanced mask)

Success (%) 43.7± 20.9 64.1± 23.1 98.8± 0.2

Reward (×102) −14.6± 6.3 −2.1± 3.0 8.8± 0.1

Ep. Len. (×103) 8.6± 10.8 10.8± 8.6 2.5± 1.9

Table 1. The evaluation results for the different masks used,
averaged across 6 runs with different seeds and their corre-
sponding standard deviation.

To evaluate the trained agents in the various mask con-
figurations, we used a set of 600 previously unseen maps of
6 difficulty setups with 100 maps each, using the same seed
to get exactly the same robot/target and obstacles randomiza-
tion for all agents to provide a fair evaluation and comparison.
Starting out, the first 100 maps are simple “corridor maps”
without any obstacles, that show whether the agent can ef-
ficiently move straight to the target that is placed in various

https://github.com/openai/gym


distances along the corridor. Earlier in development, unsuc-
cessful agents had trouble reaching the target even in empty
corridors and would overshoot or hug the walls. The next 4
sets of 100 maps each are “corridor maps” of increasing dif-
ficulty in terms of how many rows of obstacles are placed
between the robot and the target, similar to the training setup
described previously. The last set of 100 maps uses the “ran-
dom map” configuration that includes all 25 available obsta-
cles. Note that the seed used for evaluation is different from
the training seeds, thus the maps used in evaluation are not
previously seen by the agents.

The reward function weights were set as wdr = 0.0, war =
0.0, wdsr = 0.0, wrtr = 1000.0, wcr = 1.0 to provide a bet-
ter constrained reward score, where the agent gets rewarded
only by reaching the target or punished for colliding. The
average evaluation results can be seen in Table 1, along with
their standard deviation across the 6 seeds. Similar to the
training results, the no mask setup ends episodes prematurely
due to collisions without reaching the target, which is re-
flected in the poor success rate and more decisively in the low
average episode reward, and as a consequence gets a lower
average episode length than the simple mask. The proposed
method converges to a near optimal policy that manages to
solve ≈ 98.8% of the evaluation maps with a high average
reward of ≈ 880 and low average episode length of ≈ 2500
steps, outperforming the other two methods by far. Finally,
the proposed advanced masking method shows much better
consistency represented by the very low standard deviation
values across the seeds.

3.3. Component ablation and sensor denial

No DS 50% DS No TS Only mask Full

Success (%) 93.8 95.5 84.5 69.3 98.6

Reward (×102) 4.9 7.4 8.0 -6.8 8.7

Length (×103) 2.2 3.4 8.0 15.2 2.3

Table 2. The results of the various component ablation and
sensor denial experiments. “DS” refers to distance sensors
and “TS” refers to touch sensors.

We evaluated one of the trained agents with the advanced
mask in the evaluation maps using the same seed and proce-
dure, but in three different sensor configurations: disabling
all distance sensors, randomly disabling 50% of the distance
sensors in each episode, and removing touch sensors entirely
setting their values to zero. Removing the distance sensors
effectively disables the part of the proposed mask depends
on them, and similarly, removing the touch sensors disables
the touch sensor part of the mask. Disabling sensors also
means that the agent has to work with an incomplete obser-
vation. Moreover, we evaluated a random policy that practi-
cally only uses the advanced mask to navigate, picking ran-

dom unmasked actions with equal probability. All the results
can be seen in Table 2, where the four ablation configurations
are compared to the full method. Denying half or all of the
distance sensors decreases performance slightly in terms of
success percentage. Without any distance sensors the agent
moves blindly colliding with obstacles a lot, thus decreasing
its average reward, but also less cautiously making it reach the
target faster. The agent without touch sensors, is hampered in
its ability to reach the target, resulting in a decrease of approx-
imately ≈ 14% in success percentage and prolonged naviga-
tion times due to the limitations of realistic ultrasonic distance
sensors in detecting obstacles effectively. The high reward
is a byproduct of the touch sensors not detecting any colli-
sions. Using the mask alone, that includes the human expert
knowledge, coupled with a random policy yields the worse
results in all of the metrics, demonstrating that the learned be-
haviour of the agent via the reward function is a crucial com-
ponent. These results show that the method is resilient to dis-
tance sensor denial, and has an adequate success percentage
even without the touch sensors. On a real robot the distance
sensors used in simulation can be emulated by a single dis-
tance sensor rotating on a servo motor in predetermined po-
sitions, which will affect the proposed method’s performance
marginally due to its resiliency to the distance sensor denial
shown.

3.4. Example Use-Case

(a) (b)

Fig. 4. Screenshots of the robot (green box on the map) look-
ing for the rubber duck in a random map: (a) robot is moving
towards a random exploration target (light blue box), (b) robot
has acquired the target (yellow box) and moving towards it.
The path the robot has followed is roughly sketched in blue.
On top-left the perspective of the camera can be seen, as well
as the bounding box of the detected object on screenshot (b).
The current map can be seen on the bottom-left.

We used the trained agent with the advanced mask on a
more practical use-case, combined with object detection pro-
vided by the simulator and a simple custom mapping func-
tionality, where the agent searches the map for a rubber duck
as can be seen in Fig. 4. The mapping functionality relies only
on the distance sensors, starting out with a black map image



that, as the robot moves around slowly gets filled with white
pixels for empty space and red pixels for obstacles detected
by the distance sensors, as can be seen on the lower-left parts
of the screenshots on Fig.4. The mapping functionality pro-
vides exploration targets to the agent that lie in black patches,
i.e. unexplored parts of the current map. As the agent ex-
plores the environment with the help of these targets, it can
detect the rubber duck via the camera’s object detection mod-
ule. When this happens the agent is provided with a target that
corresponds to the rubber duck’s position as approximated by
the bounding box on the camera image. Consequently, using
the trained agent with the proposed method as a local path
planner and a rudimentary exploration and mapping function-
ality, the robot can find targets within the environment and
navigate successfully and efficiently to them, using only sim-
ple distance and touch sensors as well as a camera for target
object acquisition.

4. CONCLUSIONS

In this paper, we demonstrated that by crafting an appropri-
ate masking function we can effectively combine RL with
expert human knowledge to provide an efficient policy for
differential-drive robot navigation without using expensive
robot configurations and sensors. We trained the three meth-
ods on multiple seeds and evaluated the trained agents on the
same random maps to provide a fair comparison, while also
conducting sensor ablation and denial experiments. The ex-
perimental results suggest that the proposed masking method
yields significantly better results than the baseline and con-
verges to a near-perfect policy. The proposed method was
also able to successfully navigate to the target in nearly all
the evaluation maps, even though the random map generation
method used produces very complicated maps with a variety
of obstacles both in terms of size and shape, that the realistic
noisy ultrasonic distance sensors have a great difficulty de-
tecting. The nature of the proposed method makes it suitable
to be used as a local path planning algorithm of low cost
once trained, which is shown via an example use-case that
uses a rudimentary custom mapping functionality and object
detection via a camera. In the few failure cases, the agent
gets stuck in narrow passages between obstacles it cannot de-
tect or gets trapped in long dead-end paths, that are expected
shortcomings of the nature of the method and sensor setup.
Future work includes incorporating RGB camera input, as
well as adding end-to-end mapping capabilities to the agent
to address these challenges.
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