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Abstract— The safe deployment of autonomous vehicles relies
on their ability to effectively react to environmental changes.
This can require maneuvering on varying surfaces which is still
a difficult problem, especially for slippery terrains. To address
this issue we propose a new approach that learns a surface-
aware dynamics model by conditioning it on a latent variable
vector storing surface information about the current location. A
latent mapper is trained to update these latent variables during
inference from multiple modalities on every traversal of the
corresponding locations and stores them in a map. By training
everything end-to-end with the loss of the dynamics model,
we enforce the latent mapper to learn an update rule for the
latent map that is useful for the subsequent dynamics model.
We implement and evaluate our approach on a real miniature
electric car. The results show that the latent map is updated
to allow more accurate predictions of the dynamics model
compared to a model without this information. We further
show that by using this model, the driving performance can
be improved on varying and challenging surfaces.

I. INTRODUCTION

In recent years autonomous cars have become reliable
enough to be deployed in the real world [1], [2]. Nonethe-
less, they can currently operate safely only under limited
conditions such as a mapped environment, good weather,
or specific types of roads. In the unstructuredness of the
real world with unforeseeable situations, potentially caused
by mistakes of other road users, the autonomous car might
be required to drive at the edge of its ability under all
environmental conditions in order to avoid accidents. One
such scenario is driving on varying surfaces which becomes
especially challenging if their corresponding friction values
differ a lot. Maneuvers that are safe to execute on one
surface can be dangerous or even impossible on a different
surface. For autonomous vehicles, this poses a safety-critical
problem as the driving has to be adjusted according to
the current surface and a wrong estimate about possible
future trajectories can result in disastrous outcomes. How
to autonomously learn to predict features of a surface and
the corresponding impact on the future trajectory without
supervision by ground truth friction values for all surfaces is
still an open research question.

Previous works allowing stable handling at the edge of
controllability considered a single surface [3], [4], [5] or
achieved steady state drifting but no cornering [6]. A typical
approach in the case of varying surfaces is to use a separate
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Fig. 1: Overview of our approach. During driving the latent mapper
uses different modalities like sound and vision to update grid cell
variables that represent information about the road and its properties
at that location. The learned dynamics model receives the latent
variable corresponding to its current location as additional input to
allow for trajectory predictions that are aware of the road material.

terrain classifier [7], [8], [9], which, however, assumes a fixed
number of prespecified terrain classes. This problem can be
overcome by using conditional dynamics models [10] but the
inferred information is not stored in a map and can hence not
be used for later traversals of the same location. Other works
estimate the explicit coefficient of friction inside a physics
model [11], [12]. This, however, relies on the assumption
that an accurate model can be identified, which is difficult
for slippery surfaces.

We tackle this problem with a new approach that trains
a dynamics model to include information from a learned
and automatically updated latent map. During inference, a
latent mapper updates the map, such that the latent variable
at a specific location stores valuable information about the
surface material at that position. The dynamics model uses
the latent variable for its current location as additional input
to make accurate surface-dependent predictions of the next
state. Several traversals through a single location are given
sequentially to the latent mapper to update the corresponding
latent variable in an autoregressive fashion. Since all model
parts are differentiable, we can train the dynamics model and
the latent mapper simultaneously from the same loss in a way
that the latter learns to give useful surface information to the
former. Motivated by the fact that humans automatically use
multiple cues to infer what driving style is appropriate for
the surface they are driving on, the latent mapper receives
multiple modalities like images and sound allowing it to learn
a general representation of different surface patterns.

We implement and evaluate our method on a real miniature
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electric car. The results show our approach is able to gen-
erate complex driving maneuvers on unknown and varying
surfaces, showing the benefit of implicit terrain maps. To
summarize, our contributions are
• a latent mapper trained to update a map with surface

information from multiple modalities
• a surface-aware dynamics model using the latent map
• the implementation on a real electric car
• an extensive evaluation of the single components of our

method and their combinations
• demonstrating the benefit of our latent mapping relative

to a baseline without surface awareness in the real
world.

II. RELATED WORK
A. Surface-Awareness

Terrain classification can be done in an automated
way [13] or from different modalities [14]. Several ap-
proaches use an explicit terrain classifier trained with human-
specified labels and deploy a terrain-specific policy accord-
ingly [7], [8], [9]. More similar to our approach is the work of
Nagabandi et al. [10] where additionally to state and action
an image is given as input to the dynamics model such that it
can infer the next state conditioned on the surface the robot
is currently moving on. Furthermore, meta-learning has been
used for learning to adapt the dynamics model parameters
during inference to a given environment including different
terrains [15]. Our approach is different in that it updates the
surface embedding during inference allowing it in principle
to learn the adaption to any new surface and to further store
the information in a map.

B. Explicit Estimation of the Coefficient of Friction
One can compute possible trajectories using the coefficient

of friction between the tires and the road. However, the
coefficient depends on all kinds of conditions and has to be
estimated from real data. For example, Huang et al. [12]
estimate the coefficient with a limited-memory adaptive
extended Kalman Filter to reduce the effect of outdated
measurements on filtering. Multiple surveys [16], [17] cover
these topics. Deep neural networks can use ultrasound as
input to classify the road surface from which the coefficient
of friction is derived [18]. For autonomous race cars driving
several laps on a track with an inhomogeneous surface cov-
ering has been proposed to estimate the coefficient of friction
and store it in a map [11]. All of these approaches have in
common that they use a physical dynamics model for which
they estimate the corresponding parameters. Our approach is
more flexible in that it can learn any dynamics model without
the need to model the underlying physics. Thus, our work
is most comparable to other methods that learn dynamics
models solely from data. Our focus is to improve ML-based
methods by introducing surface-awareness.

C. Dynamics Models with Latent Variables
Some works train a network for system identification from

the most recent history to output a latent variable which is
then given as additional input to a model-free RL policy [19]
or the dynamics model in model-based RL [20], [21]. In
the meta-RL setting Rakelly et al. [22] train a network to

produce a probabilistic context variable given as additional
input to an off-policy RL algorithm to adapt to a given task.

Our approach differs in that it builds a map over the state
space and learns to learn different context embeddings at
different locations in the state space during inference.

III. TECHNICAL APPROACH
In our work, we employ a dynamics model that predicts

a potential future state given an input action. Subsequently,
the dynamics model is used to control a vehicle along pre-
defined trajectories following a model predictive scheme. Our
approach does not model explicit parameters of a physical
model nor does it take factors such as tire pressure or
temperature into account. One could combine these aspects
with out method but this is beyond the scope of this work.

In contrast to previous approaches, we propose a method
that considers potential changes of the road material along
the track, which may influence the dynamic behavior of
the vehicle. Therefore, we first create a grid map that is
defined in global coordinates and equally divides the space
into quadratic cells. Once the vehicle traverses a cell of the
grid map, a mapping neural network infers a latent vector
that describes the local road surface. Thereby, the mapping
network leverages various modalities that were recorded
during the traversal of the cell, such as RGB images, acoustic
spectrograms, history states, and history actions. Our dy-
namics model takes, aside from low-level state and action
information, the latent vector corresponding to the current
vehicle location as an input, such that it can leverage the
additional mapped cues from multiple modalities to optimize
the predictions of future states, making it surface-aware. As
the training of the mapping model is guided by the loss
of the dynamics model predictions, we do not require any
labels that associate the input modalities with specific surface
characteristics. Note, that in contrast to previous approaches,
our work models the whole surface-aware dynamics as
a neural network, which avoids assumptions or inductive
biases for the created surface map. Next, we unroll multiple
trajectories using the dynamics model and sampling from the
action space. Our system then employs a reward function
and the cross entropy [23] method to score and select the
trajectories that follow a reference path as fast and close as
possible. Following a typical model predictive scheme, we
execute the first action of the resulting plan and restart the
process. In the following we describe each component of our
system in more detail, followed by an explanation of the loss
functions and training procedure.

A. Surface-Aware Probabilistic Dynamics Model Ensemble
Our dynamics model predicts the next output state soutt+1,

given the current input state sint and the current action at. To
this end, we distinguish between input states, which are the
representation of the input to the dynamics model, and output
states, which are the prediction of the dynamics model. We
define the input state as the concatenation of 3D linear
velocities vell, angular velocities vela, linear accelerations
accl, angular accelerations acca, and motor rpm : sin =
[velTl , velTa , accTl , accTa , rpm]T . Additionally, we define the
predicted output state of the dynamics model as estimated



local changes in the x-position ∆px, y-position ∆py and
yaw angle ∆γ, all velocities, and all accelerations as sout =
[∆px,∆py,∆γ, velTl , velTa , accTl , accTa , rpm]T . The action is
composed of the throttle ath and steering command ast, such
that a = [ath, ast]. We make our model surface-aware by us-
ing additional latent vectors as input to the dynamics model.
These latent vectors describe the local learned properties of
the road. Therefore, we propose to learn a latent map L that
is represented as a grid map where each quadratic cell c
holds a distribution over the latent vector. Here, we assume
each entry of the map to be a kl-dimensional multivariate
normal distribution that is parametrized by lcθ, corresponding
to cell c. As the vector is learned implicitly, the number of
dimensions kl represents a hyperparameter. To predict the
next output state, we first sample a latent vector lc from
the latent distribution N (lcθµ , l

c
θσ2

) at the cell corresponding
to the current vehicle position. Following, we employ an
ensemble of probabilistic dynamics models [24] with param-
eters ψ to predict the next state, while capturing model and
data uncertainties. The input of this ensemble comprises the
current input state, the current action, and the sampled latent
vector, which we feed by simple concatenation. Thus, we
model the Gaussian distribution of the next state as:

fψ(st+1 | st, at) = Pr(st+1 | st, at, lc;ψ). (1)

For clarity, we omitted the differentiation between the input
and the output state.

B. Mapping Network
To estimate the latent map, we propose a novel neural

network architecture that takes a variety of modalities as
input. In more detail, when the car traverses a cell c, we
leverage an RGB image Ic, an acoustic spectrogram Sc, the
history of states Hc

s , the history of actions Hc
a, and the

previous estimate of the mean and variance of the latent
vector lcθ that were recorded in the same cell c. The cues
are then encoded into high-level features using respective
encoders. These features are then concatenated and passed to
another MLP with two output heads, which predicts the mean
and variance of the latent vector respectively. As mentioned
in Sec. III-A, the means and variances are then aggregated
to a latent map L. More formally, let φ be the parameters
of the mapping model and l̃cθ the updated parametrization of
the Gaussian distribution of the latent vector in cell c. We
define a latent update for the cell c as:

l̃cθ = Mφ(Ic, Sc, Hc
s , H

c
a, l

c
θ), (2)

Note, that since we input previous latent estimates lcθ, the
latent representation of the road surface is updated iteratively.

While the RGB image may entail visual information of
the road, the acoustic spectrograms capture direct tire-road
interactions that are characteristic for specific materials.
Additionally, from learning about the history of states and
actions, our mapping model can infer ground patterns that
lead to specific state sequences given the respective actions.

Particularly at inference time, estimating the road char-
acteristics from only the low-level state and action history
would most likely fail when the vehicle is at slow speeds
or stands still. To argue about the road surface, the dynamic

behavior needs to differ across different road materials due
to distinct friction characteristics. This, however, is only
given in cases where the maximum frictional force [25]
that is achieved is smaller than the force that is needed to
sustain the vehicle track. Thus, to enable arguing about the
road material, situations are required in which the car starts
slipping. While, for training purposes of the dynamics model,
this data can be collected by an expert driver, uncontrolled
slipping should be avoided during inference. To this end,
our multimodal approach allows learning a mapping that
associates visual or acoustic cues to a latent representation of
the road without the requirement of slipping. As an example,
our network can learn to associate a slippery surface with
the visually shiny appearance of the road. Further, acoustic
spectrograms can contain information about the road even
under low velocities.

Consequently, we require examples of aggressive driving
only during training, while during inference the road repre-
sentation can be estimated under all conditions. Furthermore,
the employed modalities can complement each other if
one modality lacks information due to visual occlusions,
low lighting, or when external acoustic events drown out
important acoustic tire-road interactions. We show in Sec. VI
that leveraging multimodal data yields high gains in state
prediction performance.

C. Training of the models
We first collect a training dataset with dynamic examples

of random driving in environments with spatially changing
road materials. These driving examples include situations
where the car slips. To train our networks we propose a loss
function that fulfills two requirements:
• Unrolling of future states may lead to querying cells

that have not been observed yet. In these cases, it
should be possible to inform the dynamics model of
zero knowledge of the surface material.

• The outputs of the mapping model should represent a
spatial property of the road surface that is valid for any
state prediction in the respective cell.

To accomplish these requirements, we first group the individ-
ual recorded ground-truth state transitions according to the
cell c in which the transition was captured. Here, we denote
the n-th state-transition in our dataset that occurred in the cell
c as sc

n

t → sc
n

t+1. Now, having a list of all state transitions
that occurred in the same cell, we select N random state
transitions within a cell and define the loss for training the
dynamics model as:

Ld =
∑

n=[0,1,...N ]

(Lg(fψ(sc
n

t+1 | sc
n

t , a
cn

t , l
cn), ¯sc

n

t+1)), (3)

where lc
0

= 0 and for n > 0:

lc
n+1

= Mφ

(
Ic
n

, Sc
n

, Hcn

s , Hcn

a , lc
n

θ

)
, (4)

and where Lg(θ, target) = 1
2 (log θ2σ +

(θµ−target)2
θ2σ

) is the
Gaussian negative log-likelihood loss, and ¯sc

n

t+1 is the ground
truth target state. The order of the traversals is irrelevant
to our loss. Our loss represents the update scheme of the
latent vectors, in which in the first iteration no knowledge of



the surface is assumed. Thus, in the first iteration, a latent
vector for the dynamics model is defined as a zero-vector,
which forces the dynamics model to predict a future state
distribution that is broad enough to cover all road materials
properties that appear during training. This is particularly
useful when unrolling state sequences over cells that have
not been observed yet. In these cases, a conservative estimate
of the state distribution is required as unobserved cells may
entail any material or surface condition. In the following
iterations of our loss function (n > 0), the latent vector
fed to the dynamics model is updated using our mapping
model. In our loss function, the latent update is calculated
based on the observed data of the previous traversal n − 1,
while the dynamics model predicts the state transition for the
current traversal n in the same cell c. Thus, we ensure that the
latent vectors are independent of the currently predicted state
transition and represent a joint representation that improves
prediction accuracy for all transitions in the respective cell.
Note that if the dynamics model would receive a latent vector
generated by the mapping network using data recorded at the
same time as the inputs of the dynamics model, the mapping
model could directly contribute to the prediction of the next
state rather than representing a spatial property of the track.
For our experiments, we set the number of selected state
transitions to N = 3.

1) Three Stage Training: We optimize our model using
a three-stage approach. In the first stage, we optimize the
dynamics model as well as the latent vectors but without
training the mapping network. Instead, we optimize the latent
vectors lc directly by backpropagating into them, treating the
map as model parameters. We denote the directly optimized
latent parameters as l̄c ∈ L̄. In contrast to the limited
information of the input of the mapping network at inference
time, this has the advantage that the latent vectors can be
thoroughly optimized over all batches of the dataset. We
denote the resulting loss as:

Lds1 =
∑

n=[0,1,...N ]

(Lg(fψ(sc
n

t+1 | sc
n

t , a
cn

t , l̄
c), ¯sc

n

t+1)) (5)

In contrast to the later training stages, we do not inject zero-
vectors, while optimizing the latent vectors directly as we
presented in Eq. 3. Experiments have shown that the training
becomes instable otherwise.

To avoid agitated latent maps, we add a smoothness term
minimizing the local gradient of the latent maps:

Ls = || ∇L̄ ||2 (6)
The overall loss being optimized in the first stage is simply
a weighted sum of both loss functions:

Ls1 = Lds1 + λLs, (7)
where λ denotes a weighting hyper-parameter that defines
the strength of the smoothness term.

However, as the parameter map L̄ is optimized offline,
it can not be employed in practical applications as the
vehicle should be capable of driving through previously
unseen environments. By leveraging our multimodal mapper,
new environments should be observed on-the-fly avoiding
this limitation. Thus, in the second stage, we freeze the

learned latent parameters L̄ and the dynamics model while
optimizing the mapping network. In this stage, we guide the
latent predictions from our mapping model, by optimizing
the negative log-likelihood of the predicted latent vector
distribution lcθ given the learned parameter corresponding to
the same cell l̄c. Overall, the loss for the second stage of our
training scheme is defined as:

Ls2 =
∑

n=[1,...N ]

Lg(lc
n

θ ,
¯lcn). (8)

In the last stage, we then freeze the mapping model and
refine the dynamics model by optimizing Eq. 3 and feed
the estimate lc from the mapping network into the dynamics
model instead of the previously used learned parameter l̄c.

D. Planning and Control
In order to follow a reference trajectory Tr, we fol-

low a model predictive control approach. In detail, we
use iCEM [26], which generates multiple future state se-
quences by sampling over the actions. The best sequences
are selected using a pre-defined reward function and are
refined for a specific amount of iterations. In contrast to
the vanilla CEM [23], iCEM provides significantly better
sample efficiency and generates smoother trajectories due
to enforced temporal consistency along the state sequences.
These properties make the sampling-based planning real-
time capable, which is a crucial requirement for high-speed
autonomous driving.

1) Trajectory Unrolling and Latent Sampling: To generate
candidate trajectories for the planning module, we start
from the initial current state of the vehicle and unroll
future state sequences by successively applying our dynamics
model given a sequence of actions. We then accumulate all
predicted local changes of the x-position ∆px, y-position
∆py , and yaw angle ∆γ to convert the state sequences into
trajectories that are defined in the coordinate system of the
initial state. Finally, we add the initial position of the vehicle
to convert them into the global coordinate system. To sample
multiple trajectories from our ensemble of dynamics models,
we employ the TS1-strategy [24]. In each iteration of iCEM
we generate trajectories for Na distinct action sequences.
As our ensemble of dynamics models predicts a single state
transition at a time, we apply our dynamics model h times
for a trajectory with the length of h time steps and the
same number of actions. Further, we sample k different state
hypotheses for each individual action, effectively resulting
in Na ∗ k ∗ h inferences passes of our dynamics model and
k ∗ Na trajectories. During trajectory generation, the latent
vectors are sampled from the respective latent distribution for
each individual state of the trajectories and leveraged for the
next update using the dynamics model. Thus, intra-trajectory
changes of the road materials are considered.

2) Map Update: We start with a map in which the
parametrization of each cell is set to zero. As discussed
in Sec. III-C this indicates zero knowledge about the map.
As the latent distribution in each cell can be updated asyn-
chronously with respect to the prediction of the dynamics
model, we run the mapping model and the controller includ-
ing the dynamics model in separate threads. This ensures that



Fig. 2: In our approach the vehicle estimates a distribution of a latent representation of the road surface using different modalities, such as
history state/action information, RGB images, and acoustic spectrograms. Thereby, all local latent distributions are collected in a global
grid map L. Once the vehicle traverses a cell c of the grid map, the underlying latent distribution lcθ gets updated. For planning purposes,
an ensemble of probabilistic dynamics models estimates the distribution of the future state st+1 given the actions at, the current input
state st and a sampled latent vector from the latent distribution of the grid-map-cell that corresponds to the input state st. As the dynamics
model can be successively applied, a distribution of future trajectories can be obtained. As both mechanisms, latent mapping and state
prediction can run independently from each other, the mapping is conducted asynchronously.

the dynamics model does not need to wait for the mapping
inference to finish and allows for parallelization as we run the
dynamics model on CPU and the mapping model on GPU.

3) Reward Function: To score all trajectory candidates,
we propose a reward function that evaluates these in terms
of different metrics. The target trajectory is given by x − y
coordinate waypoints. We measure the deviation of a given
trajectory to the target with the cross-track error Rcte. As
we want the car to move as fast as possible we define a
progress reward Rp by adding up the length of all the line
segments between waypoints the trajectory passes. Further,
to punish risky maneuvers and prevent shortcuts we define a
binary boundary violation reward Rb which is equal to 1 if
a specified boundary around the waypoints is exceeded and
0 otherwise. Lastly, to encourage smooth driving we define
the reward Ra as the absolute difference between the last
executed throttle command and that of the first action of the
trajectory. The final reward for a trajectory is defined as

R = wp ·Rp − wcte ·Rcte − wa ·Ra − wb ·Rb, (9)

where we set the weighting parameters to wp = 40, wcte =
10, wa = 20, wb = 20000.

IV. DATASET

To train and evaluate our approach we propose a novel
dataset which we refer to as Dynamic FreiCar. As an
experimental vehicle, we employ a rear-driven miniature 1:8
scale car that is equipped with a computer, various sensors,
and a high-torque electric motor. To capture RGB images,
we leverage a ZED camera, while we use a Rode compact
microphone to record audio data. We further use Valve Light-
houses to track the position of the car and gather ground-
truth velocity and acceleration data. Our dataset contains
70 minutes of expert driving along random trajectories that
include drifting scenarios. All data is recorded at 100hz. We
use two types of wood laminate and gym rubber mats for the
different surface materials. To avoid bumps at the transition

The Car Without Map With Map

Fig. 3: Left: Our experimental vehicle. The background shows
the various surface materials over which the driving is conducted.
Center and right: the driven path of the vehicle with and without
map information.

we level out the different materials. To ensure fair training
and evaluation splits we create two maps for training and one
map for evaluation by spatially rearranging the materials.
Thus, as we train on multiple maps, we avoid overfitting
to a specific map, which we validate in our experiments
section. Figure 3 shows our experimental vehicle and the
driving environment. Note that our approach does not model
explicit friction values and we do not have the ground truth
friction values for the different surfaces.

V. IMPLEMENTATION DETAILS

We implement our approach on top of MBRL [27], a
pytorch-based [28] general framework for model-based re-
inforcement learning. We employ a ResNet-18 architecture
for the image and spectrogram encoders respectively. For
the base architecture of the dynamics model, we leverage
the implementation of the Gaussian ensemble from MBRL.

We use a learning rate of 0.001 for optimizing the param-
eters of the dynamics model and the map parameters, and a
different learning rate of 0.0001 for the mapping model. We
train all models with a batch size of 96 across four RTX 2080
ti GPUs for 500 epochs. For inference and running the model
predictive controller, we use a Ryzen 5950X processor.

To extract the spectrograms from the acoustic data, we use
an FFT with 257 bins and a hop length of 128. We extract
the spectrogram over the last second of data and convert it to



decibels afterward. The images and spectrograms are resized
to 336x188 before passing them to their respective encoders.

We further define the time span of a single state transition
as 0.1s and set the map resolution to 50cm. As for the iCEM
optimizer, we set β = 4 and γ = 1.3. Furthermore, we use a
planning horizon of h = 8 steps, 32 samples in each iteration,
and set the number of iCEM iterations to 2.

VI. EXPERIMENTAL RESULTS

To assess the efficacy of our method we train on the
training set of Dynamic FreiCar.

A. Evaluation of the Dynamics Model
We evaluate the prediction accuracy of the dynamics

model on the test set of our dataset. To generate a test set
that represents practical use-cases, we leverage our method
to drive 10 laps autonomously on track 3 (see Sec. VI-C).
We record all state transitions during this run and employ
them as the test set for the following evaluation. As unrolling
long trajectories are practically important for planning and
control, we introduce a metric that describes how well the
predicted states align with the ground truth while considering
uncertainty. Thus, for all time steps in our dataset, we unroll a
sequence of Ns states using the future actions that have been
carried out following the current state. To capture multiple
hypotheses we repeat the unrolling process 100 times for
the same action sequence. Now, given 100 hypotheses of the
future trajectory, we compute the euclidean distance between
each point of every trajectory hypothesis and the observed
ground-truth trajectory that was driven. Finally, we compute
the mean euclidean error. More formally, let Ds be the
set of all observed states in the dataset, H(s) all unrolled
hypotheses starting in state s, and T (s)n the n-th point of
the observed ground-truth trajectory that starts in s. Then we
define the metric as:

L2Ns =
1

NDNHNs

∑
s∈Ds

∑
h∈H(s)

Ns∑
n=0

|| hn − T (s)n ||2 .

(10)
where ND is the number of starting states in our dataset
and NH = 100 is the number of rolled-out hypotheses. We
compute our evaluation metrics in the chronological order of
the test dataset by iteratively updating the latent cues of the
grid map as more data about the surface can be observed over
time. This evaluation scheme strictly represents the practical
deployment of the model, since the full map can not be
leveraged at the beginning but builds up progressively.

We compare our approach against a baseline that does
not employ any latent mapping (Ours-w/o map) similar to
PETS [24] and additionally present the performance of our
approach when only a subset of the modalities are leveraged
for the mapping model. We denote a model that uses only
images, spectrograms or history state/action information for
latent mapping as Ours (I), Ours (A) or Ours (S) respectively.
Furthermore, we show the results of a dynamics model that
takes the ground-truth terrain types instead of the estimated
latent vectors of the map as input. To encode the ground-
truth surface we simply provide a scalar value to the model
indicating on which terrain type it is operating. We denote

this model as Ours (GT). We argue that this model should
provide the highest accuracy as the terrain is known at all
times. As described in Sec. II, the settings tackled in previous
works deviate considerably from ours in terms of surface
map representation and hence we refrain from comparing to
them. In our work, we set the focus on evaluating the benefits
of latent surface maps for dynamics models.

The results in Table I show that our multimodal latent
mapper (Ours (AIS)) significantly boosts prediction perfor-
mance. By learning and mapping multimodal cues about the
surface material, we reduce the error for Ns = 30 from
0.462 to 0.374 corresponding to a reduction of 19% over
a model without the mapping model. In comparison to the
model with the ground-truth terrain types as input (Ours
(GT)), our model is on par with respect to the L210 metric
and only 1.9% and 4.2% worse for the L220 and L230
metrics respectively. As the performance of the model with
ground-truth terrain types is expected to be an upper limit,
one can argue that our model effectively predicts the surface
information needed to improve prediction performance.

Further, one can observe that the dynamics model per-
forms best when using a mapping model that takes all modal-
ities as input. Leveraging only the history of state/action
information yields an L230 error of 0.422, only acoustic
yields 0.397, and only visual cues yields 0.383. An inter-
esting observation is that the combination of the history of
states/actions and acoustic cues reaches a very low L230
error of 0.393, even though images are not employed in
this case. In contrast to RGB images, acoustic spectrograms
do not contain information on the spatial location of the
car. Thus, the image-free version of our mapping model
is less prone to overfitting. Although we could not observe
overfitting of the mapping model during our experiments, this
could ease training in more large-scale scenarios. Further,
some of the improvement of using all modalities over just
using the image might come from the fact that the front-
facing camera only captures the surface farther in front of
the current position, which might result in poor image-terrain
associations at surface transitions.

While we used a ten-dimensional latent vector (kl = 10)
for the previously explained models, we additionally evaluate
models that leverage all modalities and employ 1 and 5
elements. These models are denoted as Ours (AIS,kl = 1)
and Ours (AIS,kl = 5) respectively. Here, one can note
that estimating ten-dimensional latent vectors additionally
improves the L230 metric by 10% over a model that employs
a single dimension. We explain this effect by the thesis
that overparametrization of the surface information eases
the training procedure and helps avoiding local minima.
Estimating more than ten latent dimensions did not show
further performance gains during our experiments.

B. Qualitative Latent Maps
To investigate the learned latent maps in more detail, we

visualize the learned map using a color-coding and kl = 10.
A principal component analysis (PCA) projects the multi-
dimensional latent vector to a single scalar. We create the
latent vectors using all available data of the test-split (10



Model L210 ↓ L220 ↓ L230 ↓

Ours-w/o map 0.094 0.262 0.462
Ours (S) 0.090 0.242 0.422
Ours (A) 0.085 0.228 0.397
Ours (I) 0.081 0.218 0.383

Ours (AS) 0.082 0.225 0.393
Ours (AIS-kl=1) 0.087 0.237 0.418
Ours (AIS-kl=5) 0.080 0.223 0.400

Ours (AIS) 0.079 0.212 0.374

Ours (GT) 0.079 0.208 0.359

TABLE I: Quantitative evaluation of the prediction accuracy of our
proposed dynamics network. We present comparisons to a model
that is not using a latent map as input and to a model that leverages
a map that is optimized offline as parameters.

GT Ours-Mean(AIS) Ours-Var(AIS)

gt-layout mean variance

Fig. 4: Qualitative results of aggregated predicted latent vectors. It
can be observed that the predicted maps are representing different
materials well.

laps) of our dataset. The updates of the latent vectors are
conducted in chronological order of the split. Fig. 4 shows
the learned map, the predicted variance of the latent estimate,
and the corresponding ground-truth layout. The experiment
clearly reveals that our latent embedding correlates with the
real-world layout of the test environment. Thus, we can
validate that our mapping model predicts spatial cues of the
track surface. Further, we observe that the predicted variance
of the latent cues correlates with the locations of transitions
between different materials. This follows our intuition as
the observed data corresponding to a single cell of the grid
map can contain information about multiple materials, since
the cell can potentially stretch over material transitions. As
the test split entails a distinct arrangement of the surface
materials not seen during training, we can confirm that our
mapping model generalizes over the map structure.

C. Real-World Planning and Control
To evaluate our surface-aware dynamics model for practi-

cal applications, we employ our model predictive controller
for autonomous racing. The experiment is designed to inves-
tigate the effect of the dynamics model being surface-aware
or not under otherwise same conditions. The dynamics model
could be further improved by taking other features such as
tire pressure and temperature into account. However, the
car does not have sensors for this and these are orthogonal
improvements that are beyond the scope of this work. We
conduct the experiments on three diverse single-lane maps
varying significantly in curvature. Track 1 and 3 have three
different surfaces with highly varying friction values while
Track 2 is completely on a slippery surface. The accompany-
ing video shows all maps as well as the resulting driving of
our approach. We quantify the driving performance in terms

Model Lap Time ↓ CTE ↓ Bd. Violations ↓

Track 1

Ours w/o map 8.17± 0.59 27.63± 7.95 4.82± 8.64
Ours (AIS) 7.35± 0.42 26.34± 6.12 2.79± 5.98

Track 2

Ours w/o map 5.47± 0.34 14.57± 4.92 1.39± 4.89
Ours (AIS) 4.89± 0.26 17.33± 3.48 0.30± 1.29

Track 3

Ours w/o map 20.47± 0.91 61.32± 14.04 10.09± 14.06
Ours (AIS) 19.08± 0.89 56.14± 8.17 8.78± 10.82

TABLE II: Quantitative evaluation of the driving performance of our
approach. The results show the efficiency of our approach, which
significantly reduces the cross-track error while achieving faster lap
times in comparison to a model without a mapping network.

of three metrics computed over 30 laps. In more detail, we
present the average lap time, the average cross-track error
(CTE), and the average lane-boundary violation score. The
lap time is a useful performance indicator as wrong dynamics
predictions either lead to overly careful driving or to overly
aggressive maneuvers on slippery surfaces which results in
deviations from the racing line or emergency braking. The
other two performance indicators focus on measuring wrong
predictions in the context of overly aggressive driving. The
results in Tab. II suggest, that our surface-aware dynamics
model significantly improves all stated metrics. Our surface-
aware model achieves significant lower lap times. Further-
more, it yields reduced cross-track error and significantly
reduces the violation of lane boundaries. Thus, our approach
increases driving safety in challenging environments.

We observe that latent mapping helps in particular to
improve the violation of lane boundaries as our model pre-
vents unexpected drifting that leads off the racing track. We
illustrate such a scenario in Fig. 3. Further, actions obtained
from optimizing erroneous trajectory estimates sometimes
led to failure cases on slippery surfaces. In these cases, we
had to manually intervene to prevent damage to the car. This
happened three times for the model without map updates,
while we never observed it for the model with map updates.
This behavior indicates that on slippery surfaces the model
with latent surface information predicts the dynamics more
accurately while the model without overestimates the speed
at which certain corners can be taken as it is trained to predict
well averaged over all surfaces including those for which
such maneuvers are possible.

D. Progressive Map Building

We further investigate the quality of the latent map with
respect to the number of driven laps. The mapping model
can improve its estimate of the underlying latent vector and
variance with every new lap. This experiment is conducted



Lap number 1 2 3 4 5 10

Lap time [s] ↓ 20.89 20.62 20.08 19.44 19.32 19.10

L210 ↓ 0.0857 0.0816 0.0807 0.0805 0.0804 0.0801

TABLE III: Quantitative evaluation of the influence of completed
laps with respect to the dynamics prediction accuracy and lap time.
In this experiment, we only consider map updates during a specified
number of consecutive laps. The respective L2 error is calculated
over the state transitions of all laps.

on Track 3 while driving ten laps. Tab. III shows the lap
times and the L2 error that is computed by considering the
state transitions of all laps but only using the observations
of the first ten laps to build the latent map respectively. The
results show that with each additional lap our mapping model
is consistently improving the latent estimates to improve the
state predictions as well as the driving performance.

VII. CONCLUSION
In this paper, we present a novel approach to estimate

latent representations of the road surface. The latent rep-
resentation is aggregated to a global grid map, which is
then leveraged to improve future state predictions from a
dynamics model. To this end, an ensemble of probabilistic
dynamics models estimates the distribution of the next state
given the current state, current action, and the latent repre-
sentation of the road that corresponds to the current position
of the vehicle. Thus, our dynamics model can effectively
leverage the latent cues making it surface-aware. We show
the efficacy of our method on a newly proposed dataset,
presenting improved prediction accuracy of future states.
Furthermore, we employ a model predictive controller and
a novel reward function. In real-world driving experiments
we demonstrate that including the latent mapping provides
a significantly improved driving performance, reducing lap
times and enhancing vehicle safety on surfaces with vary-
ing friction. While this work considers the use of surface
information to improve the dynamics model, there are also
other changing factors influencing the dynamics such as tire
pressure and temperature. A promising avenue of future work
is to integrate our approach in a more complete system with
additional sensors to also take these factors into account.
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