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Abstract—Precise localization is a critical task for many Un-
manned Aerial Vehicle (UAV)-based applications. Inertial-based
navigation, which relies on Inertial Measurement Units (IMUs),
is extensively used to this end, due to its low-cost and small
footprint. However, IMU-based localization leads to accumulating
significant localization errors. To overcome this limitation, in this
paper we propose a data-efficient Deep Reinforcement Learning
(DRL) method that enables learning how to correct localization
errors from IMUs leading to more precise localization. In contrast
with supervised approaches, the proposed method employs a
novel data augmentation and regularization approach, which
requires collecting a minimal number of real examples, while
it is also platform-agnostic and can account for manufacturing
impressions. The effectiveness of the proposed method is demon-
strated both in a simulation environment, as well as using a real
UAV.

Index Terms—Deep Reinforcement Learning, Inertial-based
Localization, Data Augmentation

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used
in various applications, ranging from precision agriculture [1]
and search and rescue missions [2] to indoor surveillance [3].
A common point between these applications, along with
virtually every UAV-based application, is the need for precise
UAV localization. UAV localization is critical both for mission
control purposes, i.e., some tasks are related to the location
of a UAV, as well as for safety purposes, i.e., avoid flights
over restricted areas. Several different approaches have been
developed for UAV localization, with each one relying on
different sensors and providing a different level of accuracy.

Perhaps among the most well known localization ap-
proaches is using satellite-based radio-navigation systems,
such as the Global Positioning System (GPS) [4], [5]. Despite
its low cost the accuracy of GPS and related systems is usually
low. Indeed, according to the official GPS documentation,
GPS-enabled devices are normally accurate to within a 4.9
meters (16 feet), which is unacceptable for many applications.
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At the same time, there are several locations where there is
no GPS coverage [6], while such approaches cannot be used
indoors. The use of real-time kinematic positioning can further
reduce the errors introduced in satellite-based radio naviga-
tion [7], yet it typically requires the use of extra base stations,
which increases the cost and reduces the flexibility of UAVs.
Light detection and ranging approaches [8], [9], also known
as LIDAR, can be also used to provide accurate localization,
especially when coupled with simultaneous localization and
mapping (SLAM) approaches [10]. However, such approaches
involve the use of very expensive sensors and they have greater
computational and energy demands.

On the other hand, the use of Inertial Measurement Units
(IMUs) [11], which is a combination of accelerometers,
gyroscopes, and magnetometers can provide very low-cost
solutions that also do not rely on any kind of external hardware
or communication (e.g., satellites, base stations, etc.). The
localization is accomplished by utilizing IMU data for dead
reckoning, called Inertial Navigation System (INS) [12]. The
recent demand for smaller sensors that can be integrated
into cutting-edge technologies, has prompted engineers to
build a Micro Electro-Mechanical System (MEMS) which can
provide low-cost and low-footprint sensors that can be very
easily integrated with virtually any UAV and provide real-
time measurements. Despite the cost and flexibility benefits of
such systems, they also come with accuracy limitations. IMU
sensors monitor the linear acceleration and rotational velocity
of the body with just a very small degree of inaccuracy every
time. However, over long periods these errors can accumulate
leading to significant position drifts that can comprise their
application, especially when used as a sole localization sensor
in mission critical applications.

These limitations have fueled research on methods for
improving inertial-based navigation for UAVs [13], [14],
[15]. Many recent approaches built upon Deep Learning
(DL)-based models that allow for significantly improving the
localization process. However, despite these improvements,
these approaches suffer from a significant drawback. They
mostly rely on supervised learning (either regression-based



or classification-based), which in turn requires a large num-
ber of samples to be collected and annotated to train the
corresponding methods. At the same time, such approaches
are typically linked to the hardware used for data collection
and their performance deteriorates when deployed on different
hardware, requiring collecting data again and re-training the
models. Furthermore, even when using the same hardware,
manufacturing tolerances might lead to sensors that have
different noise characteristics, which make the application of
supervised learning approaches challenging.

Deep Reinforcement Learning (DRL) can overcome these
limitations [16], since it enables autonomous agents to learn
just by interacting with the environment. Indeed, DRL meth-
ods have shown to achieve remarkable results in a variety
of tasks in recent years, often outperforming humans [17],
[18]. However, directly applying DRL for improving inertial-
based navigation for UAVs is not directly feasible since: a) a
feedback signal is still required in order to measure the quality
of the learned policy and b) a large number of episodes are
typically required for learning. Even though the first limitation
can be easily addressed, e.g., by using visual cues to provide
a feedback signal, the low-data efficiency of DRL approaches
still pose a significant limitation that prohibits such approaches
from being deployed in practice.

Based on the aforementioned observations, in this work we
propose a pipeline that can allow for easing these limitations,
enabling data-efficient DRL on UAVs for inertial-based navi-
gation. The proposed method employs a two-stage pipeline.
In the first stage, a backbone is trained using supervised
learning in a simulator. Acquiring ground truth annotations
in a simulator is easy and cheap, so this approach can enabled
us to train a backbone that can capture the dynamics of the
behavior of IMUs without targeting a specific sensor.

Then, the employed DL model is fine-tuned using DRL on
a real UAV. In our paper, we focused on improving the data
efficiency of DRL methods when applied to the problem of
inertial-based UAV localization error correction, which is not
a simple combination of existing methods. We concentrated on
developing methods that would allow us to train and deploy
DRL approaches directly on UAVs, which requires minimizing
the amount of data gathered. The selection of DRL was not
arbitrary; we proceed with this framework due to the difficulty
of acquiring ground truth data in real time.

Since this can be an especially data-intensive process, we
further propose: a) a data augmentation method that can gen-
erate multiple simulated episode trajectories just from one real
episode; this is essential in order to maximize the quantity of
information that might be exploited without running repeated
episodes, and b) a regularizer than can provide additional
feedback when fine-tuning the learned policy based on the sign
of the measured reward signal. These methods are intended to
minimize the experiments performed using a real UAV, as well
as are problem-specific and, to the best of our knowledge, nei-
ther has ever been proposed. For acquiring a reward signal, we
propose a simple, yet efficient visual landmark-based approach
that can be used even with low-resolution cameras. As we

demonstrated through extensive experiments on regressing the
2D position of a UAV, the proposed method can indeed lead
to significant performance improvements over the employed
baseline approaches.

The rest of the paper is structured as follows. First, Section
II introduces the proposed methodology, while the experi-
mental evaluation of the proposed method is provided in
Section III. Finally, conclusions are drawn in Section IV.

II. PROPOSED METHOD

A. Background

The simplest method to localize a UAV using a inertial-
based approach is to employ a first-order numerical approach
to solve ordinary differential equations (ODEs), which is
sometimes referred to as Euler’s method. Specifically, Euler’s
method employs the basic formula:

y(t+ h) = y(t) + h ∗ f(t, x), (1)

where the f(t, x) is simply the dx/dt amount. In our case,
time-step is represented by h, time by t, position by x, and
velocity by f(t, x). Thus, we estimate the next instant position,
taking into account an initial position at every constant time-
step. Note, we assume that velocity between two measure-
ments remains constant throughout the flight. This simple
approach enables UAV localization through IMU sensors that
can be provide acceleration/speed estimates. However, the
noise that it is introduced by IMUs can lead to a significant
drift in the estimation of UAV position using this approach.

Neural Networks (NNs) can be employed in a supervised
learning setting in order to learn how these errors should be
corrected, allowing for improving the localization accuracy.
Let GW : Rm → Rn denote a regression model, parame-
terized by weights W, with m inputs and n outputs. Also,
let v ∈ Rm denote a vector that contains the most recent
velocity measurements, including the current one, provided
by the IMU. Then, the model y = GW(·) can be trained to
provide corrected estimates for the current velocity, denoted
by y ∈ Rn. Note that typically n = 2, since we are interested
in estimating the speed in the 2d plane, ignoring the speed in
the vertical to this plane axis (height), since altimeter sensors
can provide reliable estimates for the vertical speed. Similarly,
m is typically set to m = 2 × T , where T denotes the
history (number of time steps) to include in the input that will
be fed to the neural network that will provide the corrected
speed estimates. Training GW(·) is straightforward, since we
just need to collect enough training samples of IMU velocity
estimates and the corresponding ground truth velocities. Then,
the mean square error can be used for training the neural
network estimator using gradient descent. Furthermore, note
that typically the estimator GW(·) is fitted to regress the
velocity errors instead of the actual velocities, since this
accelerates the learning process. After estimating the velocity
error, then the corrected velocity can be used in (1) to acquire
a more reliable estimation of the UAV’s position.



B. Data-efficient DRL-based training

Even through the aforementioned process can be easily per-
formed inside a simulation environment, it is very expensive to
perform using real UAVs, since extra equipment is required for
measuring the accurate position of a UAV and a large number
of samples need to be collected. Therefore, in this paper we
propose a two step pipeline that consists of the following steps:
a) train a generic DL-based backbone model in a simulator
to correct generic IMU errors and b) fine-tune this model
on a real UAV using DRL. This process can overcome the
need to collect a large number of annotated training samples
using a real UAV. However, as mentioned in Introduction, DRL
methods are also data intensive. To overcome this limitation,
we proposed to use a data augmentation method coupled with
a regularizer that can increase data efficiency.

In this work, we propose to employ a DRL agent in
order to provide continuous corrections to UAVs estimates.
More specifically, we introduce a virtual agent that controls
the estimation of the UAV’s position. Hence, there are two
positions: the actual UAV and a sphere indicating its estimated
position. The DRL agent controls the latter by providing
continuous corrections in the two axes of the 2d plane. This
setup also enables an easy way to acquire the feedback signal
for training the agent both in simulation and in real word.
More specifically, in simulation, for each episode the UAV
runs a predetermined course, e.g,. 2 meters to the North and
1 meter to the East. Then, when the episode is finished, we
project the virtual UAV’s position as a black mark onto the
floor, and then, the UAV uses its camera to snap an image
and provide the reward signal. To present this concept with
an example to be more intuitively, if the position of the UAV
is accurate, the black mark will be centered in the captured
image. In contrast, the black mark would be in a different
location if the positions of the actual and virtual locations are
different. Then, the reward for each axis k can be calculated
as:

Rk =
1

1 + |pk|
, (2)

where pk is the distance in pixels between the black mark
and the center of the captured image (which represents the
position of the UAV). In real deployment, the black mark
will represent the desired UAV position based on the provided
control command. Then, the reward can be calculated in a
similar fashion and provide the same behavior (maximize
as the agent better corrects the displacement estimations).
This process enables training the DRL agent without having
access to ground truth data regarding the actual speed and/or
displacement on each step.

In this work, we employ Proximal Policy Optimization
(PPO) [19] for training the agent. This is without loss of
generality, since any DRL method that can support continuous
action spaces can be used. Furthermore, since the aim is
to accelerate the learning process as much as possible, we
employed the supervised learning model that was pre-trained
on the simulator to initialize the weights of the actor model.

Therefore, the DRL method is employed to fine-tune the DL
model to the actual hardware used in the UAV. To further
increase the efficiency of the learning process we designed and
used a data augmentation method to create additional episodes
during the training. The main concept is that the reward of an
episode remains unchanged if the angle of velocity vectors
and the actions are rotated simultaneously. To this end, the
proposed method selects the episode with the highest reward
from the buffered episodes and then several synthetic episodes
are created by rotating the velocities and actions by a random
angle ϕ ∈ [0, 360).

Finally, to further increase the learning speed and minimize
the number of training episodes required to fine-tune the
agent to the actual IMU used, we propose employing a
hint regularizer that provides additional supervision based on
whether the agent is currently overshooting or undershooting
the desired position (as indicated by the sign of the distance
in (2)). Therefore, the regularizer for each axis is defined as:

Lreg,k = −αreg · δk · gRL(x) (3)

where αreg is the weight of the regularizer, δk it is a
binary variable {−1, 1} indicating whether we are currently
overshooting or undershooting the target position and gRL(x)
is the agent’s output. Then, the overall loss is calculated by
simply adding the regularizer for both axis to the PPO loss.

III. EXPERIMENTAL EVALUATION

We conducted experiments using both a simulated envi-
ronment, i.e., for supervised learning and validation of the
proposed DRL approach, as well as a real UAV. For the simu-
lated experiments, we employed Webots [20]. For supervised
learning, we collected 500 episodes with velocities and ground
truth positions. We also experimentally found that the IMU
measurement is biased depending on the vehicle’s velocity
and it is always underestimated. Therefore, we estimate the
velocity bias in the simulation environment as:

v/(1 + 1/(1 + c ∗ |v|)), (4)

where c is an IMU-depended factor and v is the ground truth
velocity. For the supervised learning model, we used c = 5,
while for the evaluation we used in all cases c = 2 to simulate
the drift that can occur due to hardware changes.

The IMU was pooled with a frequency of 25Hz, while each
episode has a total length of 10 seconds. We also used an
MLP with two hidden layers as a backbone, with 12 neurons
each with the tanh activation. Then, the network culminates
in two branches that output corrections for each dimension. In
every branch, there are two extra trainable parameters, which
are used for shifting and scaling the output of the network. We
found that when we re-train the network with new data from
alternative sensors, the convergence succeeds more quickly
due to these variables, which allows for promptly shifting
and scaling the output without refitting all the weights of the
backbone. Similar results, yet for input normalization, have
also been reported in the literature [21]. The network receives
a one-second time frame of velocities, i.e., 25 measurements



Baseline Supervised method RL-based fine-tuning

Fig. 1. Comparison between baseline (Euler’s method) (left), supervised training (middle) and RL-based fine-tuning (right). Each axis corresponds to the
displacement of a UAV in the 2d space when flying on a pre-determined course.

along each of the two axes, and returns two corrections, one
of each axis. The mean squared error was used for training
the supervised model using the Adam optimizer and a learning
rate of 3 × 10−2. The optimization ran for 10 epochs with a
batch size of 512, while the learning rate was reduced when
the learning process approached a plateau (the reduction factor
was set to 0.1 and patience to 10). For the DRL setup, we used
the same configuration as the previous model for the actor,
while an MLP with 2 hidden layers with 12 neurons each
was used as a critic. The models were trained for 30 epochs
with a learning rate of 9 × 10−5 and 5 × 10−3 in actor and
critic accordingly. PPO algorithm was used for fitting the DRL
agent, while the clipping factor was set to 0.15.

First, we evaluated the proposed method in simulation using
Webots. The experimental comparison between Euler’s method
with no corrections, the supervised method trained on a model
with c = 5, and the proposed RL-based fine-tuning of the
supervised model are shown in Fig. 1. As demonstrated, using
DRL to fine-tune the model trained in simulation to adjust the
actual characteristics of a specific UAV leads to significant
improvements. Based on these observations we evaluated the
ability of the proposed data-efficient RL approach compared to
the baseline Euler method. The results are reported in Table I
where we report the mean squared error (MSE), mean distance
(MD), mean positional error (MPE), and absolute trajectory
error (ATE) between the ground truth displacement and the
one estimated by the DRL models. These results indicate that
the proposed method can improve DRL agents’ performance
when training under a constrained number of episodes (i.e., 30
episodes). Note that as the duration of an episode increases,
the error still accumulates. Nonetheless, the proposed method
manages to significantly reduce all the error metrics compared
to the baseline. Finally, we also validated the proposed method
using data collected from a DJI Mavic mini 2 UAV using
different velocities. The results reported in Table II again
confirm that for a wide range of different speeds the proposed

TABLE I
DRL FINE-TUNING EVALUATION ON WEBOTS USING A DISTRIBUTION

SHIFT SCENARIO (c CHANGES FROM 5 TO 2).

10 secs

metrics baseline supervised proposed

MSE 12.297 2.975 0.101
MD 3.438 1.692 0.286
MPE 1.714 0.931 0.212
ATE 2.008 1.073 0.251

100 secs

MSE 1225.922 312.100 18.832
MD 34.437 17.444 3.816
MPE 18.376 141.05 2.053
ATE 21.014 10.696 7.613

TABLE II
DRL FINE-TUNING EVALUATION USING A DJI MAVIC 2 UAV. THE

PERCENTAGE OF ESTIMATED DISTANCE COVERED TO THE TRUE DISTANCE
(MPE, %) IS REPORTED FOR DIFFERENT FLYING SPEEDS.

Vel. (m/s) 0.1 0.3 1.1 1.4 2.2 2.8

baseline (%) 46.58 86.20 87.51 94.46 96.06 95.70
proposed (%) 80.59 98.14 106.89 99.31 102.98 98.14

method still leads to better performance.

IV. CONCLUSIONS

In this paper, we proposed a data-efficient DRL approach for
improving inertial-based navigation for a UAV. The proposed
method employed a two-stage pipeline: in the first stage, a
backbone is trained using supervised learning, while in the
second stage a data-efficient DRL-based approach for fine-
tuning is used. We demonstrated that the proposed method can
indeed allow for improving inertial-based navigation, focusing
on cases where the IMUs used in UAVs can have different
characteristics requiring UAV-specific fine-tuning using a very
small number of real episodes.
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