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Abstract—The up-and-coming concept of Industry 5.0 fore-
sees human-centric flexible production lines, where collaborative
robots support human workforce. In order to allow a seamless
collaboration between intelligent robots and human workers,
designing solutions for non-expert users is crucial. Learning from
demonstration emerged as the enabling approach to address such
a problem. However, more focus should be put on finding safe
solutions which optimize the cost associated with the demonstra-
tions collection process. This paper introduces a preliminary out-
line of a system, namely EValueAction (EVA), designed to assist
the human in the process of collecting interactive demonstrations
taking advantage of simulation to safely avoid failures. A policy
is pre-trained with human-demonstrations and, where needed,
new informative data are interactively gathered and aggregated
to iteratively improve the initial policy. A trial case study further
reinforces the relevance of the work by demonstrating the crucial
role of informative demonstrations for generalization.

Index Terms—Human-centered manufacturing, Learning from
Demonstration, Interactive imitation learning, Simulation

I. INTRODUCTION AND STATE OF THE ART

In recent years, the Industry 4.0 paradigm introduced some
impactful technologies for the industrial workflow. Among
these, Artificial Intelligence (AI) at large laid the foundations
for implementing intelligent autonomous agents. Indeed, ma-
chine and deep learning algorithms coupled with smart sensors
led to advanced human-robot perception, enabling new ways
to attain safe and effective collaboration [1]. Also, simulation
and virtual representations of physical systems are becoming a
valuable tool to get insights on assets behaviour and to enable
powerful industrial digital twins [2], [3].

Moreover, collaborative robots can help humans streamline
the manufacturing process. However, human complex and
creative reasoning is yet to be achieved by machines. Thereby,
current and fore-coming research is investigating a human-
centric vision of production lines, the so-called Industry 5.0,
where more sustainable and value-driven production processes
are created giving greater relevance to human skills [4].
When considering human-robot collaborative applications, the
cognitive mismatch between a collaborative robot (cobot) and
a human worker can be narrowed using AI, enabling the robot
to interpret and adapt to the worker’s behaviour. Nevertheless,
the user is typically required to have the expertise necessary to
understand and change the robot’s behaviour. This limitation
can be overcome by exploiting Learning from Demonstration
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(LfD), or imitation learning (IL), where a human teacher
demonstrates to the robot how the task should be executed.

Among the issues affecting LfD we have: (i) dataset bias,
linked to the teacher-specific behaviour or the lack of variety
of demonstrated situations and, (ii) overfitting, caused by too
fine-tuned models or data scarcity in terms of the number of
provided demonstrations. These issues hamper the generaliza-
tion, or extrapolation, capability of LfD algorithms, resulting
in undesired behaviour whenever new situations are met. To
avoid such problems, the human would be required to (i)
know how to offer informative and unbiased demonstrations,
provided in heterogeneous set of situations, and (ii) identify
and provide a sufficient number of demonstrations. This results
in additional mental and physical effort on the human teacher
side. The time that the human spends on performing demon-
strations can be foreseen to be included in the future non-
value adding activities, i.e., activities hindering the transition
towards lean manufacturing paradigms [5]. Also, the authors
of [6] point out that robot learning metrics should focus on
time efficiency, to better reflect the true cost for humans.

Therefore, achieving generalization with few informative
demonstrations is one of the main drivers of research in the
field of LfD. What emerged from the analysed literature is that,
independently of the inherent generalization capability of the
proposed methods, the quantity and quality of demonstrations
greatly impact the achievable extrapolation. It is then possible
to derive two main objectives to reduce the cost of generaliza-
tion (from the human point of view): reduce the number and
improve the quality of demonstrations.

The following works aim at improving generalization while
keeping a low number of demonstrations. Some works try to
achieve adaptability by incorporating into the model a set of
task variables describing the context under which demonstra-
tions were performed [7], or conditioning the learning pro-
cess on different information sources conveying the task [8].
Other works exploit dataset augmentation to achieve policy
improvements for learning task-parameterized skills without
increasing the number of demonstrations, such as [9], in which
noise is added on recorded paths, and [10] where generated
synthetic data are added to the dataset. Several other works,
as [11] and [12], take advantage of reinforcement learning
(RL) to explore and adapt the model to new situations, after
a first phase learning from few demonstrations. In [13], goal
proximity is used as a dense reward for the agent training.

Moreover, human demonstrations quality can affect the
ability to achieve good extrapolation [14]. In fact, obtaining
high-quality demonstrations and providing a definition for



such quality appear among the most critical challenges when
learning from offline human data [15], [16]. Nevertheless,
some works try to exploit all available demonstrations, inde-
pendently of their quality, to exploit a larger number of data. In
[17], the proposed framework learns a well-performing policy
also including confidence-reweighted non-optimal demonstra-
tions. The method proposed in [18] computes a generalized
trajectory from all demonstrations, while the authors of [19]
fully exploit the demonstrations dataset to build a composi-
tional task latent representation space.

The similarity-aware framework presented in [20], evaluates
different representations based on a defined similarity, and then
provides the user with the most similar reproduction of the
demonstrated skill for unseen conditions. Also, the authors
of [21] aim at extending the extrapolation capabilities of IL
methods by means of virtual demonstrations, generated with
the invariants method, to represent a better consistency and
quality alternative to human demonstrations.

The quality and quantity of demonstration goals for good
generalizing policies can be attained by a system seeking to
guide the user’s demonstrations interactively. In Interactive
Imitation Learning (IIL) human demonstrations are periodi-
cally provided during robot execution. Compared to standard
IL training, IIL can be more sample-efficient since demonstra-
tions, in this context known as feedbacks, corrections, or inter-
ventions, are also collected while executing the novice policy,
rather than the teacher’s policy alone [22]. The method in [23]
exploits the epistemic and aleatoric uncertainty information
to detect ambiguities in the feedbacks to support the process
of finding the best learning samples. The algorithm in [24]
exploits topological persistence to detect ambiguity in a trained
policy, in order to query user demonstrations only if needed,
avoiding to gather demonstrations for known situations. A
family of robot-gated IIL methods, stemming from DAgger
[25], allows the agent to query a teacher intervention accord-
ing to estimations of quantities related to task performance
and uncertainty [26], [27]. In particular, ThriftyDAgger [28],
considers the state novelty and the state risk of task failure to
trigger corrections, given a budget of human interventions.

The EValueAction (EVA) framework, whose concept idea
is introduced in this paper, has been designed to represent
a support for the interactive learning process by guiding the
user towards the most informative demonstrations. A state risk
of failure is inferred by computing in simulation an estimate
of its value function, given the executed policy. This way,
new demonstrations are queried where needed, and failures
are foreseen and prevented before acting in the real world,
improving safety. Also, the case study thoroughly analysed
in this paper provides a clear display of the dependence of
generalization on the teacher expertise and resulting demon-
strations’ execution. The remainder of this paper is organized
as follows: Section II describes the case study that brought to
the research idea. Then Section III outlines the concept EVA
system, followed by a possible solution for policy evaluation
in simulation. Finally, Section IV draws some conclusions and
sketches future research directions.

II. PRELIMINARIES

Before outlining the proposed EVA system, it is worth
describing the case study that brought to the concept idea.

Given the following problem contextualization, the assump-
tions and trials outcomes are reported. In the context of flexible
manufacturing, the collaborative assembly task represents a
manufacturing operation of high practical relevance: the robot
is typically allocated repetitive or power demanding tasks,
while the human performs highly dexterous operations [29].
In such tasks, being able to adapt to new situations is crucial,
as the workspace configuration and the positions and shapes
of assembly parts often vary. Following the assembly task
subdivision introduced in [30], we consider an approaching
phase and an assembling phase. The authors perform such
division in order to prevent the potential under-fitting caused
by the variability of the demonstration data between the two
assembly stages. In particular, the approaching phase is the one
most affected by environment constraints and configuration of
parts. As such, this stage would take the most advantage from
an IL algorithm with good generalization capabilities learning
from few demonstrations. Therefore, we consider a human
teaching a cobot how to perform a desired approaching phase.
For example, we can imagine a peg-in-hole collaborative
assembly task, where the approaching phase can be reduced
to a pick-and-place or hovering task.

As extensively reported, improving generalization is widely
tackled by researchers, as poor generalization capabilities is
a common issue in IL. The case study described hereafter
provides a clear idea of how generalization capabilities of IL
methods can be greatly affected by the way demonstrations
are performed.

1) A simplified learning scenario: For the execution of the
trials, we have taken advantage of the algorithm presented
in [31]. Specifically, we exploited the Interactive Learning
of Stiffness and Attractors (ILoSA) framework to learn at-
tractors only from kinesthetic demonstration, without taking
advantage of the interactive part. In ILoSA, the confidence
level provided by the use of Gaussian Processes (GPs) allows
to detect when the cobot lands on an unknown state, and
is exploited to implement a stabilizing attractive field to
lead the robot towards minimum variance regions. As ILoSA
recorded demonstrations within a global frame, generalization
was limited around the visited states. Hence, we borrowed the
general idea of using local reference frames, as hinted in [32],
to be able to test over different final positions.

In summary, we exploited ILoSA to learn from human
demonstrations the attractor distance for the robot impedance
control, learned with respect to the final position reference
frame. The focus of the trials was on reaching as many new
goals as possible with one single informative demonstration.

2) Demonstrations setup: The demonstrations and trials
have been performed on a 7 DOF Franka-Emika Panda with an
impedance controller and a ROS communication network. The
demonstration consisted in moving the robot from a reference
home position to a final position of interest. For our approach-
ing phase scenario, we assume that an assembly part is picked
from some location and brought to the reference home position
at each assembly task iteration. Then the final desired position
(before assembly stage) is reached exploiting the learned
policy. As expected, the employed IL algorithm was able to
generalize in the neighbourhood of a demonstrated trajectory
task. Therefore, to check the generalization behaviour over



(a) Points of interest in rviz. (b) Real setup.

Fig. 1: Four goals of interest on the working plane have been chosen
for the generalization check trials.

(a) (b)

(c) (d)

Fig. 2: Medium expertise demonstration on D.

destination points relatively far from the demonstrated one,
we have chosen four goals of interest (Figure 1).

a) Automatic demonstration recording: The ILoSA
Jupyter interactive Python code has been modified so as to
interactively input a final goal point to accordingly name saved
data and trained GPs models files/structures, while automat-
ically generating a .txt file to keep track of the tests and
relative outcomes. Also, after recording, the produced code
lets iteratively test the learned policy over the set of interest
points. This procedure allowed for faster data collection and
consultation.

3) Trials outcomes: The execution of several trials allowed
to identify three relevant cases that we describe hereafter.
Assumption: after trials, demonstrations with points A and B
as final destination turned out to be the least generalizing thus
are not considered as demonstration points.

a) Medium expertise demonstration: Destination hover-
ing point is one among A, B, C, and D (refer to Figure 2). A
human teacher performed a demonstration with the position
above point D as the final position to be reached (Figure 2a).
Note that the height recorded during the single demonstration

(a) (b)

(c) (d)

Fig. 3: Expert demonstration on T.

was kept as a hovering height for all worktable points set
as desired goals. After the policy training, the motion was
learned in the local reference frame leading to areas with high
confidence for each final goal, as shown in Figure 2b. When
the policy was tested on all the points of interest, it generalized
well on A and B, since the IL algorithm attracted the robot
towards the high confidence areas thanks to its stabilization
prior (Figure 2c). Then, when A was the input for policy
testing, the cobot was able to reach it (Figure 2d).

b) Expert knowledge demonstration: Destination hov-
ering point is not among the points of interest (Figure 3).
An expert human teacher, well aware of the IL algorithm
behind the training process, demonstrated a motion to reach
the position above an empirically chosen test point T (Figure
3a), which intuitively would have allowed the trained policy to
generalize on all points of interest. Indeed, after GPs training,
the policy generalized on A, B, C and D (Figure 3b–3d). Note
that, in this case, the generalization capability is influenced by
the specific motion shape and the stabilization fields, since,
depending on both, the robot may or may not be attracted to
the locally learned motion.

c) Little knowledge demonstration: We then let a human
teacher kept unaware of the underlying IL algorithm demon-
strate a motion towards D. As the human teacher did not
have any information on the influence the motion shape would
have had on the generalization capability, the resulting policy
surprisingly didn’t generalize on the other points of interest,
learning the motion to hover on D only. Note that the human
teacher had expertise in robotics but no information on the
learning process.

4) Main takeaways: The performed trials then brought out
that with an expert teacher, able to infer the most informa-
tive demonstrations with the aim of generalization, a single
demonstration could be sufficient to generalize over four points



of interest and their neighbourhoods (plus the testing point
for demonstration and relative neighbourhoods). Conversely,
if the user is non-expert, with one demonstration only one
task would be learned. Independently of the used LfD method
and the simplicity of the learning scenario, this gave some
intuitions on how robots can help to improve demonstration
quality and reduce demonstration quantity. Namely, as the ma-
chine is well aware of the policy, it can give some suggestions
on where new demonstrations would be most informative and
potentially perform virtual demonstrations, thereby reducing
the number of demonstrations demanded to the human. This
led to the idea of exploiting simulation for policy evaluation,
which in turn would also improve safety during collaboration.

III. THE EVALUEACTION (EVA) SYSTEM

The proposed system, EVA, seeks to provide a framework
to guide the human teacher during the interactive demon-
strations to improve the generalization over new states of a
learned policy. The main elements of the system would be:
(i) the LfD method of choice, (ii) automatic recording of
demonstrations to populate a dataset, (iii) a policy evaluation
algorithm exploiting a digital twin, (iv) human-robot interface
for bidirectional information exchange.

The overall goal is to let the robot successfully perform a
task by taking actions a ∈ A, given observations o ∈ O,
where A and O are the robot’s action and observation spaces,
respectively. These actions could, for example, be reference
end-effector configurations, while observations could comprise
joint angle measurements and camera images. These observa-
tions result from states s ∈ S, i.e., o = O(s) where S is
the state space and O the observation mapping O : S → O.
We make this distinction between states and observations,
since full state information is often not available in real world
scenarios. Since actions follow from observations, the aim is
to find a policy π (which is a mapping from observations to
actions, i.e., π : O → A) such that a task is performed success-
fully. Furthermore, we would like this policy to be successful
starting from a set of initial states s0 ∈ S0 ⊂ S. That is to
say, the robot policy does not have to be successful starting
from all possible states, but should be performing well for
the actual distribution over initial states it encounters, which
we denote by p(s0). Furthermore, successful completion of a
task can be determined by defining a goal state set Sg ⊂ S .
Note that goals could be dynamic and part of the state s. We
can quantify the optimality of a policy by defining a reward
function R(s). Given the reward function, we can define the
value of a state [33]:

Vπ(s) = Eπ

[ ∞∑
k=0

γkR(st+k+1)

∣∣∣∣∣st = s

]
, (1)

where Eπ[·] is the expected value given that policy π is
executed, t is any time step and γ is the discount rate with
0 ≤ γ ≤ 1. Intuitively, the value of a state says how well the
policy performs on average starting from that state following
policy π. We define the optimal policy π∗ as the one that
has the highest expected value given our distribution of initial
states:

π∗ = argmax
π∈Π

Es0∼p(s0)[Vπ(s0)], (2)

where Π is the policy space and Es0∼p(s0)[·] denotes the
expectation given that s0 is drawn from distribution p(s0).
However, in practice it is often not trivial to come up with
an appropriate reward function R(s). This would particularly
be the case if we were to solve this problem with RL.
In that case, the reward function should ideally guide the
robot towards successful behaviour [34], which would require
reward shaping [35]. This can be a time consuming process
that could also lead to suboptimal behaviour. Robotic RL also
results in challenges related to data efficiency and safety [34],
[36]. Therefore, we choose to find π∗ by LfD. In this setting,
it is not required that R(s) guides the agent and we can only
reward success:

R(s) =

{
1 if s ∈ Sg

0 else
. (3)

Worth noting is that with this reward function and γ = 1, the
optimal policy π∗ will simply be the policy with the highest
success rate. By setting 0 < γ < 1, not only success will be
rewarded, but the robot learner will also be stimulated to solve
the task in minimum-time. This is desirable in our scenario,
as time is related to cost in most industrial applications.

Our method falls within the realm of IIL, hence demonstra-
tions are also interactively gathered while executing the learner
policy. This results in demonstrations for states that the robot
learner actually encounters, rather than only demonstrations
for states the teacher encounters. We can collect a dataset
with N demonstration trajectories D = {τ0, τ1, . . . , τN} and
try to imitate the expert policy. We consider demonstrations
that consist of observation vectors, i.e., τ = [o0,o1, . . . ,oT ]
where T is the last time step of demonstration τ . An estimate
of the optimal policy can be obtained by minimizing a loss
between the demonstrated trajectories and trajectories resulting
from the policy:

π̂∗ = argmin
π∈Π

L(π,D). (4)

A popular choice for L is the Kullback–Leibler divergence
[37] between the distribution of observations induced by the
learner policy and teacher policy [38]. We should however take
into consideration that demonstrations are costly, since they
can be time consuming for the human and ideally we would
like the system to have a high level of autonomy to maximize
efficiency. Therefore, we wish to optimize task success while
minimizing the number of demonstrations:

max
D

Es0∼p(s0)[Vπ̂∗(s0)]− λ|D|

s.t. π̂∗ = argmin
π∈Π

L(π,D),
(5)

where |D| is the cardinality of D (the number of demonstrated
trajectories) and λ a regularization parameter. In this way, we
have arrived at an expression for the optimal set of demon-
strations. The maximization of the expectation of the state
values in (5) ensures that we maximize task success, while the
regularization term penalizes the number of demonstrations in
our dataset. We choose to penalize the number of trajectories τ
rather than their length, since a longer demonstration is
preferred over multiple short ones, both by the human and
considering the potential cost per demonstration for preparing
and processing it.



Finding the optimal solution to the optimization problem in
(5) is difficult, because the problem does not have an analytical
solution or gradient, and it can quickly become intractable,
because it may take a large number of evaluations to find
a good solution. In the context of the optimization problem
in (5), evaluating the performance of a candidate solution
(i.e., a dataset of demonstrations) requires collecting human
demonstrations and physical experimentation to evaluate the
performance, which can be time-consuming and expensive.
Then, it is important to design an optimization algorithm that
balances exploration and exploitation and is efficient in terms
of the number of evaluations required to find a good solution.

Simulation is a cost-effective means of evaluating candidate
solutions without the risks and expenses associated with real-
world experimentation. Recent advancements in parallelized
physics simulation on accelerated platforms have enabled fast
simulations [39], [40]. However, the dissimilarities between
the simulator and real-world environments can hinder the
transferability of policies learned in simulation to real-world
settings. As learning methods tend to exploit these differences
to maximize simulated rewards, simulators’ conventional use
results in overestimation of real-world performance. This may
lead to safety hazards and unexpected failures.

To address this issue, we propose to swap the real-world
and simulator’s roles to synthesize policies using human
demonstrations and evaluate them using accelerated physics
simulation. By doing so, discrepancies between simulation and
reality lead to an underestimation of real-world performance.
Failures in simulation may be attributed to either a sub-optimal
policy or discrepancies. In case of success, the policy was
robust enough to achieve the goal despite the discrepancies.
The proposed solution does not rely on gradient information
and instead uses a simulation based search strategy to find a
good solution for the problem in (5). The system comprises
two phases: pre-training and lifelong learning. During the
pre-training phase, real-world demonstrations are continuously
provided by the human operator, until a certain success rate
is achieved in simulation or a maximum number of iterations
is reached (see Algorithm 1). After the pre-training phase,
the robot enters the lifelong learning phase, where it executes
the policy independently. However, it will halt and request a
human-demonstration if it encounters a state that resulted in
a low success rate in simulation (see Algorithm 2).

Algorithms 1 and 2 provide the workflow of these two
phases, while the involved functions are detailed below.
evaluate: this function estimates the policy’s perfor-

mance by computing the value function Vπ , as defined in
(1), which reflects the policy’s performance over the induced
state distribution, given a reward function R and the initial
state distribution p(s0). Computing Vπ may be impractical
due to the large number of real-world evaluations required
and limited access to the full state s. Monte Carlo sampling
and an accelerated physics simulator can overcome such
challenges (e.g., [39], [40]), as both are suitable for parallel
implementation, to estimate an approximate value function
V̂π(o) that is a function of the observations o, serving as
a proxy for the real value function. If there are significant
differences between the real-world and simulator, a policy
trained with real-world demonstrations may, in some cases,

Algorithm 1: Pre-training phase.
Input: Reward function: R(s) // See Eq. (3)

LfD method: L(π,D) // See Eq. (4)
Initial states: s0 ∼ p(s0)
Initial policy: π0
Success threshold: α

Output: Pre-trained policy: π
Dataset: D

1 D ← ∅ // Initialize empty dataset
2 π ← π0 // Initialize policy
3 V̂π ← evaluate(R, p(s0), π) // In simulation
4 do
5 sstart ← suggest(V̂π) // Start state of demo
6 τ ← demonstrate(sstart) // In real-world
7 D ← D ∪ {τ} // Aggregate data
8 π ← optimize (L,D) // Update policy
9 V̂π ← evaluate(R, p(s0), π) // In simulation

10 until Es0∼p(s0)[V̂π(O(s0))] > α // Success rate

Algorithm 2: Lifelong learning phase.
Input: Reward function: R(s) // See Eq. (3)

LfD method: L(π,D) // See Eq. (4)
Initial states: s0 ∼ p(s0)
Pre-trained policy: π // See Alg. 1
Dataset: D // See Alg. 1

1 V̂π ← evaluate(R,Sstart, π) // In simulation
2 s← reset (p(s0)) // In Real-world
3 while running do
4 o← O(s) // Read sensor observations
5 if V̂π(o) > α then run
6 a← π(o) // Get action
7 s← act(a) // In real-world

8 else request demonstration
9 sstart ← s // Demo from current state

10 τ ← demonstrate(sstart) // In real-world
11 D ← D ∪ {τ} // Aggregate data
12 π ← optimize (L,D) // Update policy
13 V̂π ← evaluate(R, p(s0), π) // In simulation

14 if done then
15 s← reset (p(s0)) // In real-world

always fail to solve the task in simulation. In this case, we
propose to use on-policy RL algorithms such as [41].
suggest: This function proposes a new starting state sstart

for the next demonstration based on the policy’s simulated
performance, which is reflected by the estimated value func-
tion V̂π(o). Note that the starting state does not necessarily
have to lie in the set of initial states S0. Proper selection of
starting states can significantly reduce the number of demon-
strations needed to achieve adequate performance, a task that
is typically performed by an expert user with knowledge of the
chosen LfD method. Alternatively, meta learning, a technique
for learning to learn and adapt to new tasks, can be employed
[42]. In this case, a meta learning model would be trained to
suggest the next starting state for a demonstration expected to
improve the current value function V̂π(o) the most.
demonstrate: This function requests the human to pro-

vide a human-demonstration from a given starting state sstart.
Depending on the task, this could occur via, for example,
kinesthetic teaching or teleoperation [22]. Then, optimize
estimates a policy π̂∗, as defined in (4), by minimizing the loss
function determined by the selected method. Finally, reset
resets the real-world system to an initial state , and act applies
the action proposed by the robot’s policy π to the system.



IV. CONCLUSIONS

This paper conceptually introduced EVA, a system con-
ceived to make the IIL demonstrations process less costly and
more safe for humans, while optimizing the exploration and
exploitation balance for good generalization.

Motivations for the potential relevance of EVA as a support
to IIL applications have been laid down, by analysing state-of-
the-art works in the field. The provided core algorithms bring
forward the system working flow. Future works shall fully
implement EVA, and investigate its actual functionality by
assessing its performance with respect to other IIL methods.
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