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Abstract—Collaboration between human and robot requires
effective modes of communication to assign robot tasks and
coordinate activities. As communication can utilize different
modalities, a multi-modal approach can be more expressive than
single modal models alone. In this work we propose a co-
speech gesture model that can assign robot tasks for human-
robot collaboration. Human gestures and speech, detected by
computer vision and speech recognition, can thus refer to objects
in the scene and apply robot actions to them. We present an
experimental evaluation of the multi-modal co-speech model with
a real-world industrial use case. Results demonstrate that multi-
modal communication is easy to achieve and can provide benefits
for collaboration with respect to single modal tools.

Index Terms—Human-robot collaboration, multi-modal per-
ception, speech recognition, gesture detection, object detection

I. INTRODUCTION

Fluent interaction between human and robot requires reli-
able perception to capture the commands of a person. While
recent approaches in deep learning [1] have established im-
pressive tools to detect e.g., human pose, gestures and speech,
single tools alone can not always convey easily the commands
intended [2]]. Reasons for this are the limited expressions
available for different modes of communication and the limi-
tations in perception performance. Human hand gestures, for
example, contain much less information content than speech.
On the other hand, gesture detection can be done much quicker
than speech recognition, leading to a faster response time.
These conflicting properties motivate to combine multiple
perception tools into a single multi-modal detection model
that utilizes communication from human to robot for assigning
tasks and coordinating the collaboration. In this work we
compare different perception tools and analyse them with
respect to their suitability for human-robot collaboration. A co-
speech gesture model is then developed that combines speech,
human hand gestures and object detection to achieve effective
communication of desired robot tasks, such as picking human-
specified objects and robot to human hand-overs (see Fig.
[I). The developments are intended for industrial human-robot
collaboration where a collaborative robot shares its tasks, and
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Fig. 1: Co-speech gesture model that combines a speech
phrase, human gesture detection and object perception to
command robot actions.

works in close collaboration with, a human operator. Our
contributions are:

o Human speech and hand gesture perception methods to
command robot actions

o Co-speech gesture model that combines human natural
speech and hand gestures to command robot actions

o Experimental evaluation of the co-speech gesture model
in an industrial human-robot collaborative use case

II. RELATED WORK

A. Human-Robot Collaboration

Collaboration between human and robot is often targeted
for industrial manufacturing [3], as both robot and human
have unique skills that complement each other. Different
interfaces that enable the collaboration have been analyzed,
providing clear directions on how the collaboration benefits
the tasks [4]. Approaches include voice processing, gesture
recognition, haptic interaction, and even brainwave perception.
Often machine [5] and deep [6] learning are used as enabling
perception tool [1]] to classify and recognize the person and
objects in the environment [7].
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Fig. 2: Co-speech gesture model that takes input from speech commands, gesture recognition and object detection to generate

robot actions for human-robot collaboration. Sensor fusion enables the human to refer to specific objects (<rod,
that>) and apply actions to them (<pick, place,

arm, this,

B. Human Perception

Visual detection of a person in the scene has been an active
area of research [8]]. Different visual modalities have been
utilized [9]], such as RGB and depth information [10]. Multi-
modal approaches that utilize RGB-D data are popular as well
[L1]. Human pose estimation goes a step further than human
detection by estimating the 3D pose of a human and their
individual skeleton joints [12[], which can be used as input
for gesture detection. Utilizing speech for commanding robots
has been demonstrated with short verbal commands for task
coordination [13]] and task programming [14]]. As extension
to short speech commands, natural language as instructions to
robots has been used for planning [15] and allocation [16] of
tasks to be performed by the robot.

Multi-modal human-robot collaboration using gestures and
speech simultaneously has been demonstrated for a human
interacting with the humanoid robot NAO in [17]], where short
phrases and gestures are utilized to indicate human actions.
Collaboration between a robot arm and a human worker is
also demonstrated in [18]], where a set of gestures and speech
commands are perceived individually to produce the same
input for robot actions. As comparison, our work considers
an industrial scenario with a collaborative robot where speech
phrases and gestures are combined to assign tasks to the robot.

III. METHODS AND TOOLS

A. Perception Tools

The perception tools utilized in this work are integrated in
a common framework for isolated and human-robot collabo-
rative tasks. For human perception, Lightweight OpenPose, a
human skeleton detection tool [12]] is used, which takes images
(RGB) as input and returns skeleton node points as output. For
interaction, the wrist node of the skeleton is taken and, when
presented in a certain image area, serves as trigger for robot
actions (e.g., stop, continue) or refers to certain objects in the
scene (i.e., detected objects pointed to). In the latter case, the
detected object that is closest to the wrist node is selected
for robot action execution. Speech recognition is enabled by
Vosk [19] for the detection of pre-defined input commands and

rocker,
give me>).

phrases. This set of words and sentences relate to available
actions of the robot and locations in the scene, as described in
Table [l The model is configured by filtering out unnecessary
words that are unsuitable for robot instructions. Objects in
the scene are detected by a neural network (Detectron2 [20])
trained on a custom dataset collected for the use case [21]].

B. Multi-modal Perception Methods

The perception tools can be used in different ways to
allow for sensor redundancy, sensor multi-modality and sensor
information fusion, as follows.

o Sensor redundancy - multiple sensors are used to com-
mand the same robot actions, e.g., speech or hand gesture
to stop robot motion

o Sensor multi-modality - different sensor modalities are
used to command individual robot actions, e.g., speech
provides the robot actions, vision detects human gestures

o Sensor-fusion - different sensor modalities are combined
to command a single robot action, e.g., speech provides
robot action, vision provides specific object location as
pointed to by the human

While sensor redundancy and multi-modality is supported

and demonstrated in Section we emphasize our contribu-
tions to the fusion of multiple sensor outputs into a single
robot command, as explained in the following section.

C. Co-speech Gesture Model

The single-modal visual and speech perception models are
fused into a multi-modal perception model by combining
speech commands, pointing gestures and object detection (see
Fig. 2). Several examples of these co-speech gestures are
described in Table[l] The human can refer to individual objects
in the scene by speech (e.g., <rod>, <rocker arm>)
and pointing to them, and apply specific robot actions by
speech commands (e.g., picking with <pick>, placing with
<place>, robot to human hand-over with <give>).

Depending on the object, different robot actions are pos-
sible, as specified beforehand. For example, objects can be
picked up from the table, placed in specified locations and
handed over to the person. Object detection returns a list



TABLE I: Perception methods’ input and output

Method Input Output
Wrist RGB image of the scene (human front-facing) R . .
. . . . . obot stop/continue actions
detection Human gesture by moving wrist to certain image location
Robot action commands: <pick, place, give, go, stop, pause, continue> Robot motion
Speech Workspace commands: <rod, home, arm, me> Gripper actions
recognition Human speech requests: <place rod>, <go home>, <give me another rocker | Robot to human hand-over
arm>, <pick up the last rod> Robot stop/continue actions
Object . ] Detected objects in the scene
detection RGB image of the scene (top-down) Valid targetjlocation for robot
Co-speech <pick rod> + pointing gesture + object detection ROPOt mOtif)ﬂ
gesture <give me this rod> + pointing gesture + object detection Gripper actions
<give me that rocker arm> + pointing gesture + object detection Robot to human hand-over

of objects in the scene, which can be verbally referred to
by their class. Pointing gesture detection allows to refer to
specific objects in the scene by relating the pointing ges-
ture location to detected object locations. Robot actions are
therefore commanded by specific action verbs and object
classes, complimented by gestures to provide fine-grained
object references (see Fig. [2).

IV. EXPERIMENTAL RESULTS
A. Industrial Use Case

The considered use case replicates an industrial assembly
task that in current situation is done manually by human
operators. The solution we propose introduces a collaborative
robot as assistive tool to the assembly station, under control of
the person. This means that the assembly work is coordinated
by the human, with the robot assisting in tasks that the
human decides. Available robot actions are to move to certain
locations in the work space, pick objects that are detected
on the table, place objects to specified locations or hand them
over to the human. In addition, coordinated actions include the
stopping and continuing of robot actions during execution, for
human visual inspection of the objects placed by the robot. Hu-
man commands can be communicated by hand gestures and/or
speech, with different levels of functionality as described in
Table [I} The setup for experiments is depicted in Fig. [3| and
includes two cameras (Intel Realsense D435) for visual per-
ception (one front-facing for wrist detection; Fig. [3(b) and one
top-down for object detection; Fig. [3[c)) and a microphone for
speech recognition. Computation is performed on a standard
Desktop PC running Ubuntu Linux with Nvidia GTX 1080
Ti GPU, and all robot (Franka Emika) communication and
control utilizes ROS. All tools are open-source available to
utilize or replicate: https://github.com/opendr-eu/opendr.

B. Human Gesture Detection

Results for the visual wrist detection tool are depicted in
Fig. 3[b), which highlights both detected human wrists. When
one of the wrists is detected inside one of the squares, this is
taken as trigger for referring to certain robot actions or objects
in the scene. For example, to stop robot motion, the left wrist
should be detected in the top left square and to continue robot
motion, the right wrist should be detected in the top right
square. Pointing gestures are interpreted in a similar manner.

When the human points to a certain object, first the left or right
wrist needs to be detected in either of the lower two squares
in the image, after which the location to the closest detected
object is determined. Performance of the skeleton detection
tool has been reported in the original paper [12]. In our use
case the detection accuracy of the wrists inside a square is
consistent around 90%, as assessed from 20-second interval
tests for different squares. This is satisfactory for effective
collaboration.

C. Object Detection

Results of visual object detection are depicted in Fig. [3c),
which has the different detected objects annotated by colored
bounding boxes (yellow for the rocker arms and blue for
the rods). As objects are detected in image space, careful
calibration of both cameras ensures the detected objects can
be picked from the table and that pointing gestures can refer
to the same object in both camera frames. In our use case the
detection accuracy of all classes is over 90%.

D. Speech Recognition

Results of speech recognition were found satisfactory, as
in most cases the spoken commands are recognized correctly.
Performance, as reported in [19]], depends on the language
skills of the person giving commands, as in certain cases non-
native English speakers had to speak more clear to achieve
correct speech recognition. Besides the speech recognition it-
self, the speech tool was improved by including a voice activity
detector and a time-delay filter (0.5 seconds) to consider the
natural pause in human speech. This resulted in a delay of
~ 1.9 seconds between a verbal command and the recognized
speech (average of 50 trials with different commands).

E. Co-speech Gesture Model Performance

The co-speech gesture model has all three perception
models running in parallel, decreasing slightly the running
performance of the skeleton detection tool (i.e., 24 fps with
image size of 1920x1080). Object detection achieves a frame
rate of 4.5 fps with image size of 1280x720. Extended
experiments were performed to test the co-speech tool in a
collaborative assembly scenario. This included a human and
robot performing assembly steps to an engine, with parts
that are either mounted by the person or by the robot. Parts
assembled by the person are picked by the robot from the
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Fig. 3: Experimental setup with a human pointing at an object for robot picking (a). One camera is human front-facing to
capture human hand gestures (b), one camera is mounted on the robot (eye-in-hand) for object detection on the table (c).

table and handed over to the human, and parts assembled
by the robot are picked by the robot from the table and
directly mounted to the engine. Coordination of the tasks and
requesting robot actions is done by the person via the co-
speech gesture model. In addition, the human can halt and
continue robot tasks at any time, by both gesture and speech
commands (<stop>, <pause>, <continue>).

Single commands - Fig. f(a-b) depict the human com-
manding a stop and continue gesture, respectively. Fig. @c)
shows the human commanding the robot to move to its "home’
configuration by the phrase <ok, go home>. For this, the
home location is preprogrammed in the software scripts.

Speech phrases - Fig. [5] depicts how human speech alone
can be utilized to command robot actions, by the phrase
<give me another rocker arm>. From the recog-
nized speech, the tool extracts relevant words and connects
these to robot actions and objects in the scene. In this case
<give me> refers to a robot to human hand-over, <rocker
arm> refers to the rocker arm class in the object detection
model, and <another> implies any of the detected rocker
arms, meaning the first in the returned detection list. As a
result, the command phrase initiates all required robot actions
and starts executing them one-by-one, as shown in Fig. [5[ac).

Co-speech commands - Fig. [0 depicts examples of the co-
speech gesture model that utilizes a human speech phrase and
pointing gesture to achieve robot actions applied to specified
objects in the scene. In this case, as a pointing gesture is
detected by the wrist detection tool, the closest specified object
to the human wrist is selected for the robot actions. A video
of the co-speech gesture model demonstrates all commands
from Fig. EHQ https://youtu.be/b_ISrhOIcCS8| This shows the
collaborative tasks, where the human coordinates the actions
of the robot with four pick and place actions and four robot
to human hand-overs. Human inspection is done after object
placement by stopping robot motion with a speech command.
In total, the experiment includes over 20 speech commands
and seven co-speech gestures to coordinate the shared task.

V. DISCUSSION AND LIMITATIONS

Sensor redundancy enables different modalities to command
the same robot action. This was demonstrated for stopping
and continuing robot motion and actions by hand gestures
(see Fig. @) and by speech commands. While hand gestures
can be detected at relatively high rate (>24 FPS), it can takes
several image frames before a correct prediction occurs. On
the other hand, speech commands can have considerable delay
even when a first verbal command is correctly recognized.

While in most cases the co-speech gesture model achieves
the intended robot commands and collaboration, some limita-
tions are identified. First, detection of the human wrist in a
specific image location requires careful human hand motion.
As alternative, human hand gestures could be recognized di-
rectly from a dedicated model [22]. In our case, inference time
and detection accuracy were the main reasons for utilizing a
skeleton detection model instead. Second, the relation between
human pointing and objects in the scene needs precise camera
calibration, such that the same object is referred to in both
images. This can be circumvented by using a single camera for
both visual perception tools, with RGB and depth perception
functionalities.

VI. CONCLUSIONS

This work investigated how multiple perception tools can
be utilized and combined for effective human-robot collabo-
ration. Human hand gestures and speech, as well as object
detection, provide the input for robot actions, as coordinated
by a person. Single modal perception serves to command
basic robot actions (stop, continue) by gesture or speech. A
co-speech gesture model is developed that combines human
speech phrases, pointing gestures and object detection to
command robot actions (pick and place, robot to human hand-
overs) to specified objects in the scene. Experimental results
demonstrate that co-speech gestures can be easily utilized for
coordinating a shared task between human and robot.
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Fig. 6: Co-speech gestures to achieve specified robot actions to objects.
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