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Abstract

Audio-visual navigation combines sight and hearing to
navigate to a sound-emitting source in an unmapped envi-
ronment. While recent approaches have demonstrated the
benefits of audio input to detect and find the goal, they focus
on clean and static sound sources and struggle to general-
ize to unheard sounds. In this work, we propose the novel
dynamic audio-visual navigation benchmark which requires
to catch a moving sound source in an environment with
noisy and distracting sounds. We introduce a reinforcement
learning approach that learns a robust navigation policy for
these complex settings. To achieve this, we propose an ar-
chitecture that fuses audio-visual information in the spatial
feature space to learn correlations of geometric information
inherent in both local maps and audio signals. We demon-
strate that our approach consistently outperforms the current
state-of-the-art by a large margin across all tasks of moving
sounds, unheard sounds, and noisy environments, on two
challenging 3D scanned real-world environments, namely
Matterport3D and Replica. The benchmark is available at
http://dav-nav.cs.uni-freiburg.de.

1. Introduction

Humans are able to very efficiently combine their senses
of hearing and sight in order to navigate unknown environ-
ments. While navigation in such environments has been an
important focus of embodied Al [23,48], existing work on
navigation overwhelmingly relies on sensors such as vision
and LiDAR, leaving out other core senses used by humans.
Sound is a particularly unique modality as it reveals informa-
tion beyond the visible walls and obstacles [44]. In particular,
it has been shown to provide blind people spatial navigation
capability comparable to sighted people [19].

Recent work has demonstrated the value of this signal for
embodied agents in a variety of tasks. This includes audio-
visual navigation, in which the agent is required to navigate

*Equal contribution.

Figure 1. We introduce a novel dynamic audio-visual navigation benchmark
(left). The paths of the agent and the sound source are shown in blue and red
respectively, with initial poses marked as squares. The green line represents
the optimal behavior to catch the moving target. Secondly, we carefully
design complex audio scenarios (right). The agent needs to navigate towards
the ringing phone while being confronted with a second sound source (a
crying baby), and various distractor sounds such as a piano.

to the location of a sound-emitting source using audio and vi-
sual signals [9,2 1], semantic audio-visual navigation [8] with
coherent room and sound semantics, active perception tasks
such as active audio-visual source separation [30] and audio-
visual dereverberation [ 1], curiosity-based exploration via
audio-visual association [40] as well as tasks explicitly fo-
cusing on the geometric information contained in audio such
as audio-visual floor plan reconstruction [5,35].

Navigation-centered approaches have shown that agents
can successfully extract information from the audio signals.
However, they have mostly focused on clean and distractor-
free audio settings in which the only change to the audio sig-
nal comes from changes in the agent’s position. Furthermore,
they have struggled to generalize to unheard sounds [9, 10].
In this work, we take the next steps towards more challenging
scenarios. First, we introduce a novel dynamic audio-visual
navigation benchmark with a moving sound source. This
captures common scenarios such as a robot navigating to a
person issuing commands or following pets or people in the
house. We argue that this strongly increases the complexity
of the task through two channels: on one hand, previous
observations no longer capture the current state of the en-
vironment and the agent has to learn to update its memory
accordingly. On the other hand, optimal behavior now re-
quires not just to follow the sound intensity but proactively
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reason about the movement of the target to catch it effi-
ciently. Secondly, we increase the difficulty of both static
and moving sound tasks by designing complex audio scenar-
ios with augmented, noisy and distracting sounds and show
the benefits of training on these scenarios for generalization
to unheard sounds. Fig. 1 illustrates both the moving sound
task (left) and the complex audio scenarios we construct
(right). Lastly, we introduce an architecture that explicitly
enables the agent to spatially fuse the geometric information
inherent in obstacle maps and audio signals. We show that
this leads to significant gains in the generalization to un-
heard sounds in both clean and complex audio scenarios. We
demonstrate these results in the SoundSpaces [9] extension
to the Habitat simulator [38], which allows us to generate
realistic binaural sound signals for the realistic 3D environ-
ments of the Replica [42] and Matterport3D [6] datasets. In
combination, these contributions achieve improvements over
the previous state-of-the-art by 53% and 29% in the success
rate as well as an improvement in SPL by 58% and 39% on
Replica and Matterport3D respectively, on the unheard and
static AudioGoal benchmark tasks [9].
To summarise, the main contributions of this work are:

¢ We introduce the novel dynamic audio-visual naviga-
tion benchmark that substantially increases the diffi-
culty of the audio-visual navigation task.

* We propose complex audio scenarios with noisy and
distracting sounds and demonstrate the benefits of this
randomization for better generalization.

* We propose a new architecture that allows to spatially
fuse sound and vision, and outperforms current state-
of-the-art approaches by up to 58% on unheard sounds.

* We perform exhaustive experiments in two realistic 3D
environments, and across static and dynamic audio goal
tasks in both clean and complex audio scenarios.

* The code and the benchmark is made publicly available
athttp://dav-nav.cs.uni-freiburg.de.

2. Related Work

Embodied Navigation: The ability to navigate the physical
world has been a core focus of research in embodied Al.
Much progress has been achieved on tasks such as Point-
Goal Navigation [13,23,48], ObjectGoal Navigation [16,49],
Vision-Language Navigation [2, 12,20], Active Visual Track-
ing [26,51], Visual Exploration [7, 28, 33] and Embodied
Question Answering [15,47,50]. While most common goals
are assumed to be static, some work has been conducted
on moving goals. Control approaches to track and intercept
moving sounds have been proposed based on explicit fore-
casting of the target’s movement, but rely on first visually lo-
cating the target [4,52]. Work in multi-agent systems [14,39]
and social navigation [18,25] investigate scenarios in which
multiple agents influence each other, both collaboratively

and competitively. In contrast, we focus on cases in which
the target is frequently outside the field of visual sensors and
assume that the agent’s behavior does not impact the sound
source’s movements.

Sound Source Localization: The localization of sound
sources based on an audio signal has been explored in
robotics for both static [31,36] and dynamic sounds [17,22,

,45]. Early work in combining audio and vision focused
on using Gaussian Processes [24] or canonical correlation
analysis [29]. Recently, deep learning based methods have
been proposed to localize sounding objects in videos [3,43].
In contrast, audio-visual navigation problems focus on poten-
tially out-of-sight sound sources in unmapped environments.

Audio-Visual Navigation: Recent simulators and datasets
have enabled the training of learning-based systems on the
combination of visually realistic scenes and varied audio
signals [9,21]. In the AudioGoal task, an agent navigates
to a continuously sound-emitting target source’s location
using audio and visual signals [9,21]. This task has been
tackled by decomposing the problem into the prediction of
the sound location and a planner [21] or by an end-to-end
reinforcement learning approach with either low-level ac-
tions [9] or on a higher level, combining learned waypoints
and a planner [10]. However, not much focus has been
put on the fusion of sound and visual observations. In con-
trast, we provide the agent with an architectural prior that
allows it to explicitly learn to fuse spatial information from
both modalities. Semantic Audio-Visual Navigation [8] in-
troduces a related task in which the sound is periodic and
semantically consistent with the scene, allowing agents to
exploit semantic understanding between sound and vision to
navigate towards the goal. However, these tasks assume a
single static sound-emitting source. While this setup covers
a large number of potential use cases, it is still a subset of
the scenarios that humans navigate. We propose a novel task
where the agent tracks a moving sound source using only
acoustic and visual observations.

Previous work focuses either solely on clean audio scenar-
ios [9,21] or provides initial but limited exploration of more
complex scenarios. This includes the presence of a distractor
or microphone noise on the single heard AudioGoal task [10]
and evaluation of the impact of distractors in related tasks
such as Semantic Audio-Visual Navigation [8] and Active
Audio-Visual Source Separation [30], in which the agent
needs to move in an intelligent manner to separate the input
target monaural sound source from distractor sounds within
a fixed time limit. In contrast, we extensively evaluate the
impact of both training and testing in the presence of a vari-
ety of strong audio perturbations in audio-visual navigation
and demonstrate strong benefits of these scenarios for the
generalization to unheard sounds.

Augmentation and Domain Randomisation: Data augmenta-
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tion [41] and domain randomization [27, 37] have shown to
be very beneficial in regimes of limited data, to improve gen-
eralization to unseen data and to obtain robustness against
noise. Audio-specific augmentations include transforma-
tions such as time warping, frequency masking and time
masking [32]. In this work, we introduce complex audio-
scenarios specific to audio-visual navigation that similarly
increase the variety and diversity of the training data.

Active Visual Tracking: Distractors have been used within the
visual domain, learning to keep tracking objects or people of
interest within the field of view [51]. In contrast we present
a setting of audio-disctractors and randomizations.

3. Problem Statement

In this work we tackle the challenge of navigating to
a sound emitting goal. We use the highly photo-realistic
datasets Replica [42] and Matterport3D [6], which consist
of 3D scans of indoor areas such as homes, offices, hotels
and rooms. Replica scenes’ areas vary between 9.5m to
141.5 m? while Matterport3D areas vary between 53.1m to
2921.3 m? providing the agent with diverse experience of
different real-world scenes with close and far AudioGoals.
We use Habitat [38] and its Audio-compatible SoundSpaces
simulator [9] to train our intelligent agents on the static and
dynamic AudioGoal tasks. The SoundSpaces simulator of-
fers binaural room impulse response (BRIR) between every
two possible source and receiver locations on a grid with a
spatial resolution of 0.5 m for Replica and 1 m for Matter-
port3D dataset. The pre-calculated BRIR can be convolved
with any arbitrary sound to simulate how the receiver lis-
tens to this audio at the agent’s current location. We use
the same 102 copyright-free sounds used in the AudioGoal
benchmark [9], available under CC-BY-4.0 licence. The
BRIRs have a sampling rate of 16 000 Hz for Matterport3D
and 44 100 Hz for Replica. The spectrograms are computed
as in [9, 10]: We compute a Short-Time Fourier Transform
(STFT) with a window length of 512 samples and a hop
length of 160. From this we take the magnitude, downsam-
ple the axes by four and compute the logarithm. Stacking
the left and right audio channel then results in a spectrogram
of size (65,26,2) for Matterport3D and (65,69,2) for Replica.

We formulate the problem as a reinforcement learning
task where the agent learns to navigate an unknown envi-
ronment to reach a potentially previously unheard sound-
emitting goal. In each step, the agent receives the current
observation o, consisting of RGB image v; and depth image
dy as well as a binaural sound b; in the form of a spectrogram
for the right and left ear. In contrast to the common Point-
Goal navigation task, the agent does not receive a displace-
ment vector to indicate the goal position. Given the current
observation and the agent’s previous state s;_1, the agent
then produces a next action a; from it’s policy m(a¢|o, $¢—1).

The agent’s aim is to maximise the expected discounted re-
turn B, [S°]_, v (s1_1, ar)], where = is the discount factor
and r(s¢—1, at) is the reward. Note that the sound goal does
not have an embodiment, i.e. it is not visible in the RGB-D
images and cannot collide with the agent.

We build upon the AudioGoal task as introduced by [9].
Our agent starts in a random pose in an unknown environ-
ment. It then has to navigate to the sound location and exe-
cute the Stop action at the exact position of the sound source.
The discrete action space of the habitat simulator consists
of Move Forward, Rotate Left, Rotate Right, and Stop. The
parametrization of our reinforcement learning agent’s ac-
tion space however, follows a waypoint selection approach
as [10] and is described in Sec. 4.4. In order to increase the
capabilities and possible uses of such an agent, we extend
the task described in [9] to include moving noise-emitting
targets. We further seek to improve the agent’s performance
in general and in particular with regards to navigating to
previously unheard sounds.

4. Technical Approach

In order to address the aforementioned challenges, we
introduce the novel dynamic audio-visual navigation bench-
mark which largely increases the demands on both the
agent’s memory as well as it’s policy which now has to
pro-actively move and catch the agent to act optimally. We
then introduce complex audio scenarios for both the mov-
ing and the existing static AudioGoal navigation task [9].
To this end, we develop audio-domain specific scenarios in
which the agent is confronted with both episodic and per-step
randomizations, requiring to integrate and filter the sound
signals over time. We further propose a new architecture
that allows the agent to directly integrate the spatial and
directional information from sound and vision, and strongly
increases robustness and generalization to unheard sounds
as we demonstrate in Sec. 5.

4.1. Dynamic Audio-Visual Navigation

We introduce the novel task of dynamic audio-visual nav-
igation. In this task, the agent must navigate towards a
moving sound-emitting source in an unmapped complex 3D
environment and output Stop when it catches it. The agent
needs to reason about the trajectory of the moving sound
depending on audio and visual observations to decide the
shortest path to reach it. This can be seen as a generalization
of the existing task, broadening the scope of static Audio-
Goal navigation to scenarios such as navigating to a person
issuing commands or following a pet. The moving target
means that previous observations no longer capture the cur-
rent state of the environment and the agent has to learn to
update its memory accordingly. Furthermore it is not longer
sufficient to follow the gradient of the sound intensity, in-
stead optimal behavior now requires to proactively reason



about the movement of the target to catch it efficiently. To
the best of our knowledge this is the first approach to inves-
tigate the use of sound and vision to catch moving sounds
within unexplored environments.

Motion Model: We assume a simple, goal direct behavior of
the target. The sound source starts in a random pose on the
map and uniformly draws a goal from the traversable grid,
excluding the agent’s current position. We also ensure that
there exists a traversable path from its start to goal location.
The sound source then follows the shortest path towards the
goal and with a probability of 30% moves to the next node.
This percentage ensures the sound sources moves slightly
slower than the agent, ensuring that it is possible to catch
the moving sound source. Note that the moving source does
not have an orientation and directly moves to the following
location while the agent has to take separate rotation steps
to change direction. Once the moving target reaches its goal,
it draws a new random goal to navigate to.

Optimal Behavior: Dynamic Success weighted by Path
Length (DSPL): The Success weighted by Path Length
(SPL) [1] serves as the primary metric to evaluate the nav-
igation performance of embodied agents. However, in the
case of a moving sound source, the shortest possible path
depends on the a priori unknown trajectory of the sound
source. Given this knowledge, the optimal policy is to move
to the earliest intersection with the target’s trajectory that
the agent can reach before the target passes by. Hence, we
introduce the Dynamic Success weighted by Path Length
(DSPL) to measure how close the agent is to this oracle opti-
mal policy. We define the DSPL as follows: where ¢ is the
current episode count, N is the total number of episodes,
S; represents whether this episode is successful or not, g;
is the shortest geodesic distance between the agent’s start
location and the closest position the agent could have caught
the sound source at, and p; is the length of the path taken by
the agent:

N
1 gi
DSPL = N;Sli (1)

maz(pi, gi)

Note that this metric represents an oracle upper bound
of the possible performance, which may not be achievable
without a priori knowledge of the trajectory of the sound
source. An example of the task and the optimal behavior as
used in the DSPL is shown in Fig. 1.

4.2. Reward

We use the same reward definition for both the static and
dynamic tasks. Upon success, the agent receives a positive
reward of +10. It further receives a small dense reward of
+0.25 for decreasing and -0.25 for increasing the shortest
path distance to the goal. For the dynamically moving sound
this is calculated with respect to the current sound source’s

Algorithm 1: Randomization Pipeline

Require: listOfSounds: training sounds excluding current
episode target sound, targetAudio: current episode target
sound, agentPosition, targetPosition, computeAudio:
function to compute audio observation,
computeSpectrogram: function to compute spectrogram,
applySpecAugment: function to apply feature
augmentation, listOfNodes: traversable grid locations,
rnd: uniformly random choice function.

for episode in episodes do
includeSecondSound = rnd([True, False])

if includeSecondSound then
| secondAudio = rnd(listOfSounds)

end
includeDistractor = rnd([ True, False])

for step in steps do

audio = computeAudio(targetAudio,
agentPosition,targetPosition)

if includeSecondSound then

audio += computeAudio(secondAudio,
agentPosition,targetPosition)

end

distractorStep = rnd([True, False])

if includeDistractor and distractorStep then
distractorAudio = rnd(listOfSounds)

distractorPosition = rnd(listOfNodes)
audio += computeAudio(distractorAudio
agentPosition,distractorPosition)

end
spectrogram = computeSpectrogram(audio)
augment = rnd([True, False])
if augment then
aug = rnd([timeMasking, frequencyMasking,
both])
applySpecAugment(spectrogram, aug)
end

end

end

position and not with regard to the shortest reachable inter-
section with the target’s trajectory. As a result, in this setting
the dense reward no longer directly points to the optimal
policy, reducing the value of the supervisory signal. Finally,
a small time penalty of -0.01 for each step incentivises the
agent to find short paths.

4.3. Complex Audio Scenarios

Current approaches [9, 10,2 1] mostly focus on relatively
simple scenarios with a single sound-emitting source in a
clean audio environment, while the explorations of sound
disturbances remains limited, as discussed in Sec. 2. Inspired
by challenges of real world scenarios, we design complex
audio-scenarios in which the agent is confronted with second
sound-emitting sounds at the goal location, noisy audio sen-
sors, and distractors sounds at different locations. To provide
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Figure 2. Our proposed architecture. The depth image is projected into an allocentric geometric map Gmap. A novel channel consisting of a Spatial Audio
Encoder and Audio-Visual Encoder fuses the spatial information inherent in geometric map and audio signal. A GRU then combines this channel with
separate depth and audio encodings. A PPO agent then produces close-by waypoints that are executed by a Djikstra planner.

the agent with a more realistic, highly diverse training experi-
ence to ensure the agent focuses on the directional and spatial
information inherent in the audio signal to improve general-
ization to unheard and noisy environments at test time.

We design highly randomized audio scenarios with per-
turbations and augmentations on both episode and step level.
The full randomization pipeline is shown in Algo. 1 and
consists of three elements:

* Distractor Sounds: With a fixed probability, each
episode includes a distractor. If the episode includes a
distractor, we randomize whether the distractor is au-
dible each step, and if it is audible, a distractor sound
is chosen uniformly random from all training sounds,
excluding the current target sound. Then we further
randomize its location in the environment.

» Second Sound: For each episode, with a certain prob-
ability we overlay an additional audio signal coming
from the same position over the target sound.

» Spectogram Augmentations: In each step, a random
augmentation is applied to the spectogram. We draw
on [32] to construct a set of augmentations consisting
of (none, time masking, frequency masking, both).

These scenarios on one hand increase the difficulty of the
task, requiring the agent to reason about the elements in the
audio signal. At the same time it largely increases the diver-
sity of training experience, which has shown to be very bene-
ficial, particularly in scenarios with limited data, such as the
comparatively small audio dataset of 102 sounds used here.
All augmentations are purely based on the training sound
dataset, avoiding any leaks from the validation or test sounds.

4.4. Spatial Audio-Visual Fusion

Existing work focuses on direct end-to-end reinforcement
learning from sound and visual inputs to actions. AV-Nav [9]
individually encodes RGB-D and audio, while AV-WaN [10]
further structures the inputs into a geometric and acoustic
map before encoding them individually. Both then concate-

nate the individual features and let a standard GRU cell
combine them. [21] estimate a local occupancy map and
use the audio signal to estimate the relative goal location,
then combine these inputs by providing them to a planner
to produce actions. But none of these approaches provide a
clear structure to learn to combine these modalities.

Binaurally perceived spectrograms from the sound source
contain a large amount of information about the space and
room geometry, due to how the sound propagates through
the rooms and reflects off of walls and obstacles. Previous
work has shown that this information can reveal room ge-
ometries [35]. We hypothesize that learning to extract and
focus on this information and to learn to combine it with the
spatial information from geometric maps is an appropriate
architectural prior for audio navigation tasks. Furthermore,
we hypothesize that a structure that succeeds to focus on this
part of the audio information is more likely to generalize
to unheard sounds and to succeed in noisy and distracting
audio environments.

As AV-WaN we construct and continuously update an
allocentric geometric map G4y from the depth inputs d;.
The map has two channels, one for explored/unexplored and
one for occupied/free space. We then propose an early fusion
of learned audio features and a joint audio-spatial encoder
of the geometric map and encoded audio features based on
convolutional layers. We introduce a Spatial Audio Encoder
module that maps the binaural spectrogram into a spatial
feature space. An Audio-Visual Encoder then convolves
the channel-wise concatenation of the geometric map and
encoded audio features, while also reducing it in dimension-
ality. Similar to AV-Nav and AV-WaN we then use an RNN
as memory component and train the agent end-to-end with
Proximal Policy Optimization (PPO) [40]. The overall archi-
tecture is shown in Fig. 2. Exact definitions of all modules
are provided in the supplementary material.

Action Parametrization: While AV-Nav [9] reasons di-
rectly in the raw action space of the simulator, AV-WaN [10]



Model | Replica | MP3D

‘ Multiple Heard ‘ Unheard ‘ Multiple Heard ‘ Unheard

| SPL. SR SNA | SPL SR SNA | SPL SR SNA | SPL SR SNA
AV-Nav [9] 541 739 303 | 341 511 167 | 537 698 302 | 283 382 1438
AV-WaN [10] 645 912 491 | 273 425 204 | 554 814 440 | 396 566 311
Ours 719 859 537 | 486 63.6 354 | 662 867 485 | 463 60.6 33.8
AV-Nav + complex 633 861 322 | 443 634 213 | 507 703 297 | 326 488 172
AV-WaN + complex 629 864 482 | 478 737 362 | 596 867 455 | 474 694 356
Ours + complex 512 756 352 | 540 780 367 | 663 864 477 | 550 73.0 386
Ours + complex + dynamic | 469 60.8 348 | 374 527 275 | 664 841 489 | 486 653 356

Table 1. Results on the static Audio Goal task without complex scenarios. The heard experiments represent experiments trained on multiple sounds and
evaluated on the same sounds but in unseen environments. The unheard sounds experiments represent experiments trained on multiple sounds and evaluated

on multiple unheard sounds in unseen environments.

demonstrated further improvements from learning to select
waypoints on a higher level of abstraction. The agent chooses
from a 9 x 9 action map centered on the agent’s current
position. A simple Dijkstra planner then navigates to this
waypoint. While acting in such a lifted Markov Decision
Process can be beneficial, far away waypoints correspond to
a lower control frequency, ignoring up to ten observations
while the planner is executing the required actions to reach
the selected waypoint. While the loss of information from
these observations might be negligible in scenarios with a
clean, static sound source, it becomes much more important
to continuously integrate the audio observations over time
in the noisy and dynamic audio scenarios that we present in
this paper. Correspondingly we find it beneficial to decrease
the size of the action map to 3 x 3, providing an efficient
middle ground between the benefits of learning waypoints
and decreasing the number of unprocessed observations to a
maximum of four, using the same planner as [10].

5. Experimental Evaluation

In this section, we present results from experimental eval-
uations of both existing approaches and our proposed ar-
chitecture on the static and dynamic AudioGoal tasks. Fur-
thermore, we study the impact of training and evaluating in
complex audio scenarios.

5.1. Task Setups

We tackle the tasks of static and dynamic AudioGoal
navigation. For each task, we train all agents in two scenar-
ios: the clean audio setup used in [9, 10] and the complex
audio scenarios with noisy audio, distractors and second
sound-emitting source that we introduced in Sec. 4.3. All
agents are trained on multiple sounds and evaluated in two
settings: on heard sounds in unseen environments and on
unheard sounds in unseen environments. We use the same
train/val/test splits protocol used by [9, 1 1], where Replica
splits into 9/4/5 scenes and Matterport3D (MP3D) splits
into 59/10/12 scenes. The 102 different sounds are split into
73/11/18. The same split is applied to any other audio signals,

such as distractors. This signifies that evaluations on unheard
sounds are also required to handle unheard disturbances.

Metrics: We use the following metrics to evaluate the navi-
gation performance:

* Success rate (SR): The share of successful episodes of
all test episodes. An episode is considered a success if
the agent executes the stop action at the goal location.

* Success weighted by path length (SPL) []]: This metric
calculates the ratio of the length of the shortest path
to the goal to the length of the executed path for the
successful episodes.

* Success weighted by number of actions (SNA) [10]: The
ratio of the number of actions needed to follow the short-
est path to the actual number of actions the agents took
to reach the same goal. In contrast to the SPL this metric
takes the number of orientation changes into account.

e Dynamic success weighted by path length (DSPL):
The primary metric for the novel task of dynamic
AudioGoal Navigation. It is calculated as the ratio
of the length of the path to the earliest reachable
intersection and the length of the actual executed path
for the successful episodes, see Sec. 4.1.

e Dynamic success weighted by number of actions
(DSNA): Equivalently to the DSPL, we calculate an
adjusted version of the SNA with respect to the same
definition of the earliest reachable intersection.

Baselines: We compare our approach to two current state-of-
the-art methods: AV-Nav [9] and AV-WaN [10]. AV-Nav [9]
is an end-to-end reinforcement learning agent that directly
encodes audio and visual observations to select actions us-
ing audio-visual observations. We use the authors’ code
to train and evaluate the approach. AV-WaN [/0] is the cur-
rent state-of-the-art for static AudioGoal task, which predicts
intermediate waypoints to the goal depending on audio obser-
vation, geometric, and acoustic maps. We also use the code
provided by the authors. Hyperparameters for all trained
models are listed in the supplementary material.



Model | Replica | MP3D

‘ Multiple Heard ‘ Unheard ‘ Multiple Heard ‘ Unheard

| SPL. SR SNA | SPL SR SNA | SPL SR SNA | SPL SR SNA
AV-Nav + complex | 553 811 275 | 438 651 215 | 467 694 256 | 369 561 194
AV-WaN +complex | 54.0 80.0 409 | 43.0 66.5 323 | 57.6 84.6 456 | 490 723 373
Ours + complex 419 737 331 | 478 734 333 | 641 864 468 | 555 760 404

Table 2. Results on the static Audio Goal task with complex scenarios. The heard experiments represent experiments trained on multiple sounds and evaluated
on the same sounds but in unseen environments. The unheard sounds experiments represent experiments trained on multiple sounds and evaluated on multiple

unheard sounds in unseen environments.

Model \ Replica \ MP3D

‘ Multiple Heard ‘ Unheard ‘ Multiple Heard ‘ Unheard

| DSPL SR DSNA | DSPL. SR DSNA | DSPL SR DSNA | DSPL SR  DSNA
AV-Nav [9] 440  69.5 14.6 223 350 7.5 399  70.1 16.4 218 387 8.8
AV-WaN [10] 56.6 888 333 239 387 139 579 858 349 262 384 16.0
Ours 624 931 336 231 36.0 12.4 639 950 367 299 463 176
AV-Nav + complex 431 670 14.6 235 384 7.5 377 613 15.5 204 355 8.4
AV-WaN + complex | 47.3 750 283 294 516 176 554 867 338 362 615 221
Ours + complex 362 577 207 299  68.0 17.0 61.6 919  36.2 458 740  26.0

Table 3. Results on the dynamic Audio Goal task without complex scenarios. The heard experiments represent experiments trained on multiple sounds and
evaluated on the same sounds but in unseen environments. The unheard sounds experiments represent experiments trained on multiple sounds and evaluated

on multiple unheard sounds in unseen environments.

5.2. Static AudioGoal Task

We first evaluate the static AudioGoal task, in which the
agents are trained on multiple heard sounds and evaluated in
unseen apartments with either the heard or unheard sounds.
The upper half of Tab. 1 shows the results for the original
setup without complex audio scenarios. Our proposed novel
channel for a learned spatial fusion achieves similar or even
better performance on the heard sounds and significantly
improves on unheard sounds, increasing the success rate
from 51.1 to 63.6 percent on Replica and 56.6 to 60.6
percent on MP3D, with similar improvements for SPL
and SNA. The bottom part of the table shows the effects
of training on the complex audio scenarios described in
Sec. 4.3 and evaluation on the standard benchmark. Training
in these scenarios provides extensive improvements for the
generalization to unheard sounds across all models, with
improvements of over 30 percentage points for certain
models. Again, our model achieves the highest performance
across all metrics. Combined, our new architecture and
the complex scenarios increase the performance from an
SPL of 27.3 to 54.0 on Replica and 39.6 to 55.0 on MP3D,
strongly outperforming previous state-of-the art results on
this benchmark. A further decomposition of the effects of
the individual elements of the complex scenarios can be
found in the supplemental material.

We observe a deterioration in performance of our archi-
tecture when trained on the complex scenarios and evaluated
only on the heard sounds in Replica. This can be attributed
to the small dataset size or the complex scenarios remove

certain channels that the model could previously exploit to
overfit on heard sounds. We then further evaluate the impact
of including dynamic target sounds within the training. We
let the sound source move in a random selection of half of the
episodes and remain static in the other half to test the models
ability to learn both tasks simultaneously. While we observe
a negative impact of this training setup on Replica, perfor-
mance on MP3D remains stable. The differences between
moving and static sounds can be more considerable on the
much smaller apartments in Replica. We proceed to evaluate
the performance on the complex audio scenarios. Results are
shown in Tab. 2. We find that these scenarios indeed signify
a more challenging task, with lower performance across all
models. Though notably, the drop is much smaller on the
large MP3D dataset. The performance on MP3D unheard
sounds is even up to par with the non-complex scenarios.
Again we find that our architecture consistently achieves the
best results in generalization to unheard sounds.

5.3. Dynamic AudioGoal Task

We then evaluate the models on the moving sound task.
All models are trained on multiple heard sounds with half
of the episodes containing a moving and the other half con-
taining a static sound source. The models are then evaluated
on the dynamic sounds for both heard and unheard sounds.
Results are shown in Tab. 3. Overall, we find that all models
are able to solve a significant share of the tasks, with success
rates of 69.5-95 percent on heard sounds. This is roughly
similar to the performance on static sound. But we find a
much larger gap in the performance on unheard sounds, both



Model | Replica | MP3D

‘ Multiple Heard ‘ Unheard ‘ Multiple Heard ‘ Unheard

| DSPL SR DSNA | DSPL SR DSNA | DSPL SR DSNA | DSPL SR  DSNA
AV-Nav + complex 329  60.1 10.5 255 452 8.1 356  62.6 13.7 251 443 9.7
AV-WaN + complex | 44.0 66.1  25.6 342 521 19.9 537 846 329 429 709 262
Ours + complex 326 553 18.8 275 526 16.1 599 928 333 521 841 304

Table 4. Results on the dynamic Audio Goal task with complex scenarios. The heard experiments represent experiments trained on multiple sounds and
evaluated on the same sounds but in unseen environments. The unheard sounds experiments represent experiments trained on multiple sounds and evaluated

on multiple unheard sounds in unseen environments.

Replica

Matterport3D

(a) AV-WaN [10] (b) Ours

in terms of success rates and optimality of the paths (SPL
vs DSPL). In terms of overall performance, we find that our
architecture again clearly performs best on all clean audio
setups, except for slight advantages for AV-WaN on Replica
unheard sounds. Training on the complex scenarios again
proves very beneficial for generalization to unheard sounds
for all models except AV-Nav. Our trained architecture with
these complex scenarios achieves large improvements from
a success rate of 38.7 for the best baseline on clean scenarios
to 68.0 on replica and from 38.7 to 74.0 on MP3D. Tab. 4
evaluates the same models on the complex audio scenarios.
On replica, we find the best performance changes between
AV-WaN and ours, depending on the metric, while on MP3D
our approach consistently performs the best.

Fig. 3 depicts example episodes for the AV-WaN and our
agent on heard sounds, illustrating some of the challenges
of this task. Optimal behaviour can significantly differ from
simply moving directly towards the initial position of the
sound. Furthermore, acting suboptimally early on can have
a large impact on the required path later on and agent’s may
have to quickly change direction if the target moves past
them.

6. Conclusion

We introduce the novel dynamic audio-visual navigation
benchmark together with a novel metric that quantifies the
gap to optimal behavior. We demonstrate that this new task
poses further challenges over existing benchmarks. We intro-
duce complex audio scenarios based on audio-specific aug-

(c) AV-WaN [10]

Figure 3. Example episodes of the heard dynamic audio-visual navigation task on the replica (left) and Matterport3D (right) dataset. For each, the AV-WaN
agent is shown on the left and our architecture on the right, both trained without complex scenarios. The paths of the agent and sound source are shown in
blue and red, respectively. Green shows the path to the earliest reachable intersection as defined for the DSPL metric.

(d) Ours

mentations, perturbations, and randomizations and demon-
strate that this provides substantial benefits in generalization
to unheard sounds. Lastly, we introduce an architecture with
an inductive bias to allow the agent to spatially fuse the
geometric information inherent in the audio and visual obser-
vations. Combined with training on the new audio scenarios,
this results in large overall improvements for the general-
ization to unheard sounds and the best performance on the
dynamic audio-visual navigation task on MP3D.

Limitations and Future Work While we are able to further
close the gap in the generalization to unheard sounds, there
remains a significant gap to optimal performance as mea-
sured by the SPL. This gap is even larger for the novel task of
dynamic audio-visual navigation, indicating the need for fur-
ther research. The current audio dataset only consists of 102
different sounds. While randomizations and perturbations
can significantly increase the variety in this data, introducing
larger audio datasets is a promising avenue to scale to more
complex and robust models.

So far, audio-visual navigation tasks have remained con-
strained to simulation. While we introduce more complex
audio scenarios, these still do not capture all the challenges
of the real world. A particular restriction in contrast to
the continuous real world is the discrete navigation grid of
the simulator. Binaural room impulse responses are only
available for these predefined locations, prohibiting the ex-
ploration of continuous audio streams, actuation noise or
continuous actions in simulation. Sim-to-real transfer of
these tasks will be a very important next step.
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In this supplementary material, we provide additional de-
tails on the publicly released code to run the experiments for
our model as well as the baselines, and a video demonstrat-
ing the qualitative behavior of the agents. We describe the
model architecture in detail and list the hyperparameters for
all models. We also analyze the impact of individual com-
ponents of the complex audio scenarios in an ablation study.

1. Qualitative Results

Fig. 1 depicts further qualitative examples for the AV-
WaN [10] agent and our model on the dynamic audio-visual
navigation benchmark. Each column shows the same episode
for each agent. While both agents initially move in the right
direction, the AV-WaN agent ultimately has to move through
amuch larger part of the apartment, chasing the sound source.
In contrast our approach captures the target in its path. Novel
challenges of this task include the need to adapt directions
to the moving sound and potentially much higher costs for
missing the sound source, which then may move further
away from the agent.

2. Extended Architecture Details

In this section, we provide additional details on the indi-
vidual modules of our proposed architecture.

2.1. Depth Encoder

We adopt the depth encoder introduced by AV-Nav [9]
baseline. The encoder has three convolutional layers with
kernel sizes of (8, 8), (4, 4) and (3, 3), and with strides (4,
4), (2, 2), and (2,2). Each convolution layer is followed by
an ReL.U activation function. A fully connected layer at the
end of the encoder then embeds the features to size of 512
followed by an ReLU activation function.

2.2. Audio Encoder

Based on the architecture of [10], we encode the audio
signals with three convolutional layers with kernel sizes of
(8, 8), (4, 4) and (3, 3) and strides of (4, 4), (2, 2) and (1, 1)
for Replica [42], and kernel sizes of (5, 5), (3, 3), and (3, 3)
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and strides of (2, 2), (2, 2), and (1, 1) for Matterport3D [6]
datasets. Each convolution layer is followed by an ReLU
activation function. A fully connected layer at the the end of
the encoder then embeds the features to size of 512 followed
by an ReL.U activation function.

2.3. Spatial Audio Encoder

This encoder receives as an input the binaural spectro-
gram b, of size (2, 65, 69) for Replica and (2, 65, 26) for the
Matterport3D datasets. The Spatial Audio Encoder upscales
the input to the same dimensionality as the geometrical map,
which is (2, 200, 200). Due to the different spectrogram
dimensionality of the two datasets, we implement two differ-
ent encoders. Replica’s encoder consists of two transposed
convolution layers with kernel sizes of (8,8) and (1,13), and
with strides of (3,3) and (1,1), respectively. We employ an
ReLU activation function after each convolution layer. For
Matterport3D, the encoder consists of two transposed convo-
lution layers followed by one convolution layer. The kernel
sizes are (5,2), (4,2) and (1,5) while the strides sizes are
(3,4), (1,2) and (1,1), respectively. We also employ an ReLU
activation function after each convolution layer.

2.4. Audio-Visual Encoder

We concatenate the output of the Spatial Audio Encoder
with the current geometrical map G,,,;,. Subsequently, we
pass the resulting features through three convolutional layers
with ReLLU activations, followed by a fully connected layer
to embed the features into an embedding of size 512. Finally,
we employ an ReL.U activation function and feed the output
to a GRU. The kernel sizes are (8, 8), (4, 4), and (3, 3) while
the strides are (4, 4), (2, 2), and (1, 1).

2.5. Actor-Critic

The GRU is implemented as a single bidirectional GRU
cell with hidden size 512 and one recurrent layer. The actor
and critic heads take as input the current state of the GRU
and estimate the action distribution 7 (a¢|s;) and value of the
state V (s;), respectively. Both are implemented as a linear
layer. The action distribution is a categorical distribution
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Figure 1. Qualitative comparison of the dynamic audio-visual navigation task on the Replica dataset for heard sounds without complex scenarios. Each
column shows the same episode for the AV-WaN agent on top and ours in the bottom. The paths of the agent and sound source are shown in blue and red,
respectively. Start poses are marked with rectangles. Green shows the path to the earliest reachable intersection as defined for the DSPL metric.

Model ‘ Replica ‘ MP3D

‘ Multiple Heard ‘ Unheard ‘ Multiple Heard ‘ Unheard

| SPL SR SNA | SPL SR SNA | SPL SR SNA | SPL SR SNA
Ours 719 859 537 | 486 636 354 | 662 86.7 485 | 463 60.6 33.8
Ours + second audio 702 853 516 | 56.0 746 404 | 62.6 81.8 474 | 512 650 382
Ours + specaugment 565 784 402 | 539 787 381 | 592 797 433 | 396 583 28.6
Ours + second audio + specaugment | 59.2 824 41.8 | 545 80.0 383 | 62.6 832 487 | 53.0 733 40.7
Ours + second audio + distractor 61.5 822 441 | 487 721 346 | 647 833 478 | 520 70.1 378
Ours + complex 512 756 352 | 540 780 367 | 66.3 864 477 | 55.0 73.0 38.6

Table 1. Decomposition of complex scenarios: Evaluation on the static Audio Goal task without complex scenarios.

with probabilities based on the softmax of the actor’s output.
Similar to [9, 10], we also add an entropy maximization
term for exploration to the Proximal Policy Optimization
(PPO) [40] objective.

3. Complexity of Audio Scenarios

In this section, we further analyze the importance of the
individual components of the audio scenarios. Tab. 1 shows
the performance on the standard static AudioGoal task for
models trained with subsets of these components. Focus-
ing on unheard sounds, we find that training with the second
audio improves performance on both datasets, while the spec-
trogram augmentations improve generalization on Replica,
but not on Matterport3D. On the other hand, combining both
further improves on Matterport3D but not on Replica. Lastly,
the addition of distractor sounds further improves generaliza-
tion on MP3D, but does not have a large impact on Replica.
These differences in the impact of the individual elements
across datasets show the importance to combine different
randomizations and perturbation.

On the heard sounds, the perturbations do not influence
performance on MP3D substantially. On Replica, the de-
composition shows that the decrease was not due to any
single component, but rather any kind of disturbance reduces
the performance. This might further indicate that the agent
learns to use or overly rely on some features of the audio
signal that are not as robust or general to navigate these
much smaller environments. On the other hand, the impact
of the perturbations might be larger as the distances to the
goals are generally shorter and thereby the number of audio
observations the agent receives to filter out such disturbances
are also fewer.

We then repeat the same evaluation with complex sce-
narios at test time, shown in Tab. 2. We find that training
on all components is required to achieve robustness to these
scenarios. No subset of the components is able to induce the
same robustness to the full set of perturbations. In partic-
ular, the performance of the model trained on clean audio
scenarios drops significantly across all settings and metrics,
often more than 50%. This demonstrates the importance



Model | Replica | MP3D

‘ Multiple Heard ‘ Unheard ‘ Multlple Heard ‘ Unheard

| SPL SR SNA | SPL SR SNA | S SR SNA | SPL SR  SNA
Ours 245 317 180 | 200 269 150 | 40.0 513 287 | 32.1 43.1 234
Ours + second audio 31.0 417 226 | 23.6 331 168 | 469 62.1 358 | 431 565 328
Ours + specaugment 47.1 677 333 | 457 67.8 323 | 50.7 709 365 | 404 58.0 287
Ours + second audio + specaugment | 49.3 704 349 | 46.1 688 326 | 556 79.0 433 | 534 729 407
Ours + second audio + distractor 385 561 276 | 329 479 234 | 491 649 368 | 415 553 306
Ours + complex 479 737 331 | 478 734 333 | 641 864 468 | 555 760 404

Table 2. Decomposition of complex scenarios: Evaluation on the static Audio Goal task with complex scenarios.

Hyperparameter | Value
clip param 0.1
ppo epoch

num mini batch 1
value loss coef 0.5
entropy coef (AV-Nav) 0.02 (0.2)
Ir 2.5e—4
eps le—5
max grad norm 0.5
optimizer Adam
steps number 150
gru hidden size 512
use gae True
gamma 0.99
tau 0.95
linear clip decay True
linear Ir decay True
exponential Ir decay False
exp decay lambda 5.0
reward window size 50
number of processes (AV-Nav Matterport3d) 5(10)
number of updates (AV-Nav) 10,000 (40,000)
time mask param (Replica) 32
frequency mask param (Replica) 12
time mask param (Matterport3d) 12
frequency mask param (Matterport3d) 12

Table 3. Hyperparameters used for training our model and the baselines.
Differences across models are shown in parentheses.

of training on these scenarios to achieve robust behavior in
noisy and complex audio environments.

4. Hyperparameters

To ensure a fair comparison to the baselines we use the
same hyperparameters as reported by [10] for all models,
including our proposed architecture. The hyperparameters
are listed in Tab. 3. Each episode has a time limit of 500
steps after which it will be stopped and counted as a failure.
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