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ABSTRACT

Deep Learning (DL) models have enabled very accurate pose
estimation. However, most of the existing approaches require
images of relatively high resolution, since locating body parts
and joints accurately is challenging, which increases the com-
putational cost of these approaches. To overcome this limita-
tion in this paper we propose an active perception method for
high-resolution pose estimation that enables efficiently select-
ing the most appropriate image region for analysis and then
employing a bottom-up pose estimator on the corresponding
region. This allows for significantly improving the efficiency
of pose estimation by selectively analyzing in high resolution
only the parts of the image that contain humans. To ensure
the computational efficiency of the proposed method we pro-
pose using low-resolution heat maps extracted using the same
pose estimation model in order to guide the active percep-
tion process. The proposed method is model agnostic since it
can be combined with any bottom-up pose estimation model
in order to enable high-resolution analysis. We have experi-
mentally evaluated the proposed method using a well-known
pose estimation model, Lightweight OpenPose, demonstrat-
ing its effectiveness on three high-resolution variants of the
COCO2017 dataset.

Index Terms— pose estimation, high resolution, active
perception, deep learning

1. INTRODUCTION

Human pose estimation is a challenging problem that con-
cerns locating the human body parts, as well as the overall
pose of humans. The advent of Deep Learning (DL) models
has enabled very accurate pose estimation [1, 2, 3]. This led to
a wide range of applications of human pose estimation span-
ning over many different fields, such as sports [4], healthcare,
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and others [5, 6]. Most of the existing approaches require im-
ages of relatively high resolution, since locating body parts
and joints accurately is a challenging task. Indeed, the wide
availability of high-resolution (HR) sensors enables accurate
pose estimation, even on mobile devices that are nowadays
equipped with HR cameras.

However, this also comes with a significant computational
cost, since processing and analyzing HR images require pow-
erful hardware. The deployment of such algorithms on mo-
bile devices becomes even harder when real-time constraints
exist [7]. In such cases, most algorithms typically downscale
the input image in order to meet real-time requirements and
keep the computational power within the envelope of the de-
vice at hand. As we also experimentally demonstrate in this
paper, this also comes with a significant reduction in pose es-
timation accuracy. As a result, we end up having to choose
between accurate, yet slow algorithms for pose estimation (if
high-resolution images are fed to the model) or faster, yet less
accurate pose estimation (if the original images are down-
scaled before being fed to the model).

At this point, it is worth noting that even though the orig-
inal image is high resolution, usually humans only cover a
small part of the input image. However, existing methods
either analyze the whole frame at once (bottom-up) [8, 9], re-
gardless of the number of people that appear, or require the
use of human detectors (top-down) [10] to first detect and
crop the regions where persons appear. The first category
spends a lot of time analyzing the whole image even though
persons typically do not appear in most of the frame. On the
other hand, the second category has the potential to speed up
inference by only analyzing the parts of the image where per-
sons appear. However, it requires the use of person detectors
that are also computationally heavy and typically unable to
process high-resolution images in real-time on embedded de-
vices [11]. Furthermore, these approaches do not scale well,
since the running time increases proportionally to the num-
ber of detected persons. Therefore, a question that naturally
arises is if it is possible to only analyze the parts of the images
that are of interest for human pose estimation while maintain-



Fig. 1: Pipeline of the proposed method. Note that the same pose estimation model is employed twice, i.e., one time to extract
the heatmap that drives the active perception process (selecting the ROI to crop), and one time to extract the final poses.

ing the advantages and speed of bottom approaches. Active
perception methodologies [12, 13], which allow DL models
to focus on specific parts of the input image, can provide a
solution to this problem, by allowing only for analyzing se-
lected regions of interest in the input image. Of course, such
models should be fast enough in order to avoid spending more
time in selecting such regions compared to the time required
for analyzing the input.

The main contribution of this paper is an active percep-
tion method for HR pose estimation that enables efficiently
selecting the most appropriate image region analysis and then
employing a bottom-up pose estimator on the corresponding
region. Intuitively, the proposed method works in a similar
fashion to the way humans process images, i.e., we first take
a brief look into the input image and then further analyze
(look) into specific regions. In order to make the proposed
method computationally efficient, we avoid having a separate
active perception network, as typically happens in active per-
ception [14]. Instead, we take advantage of the existing back-
bone of a DL-based pose estimation model in order to extract
a heatmap that guides the active perception module. We have
experimentally found out that this process can be performed
using a down-scaled version of the input image, which can
significantly speed up the inference of the model. Then, we
crop the selected region of interest (ROI) that is fed into the
same model in high resolution. This pipeline enables to pro-
cess high-resolution images significantly faster compared to
feeding the original high-resolution image and with signifi-
cantly better accuracy compared to performing down-scaling.
It is worth noting that the proposed method is model agnostic
since it can be combined with any bottom-up pose estimation
model in order to enable high-resolution analysis. In this pa-
per we have experimentally evaluated the proposed method
using a well-known pose estimation model, OpenPose [1],
demonstrating its effectiveness on three high-resolution vari-
ants of the COCO2017 dataset [15].

The rest of the paper is structured as follows. First, the
proposed method is introduced in Section 2. Then, the exper-
imental evaluation is provided in Section 3. Finally, conclu-
sions are drawn in Section 4.

2. PROPOSED METHOD

The main idea of the proposed method is to selectively an-
alyze only the portion of the input images that contain use-
ful information and discard the rest of the input, allowing for
both improving inference speed, as well as maintaining accu-
racy by analyzing the parts of the image where people might
appear in high resolution. The outline of the proposed method
is presented in Fig. 1.

The first step of the proposed method is to create a con-
fidence map of humans in the frame (heatmap). Let X ∈
Rn×m×c be an input image to be analyzed, where n is the
height, m is the width of the image and c is the number of
channels. To generate the heatmap we employ a pose estima-
tion model fW (·), where W are the trainable parameters of
the model. Even though the model fW (·) is trained to detect
body parts and joints, it can be directly used to detect regions
of potential interest since these appear on humans. Note that
during this step, we are not interested in estimating the exact
pose of a human. Therefore, we can use a low-resolution ver-
sion of X in order to identify potential regions of interest. To
this end, we employ a downscaling function g(·) in order to
acquire the heatmap as:

YH = fW (g(X)) ∈ Rn′×m′×c′ , (1)

where n′ and m′ are the width and height of the extracted
heatmap and c′ is the number of joints/body parts to be de-
tected (since the detectors typically extract one heatmap of
each joint/body part). In this work, we perform simple aver-
aging in order to downscale the image to the desired resolu-
tion. In practice, this can be implemented as part of the model



using the appropriate pooling layer. As shown in Fig. 2, we
can downscale the image by a factor of 6 and still be able
to identify regions where humans appear. To acquire the final
heatmap that can be used for active perception we simply sum
the confidences for all potential detections as:

Y =

c′∑
i=1

[YH ]i ∈ Rn′×m′
, (2)

where [YH ]i denotes the i-th slice of heatmap YH . This
heatmap is further filtered and smoothed by clipping values
below a threshold value c = 0.1 and using a 2D average fil-
ter with kernel k = 5. At this point, the heatmap shows an
approximation of the human figures and it needs to be found
the area of interest to be cropped from the original frame. In
order to get the area of interest a simple but effective method
is used. We locate the most upper-left and the most down-
right pixels of the heatmap with a non-zero value, and we
keep those coordinates in order to crop the original image.
The area of interest in this heatmap is denoted by bheatmap,
defined as:

bheatmap = [xmin, ymin, xmax, ymax], (3)

where xmin, ymin, xmax, ymax are the top-left and bottom-
right coordinates.

Note that the coordinates of the bounding box boundaries
expressed in the heatmap correspond to the resized image
size. Therefore, to crop the area of interest of the high-
resolution input image properly, these coordinates must be
transformed to match the real input image size. This step
is crucial to ensure that the method accurately identifies the
area of interest and produces reliable pose estimation results.
Therefore, we define the area in the original high-resolution
image to be cropped as:

bROI = [x′
min, y

′
min, x

′
max, ymax], (4)

where

[x′
min, x

′
max] = [xmin, xmax] ·

m

m′ s, (5)

[y′min, y
′
max] = [ymin, ymax] ·

n

n′ s, (6)

s is the scaling factor that is applied to the input image in or-
der to be resized on the desired value. This scaling factor
should also take into account possible down-sampling per-
formed by the model as the heatmap is extracted. We also
denoted by A the final region of interest extracted from the
original image X after cropping the area bROI .

Then, the area of interest that is extracted from the origi-
nal high-resolution image is fed to the pose estimation model
again:

Y′
H = fW (A) ∈ Rn′′×m′′

, (7)

where Y′ is the new heatmap produced from the estimator
and A is the new (n′′,m′′) cropped image, where n′′,m′′ are

(a) Initial input image

(b) Heatmap when HR image is fed to the model

(c) Heatmap from input image when resized before fed
to the model

Fig. 2: Comparing heatmaps generated when the input image
(a) is directly fed to the model (b) or downscaled by a factor
of about 4 (c). We can see that even though the downscaled
image is not appropriate for localizing the keypoints, it is ad-
equate for detecting regions of interest.

its width and height dimensions. Then, this heatmap is appro-
priately processed based on the method used for pose estima-
tion, e.g., by applying non-maximum suppression and incor-
porating information from Part Affinity Fields for the Open-
Pose algorithm [1]. Finally, note that the poses obtained from
the previous step are calculated on a resized cropped image,
where the predicted keypoints are represented in a local sys-
tem of coordinates. Therefore, it is necessary to transform
these keypoints back into the original coordinate system of
the high-resolution input image before returning the predicted
poses. This can be trivially implemented by performing the
appropriate translations based on bROI .



Table 1: Comparing the proposed method to the LW Open-
Pose approach. The average perception (0.5:0.95) is reported.
We also report the speed (FPS) in parentheses. Higher values
indicate better performance.

Dataset LW OpenPose Proposed

COCO (Original) 0.400 (35 FPS) 0.415 (35 FPS)
COCO (720p) 0.288 (27 FPS) 0.359 (31 FPS)
COCO (1080p) 0.172 (23 FPS) 0.312 (40 FPS)
COCO (1440p 0.111 (20 FPS) 0.274 (54 FPS)

3. EXPERIMENTAL EVALUATION

The proposed method was evaluated using the COCO2017
dataset, which contains 5000 images, with almost 50% de-
picting at least one person. Furthermore, to simulate the ef-
fect of having high-resolution images we created a synthetic
dataset based on the COCO2017 since no large-scale high-
resolution datasets for pose estimation exist to the best of our
knowledge. Therefore, three additional datasets were created
by randomly placing the original images onto a white canvas
of larger resolutions of 1280×720 (720p dataset), 1920×1080
(1080p dataset), and 2560×1440 (1440p dataset), respec-
tively. The annotations were appropriately translated in order
to match the generated images. For all the conducted ex-
periments using the proposed method, we performed down-
scaling both for the original image and the extracted region
of interest to a height of 360 pixels. Furthermore, for all
the conducted experiments we employ a fast and lightweight
bottom-up pose estimation, the Lightweight OpenPose (LW
OpenPose) [16]. The inference speed was measured using an
8-core workstation with an NVIDIA 2070 Super GPU with
8GB of VRAM.

First, in Table 1 we compare the proposed method to the
baseline Lightweight OpenPose approach, which resizes the
input images to a height of 368 before processing. In all
evaluated cases, including the original dataset the proposed
method leads to significant performance improvements while
meeting or even exceeding in many cases the real-time re-
quirements (≥ 25 FPS). For example, for the highest reso-
lution dataset (1440p) the average precision increases from
0.111 to 0.274. Please also note that the inference speed in-
creases in the proposed method as the resolution increases.
This is a (positive) side effect of the employed active percep-
tion procedure, since if there are no regions of interest identi-
fied during the first step, then the second step is not activated.
At the same time, note that the proposed method can avoid
the costly rescalings involved in the original LW OpenPose
approach, which can lead to increasing the inference speed
(for the LW OpenPose).

Furthermore, we have noticed that for high-resolution im-
ages the heatmap activations are not accurate enough, which
could lead to extracting larger areas of interest. To examine

Table 2: Comparing different resizing options for the second
stage of the proposed method, along with the impact of di-
rectly using high-resolution images (Raw HR).

Dataset COCO (1080p) COCO (1440p)

Proposed (Setup 1) 0.312 (40 FPS) 0.274 (54 FPS)
Proposed (Setup 2) 0.393 (25 FPS) 0.334 (38 FPS)
Proposed (Setup 3) 0.408 (14 FPS) 0.342 (24 FPS)

Raw HR 0.424 (2.7 FPS) OUT OF MEMORY

if we could overcome this limitation by employing higher
resolution crops during the second stage of the proposed
method we also performed an additional evaluation, where
the cropped area was resized to 540 pixels (Setup 2) and 720
pixels (Setup 3) respectively. The experimental results are
reported in Table 2 and compared to the baseline proposed
method (Setup 1), as well as to the LW OpenPose without
performing any kind of rescaling (abbreviated as “Raw HR”).
First, note that increasing the size of the images during the
second stage led to increasing the pose estimation accuracy
in all stages. However, this also comes with a decrease in the
observed speed, which - however - remains comparable with
the LW OpenPose while achieving significantly better preci-
sion (Table 1). Furthermore, note that even though directly
using the raw HR images leads to increased precision, the
speed is reduced over one order of magnitude, while using
1440p images was not possible despite using a GPU with
8GB of VRAM.

4. CONCLUSIONS

In this paper, we proposed an active-perception method for
HR pose estimation that allows for efficiently selecting the
most appropriate image region analysis and then employ-
ing a bottom-up pose estimator on the corresponding region.
The proposed method was evaluated on three high-resolution
variants of the COCO2017 dataset leading to significant
improvements, allowing for improving pose estimation pre-
cision, while reducing inference time. Furthermore, the
proposed method can be tuned to meet the requirements
(speed-precision trade-off) by appropriately tuning the resiz-
ing dimensions used in the first and second inference steps.
The obtained results also highlight the potential of active per-
ception approaches in HR analysis paving way for enabling
HR analysis for other tasks, e.g. object detection [17], crowd
counting [18], and others. Also, the proposed method used a
simple, yet effective process for selecting the region of inter-
est. However, more intelligent approaches could be used to
produce more than one region of interest, e.g. by employing
neural regions of interest-based proposals [19].
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