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Abstract—Deep Learning (DL) is increasingly used in electro-
cardiograms (ECGs)-based signal analysis allowing for diagnos-
ing a variety of cardiac disorders and enabling the development
of automated diagnosis and prognosis systems. However, ECG
signals are typically noisy requiring a series of prepossessing
steps before feeding them into DL models for analysis. The main
contribution of this paper is a simple, yet very effective end-
to-end hybrid trainable filtering and feature extraction pipeline,
that is formulated as a set of differentiable layers that can be
incorporated into any DL model and employ Gaussian filters as a
prior model. Indeed, it is experimentally demonstrated that the
proposed method can increase the performance of ECG-based
classification both for baseline architectures (e.g., MLPs, CNNs,
LSTMs) as well as for state-of-the-art architectures proposed
in the literature for ECG signal analysis. Given the simplicity
and effectiveness of the proposed method, we believe that it
constitutes a practical tool that can readily be incorporated into
any DL pipeline that is used for time-series analysis, potentially
further increasing its performance with minimal computational
overhead.

Index Terms—electrocardiogram signal classification, data pre-
processing, deep learning, trainable signal denoising, end-to-end
trainable filtering

I. INTRODUCTION

Electrocardiograms (ECGs) are produced by placing elec-
trodes on the skin and encode information about the heart.
Electrocardiography is the main method to capture heart
activity, since it is easy to apply and is painless for patients.
Doctors frequently utilize them to diagnose a variety of cardiac
disorders and, hence, it is essential to develop systems for
automatic categorization that can drastically aid clinicians’
diagnoses. The recent success of DL methods in tackling
difficult problems [1], draw the attention of the corresponding
communities and motivated the application of DL models in
ECG signal analysis and classification, with recent research
mainly focusing on developing supervised deep learning (DL)
models [2], [3], [4], [5].

Despite the success of DL models in such applications, they
are still susceptible to the inherent noise of ECGs [6], which
is usually captured during the electrocardiography process.

A variety of noise sources can affect such signals with the
predominant ones stemming from baseline wander, powerline
interference, and muscle artifacts [7], [8]. As the patients’
welfare is dependent on it, it is vital that systems’ miscalcula-
tions be prevented and noise removal techniques be developed.
Typically, low-pass filters are frequently employed to mitigate
the effects of signal noise and provide more appropriate input
representations to models. However, the cut-off frequency
of such filters is fixed during the training process, and, in
most cases, it is either manually selected by practitioners or
specified by heuristics.

The main hypothesis examined in this work is whether it is
possible to construct end-to-end trainable pipelines for time-
series filtering in order to allow DL models to appropriately
adjust the way data are pre-processed in order to better
accommodate the task at hand. This will allow for letting
the models select - through backpropagation - the filtering
parameters. Indeed, there are some DL approaches that attempt
to tackle this issue, e.g., denoising autoencoders [9], denoising
convolutional neural networks (CNNs) [10], etc. However,
these methods do not employ any strict prior regarding the
way filtering should be performed. As a result, such methods
are still vulnerable to noise, since without any strong prior,
they tend to overfit the data.

Based on these observations, in this work, we propose a
simple yet effective end-to-end trainable neural data-driven
pipeline that combines a Gaussian filtering prior as a model-
based component, resulting in a hybrid approach that inte-
grates both model-based and data-driven components [11].
Using Gaussian filters as a prior model for filtering restricts
the expression ability of the proposed preprocessing layers.
However, at the same time it mitigates overfitting issues that
often arise with noisy signals, allowing for increasing the
generalization abilities of the subsequent model. At the same
time, the proposed method can be also used to generate
different views of the data by using higher order filtering.
As a result, the proposed method can not only provide a
filtered version of the input signal but can also learn how



to extract higher order features that can be directly exploited
by the subsequent model. Furthermore, the proposed method
is easy to use and can be used with essentially any DL
architecture. Indeed, we demonstrate that the proposed method
can increase the performance of ECG-based classification
both for baseline architectures (e.g., MLPs, CNNs, LSTMs)
as well as for state-of-the-art architectures proposed in the
literature. Given the simplicity and effectiveness of the pro-
posed method, we believe that it constitutes a practical tool
that can readily be incorporated into any DL pipeline that is
used for time-series analysis, potentially further increasing its
performance with minimal computational overhead. An easy
to use implementation of the proposed method is available at
https://github.com/cidl-auth/deep gaussian to allow for easily
using and extending the proposed method.

The rest of this paper is structured as follows. First,
we introduce the proposed method in Section II. Then, the
experimental evaluation is provided in Section III. Finally,
conclusions are drawn in Section IV.

II. PROPOSED METHOD

Let x denote a one channel ECG signal, i.e., a one dimen-
sional vector of size N . This is without loss of generality since
the proposed method can similarly handle multivariate data.
Also, let fW(x) denote a DL model that is used to analyze
this signal, e.g., to perform classification. The proposed Deep
Gaussian Filtering (DGF) method receives x as input and
generates a number of filtered versions of the input signal
that are fed to subsequent DL model fW(·). In this way, the
proposed method performs both denoising, as well as generates
different views of the input signal that can be directly exploited
by the subsequent model. The main building block of the DGF
is a trainable Gaussian filter defined as:

g(h, σ, k) =
1√
2πσ

dkK(h, µ, σ)

dhk
, (1)

where σ is a trainable parameter that controls the width of the
input filter, k is the filter order and K(·) denotes the Gaussian
kernel defined as:

K(h, µ, σ) = e−
(h−µ)2

2σ2 . (2)

Then, this filter is convoluted with the input signal x in order
to obtain the filtered version of the input. Also, note that all
Gaussian kernels used in this work are centered to 0, i.e.,
µ = 0, since adjusting the centering can lead to instabilities
when finite approximations of the filters are used.

It is easy to see that setting different values for the order
k allows for obtaining different versions of the filter. For
example, for k = 0 we obtain:

g(h, σ, 0) =
1

σ
√
2π

e−
h2

2σ2 (3)

for k = 1 we obtained:

g(h, σ, 1) =
−h

σ3
√
2π

e−
h2

2σ2 (4)

while for k = 2 we get:

g(h, σ, 2) =
h2 − σ2

σ5
√
2π

e−
h2

2σ2 . (5)

Note that each of these three filters uses the same trainable
bandwidth factor. In order to understand why we might want
to include higher order filters during the input prepossessing
stage we need to consider the convolution’s commutative and
associative properties. Indeed, performing convolution with
these filters is equivalent to calculating the corresponding
derivatives of the input and then performing filtering. In this
way, different properties of the input signal can be directly
processed by the subsequent DL model without any further
analysis and risking losing critical information by the filtering
process. Therefore, the proposed method also provides an
efficient way to obtain these representations at a very low cost,
since most DL frameworks and hardware is already optimized
for such calculations. For the rest of this section, we will
assume the three filters defined by (3), (4) and (5) are used.
Note that this is without loss of generality since any number
of such filters can be used depending on the needs of each
application. However, including additional higher order filters
yields diminishing returns.

Note that the bandwidth parameter σ in (3), (4), (5) is a
trainable parameter that can be updated with any gradient-
based optimization method along with the rest of the model
using backpropagation. In order to efficiently implement the
proposed method we have constructed finite length kernels
of size M , which were populated dynamically with values
drawn from the corresponding Gaussian filters. Intuitively, the
parameters σ determine how much denoising will be applied
to the corresponding versions of the input. By incorporating
it into the learning process, it can be adapted to the given
data. The greater the σ value, the smoother the signal will
be. If σ becomes large enough, then the Gaussian kernel will
converge to the mean filter. For initializing the filters, a default
value of σ = 1 can be used. Furthermore, the denominator of
the first term in each function can be also omitted as it only
provides a scaling factor that can be trivially incorporated into
the learning process.

At this point, it is important to mention that the pro-
posed method differs significantly from traditional convolu-
tional layers. Instead of adjusting a kernel that is randomly
initialized, the proposed method learns the parameters of
specific filtering functions that are directly approximated by
computing their corresponding discrete filters, imposing a very
restrictive prior model to the filtering process and reducing
the effect of overfitting. In this way, the kernels follow a
formulated structure and are not freely adjusted. This is a
critical point for the proposed method, since information that
has been removed by early layers cannot be then recovered by
subsequent layers [12]. Indeed, as we show later in the paper,
convolutional layers alone cannot extract the same features
that appear to be beneficial to the model’s performance, due to
the lack of an appropriate prior - especially when not enough
data are available. On the other hand, combining the proposed
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Fig. 1. Proposed end-to-end trainable pipeline of the proposed method. Dotted lines indicate flow of gradients, indicating backpropagating the gradients into
the filtering layers.

method with convolutional layers provides significant benefits,
indicating that the features learned using the proposed method
are indeed more useful for the subsequent analysis task and
that the employed prior is not too restrictive for the model’s
functions.

The complete pipeline of the proposed method is depicted
in Fig. 1. The input signal x is filtered using the three trainable
layers that employ the filters g(h, σ, 0) to g(h, σ, 2). Then the
output of these filters is concatenated (i.e., the number of input
channels is tripled) and fed to the subsequent DL model. The
whole pipeline can be then trained with any gradient descent-
based method in order to minimize a loss function L.

III. EXPERIMENTAL EVALUATION

The proposed method was evaluated using two datasets:
a) the PTB Diagnostic ECG (PTBDB) dataset [13] and b)
the MIT-BIH Arrhythmia (MITBIH) dataset [14]. For both
datasets, we used the versions available at [15]. For all the
conducted experiments we used the Adam optimizer [16] using
a learning rate of 10−3 and the default hyper-parameters.
The total number of epochs and batch size was set to 64
and 20 for the PTBDB dataset, while for the MITBIH we
ran the optimization for 10 epochs using larger batches of
256 samples. These values were used for all the conducted
experiments regardless of the employed architecture. For each
experiment, we repeated the training process five times (using
different initializations) and we report the average results. For
selecting the best model during the evaluation we split the
training set into 80% training and 20% validation data. All
models were trained for classification using the negative loss
likelihood loss. For the proposed method, we set the size of
the filter used for the conducted experiment to M = 11.

First, we performed a set of evaluations in order to examine
the performance of the proposed method using three baseline
neural architectures: 1) a multilayer perceptron (MLP) with 3
hidden layers (each of which contained 16 neurons that employ
the PReLu activation[17]), b) a convolutional neural network

TABLE I
EVALUATION OF THE PROPOSED METHOD WITH THREE BASELINE

ARCHITECTURES. THE AVERAGE OF EACH METRIC OF 5 DIFFERENT RUNS
IS REPORTED.

Model Accuracy F1 Precision Recall

PTBDB dataset

MLP 0.9285 0.9096 0.9118 0.9117
Proposed + MLP 0.9367 0.9190 0.9266 0.9154

CNN 0.9412 0.9269 0.9239 0.9332
Proposed + CNN 0.9542 0.9425 0.9424 0.9452

LSTM 0.9553 0.9429 0.9505 0.9378
Proposed + LSTM 0.9749 0.9683 0.9694 0.9683

MITBIH dataset

MLP 0.9469 0.7178 0.6214 0.8496
Proposed + MLP 0.9637 0.8202 0.7639 0.8854

CNN 0.9603 0.8096 0.7378 0.8969
Proposed + CNN 0.9671 0.8392 0.7938 0.8901

LSTM 0.9658 0.8221 0.7518 0.9070
Proposed + LSTM 0.9741 0.8603 0.8123 0.9142

(CNN) consisting of one convolutional layer with 16 filters
of size 3 and 3) a long-short-term-memory (LSTM) with 1
layer and hidden size 16. For the CNN and LSTM models, we
used an MLP with the same architecture (except for the input
size) for performing classification using the representations
extracted from the CNN and LSTM. The experimental results,
where we report the accuracy, F1 score, precision, and recall,
are reported in Table I. In all the evaluated cases using the
proposed method significantly increases the evaluation metrics.
For example, F1 increases by 2% (more than 3.5% for the
MITBIH dataset) when the proposed method is combined with
an LSTM, while similar improvements are also observed for
the MLP and CNN models.

Next, we evaluated the performance of the proposed method
using four state-of-the-art methodologies reported in the liter-
ature [2], [4], [5], [18]. The model proposed in [4] can be
used with a combination of convolutional and bidirectional



TABLE II
EVALUATION OF THE PROPOSED METHOD WITH STATE-OF-THE-ART
ARCHITECTURES, AS THEY ARE PROPOSED IN THE CORRESPONDING

LITERATURE. THE AVERAGE OF EACH METRIC OF 5 DIFFERENT RUNS IS
REPORTED.

Model Accuracy F1 Precision Recall

PTBDB dataset

[18] 0.9855 0.9815 0.9844 0.9795
Proposed + [18] 0.9873 0.9840 0.9861 0.9826

[2] 0.9759 0.9696 0.9699 0.9705
Proposed + [2] 0.9920 0.9901 0.9921 0.9886

[4](feed) 0.9940 0.9926 0.9927 0.9929
Proposed + [4](feed) 0.9958 0.9948 0.9947 0.9950

[4](concat.) 0.9918 0.9898 0.9901 0.9900
Proposed + [4](concat.) 0.9943 0.9927 0.9933 0.9925

[5] 0.9807 0.9754 0.9722 0.9799
Proposed + [5] 0.9872 0.9838 0.9837 0.9846

MITBIH dataset

[18] 0.9787 0.0834 0.8496 0.9199
Proposed + [18] 0.9799 0.8945 0.8679 0.9228

[2] 0.9751 0.8640 0.8235 0.9086
Proposed + [2] 0.9826 0.9084 0.8768 0.9424

[4](feed) 0.9830 0.9076 0.8815 0.9354
Proposed + [4](feed) 0.9847 0.9143 0.8964 0.9330

[4](concat) 0.9836 0.9102 0.8834 0.9388
Proposed + [4](concat) 0.9840 0.9139 0.8891 0.9401

[5] 0.9769 0.8826 0.8536 0.9136
Proposed + [5] 0.9786 0.8913 0.8547 0.9313

LSTM layers by either feeding the convolutional part to
the LSTM (abbreviated as “feed.”) or concatenating their
outputs (abbreviated as “concat.”). Therefore, we evaluated
both options. Table II summarizes the evaluation for these
methodologies. Again, using the proposed method led to sig-
nificant improvements in all the evaluated cases, demonstrating
that appropriate data pre-processing can positively impact both
the baseline models, as well as the most sophisticated ones.

Finally, we have performed an ablation study to quantify
the impact of learning the parameters of the Gaussian kernels
and validate that the positive impact on the accuracy does not
arise only from the filtering process. The experimental results
are reported in Table III, where we compare the results by
using three Gaussian filters (as in the proposed method) but
fixing the bandwidth to 1 and learning the bandwidth using
backpropagation. Even though positive results are reported for
the filtering process, possibly also due to the feature extraction
process that allows for capturing different aspects of the data,
in all cases the proposed method leads to the best evaluation
results, confirming the importance of learning the parameters
of the filters.

IV. CONCLUSIONS

In this paper, we proposed a simple, yet very effective
end-to-end trainable filtering and feature extraction pipeline,
that is formulated as a series of differentiable layers that can
be incorporated into any DL model and employ Gaussian
filters as prior. As it was experimentally demonstrated, the
proposed method can increase the performance of ECG-
based classification both for baseline architectures (e.g., MLPs,

TABLE III
ABLATION STUDY EVALUATING THE EFFECT OF USING FIXED KERNELS
(BANDWIDTH SET TO 1) AND TRAINING THE PROPOSED LAYERS IN AN

END-TO-END FASHION. RESULTS ARE REPORTED IN THE PTBDB
DATASET.

Model Accuracy F1 Precision Recall

Proposed (no train) + MLP 0.9263 0.9058 0.9161 0.9008
Proposed + MLP 0.9367 0.9190 0.9266 0.9154

Proposed (no train) + CNN 0.9457 0.9318 0.9285 0.9382
Proposed + CNN 0.9542 0.9425 0.9424 0.9452

Proposed (no train) + LSTM 0.9701 0.9627 0.9576 0.9698
Proposed + LSTM 0.9749 0.9683 0.9694 0.9683

CNNs, LSTMs) as well as for state-of-the-art architectures
proposed in the literature. Furthermore, the conducted ablation
studies validated the importance of learning the parameters of
the models in an end-to-end fashion, instead of using fixed
filters. The effectiveness of the proposed method paves the
way for applications in time-series applications, where noisy
data typically exist, such as financial time-series analysis [19].
Finally, the proposed method can be potentially combined
with end-to-end trainable normalization schemes, such as
DAIN [20] and Global Adaptive Normalization [21], to lead to
powerful normalization and filtering pipelines that can further
adapt to the input data and improve the accuracy of DL models
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