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ABSTRACT

Deep Ensembles, as a type of Bayesian Neural Networks, can
be used to estimate uncertainty on the prediction of multi-
ple neural networks by collecting votes from each network
and computing the difference in those predictions. In this pa-
per, we introduce a method for uncertainty estimation which
considers a set of independent categorical distributions for
each layer of the network, giving many more possible sam-
ples with overlapped layers than in the regular Deep Ensem-
bles. We further introduce an optimized inference procedure
that reuses common layer outputs, achieving up to 19x speed
up and reducing memory usage quadratically. We also show
that the method can be further improved by ranking samples,
resulting in models that require less memory and time to run
while achieving higher uncertainty quality than Deep Ensem-
bles.

Index Terms— Deep Ensembles, Bayesian neural net-
works, uncertainty estimation, uncertainty quality

1. INTRODUCTION

Uncertainty estimation in neural networks is an important task
for critical problems, such as autonomous driving, medical
image analysis, or other problems where silent failures of ma-
chine learning systems can lead to high-cost damages or en-
danger lives. Bayesian Neural Networks (BNNs) [1, 2, 3, 4]
provide a tool to estimate prediction uncertainty by exploiting
a distribution over the network weights and sampling a set of
models with slightly different predictions for a given input.
This difference in the predictions expresses the uncertainty of
the network, while the mean of all predictions is used as the
prediction of the network. The selection of the adopted distri-
bution affects the computational requirements and statistical
quality of the network, with Gaussian distribution resulting
in Bayes By Backpropagation (BBB) [5] and Hypermodel
[6] methods, Bernoulli distribution in Monte Carlo Dropout
(MCD) [7], and Categorical distribution in Deep Ensembles
[8].

This work has received funding from the European Union’s Horizon
2020 research and innovation programme (grant agreement No 871449
(OpenDR)).

We introduce Layer Ensembles, which consider a set of
weight options for each layer that are sampled using indepen-
dent Categorical distributions, resulting in a high number of
models that can have common layer samples. We show that
Layer Ensembles achieve better uncertainty quality than Deep
Ensembles for the same number of parameters, and they allow
to dynamically change the number of samples to keep the best
ratio between the uncertainty quality and time cost.

The proposed method is a good fit for applications where
the computational budget can fluctuate, and the requirements
for model speed or uncertainty quality are flexible. Such sce-
narios include autonomous driving, robot control and Ma-
chine Learning on personal devices. In the case of a high com-
putational budget, the selected sample set can be of a bigger
size, leading to a better uncertainty estimation process, while
if there are not enough device capabilities, we can sacrifice
some of the uncertainty quality to keep the system operation
at the tolerable speed. This process is explained in details in
Section 3.

2. RELATED WORK

Output uncertainty estimation in deep neural networks is
usually done by approximating expectation and covariance
of outputs using the Monte Carlo integration with a limited
number of weight samples. This can be simplified to per-
forming inference a few times using different randomly sam-
pled weights for the network, and then computing the mean
and variance of the network output vectors. Epistemic Neural
Networks (ENNs) [9] propose a framework to estimate an un-
certainty quality of a model by generating a synthetic dataset
and training a Neural Network Gaussian Process (NNGP)
[10] on it that represents a true predictive distribution. The
model of interest is then evaluated by the KL-divergence [11]
between the true predictive distribution from NNGP and the
predictive distribution of the model of interest.

Monte Carlo Dropout (MCD) [7], instead of only using
Dropout [12] layers as a form of regularization during training
to avoid overtrusting particular neurons, keeps the Dropout
layers also during inference. This has the effect of adopting a
Bernoulli distribution of weights and sampling different mod-
els from this distribution. Bayes By Backpropagation (BBB)
[5] considers a Gaussian distribution over network weights,
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which is estimated using the reparametrization trick [13] that
allows to use regular gradient computation.

Variational Neural Networks (VNNs) [14] can be consid-
ered in the same group as MCD and BBB from the Bayesian
Model Averaging perspective, where sampled models can
lie in the same loss-basin and be similar, i.e., describing
the problem from the same point of view, as explained in
[2]. VNNs consider a Gaussian distribution over each layer,
which is parameterized by the outputs of the corresponding
sub-layers. Hypermodels [6] consider an additional hyper-
model θ = gν(z) to generate parameters of a base model
fθ(x) using a random variable z ∼ N (0, I) as an input to the
hypermodel.

Deep Ensembles [8] have a better uncertainty quality than
all other discussed methods and can be viewed as a BNN with
a Categorical distribution over weights, with the ideal num-
ber of weight samples being equal to the number of networks
in the ensemble. The addition of prior untrained models to
Deep Ensembles, as described in [8], improves the uncer-
tainty quality of the network. Deep Sub-Ensembles [15] split
the neural network into two parts, where the first part contains
only a single trunk network, and the second part is a regular
Deep Ensemble network operating on features generated by
the trunk network. This reduces the memory and computa-
tional load compared to the Deep Ensembles and provides
a trade-off between the uncertainty quality and resource re-
quirements. Batch Ensembles [16] optimize Deep Ensembles
by using all weights in a single matrix operation and using
Hadamard product instead of matrix multiplication that in-
creases inference speed and reduces memory usage.

Kushibar et al. [17] propose to use a single deterministic
network to generate different outputs by using multiple early-
exits branches [18] from the same network, and compute the
variance in those outputs. Contrary to this approach using
a single deterministic network, we propose Layer Ensembles
in the context of Bayesian Neural Networks by considering
an independent Categorical distribution over weights of each
layer, as described in the following section.

3. LAYER ENSEMBLES

In this section, we first provide a mathematical definition of
Layer Ensembles structure. Then, we provide the intuition
behind Layer Ensembles and the relations between Layer
Ensembles and other network structures. Furthermore, we
show how inference of Layer Ensembles can be optimized
by reusing common layer outputs. Finally, we propose a
method for selecting the best sample combinations based on
the quality of uncertainty metric. This metric is computed us-
ing Epistemic Neural Networks (ENNs) [9] experiments with
a synthetic dataset that has ground-truth uncertainty values,
as described in details in Section 3.2.

We consider a neural network F (x,w) with N layers
which takes x as input and is parameterized by the weights w.

(a) Deep Ensemble structure (b) Layer Ensemble structure

(c) Two samples of a Layer Ensemble network with common first
two layer options

Fig. 1: Example structures of (a) Deep Ensembles and (b)
Layer Ensembles for a 3-layer network with 3 ensembles
(N = 3, K = 3). While the memory structure remains iden-
tical, Layer Ensembles have many more options for sampling
that can be optimized considering the common layers in sam-
ples. Layer Ensembles with common layers earlier in the ar-
chitecture lead to faster inference (c).

A Deep Ensemble network is formed by K identically struc-
tured networks, each formed by N layers and the weights of
each network, i.e., wi, i ∈ [1,K], are trained independently.
We formulate Layer Ensembles as a stochastic neural network
F (x,w) with N layers LEi(x,w

i
q), i ∈ [1,K], q ∈ [1, N ]

and K weight options for each layer:

wi
q ∼ Categorical(K). (1)

This results in the same memory structure as for Deep Ensem-
bles, with KN weight sets for an ensemble of K networks
each formed by N layers. However, Layer Ensembles allow
for connections between the layers of different weight sets, by
sampling different layer options to form a network in the en-
semble. This greatly increases the number of possible weight
samples, while those can contain identical subnetworks. This
can be used to speed up the inference of a set of sampled lay-
ers.

The intuition behind Layer Ensembles is to define an en-
semble for each layer. These ensembles are independent and
can have a different number of members in each ensemble,
leading to a highly flexible network structure. If a single ran-
dom variable controls all layer-wise ensembles, and they have
an identical number of members, this leads to the well-known
Deep Ensemble neural network. Fig. 1 illustrates how the
same memory structure of the ensembles is used in Deep En-
sembles (Fig. 1a) and Layer Ensembles (Fig. 1b).

Training of Layer Ensembles is done by using a regular
loss function and averaging over the outputs of different net-
work samples. The number of network samples for Deep En-
sembles is usually equal to the number of networks K, mean-
ing that all the ensembles are used for inference. The same
strategy is not required for Layer Ensembles, as each layer
option can be included in multiple networks. This means that



one can select a few network samples per inference and ex-
pect that, with the sufficient amount of training steps, all the
layer weights will be trained.

Following [8], we consider an output of a prior untrained
Layer Ensemble network added to the output of the trained
network, using the same draws from the random distributions
for both untrained and trained networks. Experiments show
that the addition of prior networks improves the uncertainty
quality of Layer Ensembles by a factor of 2 for each number
of ensembles that was tested.

The freedom of connections in Layer Ensembles is high,
and by applying different restrictions to the number of weight
options for different layers, as well as to the random variables
that control these ensembles, we can define Deep Ensembles
[8] and Deep Sub-Ensembles [15] as special cases of Layer
Ensembles. Considering a Layer Ensemble network with N
layers and K weight options for each layer, we can sample
KN possible models. Sampling K networks with none of the
layer options used in two different networks corresponds to
a Deep Ensemble network. By selecting different number of
ensembles per layer, we can achieve Deep Sub-Ensembles by
using one ensemble for the first T layers and K ensembles
for the remaining N − T layers, resulting in a single trunk
network and in an ensembled tail network. Experimenting
with the number of ensembles for each layer can result in in-
teresting new methods for specific analysis problems and is a
direction for future work.

3.1. Inference Optimization

Layer Ensembles can reuse outputs of identical subnetworks
processing the input x when they are used in different net-
works. Fig. 1c shows an example of two Layer Ensembles
where the first two layers are identical, and only the last layer
has different weights. Instead of computing c2(b2(a1(x)))
and c1(b2(a1(x))) independently, one can compute the com-
mon layer V = b2(a1(x)) first, and then c2(V ) and c1(V ).

To achieve this, we have to consider a set of samples
together, instead of applying each network sample indepen-
dently, and identify layer outputs that can be reused for a
given input. Only when the first G layers of two sampled
networks are the same, their outputs are identical. For exam-
ple, in Fig. 1c, the two sampled networks are (a1, b2, c1) and
(a1, b2, c2), which have G = 2 first identical layers, outputs
of which should be computed only once and reused for the
second sample. Considering more than two samples, the pos-
sible overlapping layers have a hierarchical structure, where
a layer sample l1 for the first layer can be reused by some
set of networks, but for the next layer this set will be split up
between the possible samples of the second layer, creating a
tree-like structure of reusable layer outputs. We can traverse
this structure and compute all network outputs simultaneously
by using a depth-first search on this graph of overlapping lay-
ers.

Algorithm 1 Optimized Layer Ensembles

Require: Network F (x), list of sorted samples S, layer in-
dex i, input x

1: function OLE(F, Si, i, x)
2: result← []
3: si+1 ← []
4: if i = size(s) then return [x] ▷ Final layer computed
5: end if
6: sl ← Si[0]
7: l← F [i][sl](x) ▷ First sampled option for layer i
8: for t ∈ [0..size(Si)] do ▷ For each sample
9: if Si[t] ̸= sl then

10: result = result ∪OLE(F, si+1, i+ 1, l)
11: sl ← Si[t]
12: ▷ Next sampled option for layer i
13: l← F [i][sl](x)
14: si+1 ← []
15: end if
16: ▷ Update sub-samples list for input l
17: si+1 ← si+1 ∪ tail(si[t])
18: end for
19: result = result ∪OLE(F, si+1, i+ 1, l)
20: return result
21: end function
22: return OLE(F, S, 0, x)

Algorithm 1 implements an Optimized Layer Ensembles
(OLE) function that recursively computes the output of a
Layer Ensemble network for a set of sorted layer samples.
Layer samples are represented as a set of selected options
for each layer, such as [1, 2, 2] and [1, 2, 1] for the models in
Fig. 1c. These samples are sorted in ascending order by the
first-most values, while using later indices in case of identical
previous values. This allows to have the most overlapping
samples in a sequence, giving the possibility to optimize layer
executions, as a layer option should be called only once for
the same input and used by all samples that share it. After
the current layer option is used, there is no need to keep its
output in memory anymore, as it will never be used later.
This improves the memory requirement of the model. The
results of the OLE function is an array of outputs for all runs
using this layer, which means that in order to run a full set
of samples the OLE function needs to be called with network
function F , samples list S, layer index i = 0, and the input to
the network x.

3.2. Layer sample ranking

Following Optimized Layer Ensembles, we can improve the
speed of the model and the quality of uncertainty by selecting
which of the sampled networks should be used during infer-
ence, since networks that share most of the layer options can
be too similar from the Bayesian Model Averaging perspec-



Fig. 2: Comparison of mean KL values with 1 STD range for
Deep Ensembles and Layer Ensembles with random unique
layer samples, averaged across all experiment parameters.

tive.
One way to decrease the computational cost is to ran-

domly select fewer layer samples, resulting in slightly lower
quality of uncertainty, as shown in Fig. 2. Another option is
to rank layer samples based on the uncertainty quality on the
validation set and use the best layer samples when using a
particular number of samples.

We follow the Epistemic Neural Networks (ENNs) [9]
framework to estimate the uncertainty quality of the method
and use it to select the best layer samples, and to compare
the proposed method with the state-of-the-art uncertainty es-
timation approaches. ENNs consider a regression task y =
f(x) + ϵ and generate a synthetic dataset DT = {(x, y)t for
t ∈ [0, T − 1]}, where x is a Dx-dimensional input vector,
y is an output scalar, ϵ ∼ N (0, σ2) is a random noise, and
T = Dxλ is a dataset size. A Neural Network Gaussian Pro-
cess (NNGP) [10] is trained on the dataset to represent the
true model of the data. For each data point, a model of inter-
est should provide a prediction µ and an uncertainty in that
prediction σ2, which is modeled by a one-dimensional Gaus-
sian distribution N (µ, σ2). Given the predictions from both
the true NNGP model and a model of interest M , the uncer-
tainty quality score Q(M) is computed as:

Q(M) =
1

T

T−1∑
t=0

KL(NM ∥ NNNGP),

NM = N (E[M(xt)],Var[M(xt)]),

NNNGP = N (E[NNGP(xt)],Var[NNGP(xt)]),

(2)

where M and NNGP are the model of interest and the true
NNGP model, respectively, and KL is a Kullback–Leibler di-
vergence function [11]. As can be seen in Eq. (2), the quality
of uncertainty is defined based on how close the model’s out-
put and its uncertainty, represented by a Gaussian distribution,

Fig. 3: Speed up and memory saved during inference of Op-
timized Layer Ensembles, compared to the regular Layer En-
sembles for different number of ensembles of a 4-layer CNN
for MNIST classification. This excludes memory used for the
ML framework and model weights.

to the distribution of the ground-truth model. This means that
in cases where the network is not competent to provide an ac-
curate output, it should be uncertain, and when the network is
competent (e.g., when it operates in a well-explored area), it
should be certain in its output.

Let us consider the full set of layer samples SJ = {sj |j ∈
[1, J ]}, where J is a number of all combinations that can be
computed by multiplying all layer-wise numbers of ensem-
bles. To reduce the computational load of layer sample rank-
ing, we introduce an iterative process of selecting the best
layer samples by starting from a single layer sample with the
best mean error s1:

s1 = argmax
sj

Q(M{sj}), (3)

where Q(·) is the uncertainty quality score function, M{sj} is
the Layer Ensemble model applied to a set of layer samples,
containing a single sample sj . Given a set of optimal layer
samples SP = {sPi |i ∈ [1..P ]} of size P , the next layer sam-
ple set is created by finding the best addition to the already
existing set:

sP+1 = argmax
sj

Q(MSP∪sj ),

SP+1 = SP ∪ sP+1.

(4)

Following the above process, we select the best layer sam-
ples set SP for each number of samples P from 1 to J based
on the performance on the validation dataset. The selected
samples are then used to perform inference during testing.
This means that for a given number of samples P , a deter-
ministic ensemble model, which is expected to provide the
highest uncertainty quality, is used during inference. This
provides flexibility in the inference phase as, based on the
computational budget available for performing inference on
different input data samples, one can choose an appropriate
value for P . When the available computational budget is low,
a lower number of samples P can be selected and the corre-
sponding layer samples set SP is used to perform inference,



Fig. 4: Comparison of mean KL values with 1 STD range for Layer Ensembles with different number of ensembles and sampled
layers, averaged across all experiment parameters. The best layer samples are selected based on the validation set and evaluated
on the test set.

reducing the computational requirement and providing high-
quality uncertainty for the current model. In the case of an in-
creased computational budget being available, a higher num-
ber of samples P can be selected to improve the quality of the
uncertainty.

4. EXPERIMENTS

We implement Layer Ensembles inside the ENNs JAX repos-
itory [19] and implement the experiments using the follow-
ing parameters: Dx ∈ {10, 100, 1000}, λ ∈ {1, 10, 100},
and ϵ ∈ {0.01, 0.1, 1}. The experiments are repeated with
all combinations of (Dx, λ, ϵ) parameters and with 10 differ-
ent random seeds. The results are then averaged, comput-
ing the mean and variance of uncertainty quality scores for
each method. Fig. 2 provides a comparison between Deep
Ensembles and Layer Ensembles for different number of en-
sembles and number of samples. Layer Ensembles start to
achieve good uncertainty quality with only 3 ensembles and
outperform Deep Ensembles for the same number of ensem-
bles used. This means that the memory footprint is much
lower for Layer Ensembles. The effect of using OLE, com-
pared to the original Layer Ensembles, on the time and mem-
ory consumption is presented in Fig. 3. The comparison is
performed for a full set of samples for different number of en-
sembles, showing that the memory usage is reduced quadrat-
ically, and the inference speed is up to 19 times higher for
OLE. Since Machine Learning frameworks usually use a data-
flow approach to computations, the Optimized Layer Ensem-
bles benefit from these asynchronous computations, as the
only data gathering across different Layer Ensemble samples
is performed at the end of the inference function. However,
there is a limit on how much the computations can be par-
allelized, which reduces the speed-up gains when increasing
the number of ensembles. This limit depends on the number
of layers and the computational capabilities of the physical
device. In the case of a 4-layer CNN and a 2080Ti GPU, this
limit is reached at 9 ensembles.

Fig. 5: Comparison of mean KL values with 1 STD range for
BNNs and the best Layer Ensembles model with 5 ensembles
using sample ranking.

Fig. 4 illustrates the uncertainty quality results of each
best layer sample set of Layer Ensembles. With a number of
ensembles higher than 2, the optimal uncertainty quality is
increased up to a certain number of layer samples and starts
decreasing after that. This means that it is beneficial for both
inference speed and uncertainty quality to not use all the
available layer samples. Layer Ensembles with 5 ensembles
achieves the best uncertainty quality at 36 layer samples,
which is much lower than the number of 125 possible layer
samples. Even at 20 layer samples, the uncertainty quality
is just 6% lower, but it is still 2 times better than the Deep
Ensembles with 30 ensembles, while it uses 6 times less
memory, and it is at least 1.5× faster, as the speed can be im-
proved by Optimized Layer Ensembles inference procedure
but depends on the overlap between layer samples.

We compare the best Layer Ensembles model for 5 en-
sembles, created using the sample ranking process, to the
state-of-the-art BNN methods following the earlier described



ENNs framework. The evaluation results for MCD [7]
(dropout), BBB [5], VNNs [14], Hypermodels [6], Deep
Ensembles [8] (ensemble) and the proposed Layer Ensem-
bles (lens) are shown in Fig. 5. Layer Ensembles achieve the
highest quality of uncertainty among the tested methods, with
the lowest variance of the uncertainty quality score across the
experiments.

5. CONCLUSIONS

In this paper, we proposed a novel uncertainty estimation
method called Layer Ensembles, which corresponds to a
Bayesian Neural Network with independent Categorical dis-
tribution over weights of each layer. We showed that Layer
Ensembles use parameters more effectively than Deep En-
sembles and provide a flexible way to balance between in-
ference time and model uncertainty quality. We showed that
the inference of Layer Ensembles can be optimized by per-
forming the same computations once, which increases the
inference speed by up to 19 times and reduces memory usage
quadratically. Finally, we proposed a layer sample ranking
system that allows to select the best layer samples based on
the combined uncertainty quality, leading to a high increase
in uncertainty quality and reducing both memory and time
requirements.
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