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Abstract—Deep Learning (DL) has brought significant ad-
vances to robotics vision tasks. However, most existing DL meth-
ods have a major shortcoming - they rely on a static inference
paradigm inherent in traditional computer vision pipelines. On
the other hand, recent studies have found that active perception
improves the perception abilities of various models by going
beyond these static paradigms. Despite the significant potential
of active perception, it poses several challenges, primarily
involving significant changes in training pipelines for deep
learning models. To overcome these limitations, in this work,
we propose a generic supervised active perception pipeline for
object detection that can be trained using existing off-the-shelf
object detectors, while also leveraging advances in simulation
environments. To this end, the proposed method employs an
additional neural network architecture that estimates better
viewpoints in cases where the object detector confidence is
insufficient. The proposed method was evaluated on synthetic
datasets - constructed within the Webots robotics simulator -,
showcasing its effectiveness in two object detection cases.

Index Terms—Active Object Detection, Active Perception,
Deep Learning

I. INTRODUCTION

Deep Learning (DL) has significantly advanced robotics
vision tasks in recent years, including object detection and
recognition [1], scene segmentation [2], face recognition [3],
and more. These breakthroughs have led to impressive ap-
plications such as autonomous cars, drones, and robots that
can collaborate with humans on various tasks. However, most
DL methods rely on a static inference paradigm that ignores
the fact that robots can interact with their environment to
gather more information. One way to address this limitation
is through active perception [4]–[6], which involves manipu-
lating the robot or sensor to obtain a clearer view or signal.
For example, adjusting a robot’s pose in three-dimensional
space can often improve its ability to detect objects by
taking advantage of different perspectives and lighting con-
ditions. This process is similar to how humans and animals
interact with their environment, such as humans looking
from different angles to process complex visual stimuli, or
animals rotating their ears towards an audio source [7]. By
incorporating active perception techniques into DL models,
robots can improve their situational awareness and better
adapt to dynamic environments. The proposed method shows
potential for improving object detection capabilities in dy-
namic environments and could lead to advancements in the
field of robotics.

Recent studies have shown that active perception can sig-
nificantly improve the perception abilities of various models.
One promising approach is reinforcement learning, which

can be used to train deep learning models for active per-
ception. This is demonstrated in [8], where factors such as
viewing angle, occlusions, and object scale can greatly affect
recognition accuracy. Similar results have been reported in
more recent works [9]–[11]. It is worth noting that active
perception approaches can often also lead to the creation of
faster and lighter DL models, as they are trained to solve
a simplified problem, such as face recognition from specific
viewpoints [12]. Despite the significant potential of active
perception, they also pose several challenges, primarily a
significant change in training pipelines for deep learning
models. Some approaches often require dedicated datasets to
support active perception e.g., [12], which can be expensive
to collect. At the same time, others rely on reinforcement
learning to learn an active perception policy [8], [13], which
is difficult to train and suffers from low data efficiency.
These challenges make it difficult to implement generic active
perception-enabled deep learning models that can be used for
a variety of different applications.

To overcome these limitations, our proposed method em-
ploys an additional neural network architecture that generates
movement proposals when the confidence of the object
detector is insufficient. To train this architecture, we propose
constructing a confidence manifold of the object detector
using a 3D simulation environment. Specifically, we train a
navigation regressor to guide the robot towards regions with
higher object detection confidence, enabling the system to
actively perceive and explore the environment. By internally
representing the confidence manifold of a variety of object
classes -through training- in the Navigation Network, our
approach can efficiently learn to explore and perceive the
environment in a targeted manner. At the same time, the risk
of distribution shifts [14] due to the use of a simulator can be
mitigated to some extend, since the original object detector
is not required to be trained in simulation, while the use of
supervised learning instead of reinforcement learning makes
this process much easier to apply in practice.

The rest of the paper is structured as follows. The proposed
method is presented in Section II. Then, the experimental
evaluation is provided in Section III. Finally, conclusions are
included in Section IV.

II. PROPOSED METHOD

In this section, we present a high-level summary of the
active perception approach pipeline, while also delving into
the specific steps involved in training the navigation proposal
network that forms a key part of this approach.



Fig. 1: Illustrates the execution of a navigation proposal in the
proposed active perception pipeline. If the object detector’s
confidence score falls below a threshold, indicating uncer-
tainty regarding the detected object, the navigation network
generates a navigation proposal that directs the robot to
move towards regions with potentially higher object detection
confidence. During the execution of the navigation proposal,
object detection is also performed at predefined points along
the path as shown in Fig. 2.

A. Active Perception Pipeline

The proposed pipeline is outlined in Fig. 1. First, (i)
object detection is executed and the confidence of the
object of interest is evaluated. If the detection is below a
desired threshold, e.g., 80%, then (ii) the navigation module
triggers and proposes a position/rotation in the 3D space.
After executing this navigation proposal, an updated view is
obtained that can lead to increased object detection accuracy.
In the remainder of this subsection we provide details for
each of the employed steps.

Phase 1: Initial Object Detection
In this step, a regular deep learning-based object detector
is employed. This detector can be described as a function
fdetect(xi), where xi is the observation at the i-th time step.
The observation in this particular case is a 2D projection
(a camera image) of the 3D world in which the robot
resides. The detector produces a confidence score pi which
describes the certainty of the appearance of the object
of interest in the observation xi, as well as its location
and size (yh, yv, w, h) in the 2D input space (image).
If the confidence score pi of the object of interest is
below a threshold (i.e., if the detection is inadequate),
then we proceed with Phase 2 and Phase 3 in order to
improve the results. Note that employing correctly calibrated
object detectors for uncertainty estimation is critical.
Therefore, uncertainty quantification [15] and confidence
calibration [16] approaches can be employed for this purpose.

Phase 2: Navigation Proposal
The subsequent step entails identifying the optimal robot
movement that can maximize the object detection confidence
score. To this end, in this work we employ a dedicated
navigation network. A convolutional neural network
designed for regression tasks that can estimate the optimal
navigation plan by maximizing the confidence score. In
other words, we try to maximize the confidence pi+1 of

Fig. 2: Movement example of a robot that performs active
perception in order to increase object detection confidence,
while moving towards the object (inwards movement). Note
the intermediate points (a1 to a4) where object detection
is re-employed. Red point: Initial Position, Green point:
Navigation Proposal.

Fig. 3: Movement example of a robot that performs active
perception in order to increase object detection confidence,
while moving away from the object (outwards movement).
Note the intermediate points (a1 to a4) where object detection
is re-employed. Red point: Initial Position, Green point:
Navigation Proposal.

the object detector at the next observation xi+1 at the next
time step i + 1. The navigation module is a function that
takes the observation xi as input and outputs the optimal
translation and rotation vectors zi+1 and ri+1 for the robot’s
movement, respectively. These vectors direct the robot to
the next optimal point in the 3D space by utilizing distilled
knowledge from the confidence manifolds that has been
trained on. The final step of this phase involves applying



these transformations to the robot. The optimal rotation
vector ri+1 generated by the navigation module directs
the robot to rotate around the object of interest, while the
translation vector zi+1 determines the direction and distance
of the robot’s frontal or backward movement,

Phase 3: Object Detection in Trajectory
Given the estimated translation vector zi+1 and rotation
vector ri+1 we can formulate a trajectory from the starting
point at time step i to the ending (optimal) point at time step
i + 1. As the robot moves along the computed trajectory,
object detection can be performed multiple times to evaluate
the object detection confidence score until it reaches the
final destination, thereby further improving the perception
accuracy of the system. An example of such a robot
movement is depicted in Fig. 2. Similarly, the proposed
method can be applied to perform movements where the
robot moves away from the object of interest, as shown in
Fig. 3.

B. Navigation Proposal Network Training

In order to train the navigation proposal network fnav(xi),
acquiring ground truth annotations is necessary. Without loss
of generality, the proposed approach can be first applied to the
one-dimensional case, where the navigation proposals involve
navigation along a single axis, such as the angle between
the robot and the object as the robot moves on a circular
trajectory around the object. In this case, the confidence of
the object detector can be exhaustively evaluated for each
discrete point on the circle after quantization. Then, for each
angle θ there is a corresponding observation xθ, as well as
a confidence pθ, acquired from object detection fdetect(·).
For each of these observations, a navigation proposal can
be generated, i.e., a target angle tθ, which quantifies robots
rotation with the object of interest as pivot point. Essentially
this process is identifying the nearest point on the circle
where the object detection confidence score exceeds a pre-
defined threshold pthres. The Navigation Proposal Network
can be effectively trained by minimizing the regression
error between the ground truth navigation proposals and
the network’s estimated proposals. This can be achieved by
formulating the navigation loss Lnav as follows:

Lnav = (fnav(xθ)− tθ)
2. (1)

To minimize Lnav , we employ the widely used back-
propagation technique. This involves computing the gradients
of the objective function with respect to the network’s pa-
rameters, and updating the parameters using an optimization
algorithm. Note that the proposed method can be trivially
extended to handle 3D control, as demonstrated in the ex-
perimental evaluation, by employing the l2 distance between
the target and regressed rotation and translation vectors,
and by extending the ground truth generation process to
additional axes. This process is also further explained in
Section III, including both a 2D example (Fig. 4), as well
as 3D evaluation (Fig. 5 and 6).

III. EXPERIMENTAL EVALUATION

The proposed method was evaluated using the Webots
simulation environment, using a DJI Mavic drone as a robot.

A core controller for the drone has been developed, which
offers essential functionalities related to movement control
and sensor data acquisition. More specifically, the drone can
be moved in two distinct ways, either by utilizing the Super-
visor class in Webots [17], which allows instant translation/
rotation anywhere in the three dimensional space bypassing
the physics of the simulation, or by fully activating the drone
motors and the atmosphere/gravity in the environment to
test for real-world conditions. Furthermore, a camera system
has been implemented on the drone to enable visual data
acquisition. The camera captures data in 30 frames per
second. The developed simulation environment has been used
to create two distinct datasets for training the employed deep
learning models: a classic object detection dataset and an
active perception dataset that supports the corresponding task.
Simulated 3D models of a Tesla Model S and a Toyota
Corolla, as well as realistic 3D human models and dolls, were
used to conduct the experiments inside the Webots simulation
environment. All of the synthetic data were created using
aforementioned method. These datasets were then utilized to
fine-tune pre-trained object detectors within this environment,
as well as train the custom navigation network from scratch.
For the regular object detection dataset, images of cars
and persons were extracted in different world settings and
angles. The object detector was fine-tuned using a total of
5,000 images captured at 65 different radius values and
76 angles around the objects of interest. The additional
training/finetuning step was undertaken to enhance the perfor-
mance of the object detector for our specific use case, instead
of relying on a generic trained object detector. Although
optional, this step was deemed necessary to prevent potential
distribution shifts during the evaluation of the object detector.
Each image in the dataset is labeled with a pair of rotation
and translation vectors that direct the drone to a viewpoint in
the 3D space that provides a more informative observation
for the subsequent image, as described in Section II. The max
distance from the objects was 60 meters.

The proposed architecture consists of two distinct neu-
ral networks, namely the object detection network and the
navigation proposal network. The object detection network
continuously scans the environment for objects, specifically
cars or persons in this experiment, and performs adequately
when the detection confidence exceeds a predefined thresh-
old. When the object detector fails to identify the objects with
sufficient accuracy, the navigation proposal neural network
takes control to suggest a movement in the 3D space that
enhances object detection performance. Notably, both neural
networks use the same input data, which comprises the video
stream frames captured by the drone’s camera. In this work,
we use an SSD-based architecture for object detection [18]
with the addition of a VGG feature extraction layer [19].
Furthermore a set of auxiliary convolutional layers (from
conv6 onwards) were added, allowing features to be extracted
at multiple scales and the size of the input to each subsequent
layer to be progressively reduced. The navigation module em-
ployed a ResNet-18 convolutional architecture, as proposed
in the work by He et al. [20]. The input of the network is
adjusted to fit the dimensions of the camera input stream,
i.e., (420 × 240 × 3), whereas the output dimensions were



Fig. 4: Mapping different position to optimal navigation plan
according to object detection confidence

Fig. 5: Car detection confidence at different angles and
distances

configured to regress the rotation and translation vectors.
The sigmoid activation function was used for the output
layer of the network. Note that the training targets were
appropriately normalized to support this architecture, i.e.,
they were normalized to (0, 1). The navigation proposal
network was trained using the Adam optimizer [21], using a
learning rate of 0.001 and its default hyperparameters.

The complete active perception pipeline comprises both the
object detection and navigation proposal networks. Initially,
the object detection network runs to detect the presence of
objects and computes the corresponding confidence scores.
These confidence scores are subsequently compared against
a predefined threshold to assess the accuracy of the detection.
In the context of the navigation proposal network dataset, the
thresholds used were set to 0.7, 0.8, 0.9, 0.95, and 0.98. We
achieved the best results using the pthres = 0.9 threshold
for the dataset creation. Thus, for our use case when the
detector detects an object with confidence below pthres = 0.9
accordingly, the navigation network is enabled.

By leveraging the object detection evaluations detailed
earlier, a critical set of points in the 3D environment was
quantized and mapped to another set of points that opti-
mized the viewpoint detection confidence. Subsequently, the
navigation labels were generated based on these points. To
better illustrate the ground truth generation process, as seen
in Fig 4 these points are mapped to the closest possible
points near them over a viewpoint confidence threshold. In
this specific example, the closest point to the current position

Fig. 6: Person detection confidence at different angles and
distances

TABLE I: Experimental Evaluation (Success rate and im-
provement rate). The improvement rate concerns only the
successful runs (otherwise the improvement is 0%).

Methods Success Rate Improv. Rate

Static Perception 0% 0.0%
Random Navigation 22% 60.6%

Clas.-based Nagivation 51% 66.8%
Proposed 67% 70.4%

was ultimately mapped as the optimal viewpoint. The red
bar below Fig. 4 represents the closest point distance from
the best viewpoint. The label for this example would be the
distance from the best viewpoint signed positively (meaning
rotation around the object to the right), which would be +0.40
rads. In the case of 3D navigation, a similar approach is
applied by including an additional dimension for translation
movement, while preserving the methodology used for 2D
navigation.

Figure 5 depicts the confidence of an object detector, used
for car detection, at various angles and distances, providing
an illustration of the process of dataset creation for object
detection in the 3D case. Additionally, Figure 6 displays
the evaluation results for person detection, highlighting the
distinct probability manifolds for each object class, which
are determined by their intrinsic characteristics (symmetries,
etc.).

To evaluate the proposed active perception pipeline, 100
experiments were conducted for each evaluation case and
the total improvement of the object detector was averaged.
Testing was performed in an unknown environment for both
models. In each experiment, the robot’s position-rotation was
randomized, allowing it to spawn in different coordinates of
the 3D map, as shown in Fig. 7. The experimental results are
reported in Table I. The success rate and improvement rate
were both measured in this study. The success rate refers to
the number of evaluated cases where active perception im-
proved the obtained results. The improvement rate quantifies
how much the prediction confidence was enhanced for the
cases where active perception was successful. The proposed
method manages to increase the object detection confidence
in 67% of the evaluation cases, i.e., in 67% of the evaluated



Fig. 7: Random initialization during evaluation

cases the final object detection confidence was higher than
the initial object detection confidence. A random navigation
policy led to a significantly lower improvement rate of 22%.
It is worth noting that a random exploration policy still leads
to improvements due to the intermediate snapshot evaluations
that are performed. The intermediate points that do not
lead to improvements are simply discarded, so the random
navigation policy can lead to improvements in the cases
where some of these points happen to increase the detection
confidence. Finally the classification navigation policy was
also evaluated, which involves selecting the direction of
movement through classification rather than regression of the
actual movement. i.e., by extending [12] to match the used
setup. In this case, the active perception policy increased the
confidence in 51% of the evaluated cases, further highlighting
the improvements obtained using the proposed method.

IV. CONCLUSIONS

In this work, we presented a generic supervised active
perception pipeline for object detection that can be trained
using existing off-the-shelf object detectors. The proposed
method was evaluated using synthetic datasets constructed
in the Webots robotics simulator, demonstrating its potential
in two object detection cases, i.e., car detection and person
detection. This approach can be readily extended to vari-
ous object detection scenarios where trained detectors and
simulation models are available. It offers a practical and
straightforward means to endow robots with active perception
capabilities. The promising results suggest further exploration
of incorporating the regression network into the object detec-
tion model, providing active perception at virtually cost, and
leveraging co-integrated simulation and training to reduce the
sim-to-real gap.
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