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Abstract—The kernel matrix used in kernel methods encodes
all the information required for solving complex nonlinear
problems defined on data representations in the input space
using simple, but implicitly defined, solutions. Spectral analysis
on the kernel matrix defines an explicit nonlinear mapping
of the input data representations to a subspace of the kernel
space, which can be used for directly applying linear methods.
However, the selection of the kernel subspace is crucial for the
performance of the proceeding processing steps. We propose a
new optimization criterion, leading to a new component analysis
method for kernel-based dimensionality reduction that optimally
preserves the pair-wise distances of the class means in the feature
space. This leads to efficient kernel subspace learning, which is
crucial for kernel-based machine learning solutions. We provide
extensive analysis on the connections and differences between
the proposed criterion and the criteria used in kernel Principal
Component Analysis, kernel Entropy Component Analysis and
Kernel Discriminant Analysis, leading to a discriminant analysis
version of the proposed method. Our theoretical analysis also
provides more insights on the properties of the feature spaces
obtained by applying these methods. Results on a variety of visual
classification problems illustrate the properties of the proposed
methods.

Index Terms— Kernel subspace learning, Principal Com-

ponent Analysis, Kernel Discriminant Analysis, Approximate

kernel subspace learning

I. INTRODUCTION

Kernel methods are very effective in numerous machine

learning problems, including nonlinear regression, classifica-

tion, and retrieval. The main idea in kernel-based learning

is to nonlinearly map the original data representations to a

feature space of (usually) increased dimensionality and solve

an equivalent (but simpler) problem using a simple (linear)

method for the transformed data. That is, all the variability

and richness required for solving a complex problem defined

on the original data representations is encoded by the adopted

nonlinear mapping. Since for commonly used nonlinear map-

pings in kernel methods the dimensionality of the feature

space is arbitrary (virtually infinite), the data representations

in the feature space are implicitly obtained by expressing

their pair-wise products stored in the so-called kernel matrix

K ∈ R
N×N , where N is the number of samples forming the

problem at hand.

The feature space determined by spectral decomposition of

K has been shown to encode several properties of interest:

it has been used to define low-dimensional features suitable

for linear class discrimination [1], to train linear classifiers

capturing nonlinear patterns of the input data [2], [3], to reveal

nonlinear data structures in spectral clustering and diffusion

maps [4], [5] and it has been shown to encode information

related to the entropy of the input data distribution [6]. The

expressive power of K and its resulting basis has also been

used in problems requiring discriminative learning [7], [8], [9],

[10], [11], [12], [13], [14], [15], regression [16], representation

learning [17] and transfer learning [18]. However, the selection

of the kernel subspace is crucial for the performance of the

proceeding processing steps, as discarding information related

to the problem at hand at the initial processing steps would

lead to low performance.

In this paper we first propose a kernel matrix component

analysis method for kernel-based dimensionality reduction

optimally preserving the pair-wise distances of the class means

in the kernel space. We show that proposed criterion also

preserves the distances of the class means with respect to

the total mean of the data in the kernel space, as well as

the Euclidean divergence between the class distributions in

the input space. We analyze the connection of the proposed

criterion with those used in (uncentered) kernel Principal Com-

ponent Analysis (kPCA), kernel Entropy Component Analysis

(kECA) and Kernel Discriminant Analysis (KDA), providing

new insights related to the dimensionality selection process

of these two methods. KPCA and kECA select the eigen-

pairs corresponding to the maximal eigenvalues or entropy

values, respectively. As we will show in the following, for

the selection of an eigen-pair in the proposed method, called

Class Mean Vector Component Analysis (CMVCA), both the

eigenvalue needs to be high and the corresponding eigenvector

needs to be angularly aligned to the difference of a pair of

class indicator vectors. Finally, exploiting the connection of

the proposed method to KDA, we propose a discriminant

analysis method, called Class Mean Vector Discriminant Anal-

ysis (CMVDA), that is able to produce kernel subspaces the

dimensionality of which is not bounded by the number of

classes forming the problem at hand. Experiments on real-

world data illustrate our findings.

The contributions of the paper are the following:

• We propose a new criterion of defining the subspace of

the kernel space.

• We provide extensive theoretical analysis of the proposed

criterion highlighting its properties in terms of preserving

the scatter of the data from the dataset mean, the Eu-

clidean divergence between the class probability density

functions, and the class discrimination when measured by

the Rayleigh quotient criterion.
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• We provide an extensive analysis of the connections and

differences between the proposed criterion and those used

in (uncentered) kPCA, kECA and KDA, leading to the

proposed CMVDA.

• We show how the proposed criterion can be efficiently

combined with kernel approximation and randomization

methods for performing kernel subspace learning on large

data sets.

The remainder of the paper is structured as follows. Section

II provides the theoretical foundation needed for the analysis

in our work. Section III describes in detail the proposed

Class Mean Vector Component Analysis. It provides analysis

of its properties, and its connections and differences with

the related techniques. Section IV describes the Class Mean

Vector Discriminant Analysis, an extension of the proposed

criterion to discriminant kernel subspace learning. Section V

describes how the proposed methods can be efficiently com-

bined with kernel approximation and randomization methods

for performing kernel subspace learning on large data sets. An

experimental study illustrating the properties of the proposed

methods, in comparison with the related methods, is provided

in Section VI. Finally, conclusions are drawn in Section VII.

II. PRELIMINARIES

Let us denote by S = {Sc}Cc=1 a set of D-dimensional vec-

tors, where Sc = {xc
1, . . . ,x

c
Nc

} is the set of vectors belonging

to class c. In kernel-based learning [2], the samples in S are

mapped to the kernel space F by using a nonlinear function

φ(·), such that xi ∈ R
D → φ(xi) ∈ F , i = 1, . . . , N , where

N =
∑C

c=1 Nc. Since the dimensionality of F is arbitrary

(virtually infinite), the data representations in F are not calcu-

lated. Instead, the non-linear mapping is implicitly performed

using the kernel function expressing dot products between the

data representations in F , i.e. κ(xi,xj) = φ(xi)
Tφ(xj). By

applying the kernel function on all training data pairs, the

so-called kernel matrix K ∈ R
N×N is calculated. One of the

most important properties of the kernel function κ(·, ·) is that it

leads to a positive semi-definite (PSD) kernel matrix K. While

the use of indefinite matrices [19], [20] and general similarity

matrices [21] have also been researched, in this paper we will

consider only positive semi-definite kernel functions.

The importance of kernel methods in Machine Learning

comes from the fact that, in the case when a linear method

can be expressed based on dot products of the input data, they

can be readily used to devise nonlinear extensions. This is due

to the Representer theorem [2] stating that the solution of a

linear model in F , e.g. W(φ) ∈ R
|F|×M , M ≤ min(D,N),

can be expressed as a linear combination of the training

data, i.e. W(φ) = ΦA, where Φ = [φ(x1), . . . , φ(xN )] and

A ∈ R
N×M is a matrix containing the combination weights.

Then, the output of a linear model in F can be calculated by

oi = WT
(φ)φ(xi) = ATki, where ki ∈ R

N is a vector having

its j-th element equal to [ki]j = κ(xj ,xi), j = 1, . . . , N .

That is, instead of optimizing with respect to the arbitrary

dimensional W(φ), the solution involves the optimization of

the combination weights A. Another important aspect of

using kernel methods is that they allow us to train models

of increased discrimination power [2], [22]. Considering the

Vapnik-Chervonenkis (VC) dimension of a linear classifier

defined on the data representations in the original feature space

R
D, the number of samples that can be shattered (i.e., correctly

classified irrespectively of their arrangement) is equal to D+1.

On the other hand, the VC dimension of a linear classifier

defined on the data representations in F is higher. For the

most widely used kernel function, i.e. the Gaussian kernel

function κ(xi,xj) = exp
(

− 1
2σ2 ‖xi − xj‖22

)

, it is virtually

infinite. In practice this means that, under mild assumptions,

a linear classifier applied on data representations in F can

classify all training data.

Using the definition of the kernel matrix, i.e. K = ΦTΦ,

and its PSD property, we can determine a subspace of the

corresponding kernel space F . This can be done by its spectral

decomposition K = UΛUT , leading to Φ̃ = [φ1, . . . , φN ] =
Λ

1

2UT , where Λ = diag(λ1, . . . , λN ) and U ∈ R
N×N are the

eigenvalues and the corresponding eigenvectors of K. Thus,

an explicit nonlinear mapping from xi ∈ R
D to φi ∈ R

N is

defined, such that the d-th dimension of the training data is:

[Φ̃]d =
√

λdu
T
d , (1)

where λd is the d-th largest eigenvalue of K and ud is the

corresponding eigenvector. In the case where K is centered in

F , RN is the space defined by kernel PCA [2]. Moreover, as

has been shown in [23], [24], the kernel matrix needs not to

be centered. N is called the effective dimensionality of F and

R
N is the corresponding effective subspace of F . As can be

observed by Eq. (1), the effective dimensionality of F depends

on the rank of K, as for eigenvectors corresponding to zero

eigenvalues, the corresponding subspace dimensions collapse

to zero. This is essentially the same as the uncentered kernel

PCA. The kECA was proposed [6] following the uncentered

kernel approach and sorting eigenvectors based to the size of

the entropy values defined as (
√
λdu

T
d 1)

2. KECA has also

been shown to be the projection that optimally preserves the

length of the data mean vector in F [25].

After sorting the eigen-vectors based on the size of either

the eigenvalues, or the entropy values, the l-th dimension of

a sample xj in the kernel subspace is obtained by:

[yj ]l = λ
− 1

2

l uT
l kj , (2)

where kj ∈ R
N is a vector having elements [kj ]i =

κ(xi,xj), i = 1, . . . , N . Note that the use of such an explicit

mapping preserves the discriminative power of the kernel

space, since a linear classifier on the data representations in

R
N can successfully classify all N training samples.

When a lower-dimensional subspace R
M , M < N of F

is sought, the criterion for selecting an eigen-pair (ud, λd) is

defined in a generative manner, i.e. minimizing the quantity

‖K − UMΛMUT
M‖22 leading to selecting the eigen-pairs

corresponding to the M maximal eigen-values λ1 ≥ λ2 ≥
· · · ≥ λM in the case of kPCA, or maximizing the entropy

of the data distribution leading to selecting the eigen-pairs

corresponding to the M maximal entropy values in the case

of kECA.
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III. CLASS MEAN VECTOR COMPONENT ANALYSIS

Since the data representations in the kernel space F form

classes which are linearly separable, we make the assumption

that classes in F are unimodal. We express the distance

between classes k and m by:

d(ck, cm) = ‖mk −mm‖22, (3)

where mc is the mean vector of class cc in F . Since d(ck, cm)
is calculated by using elements of the kernel matrix K, i.e.

d(ck, cm) = [kk]k − 2[kk]m + [km]m, we exploit the spectral

decomposition of K and express the mean vectors in the

effective kernel subspace, i.e., mc ∈ R
N with their d-th

dimension equal to:

[mc]d =
1

Nc

∑

φi∈Sc

[φi]d =
√

λdu
T
d ec, (4)

where ec ∈ R
N is the indicator vector for class c having

elements equal to [ec]i = 1/Nc for φi ∈ Sc, and [ec]i = 0
otherwise. Then, d(ck, cm) takes the form:

d(ck, cm) =
N
∑

d=1

λd

(

uT
d ek − uT

d em
)2

=
N
∑

d=1

λd

(

uT
d (ek − em)

)2

=

N
∑

d=1

λd (‖ud‖2 ‖ek − em‖2 cos(ud, ek − em))
2

=
Nk +Nm

NkNm

N
∑

d=1

λd cos
2(ud, ek − em). (5)

From the above, it can be seen that the eigen-pairs of K

maximally contributing to the distance between the two class

means are those with a high eigenvalue λd and an eigenvector

angularly aligned to the vector ek − em.

We express the weighted pair-wise distance between all C
classes in S by:

D =
C
∑

k=1

C
∑

m=1

pkpm d(ck, cm)

=

C
∑

k=1

C
∑

m=1

N
∑

d=1

λdpkpm
(

uT
d ek − uT

d em
)2

=

N
∑

d=1

λd Dd (6)

where each class contributes proportionally to its cardinality

pc = Nc/N, c = 1, . . . , C and

Dd =
1

N2

C
∑

k=1

C
∑

m=1

(Nk +Nm) cos2(ud, ek − em) (7)

expresses the weighted alignment of the eigenvector ud to all

possible combinations of class indicator vectors difference.

To define the subspace R
M of the kernel space F that

maximally preserves the pair-wise distances between the class

means in the kernel space, we keep the M eigen-pairs mini-

mizing:

∆D = (D −D1:M )2 (8)

where D1:M is defined as the weighted pair-wise distance

between all C classes in S when using the M selected eigen-

pairs, i.e. using (6):

D1:M =
N
∑

d=1

αdλd Dd (9)

where αd = 1 if dimension d is selected and αd = 0 otherwise.

Thus, in contrary to (uncentered) kPCA and kECA selecting

the eigen-pairs corresponding to the maximal eigenvalues or

entropy values, for the selection of an eigen-pair in CMVCA

both the eigenvalue λd needs to be high and the corresponding

eigenvector needs to be angularly aligned to the difference of

a pair of class indicator vectors.

A. CMVCA preserves the class means to total mean distances

In the above we defined CMVCA as the method preserving

the pair-wise distances between class means in F . Considering

the weighted distance value of dimension d from (6), and by

exploiting that
∑C

m=1 pm = 1 and e =
∑C

c=1 pcec, we have:

Dd =

C
∑

k=1

C
∑

m=1

pkpm
(

(uT
d ek)

2 − 2uT
d eku

T
d em + (uT

d em)2
)

= 2

C
∑

k=1

pk(u
T
d ek)

2 − 2

C
∑

k=1

C
∑

m=1

pkpmuT
d eku

T
d em

= 2

(

C
∑

k=1

pk(u
T
d ek)

2 − 2

C
∑

k=1

C
∑

m=1

pkpmuT
d eku

T
d em

+

C
∑

k=1

pku
T
d ek

(

C
∑

m=1

pmuT
d em

))

= 2

(

C
∑

k=1

pk
(

(uT
d ek)

2 − 2uT
d eku

T
d e+ (uT

d e)
2
)

)

= 2
C
∑

k=1

pk(u
T
d ek − uT

d e)
2, (10)

where e ∈ R
N is a vector having all its elements equal to

1/N . Combining (10) with (6) we obtain:

D =

N
∑

d=1

λd Dd = 2

N
∑

d=1

C
∑

k=1

λd pk (u
T
d ek − uT

d e)
2(11)

= 2

N,C
∑

d,k=1

pk (
√

λdu
T
d ek −

√

λdu
T
d e)

2

= 2

C
∑

k=1

pk‖mk −m‖22 (12)

where m is the total mean vector in F . Thus, the eigen-pairs

selected by minimizing the criterion in (8) are those preserving

the distances between the class means to the total mean in F .
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B. CMVCA as the Euclidean divergence between the class

probability density functions

Let us assume that the data forming Sk and Sm are drawn

from the probability density functions pk(x) and pm(x),
respectively. The Euclidean divergence between these two

probability density functions is given by:

D(pk, pm) =

∫

p2k(x)dx−2

∫

pk(x)pm(x)dx+

∫

p2k(x)dx.

(13)

Given the observations of these two probability density func-

tions in Sk and Sm, D(pk, pm) can be estimated using

the Parzen window method [26], [27]. Let κσ(xi, ·) be the

Gaussian kernel centered at xi with width σ. Then, we have:

D̂(pk, pm) =
1

N2
k

∑

xi∈Sk

∑

xj∈Sk

κσ(xi,xj)

− 2

NkNm

∑

xi∈Sk

∑

xj∈Sm

κσ(xi,xj)

+
1

N2
m

∑

xi∈Sm

∑

xj∈Sm

κσ(xi,xj)

= eTkKek − 2eTkKem + eTmKem (14)

or expressing it using the eigen-decomposition of K:

D̂(pk, pm) =

N
∑

d=1

λd

(

uT
d ek − uT

d em
)2

. (15)

Note here that the estimated Euclidean divergence between

pk(x) and pm(x) gets the same form as the distance of the

class mean vectors of classes ck and cm in (5). Thus, D in (6)

can be expressed as:

D =

C
∑

k=1

C
∑

m=1

pkpm D̂(pk, pm). (16)

From the above, it can be seen that the dimensions mini-

mizing the criterion in (8), are those optimally preserving

the weighted pair-wise Euclidean divergence between the

probability density functions of the classes in the input space.

Interestingly, exploiting the PSD property of the kernel matrix,

the analysis in [28] based on the expected value of kernel

convolution operator shows that the Parzen window method

can be replaced by any PSD kernel function. Our results

are complementary to those presented in [29] studying the

connection of Rényi entropy PCA and kernel learning.

C. CMVCA in terms of uncentered PCA projections

Let us denote by vd the d-th eigenvector of the scatter

matrix S
(φ)
T = Φ̃Φ̃T of the data. vd is in essence a projection

vector defined by applying uncentered kernel PCA on the

input vectors xi, i = 1, . . . , N . By using the connection

between the eigenvectors of S
(φ)
T and K [30], we substitute

uT
d = 1√

λd
vT
d Φ̃ in 11 and D becomes:

D = 2

C
∑

k=1

N
∑

d=1

pk(v
T
d Φ̃ek − vT

d Φ̃e)2

= 2

N
∑

d=1

(

C
∑

k=1

pk

(

vT
d (mk −m)

)2
)

= 2

N
∑

d=1

D̂d.(17)

Using ‖vd‖22 = 1, we get:

D = 2

C
∑

k=1

pk‖mk −m‖22

(

N
∑

d=1

cos2(vd,mk −m)

)

. (18)

Since
∑N

d=1 cos
2(vd,mk − m) = 1, the contribution of

uncentered kernel PCA axis vd to ‖mk −m‖22 is determined

by the cosine of the angle between vd and mk−m in the sense

that the axes which are most angularly aligned with mk −m

contribute the most. This result adds to the insight provided

in [31], [25] and defines CMVCA in terms of the projections

obtained by applying uncentered kernel PCA on the input data.

D. Connection between CMVCA and KDA

To analyze the connection between CMVCA and KDA, we

define the within-class scatter matrix:

S(φ)
w =

C
∑

k=1

∑

φi∈Sk

(φi −mk)(φi −mk)
T (19)

and the between-class scatter matrix:

S
(φ)
b =

C
∑

k=1

Nk(mk −m)(mk −m)T . (20)

The total distance is then given by S
(φ)
T = S

(φ)
w + S

(φ)
b , i.e:

S
(φ)
T =

N
∑

i=1

(φi −m)(φi −m)T . (21)

Using the above scatter matrices, KDA and its variants [32],

[33] the eigenvectors vd maximizing the Rayleigh quotient:

V∗ = argmax
VTV=I

Tr
(

VTS
(φ)
b V

)

Tr
(

VTS
(φ)
T V

) , (22)

leading to at most C − 1 axes which are the eigenvectors

corresponding to the positive eigenvalues of the generalized

eigen-problem S
(φ)
b v = λS

(φ)
T v.

Here we are interested in the discrimination power in terms

of the KDA criterion of the axes vd, d = 1, . . . , N defined

from the spectral decomposition of K. Expressing the above

projections based on the eigenvectors of S
(φ)
T and assuming the

data to be centered, i.e., m = 0, we have vT
d Φ̃Φ̃Tvd = λd.

By using pk = Nk/N and mk = Φ̃ek the Rayleigh quotient
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for axis d is equal to:

vT
d S

(φ)
b vd

vT
d S

(φ)
T vd

=
vT
d

(

∑C

k=1 Nkmkm
T
k

)

vd

vT
d Φ̃Φ̃Tvd

=

C
∑

k=1

Nk

(

1√
λd

vT
d Φ̃ek

)2

=

C
∑

k=1

Nk

(

uT
d ek

)2

=

C
∑

k=1

Nk

(

‖ud‖2‖ek‖2 cos(ud, ek)
)2

=

C
∑

k=1

1

Nk

cos2(ud, ek). (23)

The criterion of CMVCA from (6) and (10) for axis d
becomes:

Dd = λdDd = 2

C
∑

k=1

pkλd(u
T
d ek)

2 =
2

N

C
∑

k=1

λd

Nk

cos2(ud, ek).

(24)

Thus, while in CMVCA an eigen-pair contributes to the

criterion based on both the size of λd and the angular

alignment between ud and the class indicator vectors ek, the

criterion of KDA selects dimensions based on only the angular

alignment between ud and the class indicator vectors ek. Note

that (23) also gives new insights on why the KDA criterion

restricts the dimensionality of the produced subspace by the

number of classes. That is, since by definition ud form an

orthogonal basis, the number of eigen-vectors that can be

angularly aligned to the class indicator vectors is restricted

by the number of classes C, which is equal to the rank of

the between-class scatter matrix for uncentered data. We will

exploit this observation to define a discriminative version of

CMVCA in the following.

IV. CLASS MEAN VECTOR DISCRIMINANT ANALYSIS

An interesting extension of CMVCA is the CMVDA,

which motivated by the connection of CMVCA with KDA

obtained by following the analysis in Subsection III-D. By

comparing (23) and (24) we see that in the case where

λd = 1, d = 1, . . . , N , the scores calculated for the kernel

subspace dimensions by CMVCA and KDA are the same.

This situation arises when the data Φ̃ is whitened, i.e. when

S
(φ)
T = Φ̃Φ̃T = I, where I ∈ R

N×N is the identity matrix.

Interestingly, the information needed for whitening Φ̃ can

be directly obtained by the eigenanalysis of K = Φ̃T Φ̃,

since there is a direct connection between the eigenvalues and

eigenvectors of S
(φ)
T and K [30].

Given a kernel matrix K̃ = Φ̃T Φ̃, where Φ̃ is whitened,

application of CMVCA requires eigen-decomposition of K̃

for calculating the eigen-vectors ud, d = 1, . . . , N and the

corresponding eigenvalues λd to be used for weighting the

dimensions of the kernel subspace based on (6). K̃ has all

its eigenvalues equal to λd = 1, d = 1, . . . , N and, thus, its

eigenvectors form the axes of an arbitrary basis, i.e.:

{ud}Nd=1,
(

uT
i ui = 1, uT

i uj = 0, i 6= j
)

. (25)

Such basis can be efficiently calculated by applying an or-

thogonalization process (e.g. Cholesky decomposition) starting

from a vector belonging to the span of Φ̃. The vector e is such

a vector and, thus, can be used for generating the basis.

Moreover the vectors
√
Nc ec, c = 1, . . . , C belong to the

span of Φ̃ and also satisfy the two properties, i.e., Nke
T
k ek =

1 and
√
NkNm eTk em = 0, k 6= m. Thus, they can be selected

to form the first C eigenvectors of K̃. Note that from (24)

it can be seen that these vectors contribute the most to the

Rayleigh quotient criterion. To form the rest N − C bases,

we can apply an orthogonalization process on the subspaces

determined by each class indicator vector ec, each generating a

basis in R
Nc appended by zeros for the remaining dimensions,

leading to
∑C

c=1Nc = N eigenvectors in total.

V. APPROXIMATE KERNEL SUBSPACE LEARNING

In cases where the cardinality of S is prohibitive for

applying kernel methods, approximate kernel matrix spectral

analysis can be used. Probably the most widely used approach

is based on the Nyström method, which first chooses a set

of n << N reference vectors to calculate the kernel matrix

between the reference vectors Knn ∈ R
n×n and the matrix

KNn ∈ R
N×n containing the kernel function values between

the training and reference vectors. In order to determine the

reference vectors, two approaches have been proposed. The

first is based on selecting n columns of K using random

or probabilistic sampling [34], [35], while the second one

determines the reference vectors by applying clustering on the

training vectors [36], [37].

The Nyström-based approximation of K is given by

K ≃ KNnK
−1
nnK

T
Nn = Φ̃T

n Φ̃n, (26)

where Φ̃n = K
− 1

2

nn KT
Nn ∈ R

n×N . When the ranks of K and

Knn match, this gives an exact calculation of K and Φ̃n is

the same as Φ̃ defined in Section II. Eigen-decomposition

of Knn leads to K
− 1

2

nn = UnΛ
− 1

2

n UT
n . When Knn is a n-

rank matrix, the matrices Φ̃T
n Φ̃n and Φ̃nΦ̃

T
n have the same n

leading eigenvalues [30]. The matrix Φ̃nΦ̃
T
n is an n×n matrix

and, thus, applying eigen-analysis to it can highly reduce

the computational complexity required for the calculation of

eigenvalues Λ(n) of the approximate kernel matrix. Finally,

the data representations in the approximate kernel subspace

[37] are calculated by:

Φ̃n = Λ
− 1

2

(n)Λ
−1
n UT

nK
T
NnK. (27)

Another approach proposed for making the use of kernel

methods in big data feasible is based on explicit nonlinear

mappings. A nonlinear mapping xi ∈ R
D → zi ∈ R

n is

defined such that zTi zj ≃ κ(xi,xj), or by using the entire

dataset ZT
nZn ≃ K [38], [39].

After the calculation of the data representations in R
n either

by using the Nyström method or the randomized nonlinear

mappings, we can apply the proposed CMVCA by applying

singular value decomposition. That is, the right singular vec-

tors corresponding to the non-zero singular values of either

of the matrices Φ̃n or Zn define the axes to be considered

for minimizing the CMVCA criterion in (6). In order to apply

CMVDA on the approximate and randomized kernel cases the

sample representations in the R
n are whitened and we follow
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TABLE I
DATASETS USED IN EXPERIMENTS.

Dataset D C N
MNIST-100 784 10 1000
AR 1200 100 2600
15 scene 512 15 4485
MIT-indoor 512 67 15620

the process described in Section IV to determine the eigen-

pairs used for CMVDA-based projection.

VI. EXPERIMENTS

In our experiments we used four datasets, namely the

MNIST [40], AR [41], 15 scene [42] and MIT indoor [43]

datasets. For MNIST dataset, we used the first 100 training

samples per class to form the training set and we report perfor-

mance on the entire test set. For the rest datasets, we perform

ten experiments by randomly keeping half of the samples

per class for training and the remaining for evaluation, and

we report the average performance over the ten experiments.

We used the vectorized pixel intensity values for representing

images in MNIST and AR datasets. For the 15 scene and MIT

indoor datasets we used deep features generated by average

pooling over spatial dimension of the last convolution layer

of VGG network [44] trained on ILSVRC2012 database, and

we follow the approximate kernel and randomized kernel

approaches using n = 1000. Details of these datasets are

shown in Table I.

In all experiments we used the Gaussian kernel function:

[K]ij = exp

(

−‖xi − xj‖22
2σ2

)

(28)

and set the value of σ equal to the mean pair-wise distance

between all training samples. In order to illustrate the effect of

using different subspace dimensionality, we used the nearest

class centroid classifier for all possible subspaces produced

by each of the methods. This means that we applied each of

the methods using the training data and obtain all projection

vectors in the order determined by the corresponding crite-

rion. Then we measure the performance of each method on

all subspaces it determines as follows: For each projection

dimensionality, we map the data to the kernel subspaces

determined by all methods. We calculate the class means in

the corresponding subspace using the training data and we

perform nearest class centroid classification on the test data.

This classifier was selected since it is the simplest linear

classifier. This allows us to compare the (nonlinear) subspace

learning methods in a more fair manner, compared to using

other classifier choices. All experiments were conducted on a

PC with i5 CPU at 2.3 GHz and 12GB RAM, using MATLAB

2016a.

Figure 1 illustrates the performance obtained by applying

kPCA, kECA, KDA and the proposed CMVCA, CMVDA and

the variant of CVMDA-R using the random basis of the kernel

matrix produced by whitened kernel effective space (Eq. (25))

as a function of the subspace dimensionality. The maximal

performance obtained by each method is provided in Table

II for completeness. Figure 2 illustrates the Rayleigh quotient

values as a function of the dimensionality of the subspace

produced by all methods for the AR and MIT indoor datasets.

As can be seen, the value of the Rayleigh quotient of the

subspaces obtained by applying the unsupervised methods are,

as expected, low. The subspaces obtained by KDA lead to a

high value, which is gradually decreasing as more dimensions

are added. This is expected, since the number of meaningful

projections defined by the KDA criterion is restricted by the

number of classes (due to the rank of S
(φ)
b being equal to

C − 1). CMVDA leads to subspaces with a high Rayleigh

quotient value which is gradually reduced, similarly to KDA.

This is due to that, based on Eq. (24), the subspace dimensions

obtained by the CMVDA need to be angularly aligned with

the class indicator vectors ek, k = 1, . . . , C. Since the

eigenvectors of K need to also be orthogonal, the number

of projections which can be angularly aligned to the class

indicator vectors is upper-bounded by the number of classes.

Similar behaviors were observed for the rest of the datasets.

VII. CONCLUSION

In this paper, we proposed a component analysis method,

called Class Mean Vector Component Analysis (CMVCA), for

kernel-based dimensionality reduction preserving the distances

between the class means in the kernel space. We provided an

analysis of the proposed criterion which shows that it also

determines the subspace dimensions preserving the distances

between the class means to the total mean in the kernel space,

as well as the Euclidean divergence of the class probability

density functions in the input space. Moreover, we showed that

the proposed criterion, while expressing different properties,

has relations to the criteria used in (uncentered) kPCA, kECA

and KDA. The latter connection leads to a discriminant analy-

sis extension of the proposed method for multi-class problems,

called Class Mean Vector Discriminant Analysis (CMVDA).

TABLE II
CLASSIFICATION RATES (%) OVER THE VARIOUS DATASETS.

Dataset kPCA kECA CMVCA KDA CMVDA

MNIST-100 78.07 78.08 78.08 90.63 91.28
AR 35.53 35.55 35.54 94.42 96.26
15 scene (N) 65.63 17.51 52.60 88.55 90.58
MIT Indoor (N) 26.75 26.75 26.75 66.16 67.46
15 scene (R) 83.60 73.60 81.90 82.57 81.73
MIT Indoor (R) 53.50 53.50 53.50 65.37 65.25

The advantages of the proposed approach compared to

kPCA, kECA and KDA, include a) a clear interpretation of the

obtained projections, since (as detailed in Sections III and IV)

the projections obtained by the proposed approach need to be

angularly aligned to the class indicator vectors defined based

on the labels of the training data, b) the projections obtained

by the proposed CMVDA method can be directly defined as

scaled versions of the class indicator vectors leading to an

efficient calculation of the kernel subspace, since their calcu-

lation trivial, and c) as was shown in Section V the proposed
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Fig. 1. Classification rate vs. subspace dimensionality. From top-left to bottom-right: MNIST-100, AR, 15 scene using Nyström approximation, 15 scene
using random features, MIT indoor using Nyström approximation and MIT indoor using random features.

Fig. 2. Rayleigh quotient vs. subspace dimensionality on the (left) AR and

(right) MIT indoor datasets.

methods can be easily combined with randomized and low-

rank kernel matrix approximation approaches for performing

kernel subspace learning on large scale data sets. Naturally,

the proposed approach inherits all disadvantages of kernel-

based methodologies related to their computational complexity

(or their dependence on the low-rank decomposition and ran-

domization approaches used to approximate the kernel matrix)

for big data problems. Compared to kernel-based subspace

learning methods exploiting local neighborhood information

of the input data (e.g. [45]) the proposed method by defining

its projections based on global variance information can be

more susceptible to the existence of noisy data.

Interesting extensions of our analysis would include the

analysis of the contribution of the kernel subspace dimensions

in different problems successfully solved by kernel-based

learning methods like one-class classification [46], [47] and

verification based on class-specific subspace learning models

[48].
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