
OpenDR —
Open Deep Learning Toolkit for

Robotics

Project Start Date: 01.01.2020
Duration: 48 months
Lead contractor: Aristotle University of Thessaloniki

Deliverable D4.4: Final report on deep
environment active perception and cog-
nition

Date of delivery: 29 September 2023

Contributing Partners: AU, AUTH, ALU-FR, TAU,
AGI
Version: v2.0

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 871449.

D4.4: Final report on deep environment active perception and cognition 2/112

Title D4.4: Final report on deep environment active per-
ception and cognition

Project OpenDR (ICT-10-2019-2020 RIA)
Nature Report
Dissemination Level: PUblic
Authors Niclas Vödisch (ALU-FR), Ahmet Selim Çanakçı (ALU-

FR), Abhinav Valada (ALU-FR), Illia Oleksiienko (AU),
Alexandros Iosifidis (AU), Avramelou Loukia (AUTH),
Kakaletsis Efstratios (AUTH), Passalis Nikolaos (AUTH),
Kirtas Emmanouil (AUTH), Babis Emmanouil (AUTH),
Nousi Paraskevi (AUTH), Tzelepi Maria (AUTH), Syme-
onidis Charalampos (AUTH), Spanos Dimitrios (AUTH),
Tosidis Pavlos-Apostolos (AUTH), Tsampazis Konstanti-
nos (AUTH), Tefas Anastasios (AUTH), Nikolaidis Nikolaos
(AUTH), Anton Muravev (TAU), Moncef Gabbouj (TAU),
Alea Scovill (AGI), Rasmus Nyholm Jørgensen (AGI)

Lead Beneficiary AU (Aarhus University)
WP 4
Doc ID: OPENDR D4.4.pdf

Document History

Version Date Reason of change
v0.1 9/5/2023 Deliverable template ready
v1.0 15/9/2023 Initial version of deliverable submitted for review
v1.1 22/9/2023 Reviewer comments sent and minor comments added in the

document
v2.0 29/9/2023 Review comments addressed and deliverable revised

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 3/112

Contents

1 Introduction 6
1.1 Object detection/recognition and semantic scene segmentation and under-

standing (T4.1) . 6
1.2 2D/3D object localization and tracking (T4.2) 6
1.3 Deep SLAM and 3D scene reconstruction (T4.3) 6
1.4 Sensor information fusion (T4.4) . 6
1.5 Connection to Project Objectives . 7

2 Object detection/recognition and semantic scene segmentation and un-
derstanding 8
2.1 CoDEPS: Continual Learning for Depth Estimation and Panoptic Segmen-

tation . 8
2.1.1 Introduction and objectives . 8
2.1.2 Summary of state of the art . 9
2.1.3 Work description . 10
2.1.4 Performance evaluation . 12

2.2 Deep Label Embedding Learning for Classification 12
2.2.1 Introduction and objectives . 12
2.2.2 Summary of state of the art . 13
2.2.3 Work description . 13
2.2.4 Performance evaluation . 14

2.3 Lightweight High Resolution Weed Detection 15
2.3.1 Introduction and objectives . 15
2.3.2 Summary of state of the art . 16
2.3.3 Work description . 17
2.3.4 Performance evaluation . 18

3 2D/3D object localization and tracking 21
3.1 Variational Voxel Pseudo Image Tracking 21

3.1.1 Introduction and objectives . 21
3.1.2 Summary of the state of the art . 22
3.1.3 Work description . 23
3.1.4 Performance evaluation . 25

3.2 Uncertainty-Aware AB3DMOT by Variational 3D Object Detection 26
3.2.1 Introduction and objectives . 26
3.2.2 Summary of the state of the art . 26
3.2.3 Work description . 28
3.2.4 Performance evaluation . 30

4 Deep SLAM and 3D scene reconstruction 32
4.1 CoVIO: Continual Learning for Visual-Inertial Odometry 32

4.1.1 Introduction and objectives . 32
4.1.2 Summary of state of the art . 33
4.1.3 Work description . 33
4.1.4 Performance evaluation . 35

4.2 Row Guidance . 36

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 4/112

4.2.1 Introduction and method . 36
4.2.2 Analysis 1: Finding the cross-track error (XTE) of 5 images using

the bounding box of the crop . 37
4.2.3 Analysis 2: Analysis of XTE when evaluating 3 fields 39
4.2.4 Analysis 3: Large quantity of images to see performance of XTE

using bounding boxes vs. plant stem emergence zones 39
4.2.5 Robotti integration . 42

5 Sensor information fusion 43
5.1 Multimodal Feature Fusion Framework for Manipulation 43

6 Conclusions 44

7 Appendix 53
7.1 CoDEPS: Online Continual Learning for Depth Estimation and Panoptic

Segmentation . 53
7.2 Deep Label Embedding Learning for Classification 66
7.3 Variational Voxel Pseudo Image Tracking 90
7.4 Uncertainty-Aware AB3DMOT by Variational 3D Object Detection 96
7.5 CoVIO: Online Continual Learning for Visual-Inertial Odometry 102

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 5/112

Executive Summary

This document presents the final update of the work performed for WP4–Deep envi-
ronment active perception and cognition during the final year of the project. This
work package consists of four main tasks, which are Task 4.1–Object detection/recognition
and semantic scene segmentation and understanding, Task 4.2–2D/3D object localization
and tracking, Task 4.3–Deep SLAM and 3D scene reconstruction, and Task 4.4–Sensor
information fusion. After a general introduction that provides an overview of the individ-
ual chapters with a link to the main objectives of the project, the document dedicates a
chapter to each of the tasks. Each chapter (i) provides an overview on the state of the art
for the individual topics and (ii) details the partners’ work in each task with performance
results for the individual tasks. Finally, a concluding chapter provides a final overview of
the work for each individual task.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 6/112

1 Introduction

This document describes the work progress of the last year of the project in the four
major tasks of WP4–Deep environment active perception and cognition, namely Task 4.1–
Object detection/recognition and semantic scene segmentation and understanding, Task
4.2–2D/3D object localization and tracking, Task 4.3–Deep SLAM and 3D scene recon-
struction and Task 4.4–Sensor information fusion. In this section, a brief description of
the work conducted by the consortium in these tasks is provided, along with a short de-
scription on how this work contributes to the Objectives of the project. A more detailed
description of the conducted work is provided in the following sections.

1.1 Object detection/recognition and semantic scene segmenta-
tion and understanding (T4.1)

ALU-FR contributed to this task by proposing a method for online continual learning of
joint vision-based depth estimation and panoptic segmentation (Section 2.1). The method,
called CoDEPS, allows continuous adaptation to previously unseen domains. AUTH con-
tinued working on methods to tackle the shortcomings associated with the one-hot en-
coding by introducing a framework for learning soft label embeddings (Section 2.2), by
incorporating both similarity relationships at a class-level and an instance-level, demon-
strating improvements in additional evaluation setups. Furthermore, AUTH also worked
on developing lightweight object detection models for agricultural applications, showing
that adequate performance can be obtained in many cases (Section 2.3).

1.2 2D/3D object localization and tracking (T4.2)

AU worked on incorporating uncertainty estimation into 3D perception by creating Vari-
ational Neural Networks versions of Voxel Pseudo Image Tracking for 3D Single Ob-
ject Tracking (Section 3.1) and TANet for 3D Object Detection in combination with
Uncertainty-Aware AB3DMOT for 3D Multiple Object Tracking (Section 3.2). Varia-
tional 3D perception models provide an improvement in the accuracy of perception and
the valuable uncertainty information that can be further used in decision-based methods.

1.3 Deep SLAM and 3D scene reconstruction (T4.3)

ALU-FR continued their work reported in D4.3 towards continual learning for vision-
based odometry (Section 4.1). In particular, they proposed a novel method called CoVIO
that provides several improvements with respect to the simplicity of the network design
and overall performance. AGI continued their work with the plant row guidance and
mapping (Section 4.2). A DL-based method was analysed at 3 levels and refined. The
method shows that it is possible to navigate and map the crop rows with the purposed
method.

1.4 Sensor information fusion (T4.4)

TAU worked on the evaluation of the sensor fusion framework via openly available mul-
timodal benchmarks, as well as the toolkit integration.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 7/112

1.5 Connection to Project Objectives

The work carried out by the consortium in the context of WP4, as summarized in the
previous subsections, is directly related to the overarching project goals. In particular,
the work described here progressed the state-of-the-art towards meeting the project goals
O1 and O2, as will be presented in detail below.

O1 To provide a modular, open and non-proprietary toolkit for core robotic functional-
ities enabled by lightweight deep learning

O1a To enhance the robotic autonomy exploiting lightweight deep learning for on-board
deployment

AU improved the quality of perception of embedded 3D single and multiple object
tracking methods by estimating and utilizing uncertainty with the use of Variational
Neural Networks (Sections 3.1 and 3.2).

O1b To provide real-time deep learning tools for robotics visual perception on high-resolution
data

AUTH worked on developing lightweight object detection algorithms and models
for agricultural applications (Section 2.3).

O2 To leverage AI and Cognition in robotics: from perception to action

O2a To propose, design, train and deploy models that go beyond static computer percep-
tion, towards active robot perception

ALU-FR contributed to this task by proposing several methods for online continual
learning for the tasks of both panoptic segmentation and visual odometry (Sec-
tions 2.1 and 4.1). These methods enable active adaptation to previously unseen
domains.

O2c To provide tools for enhanced robot navigation, action and manipulation capabilities
that can exploit if needed deep environment active robot perception

AUTH continued working on methods to tackle the shortcomings associated with
the one-hot encoding by introducing a framework for learning soft label embeddings
that can provide enhanced visual perception for various applications (Section 2.2).
Additionally, ALU-FR continued their work towards online adaptation of visual
odometry to previously unseen domains (Section 4.1). AGI continued their work
with the plant row guidance system, which enables the agricultural field robot to
navigate and map based on actual placement of the plant rows instead of RTK GNSS
(Section 4.2). TAU worked towards objective O2c by experimentally validating the
performance and robustness of the multimodal feature fusion framework (Section 5),
with integration to follow.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 8/112

2 Object detection/recognition and semantic scene

segmentation and understanding

2.1 CoDEPS: Continual Learning for Depth Estimation and Panop-
tic Segmentation

2.1.1 Introduction and objectives

Operating robots in unfamiliar environments requires adaptability. Ideally, robots can
autonomously adjust, e.g., adapting their perception to changing lighting. Deploying
robots, like autonomous cars in cities, demands a comprehensive understanding, includ-
ing semantics, instances, and depth perception. This enables vision-based methods to
create a 3D semantic scene for tasks like localization and planning. However, deep learn-
ing approaches may struggle when moving to new domains with different environmental
conditions [93] or sensor parameters [3, 10]. This domain gap poses a challenge for robots
in unfamiliar environments. Unlike the source domain, the target domain usually lacks
ground truth annotations, making classical domain adaptation unsuitable. Unsupervised
domain adaptation addresses these limitations.

Most prior approaches focus on sim-to-real domain adaptation, often offline, with
knowledge transfer but without addressing catastrophic forgetting or considering abun-
dant target annotations [28, 56]. Additionally, these methods may not account for robotic
platform constraints, like limited computational resources and storage capacity [41, 97].

In this work, we employ online continual learning for depth estimation and panoptic
segmentation in a multi-task setting. Using images from an onboard camera as illustrated
in Fig. 1, we enhance performance during inference. Our method, CoDEPS, mitigates
forgetting by using experience replay of both source and previous target images. We
incorporate a replay buffer and introduce cross-domain mixing for unlabeled target data.
We address hardware constraints by using a single GPU and maintaining a fixed-size
replay buffer. CoDEPS effectively improves performance in new target domains without
sacrificing performance in previous domains.

The main contributions of this work are as follows:

1. We introduce CoDEPS, the first online continual learning approach for joint monoc-
ular depth estimation and panoptic segmentation.

2. We propose a novel cross-domain mixing strategy to adapt panoptic segmentation
to unlabeled target data.

3. To address the storage restrictions of robotic platforms, we leverage a fixed-size
replay buffer based on rare class sampling and image diversity.

4. We extensively evaluate CoDEPS and compare it to other methods in challenging
real-to-real settings.

A summary of this work is provided hereafter. The corresponding paper is referenced
below and can be found in Appendix 7.1:

• [100] N. Vödisch, K. Petek, W. Burgard, and A. Valada, “CoDEPS: Online Contin-
ual Learning for Depth Estimation and Panoptic Segmentation”, Robotics: Science
and Systems (RSS), 2023.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 9/112

Training on

Ti
m

e
Online target data Offline source data with annotations

Inference on target data

Online continual learning on target data

target
source

Poor
performance

Good
performance

source data

Figure 1: Neural networks can struggle in new domains. To tackle this, we propose
continuous adaptation with real-time target images. We use a fixed-size replay buffer to
mitigate forgetting and improve generalization by revisiting source and target data.

2.1.2 Summary of state of the art

Monocular depth estimation predicts a depth map from a single RGB image. Supervised
methods use range sensors for network supervision [79], while unsupervised methods rely
on temporal geometric cues [25, 114]. Panoptic segmentation merges semantic and in-
stance segmentation, classifying pixels into semantics and “thing” classes. Networks use
joint encoders and separate decoders, with approaches including bottom-up [9, 66] and
top-down [26, 65] methods. Domain adaptation bridges the gap between a source S used
for training and a target T for inference. This is related to continual learning (CL) [55],
adapting to changing tasks while avoiding catastrophic forgetting, ideally with positive
forward transfer. Real-world scenarios often lack target annotations, requiring unsuper-
vised domain adaptation (UDA). Offline UDA assumes target data availability, while
online UDA enables continuous robot operation in new domains without previous target
data collection. Offline UDA combines annotated source data and abundant unlabeled
target data to adapt networks from S to T . For depth estimation, DESC [56] adapts by
source-to-target style transfer and consistency loss between depth predictions from RGB
and semantic maps. GUDA [28] adapts semantic segmentation using shared encoders
for depth and semantic segmentation, improving both tasks. Cross-domain sampling in
DACS [90] and ConfMix [62] enhances adaptation through pixel-level copying and mix-
ing strategies. Huang et al. [34] propose a UDA method for panoptic segmentation by
regularizing complementary features. Online UDA faces challenges due to consecutive

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 10/112

Panoptic fusion

Ti
m

e
Online camera stream Online continual learningBatch generation

Update replay buffer

Combine online
and replay data

Mix-up pseudo
labeling

Target buffer

Source buffer

Depth map

Semantic map

Center map

Offset map

Panoptic map

Figure 2: Overview of our proposed CoDEPS

sampling from T , resembling a camera’s image stream. These challenges include reduced
diversity and model overfitting to the scene [111]. Continual SLAM [97] improves visual
SLAM using unsupervised depth estimation as a proxy task and prevents forgetting by
incorporating samples from S and previous target domains Ti. For semantic segmen-
tation, CBNA [38] updates batch normalization layers by mixing statistics from S and
T . CoTTA [105] adapts the network without source data, using self-supervision and
techniques to mitigate error accumulation.

Our approach is the first for online continual UDA, addressing joint depth estimation
and panoptic segmentation.

2.1.3 Work description

The setting investigated in this work consists of two steps. First, we train a neural network
on the source domain S partly using ground truth supervision. Second, to close the gap
between domains, we continuously adapt the network during inference time on the target
domain T using a replay buffer and unsupervised training strategies.

We adopt a standard multi-task network design, employing a single ResNet-101 [30] as
the shared encoder for depth prediction, semantic segmentation, and instance segmenta-
tion tasks. Our network architecture, outlined in Fig. 2, consists of a depth head inspired
by Monodepth2 [24], featuring five consecutive convolutional layers with skip connections
to the encoder. Additionally, we include a separate PoseNet consisting of a ResNet-18
encoder and a four-layer CNN to estimate the camera motion between two image frames.
For panoptic segmentation, we follow the bottom-up method Panoptic-Deeplab [9], lever-
aging separate heads for semantic segmentation and instance segmentation, and slightly
modify the semantic head [28]

Source Domain Pretraining: During the initial training phase on the source domain, we
assume to have access to image sequences as well as ground truth panoptic segmentation
annotations. In the following, we briefly describe the respective loss functions that we
employ for training the three task-specific heads.

We train the depth estimation head using the common methodology of unsupervised
training based on the photometric error [24].

Ld
pe = λprLd

pr + λsmLd
sm. (1)

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 11/112

We train the semantic segmentation head in a supervised manner using the boot-
strapped cross-entropy loss with hard pixel mining Lsem

bce following Panoptic-Deeplab [9].
For training the instance segmentation head, we adopt the MSE loss Lins

center for the
center head and the L1 loss Lins

offset for the offset head. The total loss to supervise instance
segmentation is then computed as a weighted sum:

Lins
co = λcenterLins

center + λoffsetLins
offset. (2)

Online Adaptation: After the described network has been trained on the source domain S
using the aforementioned losses, we aim to adapt it to the target domain T in a continuous
manner. That is, unlike other works, data from the target domain is revealed frame by
frame resembling the online stream of an onboard camera. As depicted in Fig. 2, every
adaptation iteration consists of the following steps:

1. Construct an update batch by combining online and replay data.

2. Generate pseudo-labels using the proposed cross-domain mixing strategy.

3. Perform backpropagation to update the network weights.

4. Update the replay buffer.

Replay Buffer and Batch Generation: Upon receiving a new image taken by the robot’s
onboard camera, we construct a batch that is used to perform backpropagation on the
network weights. In detail, a batch consists of the current online image, previously received
target images, and fully annotated source samples. By revisiting target images from the
past, we increase the diversity in the loss signal on the target domain and hence mitigate
overfitting to the current scene. This further accounts for situations in which the current
online image suffers from visual artifacts, e.g., overexposure. Similarly, the problem of
catastrophic forgetting by ensuring that previously acquired knowledge can be preserved.
Additionally, the annotations of the source samples enable pseudo-supervision on the
target domain by exploiting cross-domain mixing strategies. For both the target and
the source replay, we randomly draw multiple samples from the respective replay buffer
and apply augmentation to stabilize the loss. In particular, we perform RGB histogram
matching of the source images to the online target image, and all available source samples
have to be selected once before repetition is allowed to ensure diverse source supervision.

Depth Adaptation: To adapt the monocular depth estimation head along with the PoseNet,
we exploit the fact that the photometric error loss does not require ground truth annota-
tions. Hence, we can directly transfer it to the implemented continual adaptation.

Panoptic Adaptation: Panoptic segmentation is the fused output of a semantic head
and an instance head. We observe that the decrease in performance on samples from
unseen domains can mostly be attributed to the semantic head, while instance predictions
remain stable. In CoDEPS, we bootstrap annotated source samples and high-confident
target predictions to artificially generate pseudo-labels for the target samples in an online
fashion to supervise the semantic head using Lsem

bce . The instance head remains frozen.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 12/112

2.1.4 Performance evaluation

To simulate data from a variety of domains, we employ our method on three datasets,
namely Cityscapes [11], KITTI-360 [51], and SemKITTI-DVPS [1]. In particular, we
utilize Cityscapes for pre-training and sequences of both KITTI-360 and SemKITTI-
DVPS for adaptation. In the supplementary video of the published work, we further
provide qualitative results on in-house data recorded with our robotic platform.

Table 1: Adaptation Performance

Method Seq.
Protocol 1 Protocol 2

mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel

Only source
00

51.61 39.10 72.72 50.48 6.54 0.36 49.94 35.29 72.14 45.50 6.08 0.34
CoDEPS 53.76 40.72 72.90 52.51 5.09 0.19 52.08 36.08 72.58 46.08 4.34 0.15

Only source
02

45.97 31.83 67.62 41.08 6.26 0.35 46.55 30.13 65.03 39.30 6.06 0.36
CoDEPS 46.62 32.11 67.74 41.62 4.31 0.16 47.48 30.33 65.35 39.46 3.76 0.13

Only source
03

46.63 28.15 57.41 35.23 8.20 0.34 52.10 28.20 56.67 35.77 7.34 0.29
CoDEPS 47.94 29.05 58.07 36.10 8.26 0.33 52.00 31.13 61.51 39.65 6.98 0.18

Only source
04

45.02 29.34 65.48 38.15 6.70 0.37 45.53 30.13 70.85 38.89 6.61 0.38
CoDEPS 45.40 29.78 65.89 38.84 5.00 0.19 45.68 30.63 66.18 39.89 4.33 0.17

Only source
05

48.94 32.19 66.80 41.37 6.76 0.37 44.52 27.34 60.72 35.58 5.93 0.43
CoDEPS 49.26 32.96 66.98 42.40 5.25 0.21 43.79 26.48 60.33 34.88 4.68 0.25

Only source
06

46.03 29.88 66.58 38.42 6.09 0.39 46.28 31.79 70.47 41.40 6.12 0.37
CoDEPS 46.53 30.45 66.66 39.20 4.97 0.22 47.27 31.99 70.74 41.71 4.23 0.18

Only source
07

40.54 28.48 66.52 34.42 7.83 0.34 59.07 27.62 45.88 35.41 9.64 0.38
CoDEPS 41.46 29.30 67.64 35.58 6.50 0.22 60.57 30.91 50.25 39.79 6.48 0.20

Only source
09

50.59 37.26 74.06 47.38 6.03 0.36 50.78 36.57 72.22 46.75 5.60 0.35
CoDEPS 52.29 38.02 74.88 48.21 4.74 0.19 51.53 37.56 72.87 47.99 4.56 0.16

Only source
10

51.94 32.60 71.27 32.60 8.06 0.35 45.74 30.62 69.56 39.49 7.90 0.33
CoDEPS 53.02 33.50 71.53 33.50 7.19 0.22 49.91 31.91 70.68 40.95 5.57 0.15

Comparison between our CoDEPS and the performance of the same architecture without performing
online continual learning on the respective sequence of the KITTI-360 dataset. Thus, “only source”
refers to the model weights after pretraining on Cityscapes. The listed metrics are mean intersection
over union (mIoU) for semantic segmentation; panoptic quality (PQ), segmentation quality (SQ), and
recognition quality (RQ) for panoptic segmentation; root mean squared error (RMSE) and absolute
relative error (Abs Rel) for monocular depth estimation. Bold values denote the best result on each
sequence.

In Tab. 1, we assess the performance of CoDEPS on all sequences of the KITTI-360
dataset and compare it with the baseline method “only source”, which is also pretrained
on Cityscapes but does not perform further adaptation to the target domain T . This
approach should be interpreted as a lower performance bound that must be improved.
We demonstrate the key performance metrics of both protocols 1 and 2. For more results
and the definition of these protocols, please refer to the original publication.

2.2 Deep Label Embedding Learning for Classification

2.2.1 Introduction and objectives

The popular one-hot encoding method, typically used in classification problems in con-
junction with the cross-entropy loss function, fails to capture the inherent uncertainty
in data labeling processes. Among the sources of uncertainty is the similarity between

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 13/112

classes in a dataset, e.g., a class of objects can resemble another class or be very dis-
similar from others. Furthermore, certain instances may be ambiguous, even for human
annotators. One-hot encoding, due to its crisp nature, can also lead to overfitting more
easily. As an example, consider a binary classification example, where a difficult sample
may be correctly classified with a predicted probability of 0.8. Despite the prediction
being correct, most recent approaches to this problem would further modify the network
weights such that the predicted probability lies closer to 1. In aiming to learn this crisp
probability, the network loses some of its generalization ability.

AUTH continued working on methods to tackle the shortcomings associated with
the one-hot encoding by introducing a framework for learning soft label embeddings.
Similarity relationships both at a class-level and an instance-level were taken into into
the proposed label embedding methods. Two variants were proposed: first, a learnable
general-class embedding which aims to capture information regarding interclass similar-
ities, and second, a neural architecture which can be added to any neural classifier and
aims to learn inter-instance similarities. The inherent uncertainty in data labels is thus
somewhat alleviated, allowing the network to focus on incorrectly classified samples, in-
stead of difficult but correctly classified ones. The concept of this framework is similar to
real-life learning procedures, where uncertainty rules over many subjects.

A summary of this work is provided hereafter. The corresponding paper is referenced
below and can be found in Appendix 7.2:

• P. Nousi and A. Tefas, “Deep Label Embedding Learning for Classification”, tech-
nical report, under review.

2.2.2 Summary of state of the art

Soft labels and label embedding have been studied in the past, in the context of simpler
classifiers like the k-Nearest Neighbor one [14], and recently scientific research in this
task has resurfaced. In [16], a method for modeling subjectivity in emotion recognition
was proposed. An ensemble method, where different networks are trained with different
annotators, was compared against a single network trained on soft labels, generated by
averaging the labels from different annotators. In [99], soft labels were learned in a meta
learning fashion, by treating them as learnable parameters, modeling both class-level
and instance-level similarities. Soft labels have also recently been linked to knowledge
distillation methods [92, 91].

2.2.3 Work description

A summary of the proposed method follows. Using soft label embeddings, the learning
task is formulated as:

CE(ŷ,p) = −
K∑

k=1

ŷk · log(pk), (3)

where ŷ, i.e., the soft labels, are given by a differentiable function g(·), the parameters of
which can be learned in conjunction with the parameters of the classifier during training,
and CE denotes the cross-entropy loss function.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 14/112

General class similarities We formulate the function g(·) for the case of general class
similarities as a simple embedding of the form ŷ = g(y) = W · y where W ∈ RK×K is a
learnable weights matrix. This formulation allows W to take on the form of an identity
matrix in the case of very crisp classes. Otherwise we expect the weights of this matrix
to capture similarities and correlations between the classes present in a dataset.

Instance level similarities In the instance-specific case, the soft labels for each in-
stance xi are a function of the instance itself, that is:

ŷi = h(xi). (4)

The criterion from Eq. (3) still applies in this case and the function h(·) can take the form
of a network which takes xi as input and outputs ŷi. The proposed method introduced the
use of an Autoencoder as the function h(·), whose hidden dimension is set to match the
number of classes in the dataset and which is trained with a double objective: first, the
latent representation should retain enough information to reconstruct the original input
samples, and second, the activations of the neurons in the latent representation should be
higher for the corresponding classes, which is imposed with an additional cross-entropy
loss at the hidden representation level.

Combined general class and instance level similarities Finally, the two variants
can be combined in a single end-to-end trainable architecture to capture both general
class and instance level similarities at the same time without additional pretraining steps.
In this case, the classification network is trained to learn the soft labels from the first and
second methods combined.

2.2.4 Performance evaluation

AUTH performed additional experiments on larger datasets to highlight the proposed
method’s ability to capture similarities between classes.

Using a ResNet18 model [30], we evaluated the proposed methods on the larger and
more challenging Caltech-101 [47] and Tiny-Imagenet datasets [44]. All of the proposed
variants improve the performance of the model on all datasets. Notice that the combined
(GC+IS) method performs better than the general class (GC) and instance-specific (IS)
methods for four out of seven datasets for this model. The performance gain is greater in
the CIFAR10, CIFAR100, STL10, Caltech-101 and Tiny-ImageNet datasets, and smaller
for SVHN and FashionMNIST, although it is consistent over the baseline training in all
datasets and networks.

The results are also visualized in Figure 3, where the accuracy improvement for dif-
ferent networks is shown, and the datasets have been arranged in order of increasing
difficulty. The improvement that the proposed method offers is larger for the more com-
plex datasets.

Finally, Figure 4 is a visualization of the GC targets pre-softmax for 30 classes of the
Caltech-101 dataset. The classes shown are sorted by their contribution to the “Face”
class, resulting in this specific pattern. Note that the method is able to capture the
similarity between intuitively similar classes, with the most notable example being the
classes “Faces” and “Faces easy”. Intuitively, a classifier confusing these two classes for

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 15/112

Table 2: ResNet-18 results on all datasets in terms of classification accuracy.

Dataset Baseline GC IS GC+IS

SVHN 95.88± 0.08 96.30± 0.13 96.24± 0.07 96.21± 0.06
FashionMNIST 94.03± 0.18 94.07± 0.15 94.42± 0.10 94.31± 0.12
CIFAR10 94.23± 0.10 94.38± 0.07 94.30± 0.07 94.40± 0.03

STL10 80.65± 0.27 82.01± 0.21 81.88± 0.33 81.97± 0.48
CIFAR100 75.74± 0.30 77.15± 0.18 77.27± 0.32 77.40± 0.20

Caltech-101 60.29± 0.55 61.53± 1.32 64.19± 1.12 64.55± 1.35
Tiny-ImageNet 58.45± 0.18 60.58± 0.28 62.26± 0.26 62.44± 0.10

SVHN
FashionMNIST

CIFAR10 STL10
CIFAR100

Caltech-101
Tiny-ImageNet

50

60

70

80

90

100

Ac
cu

ra
cy

Accuracy improvement per dataset
ResNet18
ResNet8
ResNet6
ResNet6l

(a)

SVHN
FashionMNIST

CIFAR10 STL10
CIFAR100

Caltech-101
Tiny-ImageNet

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Absolute accuracy improvement per dataset
ResNet18
ResNet8
ResNet6
ResNet6l

(b)

Figure 3: (a) Baseline and GC+IS accuracy, and (b) absolute accuracy improvement, for
baseline and GC+IS methods.

each other should be punished less than it would for confusing them with other completely
unrelated classes, an intuition that is captured by the proposed framework.

2.3 Lightweight High Resolution Weed Detection

2.3.1 Introduction and objectives

In the ever-evolving landscape of computer vision and object detection, the demand for
real time and accurate algorithms has never been more pressing. Furthermore, high res-
olution images, with their wealth of detail, hold the potential to revolutionize industries.
High-resolution inputs, often containing millions of pixels, offer the promise of detection
of very small objects, even when the camera is relatively far away from the observed ob-
jects. Yet, with great resolution comes great computational demands that most embedded
devices are not capable to overcome. With clever use of modern module architectures,
optimization and training schemes we enabling the rapid identification of objects within
vast image landscapes.

To this end, we used an agricultural dataset, the RoboWeedMap dataset which consist
of 2054× 2456 pixels images and has annotations of very small objects. For these reasons

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 16/112

Fa
ce

s
Fa

ce
s_

ea
sy

co
ug

ar
_f

ac
e

bu
tte

rfl
y

ch
ai

r
co

ug
ar

_b
od

y
ch

an
de

lie
r

bu
dd

ha
br

ai
n

M
ot

or
bi

ke
s

cr
ay

fis
h

cr
ab

ba
ss

ba
rre

l
ce

ilin
g_

fa
n

bi
no

cu
la

r
an

t
an

ch
or

ai
rp

la
ne

s
br

on
to

sa
ur

us
ca

nn
on

be
av

er
ca

m
er

a
cr

oc
od

ile
bo

ns
ai

ac
co

rd
io

n
ca

r_
sid

e
ce

llp
ho

ne
Le

op
ar

ds
cr

oc
od

ile
_h

ea
d

Faces
Faces_easy

cougar_face
butterfly

chair
cougar_body

chandelier
buddha

brain
Motorbikes

crayfish
crab
bass

barrel
ceiling_fan

binocular
ant

anchor
airplanes

brontosaurus
cannon
beaver
camera

crocodile
bonsai

accordion
car_side

cellphone
Leopards

crocodile_head

10 1

10 2

10 1

100

101

102

103

104

Figure 4: Caltech101 generic class similarities as captured by the proposed GC method.

object detection task in RoboWeedMap proven to be a difficult task, especially for small
annotations. Samples of this dataset are shown in Figure 3.

(a) (b)

Figure 5: Examples of images in RoboWeedMap dataset.

2.3.2 Summary of state of the art

Developing fast object detection algorithms is a major research topic and we have wit-
nessed remarkable advancements in terms of both speed and accuracy. In [82], the Region
Proposal Networks (RPN) have paved the way for faster inference while maintaining com-
petitive accuracy. From studies like [80], [53] the Fully Convolutional Networks have been
proven to be by far the fastest, while new training strategies, like teacher networks [77],

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 17/112

[76] and different losses functions [83], [52], [50] are provide better over all accuracy. Fur-
thermore, new network architecture modules have been studied [88], [13], [29], [33] to
provide better information extraction without compromise on computational cost.

2.3.3 Work description

We provide a comprehensive overview of the work undertaken in developing our novel fully
convolutional network model, which draws inspiration from the Nanodet neural network
family. The proposed model employs a) a simple VGG backbone feature extractor, capable
of analyzing high resolution input b) Gost Pan Feature Pyramid Network [29], which can
best use our feature extractor output, and c) the Nanodet plus head with Generalized
Focal Loss [50]. The objective of this work is to create an efficient yet highly capable object
detection model tailored for high-resolution inputs, with a focus on the RoboWeedMap
Dataset. Below, we detail the key components and innovations that constitute our model.

VGG Backbone Feature Extractor: Our model begins with a VGG-inspired back-
bone feature extractor. This component is responsible for analyzing high-resolution input
efficiently. Specifically, the VGG backbone consists of 7 layers, each comprising a Convo-
lution - Batch Normalization - LeakyReLU stack. This structure enables the extraction
of rich features from the high resolution input data. The operation of each layer can be
represented as:

Xi = LeakyReLU(WiXi−1 + bi), for i = 1, 2, ...7, (5)

where Xi represents the output feature map at layer i, Wi denote the convolutional
weights, and bi represents the biases.

Ghost Pan Feature Pyramid Network (FPN): Our model incorporates a Ghost
Pan FPN, which plays a crucial role in efficiently utilizing the feature extractor’s output.
The Ghost Pan FPN comprises fast DepthWise-PointWise Convolution Modules and two
Ghost Convolution Modules (GCM). GCMs are designed to aggregate multi-scale infor-
mation effectively. In this work we implement a two stream pyramid that each input
passes from a fast DepthWise - PointWise Convolution Modules and then we use the
feature rich, small feature map along side:

O1 = GhostModule(Concant(DWPW (X6), Upsample(DWPW (X7))), (6)

and
O2 = GhostModule(Concant(DWPW (O1), DWPW (X7)), (7)

whereX6, X7 are the two last feature maps of our backbone, DWPW is a fast DepthWise-
PointWise Convolution Module, Upsample is a simple up-sample interpolation module
and GhostModule suggests the Ghost Module in [29] that keeps the feature number
integrity with a simpler computationally process.

Nanodet Plus Head with Generalized Focal Loss At the head of our model,
we implement a small Nanodet Plus head consisting of two branches that leverage fast
DepthWise-PointWise Convolution Modules with a single 2DConvolution at the end. The

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 18/112

(a) (b)

(c) (d)

Figure 6: Detection examples in RoboWeedMap dataset: (a), (b) represents the output
from YoloV5S model and (c), (d) represents the output from Fast Nanodet model.

output of the convolution is flattened and all branches are concatenated into one final out-
put feature map. This head is responsible for producing object detection predictions, in-
cluding bounding box regressions and class probabilities. The number of output channels
from this head is formulated as:

OutChannels = (4 · regression outputs) + number of classes. (8)

This head is designed to trained with Generalized Focal Loss [50] which instead to push the
model to output bounding boxes coordinates, it pushes it to learn the underline General
distribution of given bounding box from the regression outputs. In Figure 7, we depict the
Fast Nanodet Model with feature maps sizes when an image of RoboWeedMap dataset is
fed to the model as input.

2.3.4 Performance evaluation

Our first step was to test our model inference time in embedded devises and then downscale
the input of YoloV5S to run at the same speed as our implementation. In Table 3, we
can see that Nanodet has real time performance in Jetson TX2 when optimized with

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 19/112

Figure 7: Fast Nanodet architecture

TensorRT with half precision weights and it is almost 5 times faster than YoloV5S in the
same resolution images in our test bench PC environment. To compensate for that we
downscale 2.3 times the images that are feed in YoloV5S so the two models have similar
inference speeds.

Dataset implementations For the effectiveness of our models we performed a simple
experiment. For our dataset, we divide the 1147 images of RoboWeedMap dataset into
3 sets, 689 images for training, 228 images for validation and 230 images for testing. To
form our dataset each of the 2054× 2456 pixels original images was cropped into several
640×640 pixels images. For our baseline, YoloV5S, these cropped images was down-scaled
2.3 times before the training scheme was started but our Nanodet Model no down-scaled
was performed before training.

Training Scheme We trained our YoloV5S model with default hyperparameters. For
our model we implement a semi-supervised training that a bigger, teacher, model was
trained along side the original model to provide a better dynamic soft label assigning
inspired from YoloX. Furthermore, we implement an Exponential Moving Average scheme
of weights for updating the weights of our model, in order to increase training stability.
The results of the evaluation are provided in Table 4.

Table 3: Nanodet and YoloV5S inference speed in FPS.

Model Nanodet Nanodet YoloV5S YoloV5S
Platform Jetson TX2 Nvidia RTX3070 Nvidia RTX3070 Nvidia RTX3070
Input 2464×2080 2464 × 2080 2464×2080 1088×896 (/2.3)
FPS 30 547 109 486

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 20/112

Table 4: Evaluation results in test set for our proposed method and baseline. We report
mean average precision at both 50 and 50-95 IoU levels. * indicates that the models where
used with down-scaled inputs.

Class all poaceae brassicaceae
Measured mAP at IoU level 50 50-95 50 50-95 50 50-95

YoloV5S 0.726 0.474 0.653 0.388 0.8 0.561
YoloV5S* 0.656 0.371 0.573 0.292 0.739 0.45

YoloV5S*, not pretrained 0.653 0.386 0.566 0.298 0.741 0.474
Proposed 0.514 0.287 0.396 0.188 0.633 0.386

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 21/112

3 2D/3D object localization and tracking

3.1 Variational Voxel Pseudo Image Tracking

3.1.1 Introduction and objectives

3D single object tracking task (3DSOT) aims to track a single object of interest through
time and combines challenges from both 3D object detection and 3D multiple object
tracking. From the detection perspective, 3DSOT requires finding an accurate object
position and orientation for each frame, and from the multiple object tracking perspective,
the association process still has to be performed as the method should distinguish from
the similarly-looking objects and the object of interest, especially when their trajectories
lie close to each other.

There are different sensors that can be used for this task, including single or dual
camera images, Radars and Lidars. Camera images are the cheapest, but they lack depth
information which is critical for 3D perception and, while dual camera setups are trying to
mimic human eyesight, this approach leads to worse results than the Lidar-based methods.
Lidars usually operate at 10-20 Hz and create a point cloud for each frame, which consists
of a set of 3D points, perceived my shooting a laser beam and waiting for a possible
reflection to come back. The explicit 3D nature of Lidars makes it a default choice for
3DSOT, producing both high accuracy and speed of the models. Single object tracking
can be performed by using correlation filters [8, 32], direct offset prediction with deep
learning techniques [31] or with a Siamese approach which looks for a position with the
highest similarity score between it and the template [15, 2, 46, 45, 69].

By estimating uncertainty in neural networks, one can produce better statistical mod-
els, use the estimated uncertainty to improve the model’s perception quality and change
the post-model behavior by analyzing the predicted uncertainty. Applications of uncer-
tainty estimation include 3D Object Detection [17, 63, 64], 3D Object Tracking [113, 103],
3D Human Pose Tracking [12], and Steering Angle Prediction [57]. These methods improve
the perception and control quality by incorporating uncertainty estimation, but most of
them use either a single deterministic network or the Monte Carlo Dropout (MCD) [19]
methods for estimating uncertainty, which provide much poorer quality of uncertainty
compared to other methods [75].

There exist two main approaches to utilize uncertainty in neural networks, a statistical
approach which improves the quality of the model, and a control approach which changes
the decision of the system that uses the network’s outputs to control the system. The
statistical approach is easier to evaluate, as any dataset used for a desired task can be used
in the same way to test the statistically better uncertainty-based method, but the control
approach requires either a simulation environment, or a real controlled environment where
the new control system can be tested on top of the improved perception method.

A summary of this work is provided hereafter. The corresponding paper is referenced
below and can be found in Appendix 7.3:

• [70] Oleksiienko, I., Nousi, P., Passalis, N., Tefas, A., and Iosifidis, A., “Variational
Voxel Pseudo Image Tracking”, arxiv:2302.05914, 2023.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 22/112

3.1.2 Summary of the state of the art

Gawlikowski et al. [20] define four types of uncertainty estimation methods. Single
Deterministic Networks [86, 113] use a single network and try to estimate its uncertainty
by either adding branches that learn to output the model’s uncertainty, or by analyzing
the model’s performance with external tools. Bayesian Neural Networks (BNNs) [7, 60]
consider a distribution over weights of a model and sample multiple networks for each
run, resulting in a set of predictions, the variance of which represents the uncertainty of
the model. Ensemble Methods [74, 96] can also be viewed as special types of BNNs, which
use a categorical distribution over weights and usually train each sample independently,
resulting in a predefined set of networks. Test-Time Data Augmentation methods [102,
101, 37] change the input by applying different augmentations and analyze the variance in
outputs of a single network, applied to these slightly different inputs. Variational Neural
Networks [73, 72] are similar to BNNs, but instead of considering a distribution over
weights, they place a Gaussian distribution over the outputs of each layer and estimate
its mean and variance values by the corresponding sub-layers.

The most used approach for 3D SOT task is to deploy a Siamese network, which
considers a pair of target and search regions and applies the same transformation to
both these regions. The transformed regions are then compared by a cross-correlation
module, which outputs the most likely position of the target region inside the search
region, allowing to track the object of interest when applied for each frame. P2B [78],
BAT [112], Point-Track-Transformer (PTT) [87, 35] and 3D-SiamRPN [15] use point-
based Siamese networks since the small sizes of regions of interest allow processing points
directly. 3D Siam-2D [109] uses one Siamese network in a 2D Birds-Eye-View (BEV)
space to create fast object proposals and another Siamese network in 3D space to select
the true object proposal and regress the bounding box. Voxel Pseudo Image Tracking
(VPIT) [69] avoids processing points directly and follows the widely used in 3D detection
approach of voxelizing the space to create 2D pseudo images, but instead of voxelizing the
whole scene, only the search region is considered for processing, which makes it possible
to do real-time tracking.

Utilization of uncertainty for tracking is still in an early stage of development. Bayesian
YOLO [39] combines MCD and a single deterministic network to estimate epistemic and
aleatoric uncertainties for 2D object detection. Feng et al. [17] use a Lidar-based 3D object
detection method, and, similarly to Bayesian YOLO, deploy a partially MCD model to
estimate the epistemic uncertainty and use a single deterministic network for aleatoric
uncertainty. LazerNet [63] utilizes the predicted bounding box uncertainties during a
non-maximum suppression process. This method is further improved by estimation of
ground-truth uncertainties for training bounding boxes by calculating an Intersection
over Union (IoU) of the bounding box and a convex hull of the corresponding point cloud.

Zhong et al. [113] perform 3D Multiple Object Tracking (MOT) by using a single
deterministic network for estimating detection uncertainty and then providing these values
to a Kalman filter [36] of the 3D tracking method. Uncertainty-Aware Siamese Tracking
(UAST) [110] performs 2D single object tracking by using a single deterministic network
and quantizing over the specific range of values and predicting the softmax score for each
quantized value to estimate a distribution over outputs. The expectation of the estimated
distribution is used as a final regression value.

To the best of our knowledge, there are no methods that utilize uncertainty for 3D

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 23/112

Figure 8: Computational structure of Variational Voxel Pseudo Image Tracking.

Single Object Tracking. Moreover, the estimation of uncertainty for related tasks is
performed with statistically worse tools [75], such as single deterministic networks or
MCD.

3.1.3 Work description

We select Voxel Pseudo Image Tracking (VPIT) [69] as a base model as it achieves the
highest inference speed on the popular KITTI dataset [21] and suffers less speed loss when
deployed on embedded devices, compared to other real-time methods [78, 87], which is
caused by a specific architecture of CPU-GPU communication on the tested embedded
devices, which is better utilized by VPIT. Voxel Pseudo Image Tracking uses PointPillars
[43] as a backbone to create a pillar pseudo image and to process it with a Feature
Generation Network (FGN), which is a convolutional subnetwork of the PointPillars’
Region Proposal Network. After processing search and target regions with FGN, the
generated features are compared with a convolutional cross-correlation module to create
a pixel-level similarity map, where the highest value corresponds to the position of the
target region inside the search region.

We create a Variational VPIT (VVPIT) model by replacing VPIT’s FGN with a
Variational Neural Network (VNN) [71, 72] version of it, i.e., VFGN. The structure of
the proposed Variational VPIT model is present in Fig. 8. The input point cloud is
voxelized and processed by a small Pillar Feature Network that generates features for
each voxel and creates a 2D pseudo image where each pixel represents a corresponding

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 24/112

(a) Mean (b) Variance (c) Mean & certainty

Figure 9: An example of (a) mean, (b) variance and (c) mean and certainty features of
a search region corresponding to a car point cloud. Darker colors in mean and variance
images correspond to lower feature values. In the mean and certainty feature map, the
blue color channel represents feature intensity, and the red color channel represents the
corresponding certainty.

voxel. Pseudo images of target and search regions are processed with the same VFGN
module that uses Variational Convolutional layers (VConv) to generate outputs of multiple
network samples, the mean and variance of which are computed as final outputs. Different
number of samples can be used during each step of training and inference. For each
of the target and search regions, VFGN produces a set of outputs in the form Y =
{yi, i ∈ [1, . . . , P]} which correspond to the outputs of P sampled VFGN models, with
Y s = {ysi , i ∈ [1, . . . , P]} corresponding to the search region output set and Y t = {yti , i ∈
[1, . . . , P]} to the target region output set. For target and search regions, the number of
samples P can be different, but for simplicity we use the same values. The means and
variances of the outputs are computed as follows:

ysm =
1

P

P∑

i

ysi , ysv = diag

(
1

P

P∑

i

(ysi − ysm)(y
s
i − ysm)

T

)
,

ytm =
1

P

P∑

i

yti , ytv = diag

(
1

P

P∑

i

(yti − ytm)(y
t
i − ytm)

T

)
,

(9)

where ysm, y
s
v and ytm, y

t
v are the mean and variance values of search and target output

feature sets, respectively, and diag(·) is a function that returns the main diagonal of
a matrix. Fig. 9 shows the mean and variance values of an VFGN output for one
input example. The combined image has high certainty on red pixels, which are mostly
background pixels. This is explained by the fact that it is easy for the model to find
the background, and since there is no need to distinguish between different types of
background, all samples agree on these features.

The proposed VVPIT can use the estimated uncertainty in different ways. By following
the simplest way, we can ignore the uncertainties and process only mean values. In this
case, it is still expected to achieve a higher model quality as the statistical qualities of the
model are improved. The regular cross-correlation function g(a, b) is used, which is defined
as a 2D convolution conv2Dω=b(a) with ω being the kernel weights. Since most 3D SOT
methods compare features in a similarity-based way, we focus on similarity approaches to

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 25/112

utilize uncertainty instead of distance-based methods. We propose a double similarity-
based process which treats mean and variance values as separate sets of features and uses
the regular similarity function g(a, b) on both sets separately. The final similarity value
ĝdouble is computed as a liner combination of two similarity scores as follows:

ĝdouble(y
s
m, y

t
m, y

s
v, y

t
v) = g(ysm, y

t
m) + λg(ysv, y

t
v), (10)

where λ is a variance weight hyperparameter. This approach is based on the idea that
pixels with similar uncertainty vectors are likely to represent the same object.

Furthermore, we developed a different approach which tries to focus on more certain
positions and penalize pixels which are uncertain. This is achieved by dividing each mean
feature value during the convolutional process by the corresponding normalized variance
score, as follows:

∀c, vcn(v) = (ρ− 1)
vc −min(vc)

max(vc)−min(vc)
+ 1,

∀px,∀py, ĝpen(y
s
m, y

t
m, y

s
v, y

t
v)

px,py =
2ỹsm

px,py ỹtm
px,py

vn(ỹsv)
px,py + vn(ỹtv)

px,py
,

(11)

where the vn(v) function is used to normalize the variance predictions by the channel-wise
minimum and maximum values to be in [1, ρ] range, with a hyperparameter ρ that defines
how much the uncertain predictions are penalized, vcn(v) implements the normalization
procedure for a single channel c. For an input j, the notation j̃ denotes the tensor with
convolutional patches of j, and jpx,py corresponds to the values of j at position (px, py).

Training of VVPIT is performed with the same protocol as the base model. We use
a pre-trained variational PointPillars for 3D object detection to initialize VVPIT. After
the initialization, the network is trained with a Binary Cross-Entropy (BCE) loss between
the ground truth and the predicted score maps.

3.1.4 Performance evaluation

Following the standard protocol, we use a training set of the KITTI [21] tracking dataset
for both training and testing. The tracks [0, . . . , 18] are used for training and validation,
and tracks 19 and 20 are used to test the trained models. Performance of the model is
computed with Precision and Success [107] metrics, which are based on the predicted and
ground truth objects’ center difference and 3D Intersection Over Union, respectively. The
model is trained for 64, 000 steps with different number of training VFGN samples per
step in [1, . . . , 20] range. For the double similarity uncertainty utilization method, we test
the variance weight hyperparameter λ in the range of {0.1, . . . , 1} with step 0.1 and for
the uncertainty penalization approach, the ρ value is tested for the range of {2, . . . , 5}
with step 1. The best models are reported for each uncertainty estimation method.

Table 5 compares a regular VPIT models with different uncertainty utilization models
of VVPIT with 20 samples. As expected, by discarding uncertainty, we achieve a better
model than the original one, but by actually utilizing the estimated uncertainty, we can
improve the performance further.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 26/112

Table 5: Precision and Success evaluation of KITTI single object tracking experiments
for VPIT and Variational VPIT (VVPIT) models.

Method Uncertainty Success Precision

VPIT - 50.49 64.53
VVPIT averaging 51.97 66.69
VVPIT double similarity 52.62 66.56
VVPIT uncertainty penalization 53.30 67.79

3.2 Uncertainty-Aware AB3DMOT by Variational 3D Object
Detection

3.2.1 Introduction and objectives

3D object detection (3D OD) task aims to detect objects in 3D world, providing relative
3D position and size of the objects of interest. 3D multiple object tracking (3D MOT) is
often built upon 3D object detection by adding an association mechanism which assigns
unique IDs to each detected objects. These ID values have to be consistent through
different frames, meaning that the same object on different frames should be marked with
the same ID and different objects have to be marked with different ID values.

Similarly to VVPIT presented in Section 3.1, this work is aimed to improve the quality
of 3D multiple object tracking by utilizing high-quality uncertainty for a critical perception
task.

A summary of this work is provided hereafter. The corresponding paper is referenced
below and can be found in Appendix 7.4:

• [68] Oleksiienko, I. and Iosifidis, A., “Uncertainty-Aware AB3DMOT by Variational
3D Object Detection”, arxiv:2302.05923, 2023.

3.2.2 Summary of the state of the art

The best methods for 3D OD in combination of accuracy and inference speed use Lidar
point clouds as inputs, but these point clouds cannot be processed by powerful CNNs,
which leads to different structuring approaches, with voxelization being the most popular
way to structure point clouds for processing with CNNs. VoxelNet [113] proposed to split
a sub-scene of interest into an even 3D grid of cuboids called voxels. These voxels are pro-
cessed by a small neural network to create voxel-level features, which are later processed
by 3D and 2D convolutional subnetworks. PointPillars [43] improves this approach by
considering pillars, which are voxels that take out the whole vertical space, resulting in a
2D grid, instead of 3D grid. The generated 2D pseudo image is processed by a faster 2D
convolutional network, leading to lower inference times, compared to VoxelNet. TANet
[54] uses a Triple Attention module to produce a better pillar pseudo image than TANet
and then processes this image with a Coarse-to-Fine regression network. This method
provides a trade-off between PointPillars’ speed and the improved detection accuracy.

AB3DMOT [106] is a 3D version of SORT [5] for multiple object tracking, which
performs object association based on already detected objects. Both these methods use a

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 27/112

(a) A detected 3D bounding box of a car and a corresponding uncertainty from a
Variational 3D object detection model.

(b) 3D bounding boxes with modified uncertainties provided to the Kalman filter of the
uncertainty-aware AB3DMOT tracker.

Figure 10: 3D bounding boxes with raw uncertainties obtained by the proposed Varia-
tional TANet (top), and the uncertainties provided to the Kalman filter of the proposed
Uncertainty-aware AB3DMOT (bottom). The yellow color represents higher object prob-
ability, while the purple color represents lower probability of an object being present at
that point. Blue boxes correspond to the average of the predictions.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 28/112

2D or 3D Kalman Filter [36] to represent the inner state of the tracked objects and use a
Hungarian algorithm [40] to associate between new detections and already tracked objects.
In [113], the use of uncertainty is for 3D MOT is performed by training a voxel-based
SECOND [108] model with an additional uncertainty regression branch. The predicted
uncertainty is fed to a Kalman Filter of SORT to improve the tracking accuracy.

Estimation of uncertainty in neural networks can be performed in a single deterministic
network approach [86, 113], in a Bayesian Neural Networks (BNNs) approach [7, 60, 74,
96], or in a test-time augmentation approach [102, 101, 37]. Variational Neural Networks
[71, 72] are similar to BNNs but instead of considering a distribution over the model’s
weights, they consider a distribution over the outputs of the model, parametrized during
run-time by the corresponding sub-layers.

3.2.3 Work description

Variational TANet TANet [54] is an anchor-based method [81], and therefore the
outputs of the Coarse-to-Fine network have to be further post-processed to predict the
final boxes. Each point of the predicted feature map represents a position in space and
describes the possibility of having an object there, with a description of its relative size and
position. To filter out the overlapping descriptions of the same objects from neighboring
pixels, a Non-maximum suppression mechanism is applied.

We train a Variational TANet (VTANet) model by replacing its fully convolutional
Coarse-to-Fine network with Variational Convolutional layers. The training is performed
with the same loss function and training protocol, but we also define a number of samples
used for each run of the network during training and inference.

We define two ways of estimating uncertainty for the inference of the Variational
TANet model. The internal variance approach is a straightforward way to estimate
the model’s uncertainty by computing the variance in the outputs of the variational
part of TANet and then propagating this variance through the post-processing steps
of the network. This is achieved by treating the outputs of the Variational Coarse-to-
Fine network as Gaussian random variables and computing the distribution after the
post-processing operations. The voxel-wise outputs of the network are in the form of
(x, y, z, w, l, h, r) vectors based on the corresponding anchor of the same form, where
(x, y, z) is the relative position vector, (w, l, h) is the relative size vector and r is the rela-
tive rotation angle. Given a set of predictions (xi, yi, zi, wi, li, hi, ri), i ∈ [1, S], where S is
the number of samples, the mean and variance values (mx,my,mz,mw,ml,mh,mr) and
(vx, vy, vz, vw, vl, vh, vr), respectively, are computed and passed to the decoding algorithm.
The decoding process takes an anchor (xa, ya, za, wa, la, ha, ra) and produces the decoded
prediction (x̂, ŷ, ẑ, ŵ, l̂, ĥ, r̂) as follows:

d =
√
l2a + w2

a,

(x̂, ŷ) = (mx,my)d+ (xa, ya),

(ŵ, l̂, ĥ) = (emwwa, e
mlla, e

mhha),

r̂ = mr + ra,

ẑ = mzha + za + ha/2− ĥ/2.

(12)

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 29/112

The corresponding variances (vx̂, vŷ, vẑ, vŵ, vl̂, vĥ, vr̂) are calculated as follows:

d =
√

l2a + w2
a,

vexp(m, v) = e2m+2v − e2m+v,

(vx̂, vŷ) = (vx, vy)d
2,

(vŵ, vl̂, vĥ) =

(vexp(ŵ, vw)w
2
a, vexp(l̂, vl)l

2
a, vexp(ĥ, vh)h

2
a)

r̂ = vr,

vẑ = vzh
2
a,

(13)

where vexp(m, v) is the variance of the exponent of the Gaussian random variable.
The external covariance approach treats the model as a black box and only uses

the post-processed outputs to estimate the uncertainty. This method is less intrusive,
but requires some understanding of the nature of the outputs. The model is inferred
S times to generate S sets of 3D bounding boxes, which are then combined into one
set by association, similarly to a Hungarian algorithm. Consider a set of predictions
P S = {pi | i ∈ [1, . . . , S]}, where each element is a list of 3D bounding boxes with size
Ki, predicted by the model, pi = {bk | k ∈ [1, . . . , Ki]}. In most cases, Ki will be equal
across i, but if there are boxes with high uncertainty, they may appear in some samples
and disappear in other samples, leading to fluctuations in the final list size. In order to
combine the lists, we define an association set A(P) as a set of box groups {gq} where
each group contains 3D bounding boxes from different model samples with the closest
distances to each other, but no more than 1 meter. By iterating through all boxes for
each sample and finding the smallest distance to the average position of each group, we
can populate these groups sequentially. If the closest distance is higher than 1 meter, a
new group will be assigned to this object:

∀i ∈ [1..S] ∀k ∈ [1..Ki]

Ĝ(bk) = argmin
gq

|avg({bx,y,z ∈ gq})− bx,y,zk |

G(bk) =

{
Ĝ(bk), if |avg({bx,y,z ∈ Ĝ(bk)})− bx,y,zk |≤ 1,

gnew, otherwise,

gq = {bk |G(bk) = q, i ∈ [1..S], k ∈ [1..Ki]},

(14)

where bx,y,z is a 3D position of the box b and avg(·) is the averaging function. For each
group gq, we compute the mean bounding box and the corresponding covariance matrix
in the form of a 7× 7 matrix for position (x, y, z), size (w, h, l) and rotation α.

Initialization of Variational TANet by pretrained model Variational TANet can
be trained from scratch the same way as the original model, but instead of doing so, we
can take advantage of the already trained TANet model and use it for initialization of
VTANet. The base idea lies in the representation of classical networks as Bayesian Neural
Networks with a Dirac delta distribution over the weights, resulting in a single data point
taking up the whole distributional weight and the similarities between this distribution
and a Gaussian distribution with such small variance, that all the samples from this

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 30/112

distribution are closer to the mean than the smallest floating-point number that can be
represented in the selected computational system, resulting in computationally identical
numbers. By gradually increasing the variance, we can go from the pseudo Dirac delta
function to an actual Gaussian distribution, which means that by initializing the VTANet
model with a pretrained TANet model and setting such almost-zero variance values, we
achieve computationally identical models, and by increasing the variance values these
models will deviate further apart. To train an IVTANet model, we initialize mean values
with a pretrained TANet weights and variance values with small non-zero values by either
using constant initialization or Xavier uniform/normal initialization [23]. The initialized
model is close to the pretrained TANet, but the values of variances are still big enough
to contribute to the output and be trained.

Uncertainty-Aware AB3DMOT It is shown [113, 84] that the Kalman filter benefits
from providing uncertainty estimations instead of assuming a unit-Gaussian measurement
uncertainty. We follow this approach but modify the predicted uncertainties from the
detector by using a linear transformation:

Σ̂ = αI + βΣ, (15)

where Σ̂ is the uncertainty that serves as an input to the 3D Kalman filter, α is a hy-
perparameter that controls the contribution of the default uncertainty and β is a hyper-
parameter that controls the contribution of the detector’s uncertainty to the final value.
The goal of this transformation is to utilize the predicted uncertainties, but also provide
a degree of freedom for the Kalman filter. By using (α = 1, β = 0) we can achieve the
regular AB3DMOT performance and by using (α = 0, β = 1) we can use the predicted
uncertainties unchanged. Fig. 10 illustrates the difference between the raw predicted
uncertainties and the modified uncertainties.

3.2.4 Performance evaluation

We follow the standard training procedure for TANet, VTANet and IVTANet on KITTI
[21] dataset, described in TANet [54]. VTANet models are trained with different number
of training samples in range [1, . . . , 4], and every trained model is evaluated in combination
with AB3DMOT with different number of samples from the same range. We train VTANet
and IVTANet models with both internal and external uncertainty estimation procedures
and evaluate models with different values of α and β hyperparameters for AB3DMOT
with limits being α ∈ [0, 1] and β ∈ {0.1, 1, 5, 10, 50}. We compare the proposed models
with that of the Voxel von-Mises method [113], which is the only method, to the best of our
knowledge, to incorporate uncertainty estimation into 3D object tracking. This method
uses SECOND [108] for 3D object detection and SORT [5] for objects associations.

Table 6 shows the performance of different models on the KITTI tracking dataset
based on Multi Object Tracking Accuracy (MOTA), F1 score, and Mostly Lost (ML)
metrics. The “Tracking Parameters” column represents the hyperparameters values that
are used for this model, and the type of uncertainty estimation approach is represented in
the “Uncertainty Method” column. The proposed VTANet method that is trained from
scratch improves all tracking metrics compared to the original TANet and the Voxel von-
Mises method [113], with the external covariance method providing better results than
the internal variance approach. Voxel von-Mises method provides much worse results due

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 31/112

Table 6: KITTI tracking results.

Model Uncertainty
method

Training
Samples

Inference
Samples

Tracking Pa-
rameters

MOTA%↑ F1%↑ ML%↓

Voxel von-Mises [113] deterministic - - SORT [5] - 55.10 30.60
TANet [54] - - - AB3DMOT

[106]
68.71 85.69 8.58

IVTANet + UA-AB3DMOT covar 2 4 α = 0.6, β = 5 72.30 87.34 7.74
IVTANet + UA-AB3DMOT covar 2 4 α = 0, β = 1 72.13 87.26 7.74
IVTANet + UA-AB3DMOT covar 2 4 α = 1, β = 0 72.05 87.22 7.74
VTANet + UA-AB3DMOT covar 3 3 α = 0.6, β = 5 69.63 86.46 7.95
VTANet + UA-AB3DMOT covar 3 3 α = 0, β = 1 69.48 86.39 8.16
VTANet + UA-AB3DMOT covar 3 4 α = 0.6, β = 5 69.42 86.38 9.00
VTANet + UA-AB3DMOT covar 3 3 α = 1, β = 0 69.15 86.31 9.00
VTANet + UA-AB3DMOT covar 3 4 α = 1, β = 0 68.86 85.04 9.21
VTANet + UA-AB3DMOT covar 2 4 α = 0.6, β = 5 68.54 86.13 8.16
VTANet + UA-AB3DMOT var 3 4 α = 0.5, β = 5 68.46 85.91 7.95

to the use of inferior methods at each of the steps, including the less accurate 3D detector
SECOND [108] the less suited for 3D object detection tracker SORT [5] and a deterministic
approach for uncertainty estimation that can be improved by considering a Bayesian
alternative. VTANet improves upon TANet, but by initializing it with a pretrained
TANet and training IVTANet models, we achieve a much bigger improvement in the
tracking metrics. The best models of IVTANet share the same hyperparameters values as
the best models of TANet, which indicates the usefulness of these values separately from
the selected model.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 32/112

4 Deep SLAM and 3D scene reconstruction

4.1 CoVIO: Continual Learning for Visual-Inertial Odometry

4.1.1 Introduction and objectives

Accurately gauging a robot’s movement via its onboard sensors is an essential prerequi-
site for various downstream tasks like localization and navigation. Instruments such as
inertial measurement units (IMU) or inertial navigation systems (INS) offer the direct
means to measure the robot’s motion by assessing acceleration and GNSS data. Visual
odometry (VO), which harnesses image data from single or stereo cameras, provides an
alternative approach [18, 85, 61]. Similar to other tasks in computer vision, there has
been a growing interest in learning-based VO. This approach is gaining traction due to
its ability to learn high-level features, which can address challenges posed by textureless
regions [95, 94] and issues caused by dynamic objects [4] where traditional handcrafted
methods struggle. However, a limitation of learning-based VO lies in its inability to adapt
to new environments, hindering its real-world deployment potential. Thus, a recent av-
enue of research, known as adaptive VO [59], has emerged. For instance, it explores the
use of continual learning (CL) techniques to enhance VO during inference [97].

Pretraining
Source data

replayReplay

Online continual learning

replayReplay

Online continual learning

Source data
Replay data

Network weights
Transfer of:

Ground truth
Only source
CoVIO

Ground truth
Only source
CoVIO

Figure 11: CoVIO for online continual learning of visual-inertial odometry. After pre-
training on a source domain that is then discarded, CoVIO further updates the network
weights during inference on a target domain.

Typically, learning-based VO employs monocular depth estimation as an auxiliary
task [59, 49, 97]. It combines a PoseNet, which estimates camera motion between frames,
with a DepthNet for single-image depth estimation [24], facilitating unsupervised joint
training. This method’s unsupervised nature allows for continuous training during in-
ference. In addition to traditional domain adaptation [6], recent research on continual

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 33/112

SLAM [97] delves into sequential multi-domain scenarios (illustrated in Fig. 11). In this
context, CL-SLAM introduces adaptive VO integrated with a graph-based SLAM back-
end.

Our work introduces a novel adaptive visual-inertial odometry estimation method
called CoVIO, which directly addresses several drawbacks of CL-SLAM. Similar to
the approach taken by Kuznietsov et al. [42], we operate in a source-free context, where
experience replay excludes data from the source domain used for pretraining. Within a
source-free framework, we introduce the following contributions in CoVIO. 1) We replace
the dual-network structure with a single network that handles both domain adaptation
and knowledge retention, leading to architectural simplification and reduced GPU mem-
ory utilization. 2) We utilize a compact replay buffer to optimize image diversity while
considering storage limitations of embedded devices. 3) We propose an asynchronous
version of CoVIO, which separates the core motion estimation from network updates,
enabling continuous inference. 4) We extensively evaluate CoVIO on various datasets
demonstrating its effectiveness in comparison to alternative visual odometry methods.

A summary of this work is provided hereafter. The corresponding paper is referenced
below and can be found in Appendix 7.5:

• [98] N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “CoVIO: Online Contin-
ual Learning for Visual-Inertial Odometry”, IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pp. 2463-2472, 2023.

4.1.2 Summary of state of the art

Continual Learning: Deep learning models are commonly trained for specific tasks but
often fall short in real-world scenarios characterized by evolving data distributions and
changing task objectives. Continual learning (CL) and lifelong learning [89] offer solu-
tions to these challenges by enabling models to learn new tasks while retaining their
previous knowledge. CL encompasses various strategies, including experience replay, reg-
ularization techniques, and architectural methods. Furthermore, online continual learn-
ing [58, 104, 100] updates models continuously during inference, adapting to the evolving
data stream. In our work, we employ online CL, coupled with experience replay, to en-
hance visual-inertial odometry estimation in dynamic environments.

Adaptive Visual Odometry: Adaptive visual odometry (VO) and simultaneous localization
and mapping (SLAM) have emerged as critical components to enhance the performance of
robotic systems when navigating in unfamiliar environments. Commonly, learning-based
VO involves monocular depth estimation as a proxy task, achieved through unsupervised
training. Our approach builds upon CL-SLAM [97], a framework designed to mitigate
catastrophic forgetting by utilizing a dual-network architecture. This architecture consists
of an “expert” network, which facilitates online adaptation to new domains, and a “gener-
alizer” network, which retains previously acquired knowledge through experience replay.
Our work extends and enhances this approach, addressing its previous shortcomings.

4.1.3 Work description

Network Architecture and Pretraining: Our network architecture follows the stan-
dard approach for unsupervised monocular depth estimation. It consists of two distinct

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 34/112

Ti
m

e
Image stream Batch generation

Diversity-based
buffer update

Combine online
and replay dataReplay buffer

Online continual learning

Update
weights

PoseNet

DepthNet

Figure 12: Our proposed CoVIO performs online continual learning on a stream of RGB
images leveraging unsupervised monocular depth estimation as an auxiliary task.

networks, DepthNet and PoseNet, illustrated in Fig. 12. Similar to [97], we utilize Mon-
odepth2 [24] to jointly predict a dense depth map Dt−1 for the center image and compute
the camera motion relative to both neighboring frames, denoted as Ot−2→t−1 and Ot−1→t,
for an image triplet {It−2, It−1, It}. In our network, we consider the latter as the visual
odometry (VO) estimate. Specifically, we employ an implementation that incorporates
two separate encoders based on the ResNet-18 architecture [30] for both DepthNet and
PoseNet.

To initialize CoVIO, we perform unsupervised training on a source domain S in an
offline manner. In detail, we exploit the photometric reprojection loss Lpr and the image
smoothness loss Lsm to train the DepthNet and the PoseNet [24]. We additionally super-
vise the PoseNet with scalar velocity readings from the vehicle’s IMU [27]. The applied
velocity supervision term Lvel enforces metric scale-aware odometry estimates. Thus, our
total loss is composed of three terms:

L = Lpr + γLsm + λLvel , (16)

where γ and λ are weighting factors.
Online Continual Learning: After pretraining on a source domain S, we use CoVIO
to perform online continual learning on an unseen target domain T . As illustrated in
Fig. 12, each new RGB image triggers the following steps:

1. Create a data triplet comprising the new frame It and the two previous frames It−1

and It−2 along with the corresponding IMU readings.

2. Check whether this triplet should be added to the replay buffer using the proposed
diversity-based update mechanism.

3. Sample from the replay buffer and combine the samples with the previously gener-
ated data triplet.

4. Estimate the depth map Dt−1 and the camera motions Ot−2→t−1 and Ot−1→t.

5. Compute the loss defined in Eq. (16) and update the network weights via backprop-
agation.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 35/112

6. Repeat steps (4) and (5) for c iterations.

7. Output Ot−1→t as the odometry estimate.

Online Asynchronous CoVIO: We also propose an asynchronous variant of CoVIO
to address true continuous inference on robotic platforms in a real-time capable setting.
Since multiple update iterations c can result in a situation, in which the network update
takes longer than the frame rate of the input camera stream, we also design a version that
decouples the VO estimation from the CL updates. The predictor continuously generates
VO estimates for each incoming image. The learner contains a copy of the network that
is updated using the previously introduced online CL strategy but disregards images if
the update step takes longer than the time until the next frame is available. Compared
to caching frames, this strategy ensures that always the latest information is used to
update the network. Then, after a given number of update cycles, the network weights
are transferred from the learner to the predictor.

4.1.4 Performance evaluation

Throughout all experiments, we report the translation error terr (in %) and the rota-
tion error rerr (in °/m) as proposed by Geiger [22]. These metrics evaluate the error
as a function of the trajectory length. To ensure a fair comparison with the base work
CL-SLAM [97], we further utilize the set of network weights that is provided by the au-
thors and was pretrained on the Cityscapes Dataset [11]. We also follow CL-SLAM and
only consider new frames when the IMU measures a driven distance of at least 0.2m.
For the standard evaluation, we have used The KITTI Dataset [22]. For continual learn-
ing of new domains, we use images and ground truth poses of multiple sequences from
the odometry benchmark and combine them with the respective IMU data from the raw
dataset.

Table 7: Comparison of continual odometry estimation on the KITTI odometry bench-
mark.

Method
Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 10

terr rerr terr rerr terr rerr terr rerr terr rerr

ORB-SLAM [67] 0.62 0.11 2.51 0.25 7.80 0.35 1.53 0.35 2.96 0.52

Only target 10.72 1.69 34.55 11.88 15.20 5.62 12.77 6.80 55.27 9.50
DeepSLAM [48] 5.22 2.27 4.04 1.40 5.99 1.54 4.88 2.14 10.77 4.45

Only source 28.94 4.64 46.13 19.20 49.57 20.79 37.75 25.42 30.91 15.28
CL-SLAM [97] 4.37 0.51 4.30 1.01 2.53 0.63 2.10 0.83 11.18 1.74
CoVIO (ours) 2.11 0.53 2.88 0.94 2.13 0.47 3.19 1.26 3.71 1.55

Comparison of the translation and rotation errors of our CoVIO with baseline methods evaluated on the
KITTI odometry benchmark. “Only target” and DeepSLAM are trained on sequences {00, 01, 02, 08,
09} without further adaptation. “Only source”, CL-SLAM, and CoVIO are trained on Cityscapes. Both
CL-SLAM and CoVIO perform online adaptation on the respective KITTI sequence.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 36/112

4.2 Row Guidance

4.2.1 Introduction and method

It was investigated if it is possible to calculate the cross-track error of the robot based on
the CropEye camera’s physical position using either the crop’s bounding box or the plant
stem emergent zone (PSEZ). The cross-track error (XTE) is the difference between the
calculated plan and the crop row’s actual position.

Three analyses were conducted, the first one to get an idea if the method was possible,
the second to investigate more deeply if the method was possible and the third to compare
the performance of plant stem emergent zone to the crop’s bounding box.

The robot’s planned route and the actual route data for each executed plan is stored
in the cloud. It is also displayed on the remote supervisor page so farmers can see if the
robot’s driving performance is acceptable. The CropEye camera is mounted perpendicular
to the ground on the robot at -43 cm to the left of the center line of Robotti. As the
mounting position doesn’t change, it is possible to calculate the position of the crop row
and compare it to the planned route and actual route. This difference is referred to as
cross-track error (XTE) in all three analyses.

When the images are acquired by the robot, meta data is also acquired for each image
and stored in the cloud. When the images are annotated, additional annotation data is
added to the image, see Fig. 13.

Figure 13: Example of meta data from a CropEye image after it has been imported and
exported from the plant annotation program.

The images that were used to conduct the analyses were acquired from 3 different
fields, with the names 4-1, 8-1 and 5-0, see Fig. 14 and Fig. 15. All fields were located in
Denmark and all images were acquired during the 2022 farming season. The images were
collected with the CropEye system while band spraying and interrow weeding. The crop
was maize.

The method used in Analysis 1-3 was to, for each one-pixel column along the x axis,
sum all pixels inside the bounding boxes. The column with the most pixels is the center
of the crop row. Equations, see below, were used to calculate the XTE of the image.

XTE = (PlantRowPosition/Iw − Center/Xw) ∗ Iw (17)

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 37/112

Figure 14: Left: Field 4-1. Center: field 8-1. Right: Field 5-0. White lines are the
planned path for Robotti and the blue lines are turns. The blue icons are row numbers.

PlantRowPosition = (Iw/2 + CameraOffSet+ [RowOffSet/2,−RowOffSet/2] (18)

I w = width of the image. In this case, I w = 1 m based on measurements at physical
robot.

X w = number of pixels along the horizontal axis of the image. In this case, X w =
2448 pixels.

Center = sum pixels in each 1 px wide column inside the bounding boxes. Choose
the max. Center is the number of pixels along the x axis of the maximum value.

CameraOffSet = Distance from the center of the robot to the camera. In this case,
CameraOffSet = -0.43 m.

RowOffSet = Distance between each row. In this case, RowOffSet = 0.75 m.

4.2.2 Analysis 1: Finding the cross-track error (XTE) of 5 images using the
bounding box of the crop

An analysis was performed to find the cross-track error (XTE) of 5 images using the
bounding box of the maize crop. The five images were selected from the same GPS
location at different time intervals, see Fig. 16.

It can be observed in figure Fig. 16, that the position of the crop (maize, yellow
bounding boxes), is stable. The robot is following the same plan, therefore, it is highly
likely that the XTE of the robot can be calculated based on the position of the crop.

To find the center of the of the pixels of the crop (maize), the pixels are counted inside
the maize bounding box horizontally in the vertical direction and is used to estimate a
probability density function. The maximum of this function is assumed to be the center
of the row in pixels, see Fig. 17.

The XTE appears to increase as the days after sowing increases and the crop is getting
taller, see Tab. 8. This error is likely because the camera is not mounted center in the

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 38/112

Figure 15: Sizes and shapes of the three fields, 4-1, 5-0, and 8-1 based on input from
where the images were taken. Each dots represents one image.

maize row and as the crop grows, there will be an increase of the side view of the crop.
Currently, the cameras are set at fixed points on the center boom of the robot and the
farmers cannot adjust the camera’s position. In past projects, when the farmer was
required to input camera angle, height, etc for the system to work, there were often errors
in the measurements. Therefore, it has been decided not to allow the farmer to change
the camera’s position to the center of the crop row.

As the height of the crop is unknown, it is difficult to counteract this error through
calculations. However, with small crops, this is less of a problem. On the other side, it is
possible to counteract the problem by training the Crop and Weed tool to find the plant
stem emergence zone – the area where the crop emerges from the soil.

When navigating by RTK GNSS, the robot can achieve up to +/- 2 cm accuracy. The
first analysis showed that by using the bounding boxes of the maize plants, an accuracy
of +4.5 to -7.7 cm can be achieved. This is greater deviation than desired, however,
by using the bounding boxes of the plant stem emergence zone, it is expected that the
accuracy will increase. Therefore, it was evaluated that the method is acceptable and can
be further investigated.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 39/112

Figure 16: Top: A series of images with the same GPS location taken over time. Bottom:
The same series with bounding boxes.
Table 8: Image no. and date correlates to images in Fig. 16. XTE is the difference
between the green dotted line and the red dotted line, see Fig. 17.

Image no. Days after sowing Date Cross-track error

1 12 16/05/2022 N/A
2 31 04/06/2022 4.512571
3 37 10/06/2022 -2.192426
4 41 14/06/2022 -7.678604
5 47 20/06/2022 -4.202712

4.2.3 Analysis 2: Analysis of XTE when evaluating 3 fields

An analysis was conducted on 3 different fields to investigate the mean cross-track error
(XTE), 5th percentile (probability 0.05), and percentile 95 (probability 0.95) using the
same calculation described in method section and section Analysis 1, see Tab. 9

When studying the numbers in Tab. 9, the mean cross-track error is less than 1 and in
many cases, less than 0.5 cm, which is very promising. However, when studying the XTE
max, the most frequent number varies 0 to -3.1 cm, indicating that the method may have
flaws. Overall, it can also be seen that the q5 and q95 increases as the days after sowing
increases. This error is due to the size of the crop – the larger the crop, the harder it is
to use the bounding boxes to find the center of the row. This error can potentially be
significantly reduced by training the model to find the crop emergence zone.

To improve the finding of the row, the Crop and Weed tool was updated with plant
stem emergence zones (PSEZ) for both maize and sugar beets.

4.2.4 Analysis 3: Large quantity of images to see performance of XTE using
bounding boxes vs. plant stem emergence zones

A third analysis was conducted using all images collected in the three fields 4-1, 5-1 and
8-1 using both bounding boxes and plant stem emergence zones to find the center of the
crop row. A total of 29949 images were used for the maize bounding boxes (ZEAMX)
and 23019 images were used for the plant stem emergence zone (PSEZ). The difference
in images quantities is because for the maize bounding box, the image must include at

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 40/112

Figure 17: Left: Histogram showing bounding boxes pixel counts and derived probability
density function used to estimate the crop row center. Right: The CropEye image only
showing the crop bounding box’es. Calculated cross-track error (XTE) is 4,51 cm. The
green dotted line is where the crop row center should have been assuming XTE=0. The
dotted blue visualized line is the calculated center of the maize bounding boxes. The
dotted red lines are the crop row center +/- 2.5 cm. The white dotted line indicates the
center of the image.

least 1 maize bounding box and for the plant stem emergence zone, the image must also
include 1 bounding box. As the robot does not center itself over the crops before it takes
an image, it is possible for the camera to acquire images where it can find the maize plant
but the plant stem emergence zone is not in the image.

When using maize bounding boxes to determine the placement of the robot, the cross-
track error (XTE) was 0.61 cm, see Tab. 10. When using the plant stem emergence zone
bounding boxes to determine the placement of the robot, the cross-track error (XTE)
was 0.66 cm, see Tab. 10. However, when presenting the standard devation as a range,
it is clear that the XTE for plant stem emergence zone is more accurate than the maize
bounding boxes, see Fig. 18.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 41/112

Table 9: Field 4-1, 5-0 and 8-1 for cross-track error (XTE) for images acquired while band
spraying and interrow weeding. XTE mean is the average XTE in cm of the CropEye
images where XTE could be estimated. XTE max is the number that occurred the most
often. q5 is the 5th percentile (probs = 0.05) of XTE˙cm˙bbox after removing any missing
values and rounded to 1 decimal place. q95 is the 95th percentile (probs = 0.95) of
XTE˙cm˙bbox after removing any missing values and rounded to 1 decimal place.

Field Days after No. of XTE mean XTE max XTE q5 XTE q95
no. sowing images (cm) (cm) (cm) (cm)

4-1 28 1840 0.5 1.1 -8.2 8.3
4-1 37 1708 0.8 0.2 -8.9 10.1
4-1 44 1695 0.8 0 -9.2 10.7
5-0 31 2622 1 -0.5 -8.5 10.1
5-0 38 2345 0.4 0.8 -9.6 10.4
5-0 46 1625 0.7 -3.1 -11.2 12.5
5-0 47 830 0.3 -2.1 -12.1 12.4
5-0 48 167 -0.6 0.4 -10.8 9.4
8-1 31 847 0 0.6 -4.6 4.4
8-1 36 853 0.1 0.6 -5.6 5.7
8-1 40 764 0.4 -0.1 -5.4 6.9
8-1 47 852 0 1.1 -5.8 6.1

Figure 18: XTE box plot across all three fields images containing at least one maize
bounding box (ZEAMX) or one plant stem emergence zone bounding box (PSEZ). The
red vertical dotted lines illustrates 5, 25, 50, 75, 95 percent quantiles.

Tab. 10 shows the quantiles for the XTE for the maize bounding boxes (ZEAMX)

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 42/112

and for the plant stem emergence zones (PSEZ). For the XTE of maize bounding boxes
(ZEAMX), the quantiles ranged from -9.6 to 11.7 cm. For the XTE of the plant stem
emergence zones (PSEZ), the quantiles ranged from -6.3 to 8.1.

Table 10: Quantiles for XTE for the maize bounding boxes (ZEAMX) and for the plant
stem emergence zones (PSEZ).

Label 5% (cm) 25% (cm) 50% (cm) 75% (cm) 95% (cm)

ZEAMX -9.6 -3.2 0.5 4.3 11.7
PSEZ -6.3 -1.9 0.7 3.3 8.1

Although the mean for the plant stem emergence zone is greater than the bounding
boxes, the plant stem emergence zone is more accurate.

4.2.5 Robotti integration

The row guidance infrastructure on Robotti includes the GPU (Xavier), Robotti’s CPU
and the cloud (AWS), see Fig. 19. The method analyzed in the first section is in the
process of being integrated into the GPU. The GPU will acquire the image, run the
tool, output the bounding boxes, find the row, and output the XTE. The XTE is then
transferred to the robot’s CPU where the XTE is used to actuate the robot and the actual
position of the robot, RTK GNSS, is recorded (completed). The recorded information is
sent to the cloud, where the actual path is stored (completed). The actual path can then
be visualized in Robotti portal and or analytics can be performed (completed).

Figure 19: Final integration will be presented in D7.5. Tests and evaluation of the row
guidance system will be presented in D8.4.

Final integration will be presented in D7.5. Tests and evaluation of the row guidance
system will be presented in D8.4.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 43/112

5 Sensor information fusion

5.1 Multimodal Feature Fusion Framework for Manipulation

A robot, while performing a specific task, often has access to multiple different data
sources from its sensors. Such sensors include RGB cameras, lidars, force feedback sensors,
microphones, infrared sensors and more. While taking advantage of such diverse data
modalities is obviously beneficial, it is a complex task. TAU has previously proposed a
general feature fusion framework suitable for these scenarios, with the primary application
area being robotic arm manipulation (pick and place, insertion, etc.). The following
requirements are set for the framework to adhere to:

• Support for input signals of modalities that are expected to be supported on the
robotic arm in an industrial setting (RGB and depth camera feeds, force sensors,
self-pose measurements).

• Inclusion of baseline feature fusion modules, supporting arbitrary combinations of
modalities.

• Support for both task-specific surrogate objectives and input reconstruction objec-
tives.

• Extensibility of the framework with respect to inputs/modalities, fusion approaches
and outputs.

• Compactness of the intermediate and final representations, for faster computation.

• Support for robustness: minimizing the impact of damaged or missing data from
individual modalities during inference.

• Capability to train on real and/or synthetic data.

• Integration with the simulation environment (Webots) for collecting synthetic data.

More detailed descriptions of the framework itself have been previously provided in
Deliverables D4.1 and D4.2. To avoid redundancy, we do not replicate them here.

In the remaining period, we aim to focus on the evaluation of the aforementioned
functionality, drawing on the assistance and expertise of other partners where appropriate.
In addition to debugging and speed enhancements, we are working on extending the
framework capabilities by adding new input decoders for new and existing modalities. We
plan to continue experimenting with NAS for feature fusion optimization. Finally, time
permitting, we plan to investigate the active perception possibilities for our multimodal
setting and tasks.

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 44/112

6 Conclusions

In the final year of the project, the consortium carried out a series of activities following
the overall objectives of the project. In the context of work package 4, we focused on
objective O1 for providing a modular, open and non-proprietary toolkit for core robotic
functionalities enabled by lightweight deep learning, and objective O2 for leveraging AI
and cognition in robotics to go from perception to action.

ALU-FR contributed to O2a and O2c by proposing several methods for applying online
continual learning to core robot perception tasks. In particular, they introduced CoDEPS
(Section 2.1), the first method addressing online continual learning for joint depth esti-
mation and panoptic segmentation. Furthermore, they presented CoVIO (Section 4.1)
which is a continuation of their previous work on Continual SLAM but provides multi-
ple improvements with respect to network design, pretraining requirements, and overall
performance.

AUTH worked towards O1b by developing lightweight object detection algorithms
and models for agricultural applications (Section 2.3), focusing on high resolution object
detection and image understanding, while tackling the specific challenges that arise within
this application field. Furthermore, AUTH continued working towards O2c on methods to
tackle the shortcomings associated with the one-hot encoding by introducing a framework
for learning soft label embeddings (Section 2.2).

AU worked towards O1a by introducing methods that estimate and utilize uncertainty
for 3D perception tasks. Variational Voxel Pseudo Image Tracking (Section 3.1) introduces
uncertainty estimation to Voxel Pseudo Image Tracking by replacing its convolutional
neural networks with their Variational Neural Network (VNN) versions, and then utilizes
the estimated uncertainties to improve the 3D single object tracking accuracy of the model.
Furthermore, Variational TANet, in combination with Uncertainty-Aware AB3DMOT
(Section 3.2), uses a VNN version of TANet to estimate the uncertainty of 3D detections
and utilizes it in the Uncertainty-Aware AB3DMOT to improve the tracking process. The
utilization of uncertainties leads to a direct improvement of the tracking, but can also be
used as an input to decision-based methods.

TAU worked towards objective O2c by preparing benchmark evaluations for the mul-
timodal feature fusion framework (Section 5), circumventing the recent data collection
issues in both real and simulated domains, and allowing for further toolkit integration in
the remaining project period.

AGI contributed to O2c by developing and analyzing a method to navigate and map
the agriculture field robot based on the actual position of the plant rows. Using the
output of the Crop and Weed tool, the crop rows are found along with the cross-track
error of the crop rows. The agriculture field robot is then able to navigate, using the cross
track error as a correction to its current position. The actual position is mapped using
the robot’s RTK GNSS (Section 4.2).

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 45/112

References

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall.
Semantickitti: A dataset for semantic scene understanding of lidar sequences. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9297–9307, 2019. 12

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-
convolutional siamese networks for object tracking. arXiv:1606.09549, 2016. 21

[3] B. Bešić, N. Gosala, D. Cattaneo, and A. Valada. Unsupervised domain adapta-
tion for LiDAR panoptic segmentation. IEEE Robotics and Automation Letters,
7(2):3404–3411, 2022. 8

[4] B. Bešić and A. Valada. Dynamic object removal and spatio-temporal RGB-D in-
painting via geometry-aware adversarial learning. IEEE Transactions on Intelligent
Vehicles, 7(2):170–185, 2022. 32

[5] A. Bewley, Z. Ge, L. Ott, F. T. Ramos, and B. Upcroft. Simple online and realtime
tracking. In ICIP, pages 3464–3468, 2016. 26, 30, 31

[6] B. Bešić, N. Gosala, D. Cattaneo, and A. Valada. Unsupervised domain adapta-
tion for LiDAR panoptic segmentation. IEEE Robotics and Automation Letters,
7(2):3404–3411, 2022. 32

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight Uncertainty
in Neural Networks. 2015. 22, 28

[8] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking
using adaptive correlation filters. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 2544–2550, 2010. 21

[9] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen.
Panoptic-DeepLab: A simple, strong, and fast baseline for bottom-up panoptic seg-
mentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12472–12482, 2020. 9, 10, 11

[10] G. Cheng and J. H. Elder. VCSeg: Virtual camera adaptation for road segmentation.
In IEEE Winter Conference on Applications of Computer Vision, pages 1969–1978,
2022. 8

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The Cityscapes dataset for semantic urban scene under-
standing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3213–3223, 2016. 12, 35

[12] B. Daubney and X. Xie. Tracking 3d human pose with large root node uncertainty.
In CVPR, pages 1321–1328, 2011. 21

[13] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. Centernet: Keypoint
triplets for object detection, 2019. 17

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 46/112

[14] N. El Gayar, F. Schwenker, and G. Palm. A study of the robustness of knn classifiers
trained using soft labels. In IAPR Workshop on Artificial Neural Networks in
Pattern Recognition, pages 67–80. Springer, 2006. 13

[15] Z. Fang, S. Zhou, Y. Cui, and S. Scherer. 3d-siamrpn: An end-to-end learning
method for real-time 3d single object tracking using raw point cloud. IEEE Sensors
Journal, 21(4):4995–5011, 2021. 21, 22

[16] H. M. Fayek, M. Lech, and L. Cavedon. Modeling subjectiveness in emotion recog-
nition with deep neural networks: Ensembles vs soft labels. In 2016 international
joint conference on neural networks (IJCNN), pages 566–570. IEEE, 2016. 13

[17] D. Feng, L. Rosenbaum, and K. Dietmayer. Towards safe autonomous driving:
Capture uncertainty in the deep neural network for lidar 3d vehicle detection. In
ITSC, pages 3266–3273, 2018. 21, 22

[18] C. Fu, A. Carrio, and P. Campoy. Efficient visual odometry and mapping for
unmanned aerial vehicle using arm-based stereo vision pre-processing system. In
International Conference on Unmanned Aircraft Systems, pages 957–962, 2015. 32

[19] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In JMLR Workshop and Conference Proceed-
ings, volume 48, pages 1050–1059, 2016. 21

[20] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. M. Kruspe,
R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu.
A survey of uncertainty in deep neural networks. arxiv:2107.03342, 2021. 22

[21] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The
KITTI vision benchmark suite. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2012. 23, 25, 30

[22] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3354–3361, 2012. 35

[23] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, volume 9, pages 249–256, 2010. 30

[24] C. Godard, O. M. Aodha, M. Firman, and G. Brostow. Digging into self-supervised
monocular depth estimation. In Int. Conf. on Computer Vision, pages 3827–3837,
2019. 10, 32, 34

[25] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth esti-
mation with left-right consistency. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 270–279, 2017. 9

[26] N. Gosala and A. Valada. Bird’s-eye-view panoptic segmentation using monocular
frontal view images. IEEE Robotics and Automation Letters, 7(2):1968–1975, 2022.
9

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 47/112

[27] V. Guizilini, R. Ambrus, , S. Pillai, A. Raventos, and A. Gaidon. 3D packing for self-
supervised monocular depth estimation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 34

[28] V. Guizilini, J. Li, R. Ambrus, , and A. Gaidon. Geometric unsupervised domain
adaptation for semantic segmentation. In Int. Conf. on Computer Vision, pages
8537–8547, 2021. 8, 9, 10

[29] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu. Ghostnet: More features
from cheap operations, 2020. 17

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 10, 14, 34

[31] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression
networks. 1604.01802, 2016. 21

[32] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with
kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(3):583–596, 2015. 21

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 17

[34] J. Huang, D. Guan, A. Xiao, and S. Lu. Cross-view regularization for domain
adaptive panoptic segmentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10133–10144, 2021. 9

[35] S. Jiayao, S. Zhou, Y. Cui, and Z. Fang. Real-time 3d single object tracking with
transformer. IEEE Transactions on Multimedia, 2022. 22

[36] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35–45, 1960. 22, 28

[37] I. Kandel and M. Castelli. Improving convolutional neural networks performance
for image classification using test time augmentation: a case study using MURA
dataset. Health Inf. Sci. Syst., 9(1):33, 2021. 22, 28

[38] M. Klingner, M. Ayache, and T. Fingscheidt. Continual batchnorm adaptation
(CBNA) for semantic segmentation. IEEE Transactions on Intelligent Transporta-
tion Systems, 23(11):20899–20911, 2022. 10

[39] F. Kraus and K. Dietmayer. Uncertainty estimation in one-stage object detection.
In ITSC, pages 53–60, 2019. 22

[40] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. 28

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 48/112

[41] Y. Kuznietsov, M. Proesmans, and L. Van Gool. CoMoDA: Continuous monocular
depth adaptation using past experiences. In IEEE Winter Conference on Applica-
tions of Computer Vision, 2021. 8

[42] Y. Kuznietsov, M. Proesmans, and L. Van Gool. Towards unsupervised online
domain adaptation for semantic segmentation. In Europ. Conf. on Computer Vision,
pages 261–271, 2022. 33

[43] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. PointPillars:
Fast Encoders for Object Detection from Point Clouds. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019. 23, 26

[44] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3,
2015. 14

[45] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan. Siamrpn++: Evolution of
siamese visual tracking with very deep networks. arXiv:1812.11703, 2018. 21

[46] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance visual tracking with
siamese region proposal network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8971–8980, 2018. 21

[47] F.-F. Li, M. Andreeto, M. Ranzato, and P. Perona. Caltech 101, Apr 2022. 14

[48] R. Li, S. Wang, and D. Gu. DeepSLAM: A robust monocular SLAM system with un-
supervised deep learning. IEEE Transactions on Industrial Electronics, 68(4):3577–
3587, 2021. 35

[49] S. Li, X. Wang, Y. Cao, F. Xue, Z. Yan, and H. Zha. Self-supervised deep visual
odometry with online adaptation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 32

[50] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang. General-
ized focal loss: Learning qualified and distributed bounding boxes for dense object
detection, 2020. 17, 18

[51] Y. Liao, J. Xie, and A. Geiger. KITTI-360: A novel dataset and benchmarks for
urban scene understanding in 2d and 3d. IEEE Trans. on Pattern Analysis and
Machine Intelligence, pages 1–1, 2022. 12

[52] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection, 2018. 17

[53] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In Proceedings of the European Conference on
Computer Vision, pages 21–37, 2016. 16

[54] Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai. TANet: Robust 3D
Object Detection from Point Clouds with Triple Attention. In AAAI Conference
on Artificial Intelligence, 2020. 26, 28, 30, 31

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 49/112

[55] D. Lopez-Paz and M. A. Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems, volume 30, 2017. 9

[56] A. Lopez-Rodriguez and K. Mikolajczyk. DESC: Domain adaptation for depth
estimation via semantic consistency. Int. Journal of Computer Vision, 131(3):752–
771, Mar 2023. 8, 9

[57] A. Loquercio, M. Segu, and D. Scaramuzza. A general framework for uncertainty
estimation in deep learning. RA-L, 5(2):3153–3160, 2020. 21

[58] M. Lunayach, J. Smith, and Z. Kira. Lifelong wandering: A realistic few-shot online
continual learning setting. arXiv preprint arXiv:2206.07932, 2022. 33

[59] H. Luo, Y. Gao, Y. Wu, C. Liao, X. Yang, and K.-T. Cheng. Real-time dense monoc-
ular SLAM with online adapted depth prediction network. IEEE Transactions on
Multimedia, 21(2):470–483, 2019. 32

[60] M. Magris and A. Iosifidis. Bayesian learning for neural networks: an algorithmic
survey. Artificial Intelligence Review, 2023. 22, 28

[61] M. Maimone, Y. Cheng, and L. Matthies. Two years of visual odometry on the
mars exploration rovers. Journal on Field Robotics, 24(3):169–186, 2007. 32

[62] G. Mattolin, L. Zanella, E. Ricci, and Y. Wang. ConfMix: Unsupervised domain
adaptation for object detection via confidence-based mixing. In IEEE Winter Con-
ference on Applications of Computer Vision, pages 423–433, January 2023. 9

[63] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K. Wellington.
Lasernet: An efficient probabilistic 3d object detector for autonomous driving. In
CVPR, pages 12677–12686, 2019. 21, 22

[64] G. P. Meyer and N. Thakurdesai. Learning an uncertainty-aware object detector
for autonomous driving. In IROS, pages 10521–10527, 2020. 21

[65] R. Mohan and A. Valada. Amodal panoptic segmentation. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 20991–21000,
2022. 9

[66] R. Mohan and A. Valada. Perceiving the invisible: Proposal-free amodal panoptic
segmentation. IEEE Robotics and Automation Letters, 7(4):9302–9309, 2022. 9

[67] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: A versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–
1163, 2015. 35

[68] I. Oleksiienko and A. Iosifidis. Uncertainty-aware ab3dmot by variational 3d object
detection. arxiv:2302.05923, 2023. 26

[69] I. Oleksiienko, P. Nousi, N. Passalis, A. Tefas, and A. Iosifidis. Vpit: Real-time
embedded single object 3d tracking using voxel pseudo images. arXiv:2206.02619,
2022. 21, 22, 23

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 50/112

[70] I. Oleksiienko, P. Nousi, N. Passalis, A. Tefas, and A. Iosifidis. Variational voxel
pseudo image tracking. arxiv:2302.05914, 2023. 21, 90

[71] I. Oleksiienko, D. T. Tran, and A. Iosifidis. Variational neural networks.
arxiv:2207.01524, 2022. 23, 28

[72] I. Oleksiienko, D. T. Tran, and A. Iosifidis. Variational neural networks implemen-
tation in pytorch and jax. Software Impacts, 14:100431, 2022. 22, 23, 28

[73] I. Oleksiienko, D. T. Tran, and A. Iosifidis. Variational neural networks. Procedia
Computer Science, 222C:104–113, 2023. 22

[74] I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for deep
reinforcement learning. In NeurIPS, volume 31, pages 8626–8638, 2018. 22, 28

[75] I. Osband, Z. Wen, M. Asghari, M. Ibrahimi, X. Lu, and B. V. Roy. Epistemic
Neural Networks. 2021. 21, 23

[76] N. Passalis and A. Tefas. Learning deep representations with probabilistic knowledge
transfer, 2019. 17

[77] N. Passalis, M. Tzelepi, and A. Tefas. Heterogeneous knowledge distillation using
information flow modeling, 2020. 16

[78] H. Qi, C. Feng, Z. Cao, F. Zhao, and Y. Xiao. P2b: Point-to-box network for 3d
object tracking in point clouds. arXiv:2005.13888, 2020. 22, 23

[79] S. Qiao, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen. ViP-DeepLab: Learning
visual perception with depth-aware video panoptic segmentation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3996–
4007, 2021. 9

[80] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018. 16

[81] S. Ren, K. He, R. Girshick, and J. Sun. In NeurIPS, volume 28, 2015. 28

[82] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015. 16

[83] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. General-
ized intersection over union: A metric and a loss for bounding box regression, 2019.
17

[84] R. L. Russell and C. Reale. Multivariate uncertainty in deep learning. TNNLS,
33(12):7937–7943, 2022. 30

[85] T. Schöps, J. Engel, and D. Cremers. Semi-dense visual odometry for ar on a
smartphone. In IEEE International Symposium on Mixed and Augmented Reality,
pages 145–150, 2014. 32

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 51/112

[86] M. Sensoy, L. Kaplan, and M. Kandemir. Evidential deep learning to quantify
classification uncertainty. In NeurIPS, page 3183–3193, 2018. 22, 28

[87] J. Shan, S. Zhou, Z. Fang, and Y. Cui. Ptt: Point-track-transformer module for 3d
single object tracking in point clouds. 2021. 22, 23

[88] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neu-
ral networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019. 17

[89] S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances
in Neural Information Processing Systems, volume 8, 1995. 33

[90] W. Tranheden, V. Olsson, J. Pinto, and L. Svensson. DACS: Domain adaptation
via cross-domain mixed sampling. In IEEE Winter Conference on Applications of
Computer Vision, pages 1378–1388, 2021. 9

[91] M. Tzelepi, N. Passalis, and A. Tefas. Online subclass knowledge distillation. Expert
Systems with Applications, 181:115132, 2021. 13

[92] M. Tzelepi and A. Tefas. Efficient training of lightweight neural networks using
online self-acquired knowledge distillation. In 2021 IEEE International Conference
on Multimedia and Expo (ICME), pages 1–6. IEEE, 2021. 13

[93] A. Valada, G. Oliveira, T. Brox, and W. Burgard. Towards robust semantic seg-
mentation using deep fusion. In Robotics: Science and Systems Workshop, Are the
Sceptics Right, 2016. 8

[94] A. Valada, N. Radwan, and W. Burgard. Deep auxiliary learning for visual lo-
calization and odometry. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 6939–6946. IEEE, 2018. 32

[95] A. Valada, N. Radwan, and W. Burgard. Incorporating semantic and geometric
priors in deep pose regression. In Workshop on Learning and Inference in Robotics:
Integrating Structure, Priors and Models at Robotics: Science and Systems (RSS),
2018. 32

[96] M. Valdenegro-Toro. Deep sub-ensembles for fast uncertainty estimation in image
classification. arxiv:1910.08168, 2019. 22, 28

[97] N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada. Continual SLAM: Beyond
lifelong simultaneous localization and mapping through continual learning. In A. Bil-
lard, T. Asfour, and O. Khatib, editors, Robotics Research, pages 19–35, Cham,
2023. Springer Nature Switzerland. 8, 10, 32, 33, 34, 35

[98] N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada. Covio: Online continual
learning for visual-inertial odometry. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 2463–2472, June 2023. 33, 102

[99] N. Vyas, S. Saxena, and T. Voice. Learning soft labels via meta learning. arXiv
preprint arXiv:2009.09496, 2020. 13

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 52/112

[100] N. Vödisch, K. Petek, W. Burgard, and A. Valada. Codeps: Online continual
learning for depth estimation and panoptic segmentation. Robotics: Science and
Systems (RSS), July 2023. 8, 33, 53

[101] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren. Aleatoric
uncertainty estimation with test-time augmentation for medical image segmentation
with convolutional neural networks. Neurocomputing, 338:34–45, 2019. 22, 28

[102] G. Wang, W. Li, S. Ourselin, and T. Vercauteren. Automatic brain tumor segmenta-
tion using convolutional neural networks with test-time augmentation. In BrainLes,
volume 11384, pages 61–72. Springer, 2018. 22, 28

[103] J. Wang, S. Ancha, Y.-T. Chen, and D. Held. Uncertainty-aware self-supervised 3d
data association. In RSJ, pages 8125–8132, 2020. 21

[104] J. Wang, X. Wang, Y. Shang-Guan, and A. Gupta. Wanderlust: Online continual
object detection in the real world. In Int. Conf. on Computer Vision, pages 10809–
10818, 2021. 33

[105] Q. Wang, O. Fink, L. Van Gool, and D. Dai. Continual test-time domain adaptation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7201–7211, 2022. 10

[106] X. Weng, J. Wang, D. Held, and K. Kitani. AB3DMOT: A baseline for 3d multi-
object tracking and new evaluation metrics. CoRR, abs/2008.08063, 2020. 26, 31

[107] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015. 25

[108] Y. Yan, Y. Mao, and B. Li. SECOND: Sparsely embedded convolutional detection.
Sensors, 18(10):3337, 2018. 28, 30, 31

[109] J. Zarzar, S. Giancola, and B. Ghanem. Efficient bird eye view proposals for 3d
siamese tracking. arXiv:1903.10168, 2020. 22

[110] D. Zhang, Y. Fu, and Z. Zheng. UAST: Uncertainty-aware siamese tracking. In
ICML, volume 162, pages 26161–26175, 2022. 22

[111] Z. Zhang, S. Lathuilière, E. Ricci, N. Sebe, Y. Yan, and J. Yang. Online depth learn-
ing against forgetting in monocular videos. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4493–4502, 2020. 10

[112] C. Zheng, X. Yan, J. Gao, W. Zhao, W. Zhang, Z. Li, and S. Cui. Box-aware
feature enhancement for single object tracking on point clouds. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 13199–13208,
2021. 22

[113] Y. Zhong, M. Zhu, and H. Peng. Uncertainty-aware voxel based 3d object detection
and tracking with von-mises loss. arXiv:2011.02553, 2020. 21, 22, 26, 28, 30, 31

[114] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth
and ego-motion from video. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1851–1858, 2017. 9

OpenDR No. 871449

D4.4: Final report on deep environment active perception and cognition 53/112

7 Appendix

7.1 CoDEPS: Online Continual Learning for Depth Estimation
and Panoptic Segmentation

The appended paper [100] follows.

OpenDR No. 871449

CoDEPS: Online Continual Learning for
Depth Estimation and Panoptic Segmentation

Niclas Vödisch1*, Kürsat Petek1*, Wolfram Burgard2, and Abhinav Valada1

1University of Freiburg 2University of Technology Nuremberg

Abstract—Operating a robot in the open world requires a
high level of robustness with respect to previously unseen en-
vironments. Optimally, the robot is able to adapt by itself to
new conditions without human supervision, e.g., automatically
adjusting its perception system to changing lighting conditions.
In this work, we address the task of continual learning for
deep learning-based monocular depth estimation and panoptic
segmentation in new environments in an online manner. We
introduce CoDEPS to perform continual learning involving mul-
tiple real-world domains while mitigating catastrophic forget-
ting by leveraging experience replay. In particular, we propose
a novel domain-mixing strategy to generate pseudo-labels to
adapt panoptic segmentation. Furthermore, we explicitly address
the limited storage capacity of robotic systems by leveraging
sampling strategies for constructing a fixed-size replay buffer
based on rare semantic class sampling and image diversity.
We perform extensive evaluations of CoDEPS on various real-
world datasets demonstrating that it successfully adapts to
unseen environments without sacrificing performance on previous
domains while achieving state-of-the-art results. The code of our
work is publicly available at http://codeps.cs.uni-freiburg.de.

I. INTRODUCTION

Deploying robots such as autonomous cars in urban sce-
narios requires a holistic understanding of the environment
with a unified perception of semantics, instances, and depth.
The joint solution of these tasks enables vision-based meth-
ods to generate a 3D semantic reconstruction of the scene,
which can be leveraged for downstream applications such as
localization or planning. While deep learning-based state-of-
the-art approaches perform well when inference is done under
similar conditions as used for training, their performance can
drastically decrease when the new target domain differs from
the source domain, e.g., due to environmental conditions [32],
different sensor parameters [4, 7]. This domain gap poses
a great challenge for robotic platforms that are deployed in
the open world without prior knowledge about the target
domain. Additionally, unlike the source domain where ground
truth annotations are generally assumed to be known and
can be used for the initial training, such supervision is not
applicable to the target domain due to the absence of labels,
rendering classical domain adaptation methods unsuitable.
Unsupervised domain adaptation attempts to overcome these
limitations. However, the vast majority of proposed approaches
focuses on sim-to-real domain adaptation mostly in an offline
manner [13, 24], i.e., a directed knowledge transfer without
the need to avoid catastrophic forgetting and with access to

*Equal contribution.

Training on

Ti
m

e

Online target data Offline source data with annotations

Inference on target data

Online continual learning on target data

target
source

Poor
performance

Good
performance

source data

Fig. 1. Neural networks often perform poorly when deployed on a target
domain that differs from the source domain used for training. To close this
domain gap, we propose to continuously adapt the network by exploiting
online target images. To mitigate catastrophic forgetting and enhance gen-
eralizability, we leverage a fixed-size replay buffer allowing the method to
revisit data from both the source and target domains.

abundant target annotations. Additionally, such works might
not consider limitations on a robotic platform, e.g., available
compute hardware and limited storage capacity [18, 33].

In this work, we use online continual learning to address
these challenges for depth estimation and panoptic segmenta-
tion in a multi-task setup. As shown in Fig. 1, we leverage
images from an onboard camera to perform online continual
learning enhancing performance during inference time. While
a naive approach would result in overfitting to the current
scene, our method CoDEPS mitigates forgetting by leveraging
experience replay of both source data and previously seen
target images. We combine a classical replay buffer with
generative replay in the form of a novel cross-domain mixing
strategy allowing us to exploit supervised ideas also for
unlabeled target data. We explicitly address the aforemen-
tioned hardware limitations by using only a single GPU and
restricting the replay buffer to a fixed size. We demonstrate
that CoDEPS successfully improves on new target domains
without sacrificing performance on previous domains.

The main contributions of this work are as follows:
1) We introduce CoDEPS, the first online continual learn-

ing approach for joint monocular depth estimation and
panoptic segmentation.

2) We propose a novel cross-domain mixing strategy to
adapt panoptic segmentation to unlabeled target data.

ar
X

iv
:2

30
3.

10
14

7v
2

 [
cs

.R
O

]
 3

1
M

ay
 2

02
3

3) To address the storage restrictions of robotic platforms,
we leverage a fixed-size replay buffer based on rare class
sampling and image diversity.

4) We extensively evaluate CoDEPS and compare it to
other methods in challenging real-to-real settings.

5) We release our code and the trained models at
http://codeps.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we provide an overview of monocular depth
estimation, panoptic segmentation, and unsupervised domain
adaptation including continual learning.

Monocular Depth Estimation: Monocular depth estimation is
the task of predicting a dense depth map from a single RGB
image. While supervised approaches exploit measurements
from range sensors to supervise the network predictions [30],
unsupervised methods leverage geometric cues from temporal
context [10, 38]. Most of the research on unsupervised learning
tackles the limitations of the so-called photometric loss func-
tion that is usually employed for unsupervised depth learning,
e.g., dynamic object handling [3, 5, 20], occlusion [11], and
abrupt illumination changes [36]. In this work, we leverage
Monodepth2 [11] for unsupervised depth learning and employ
it similarly to Guizilini et al. [13] for the purpose of domain
adaptation.

Panoptic Segmentation: Panoptic segmentation unifies the two
tasks of semantic and instance segmentation by fusing the
respective targets into a joint output. Furthermore, semantic
classes are grouped into “stuff” classes, e.g., road or building,
and “thing” classes, e.g., car or pedestrian. In particular,
the goal of vision-based panoptic segmentation is to assign
a semantic class to every pixel of an image and an addi-
tional instance label to each object belonging to the “thing”
classes. Panoptic segmentation networks usually comprise a
joint encoder and separate decoders for each subtask, whose
outputs are subsequently merged by a panoptic fusion module.
Existing works can be categorized into bottom-up [6, 28] and
top-down [12, 27] approaches. Whereas bottom-up methods
detect instances in a proposal-free manner from the semantic
prediction, top-down methods include an additional proposal
generation step. Contradictions to the semantic predictions are
then resolved during post-processing. In this work, we build
upon the bottom-up Panoptic-Deeplab [6] with changes to the
semantic head according to Guizilini et al. [13].

Unsupervised Domain Adaptation: Domain adaptation aims
to bridge the domain gap between a source domain S used
for training and a target domain T used for inference to
mitigate a loss in performance. An important aspect is whether
the performance on the source domain must be maintained,
linking domain adaptation to continual learning (CL) [23],
where the objective of a task or the task itself can change
over time. A CL system has to adapt to the new target
objective while retaining the knowledge to solve the previous
task(s), i.e., avoiding catastrophic forgetting. Ideally, the CL
system can further achieve positive forward transfer, i.e.,

improve on future yet untrained tasks given the current task.
In many real-world scenarios ground truth annotations for the
target domain are not available, thus requiring unsupervised
domain adaptation (UDA) methodology. Offline UDA assumes
that abundant target data is accessible. However, in order to
guarantee the continuous operation of a robot in new domains,
UDA approaches have to work online without previous target
data collection.

Offline UDA can leverage both annotated source data and
abundant unlabeled target data, enabling learning a given task
from S while simultaneously adapting the network to T . For
depth estimation, DESC [24] adapts from a synthetic source
domain containing RGB images and ground truth depth to
a real-world target domain by performing source-to-target
style transfer and using a consistency loss between depth
predictions from RGB and semantic maps. GUDA [13] tackles
UDA for semantic segmentation using depth estimation as
a proxy task. A shared encoder with task-specific heads for
depth estimation and semantic segmentation is trained via
source supervision. Simultaneously, data from T is used to
update the encoder and depth head in an unsupervised manner.
Due to the refined weights of the encoder, the semantic
predictions on T improve as well. Another common approach
for adapting semantic segmentation is cross-domain sampling
enabling partial supervision on T . DACS [31] mixes images
from S and T by copying the pixels of a source image to a
target image based on the semantic labels [29]. The semantic
prediction of the target image is updated with ground truth
source labels for the same set of pixels. The network is then
jointly trained on annotated source data and the pseudo-labeled
mixing data. Recently, ConfMix [25] proposed a simple yet
effective mixing strategy for object detection, where a target
image is divided into rectangular image regions. The region
with the most confident predictions is then copied onto a
source image and the respective ground truth annotations.
Finally, Huang et al. [16] propose a UDA method for panoptic
segmentation by regularizing complementary features from se-
mantic and instance segmentation. In this work, we extend the
aforementioned mixing strategies to instance-based sampling
and explicitly address differing camera parameters.

During online UDA, samples from T can only be accessed
in a consecutive manner resembling the image stream of a
camera. Typically, a network is trained offline via supervision
on S and then adapted to T during inference time. Such a
setup rises two main challenges: first, incoming target samples
originate from highly similar scenes and thus drastically
reduce the diversity; second, this similarity of consecutive
samples leads to a strong overfitting of the model to the
scene [37]. Initial works for online UDA focused on depth
learning [18, 37] and visual odometry [21, 33], for which
unsupervised training schemes are already well established.
Whereas Zhang et al. [37] propose novel network modules
that are adapted via a meta-learning paradigm to mitigate
forgetting, CoMoDA [18] employs a common CL strategy, i.e.,
experience replay to combine the online target sample with
previously seen samples. Continual SLAM [33] also uses un-

supervised depth estimation as a proxy task to enhance visual
odometry during inference time. Additionally, it demonstrates
that incorporating samples from S and previous target domains
Ti prevents catastrophic forgetting when revisiting domains.
Similar settings involving multiple target domains, which are
hence closely related to classical CL, are also addressed for
semantic segmentation. CBNA [17] mixes statistics from S
and T to update the batch normalization layers and showcases
the efficacy of the approach on continually visited target
domains. CoTTA [35] adapts the entire network without using
source data but self-supervision. To tackle error accumulation,
it uses an exponential moving average filter and student-
teacher consistency when updating the network weights. Using
depth estimation as a proxy task, Kuznietsov et al. [19]
extend GUDA [13] to online UDA with experience replay
and confidence regularization on the semantic predictions. To
the best of our knowledge, we propose the first approach for
online continual UDA for joint depth estimation and panoptic
segmentation.

III. TECHNICAL APPROACH

The setting investigated in this work consists of two steps.
First, we train a neural network on the source domain S
partly using ground truth supervision. Second, to close the gap
between domains, we continuously adapt the network during
inference time on the target domain T using a replay buffer
and unsupervised training strategies.

A. Network Architecture and Source Domain Pretraining

In this section, we detail the network architecture and loss
functions that we employ during the pretraining stage on the
source domain.

Architecture: We build our network following a common
multi-task design scheme, i.e., using a single backbone fol-
lowed by task-specific heads. A high-level overview of the
network architecture is shown in Fig. 2. In detail, we use
a ResNet-101 [14] as the shared encoder for all three tasks
including depth prediction, semantic segmentation, and in-
stance segmentation. The depth head follows the design of
Monodepth2 [11] comprising five consecutive convolutional
layers with skip connections to the encoder. Additionally, we
include a separate PoseNet consisting of a ResNet-18 encoder
and a four-layer CNN to estimate the camera motion between
two image frames. For panoptic segmentation, we follow the
bottom-up method Panoptic-Deeplab [6], leveraging separate
heads for semantic segmentation and instance segmentation,
and slightly modify the semantic head [13]. Specifically, the
instance head consists of two sub-heads to predict the center
of an object and to associate each pixel of an image to the
corresponding object or the background. Finally, a panoptic
fusion module [6] assigns a semantic label to the class-agnostic
instance predictions using majority voting over the semantic
predictions of all pixels within an instance.

Source Domain Pretraining: During the initial training phase
on the source domain, we assume to have access to image

sequences as well as ground truth panoptic segmentation anno-
tations. In the following, we briefly describe the respective loss
functions that we employ for training the three task-specific
heads.

We train the depth estimation head using the common
methodology of unsupervised training based on the pho-
tometric error [11]. In particular, we leverage an image
triplet {It0 , It1 , It2} to predict depth Dt1 and camera motion
Mt0�t1 and Mt1�t2 . Afterwards, we compute the photo-
metric error loss Ld

pe as a weighted sum of the reprojection
loss Ld

pr and the image smoothness loss Ld
sm :

Ld
pe = λprLd

pr + λsmLd
sm . (1)

We train the semantic segmentation head in a supervised
manner using the bootstrapped cross-entropy loss with hard
pixel mining Lsem

bce following Panoptic-Deeplab [6].
For training the instance segmentation head, we adopt the

MSE loss Lins
center for the center head and the L1 loss Lins

offset

for the offset head. The total loss to supervise instance
segmentation is then computed as a weighted sum:

Lins
co = λcenterLins

center + λoffsetLins
offset . (2)

B. Online Adaptation

After the described network has been trained on the source
domain S using the aforementioned losses, we aim to adapt it
to the target domain T in a continuous manner. That is, unlike
other works, data from the target domain is revealed frame by
frame resembling the online stream of an onboard camera. As
depicted in Fig. 2, every adaptation iteration consists of the
following steps:

1) Construct an update batch by combining online and
replay data.

2) Generate pseudo-labels using the proposed cross-domain
mixing strategy.

3) Perform backpropagation to update the network weights.
4) Update the replay buffer.

In this section, we first detail the structure of the utilized replay
buffer and then propose adaptation schemes for both depth
estimation and panoptic segmentation.

Replay Buffer and Batch Generation: Upon receiving a new
image taken by the robot’s onboard camera, we construct a
batch that is used to perform backpropagation on the network
weights. In detail, a batch bt consists of the current online
image It ∈ T , previously received target images ITi

∈ BT ,
and fully annotated source samples ISi

∈ BS . Here, BT ⊆ T
and BS ⊆ S denote the respective replay buffers. Formally*,

bt = {It, IT0 , IT1 , . . . , IS0 , IS1 , . . . }. (3)

By revisiting target images from the past, we increase the
diversity in the loss signal on the target domain and hence mit-
igate overfitting to the current scene. This further accounts for
situations in which the current online image suffers from visual

*To improve readability, we omit in the notation that each image sample
includes its two previous frames enabling unsupervised depth estimation.

Panoptic fusion

Ti
m

e

Online camera stream Online continual learningBatch generation

Update replay buffer

Combine online
and replay data

Mix-up pseudo
labeling

Target buffer

Source buffer

Depth map

Semantic map

Center map

Offset map

Panoptic map

Fig. 2. Overview of our proposed CoDEPS. Unlabeled RGB images from an online camera stream are combined with samples from a replay buffer
comprising both annotated source samples and previously seen target images. Cross-domain mixing enables pseudo-supervision on the target domain. The
network weights are then updated via backpropagation using the constructed data batch. The additional PoseNet required for unsupervised monocular depth
estimation is omitted in this visualization.

artifacts, e.g., overexposure. Similarly, revisiting samples from
the source domain addresses the problem of catastrophic
forgetting by ensuring that previously acquired knowledge
can be preserved. Additionally, the annotations of the source
samples enable pseudo-supervision on the target domain by
exploiting cross-domain mixing strategies. For both the target
and the source replay, we randomly draw multiple samples
from the respective replay buffer and apply augmentation to
stabilize the loss. In particular, we perform RGB histogram
matching of the source images to the online target image, and
all available source samples have to be selected once before
repetition is allowed to ensure diverse source supervision.

Similar to previous works [1, 34], we explicitly consider
limitations on the size of the replay buffer to closely resemble
the deployment on a robotic platform, where disk storage is
an important factor. This poses two questions: First, how to
sample from S to construct the fixed source buffer BS that
is prebuilt offline and, second, how to update the dynamic
target buffer BT during deployment? To construct BS , we
propose a refined version of rare class sampling (RCS) [15].
The frequency fc of each class c ∈ C is calculated based on
the number of pixels with class c:

fc =

∑
I∈S

∑H×W
p 1c(pc′)

|S| ·H ·W , (4)

where H and W denote the height and width of the images
in S and pc′ ∈ I refers to a pixel with class c′. The indicator
function is 1 if c′ equals c and 0 otherwise. The probability
of sampling a class is then given by

P (c) =
e(1−fc)/T

∑
c′∈C e

(1−fc′)/T
, (5)

with temperature T controlling the smoothness of the distri-
bution, i.e., a smaller T assigns a higher probability to rare

classes. In detail, we first sample a class c ∼ P and then
retrieve all candidate images containing pixels with class c.
Instead of taking a random image from these candidates,
we sample according to the number of pixels with class c.
We repeat both steps |BS | times without selecting the same
image more than once. Using RCS ensures that BS contains
sufficiently many images with rare classes such that the perfor-
mance on these classes will further improve during adaptation.

Since T does not contain annotations and, particularly in the
beginning, predictions are not reliable, we cannot use RCS for
updating BT . Instead, we invert the common methodology of
loop closure detection for visual SLAM [33], i.e., the image It
is only added to BT if its cosine similarity with respect to all
samples within the buffer is below a threshold.

simcos(It) = max
ITi

∈BT
cos (feat(It), feat(ITi

)) , (6)

where feat(·) refers to the image features extracted from the
final layer of the shared encoder, which is not adapted. If
BT is completely filled, we remove the following image to
maximize image diversity:

argmax
ITi

∈BT

∑

ITj
∈BT

cos
(
feat(ITi

), feat(ITj
)
)

(7)

Depth Adaptation: To adapt the monocular depth estimation
head along with the PoseNet, we exploit the fact that the
photometric error loss (Eq. 1) does not require ground truth
annotations. Hence, we can directly transfer it to the imple-
mented continual adaptation. In particular, we compute Ld

pe

for the constructed batch bt and average the loss such that
each sample contributes by the same amount:

Ld
pe(bt) =

Ld
pe(It) +

∑
i Ld

pe(ITi
) +

∑
j Ld

pe(ISj
)

|bt|
. (8)

Source style
Transfer

Target style

Transfer

Fig. 3. Our proposed cross-domain mixing strategy first transfers the image
style from the target to the source sample. Then it augments the target image to
match the appearance of the source camera. Finally, a random image patch is
copied from the target to the source image. The source annotations are retained
and completed by the network’s estimate on the copied image patch. The
result serves as pseudo-label, combining self-iterative learning with ground
truth supervision.

Furthermore, if the predicted camera motion is below a
threshold, i.e., the robot is presumably not moving, we do
not compute the Ld

pe(It) and subtract 1 from the denominator
to avoid adding a bias to the current scene.

Panoptic Adaptation: As described in Sec. III-A, panoptic
segmentation is the fused output of a semantic head and an
instance head. We observe that the decrease in performance
on samples from unseen domains can mostly be attributed to
the semantic head, while instance predictions remain stable.
Cross-domain mixing strategies allow leveraging ideas from
supervised training to an unsupervised setting, where ground
truth annotations are unknown. In CoDEPS, we bootstrap an-
notated source samples and high-confident target predictions to
artificially generate pseudo-labels for the target samples in an
online fashion to supervise the semantic head. Similar to depth
adaptation, we continue to compute Lsem

bce on {IS0 , IS1 , . . . }
to mitigate forgetting, and freeze the instance head.

We further design a mixing strategy combining pixels of
images from both S and T , that considers multiple factors,
which are unique to the online continual learning scenario:
(1) the robust pretraining on a dedicated source dataset, which
may result in significant performance degradation on the target
dataset if the pre-trained weights are strongly adapted; (2) the
existence of different cameras leading to significant changes in
the field-of-view, geometric appearance of objects, resolution,
and aspect ratio of the images; and (3) the continuously evolv-
ing visual appearance of street scenes during adaptation. To
address these challenges, our cross-domain mixing approach
employs a three-step method to generate the adaptation signal.
First, we perform style transfer from the target image ITi

to
the source image ISj

by aligning their pixel value histograms,
as depicted in Fig. 3. This allows supervision with ground
truth labels on images that are of similar visual appearance as
the target image. Second, we apply a geometric transformation
on ITi

based on the camera intrinsics of the source and target
domains denoted by KS and KT , respectively. To this end,
we assume a constant depth distribution over ISj

, lift the pixel
values into Euclidean space via inverse camera projection, and
project the lifted points back into the camera view of ITi

as
follows:

I′T (ps) = IT ⟨KT K
−1
S ps⟩, (9)

where ⟨·⟩ denotes the bilinear sampling operator and ps is a

pixel coordinate in the source image. Equation 9 results in
an adapted target image I′T with an adjusted field of view,
resolution, and a geometric appearance of the scene similar to
that of IS . The final step in the process involves separating I′T
into multiple segments and randomly selecting one of them to
be inserted into the style-transferred source image, see Fig. 3.
To avoid providing a flawed supervision signal caused by
geometrically unrealistic images, we only insert a single patch.
Similarly, the ground truth labels of the pixels from IS are
retained, and the semantic labels estimated by the network are
used to label the inserted patch after intrinsics transformation.
The generated image is then fed into the network and training
is performed using the cross-entropy loss and the generated
pseudo-labels of the mixed image. To mitigate the decline in
performance commonly associated with self-iterative training
on predicted pseudo-labels, often resulting in class collapse,
we utilize an exponentially moving average (EMA) filter for
updating the network weights. In detail, we create a duplicate
with network weights wEMA of the initial model with weights
w and use this so-called EMA model to generate the semantic
predictions. During continual learning, the weights w are
updated via backpropagation on bt. Then, the EMA model
is updated as follows:

wEMA ← α · wEMA + (1− α) · w, (10)

where α denotes the contribution of the EMA model.

IV. EXPERIMENTAL EVALUATION

In the following sections, we provide further details on the
pretraining step and the datasets that we evaluate on. We
present extensive experimental results on the efficiency and
efficacy of our proposed approach and include ablation studies
on important design choices. Finally, we expand the experi-
mental setup to multi-domain adaptation closely resembling
classical continual learning settings.

We follow the evaluation protocol of Zhang et al. [37]. In
detail, we compute the evaluation metrics on the frame of the
current timestamp before using the same frame to perform
backpropagation and update the model weights. Once 70%
of a sequence is processed, we calculate the average of the
accumulated metrics. Additionally, we report the scores on the
remaining 30% of the same sequence without further weight
updates to analyze the performance of the adapted model. In
the tables, we refer to these types of evaluation by protocol 1
and protocol 2, respectively. We further denote the respective
parts of a sequence by adapt and eval. Unlike Zhang et al.
[37], we define our task in the context of continual learning. To
measure knowledge retention and hence mitigate catastrophic
forgetting, we introduce protocol 3 as evaluating the adapted
model on the val split of the source dataset.

A. Datasets

To simulate data from a variety of domains, we employ
our method on three datasets, namely Cityscapes [8], KITTI-
360 [22], and SemKITTI-DVPS [2]. In particular, we utilize
Cityscapes for pre-training and sequences of both KITTI-360

TABLE I
EFFICACY OF THE NETWORK

Method Dataset mIoU ↑ RMSE ↓ Abs Rel ↓ δ1 ↑
GUDA KITTI — 4.42 0.11 0.88
CoDEPS 62.8 3.52 0.09 0.90

GUDA Cityscapes 72.9 — — —
CoDEPS 72.9 10.16 0.19 0.78

Our utilized network is able to reproduce the performance of
the baseline method GUDA [13] for both semantic segmentation
(mIoU) and depth estimation (RMSE, Abs Rel, δ1). The perfor-
mance of GUDA is reported by the authors. To evaluate CoDEPS
on KITTI, we use sequence 08 eval of SemKITTI-DVPS.

and SemKITTI-DVPS for adaptation. In the supplementary
video we further provide qualitative results on in-house data
recorded with our robotic platform.
Cityscapes: The Cityscapes Dataset [8] is a large-scale au-
tonomous driving dataset that was recorded in 50 cities in Ger-
many and bordering regions. It includes RGB images, panoptic
annotations, and vehicle metadata. In this work, we utilize the
fine panoptic labels to train the semantic and instance heads in
a supervised manner. Additionally, we leverage the sequence
image data of the left camera to train the depth prediction in
an unsupervised fashion. Finally, we compute the depth error
metrics using the provided disparity maps.
KITTI-360: The KITTI-360 Dataset [22] is a relatively recently
released public dataset for the domain of autonomous driving,
which was recorded in the city of Karlsruhe, Germany. It
includes both 2D and 3D panoptic annotations for RGB images
and LiDAR data. In this work, we predominantly utilize the
RGB images to simulate an online image stream of an onboard
camera. In particular, we use these images to adapt our
network in a self-supervised manner. To compute evaluation
metrics, we compare our predictions with the ground truth
measurements and annotations of the dataset.
SemKITTI-DVPS: The SemKITTI-DVPS [30] is based on the
odometry benchmark of the KITTI Dataset [9], which was
recorded in Karlsruhe, Germany. We utilize the RGB images
to simulate an onboard camera and to adapt our network
to the new domain. Furthermore, we compute depth metrics
based on the provided projected LiDAR points and the seman-
tic/panoptic metrics using the extension SemanticKITTI [2].
Semantic Labels: As the aforementioned datasets use different
labeling policies for the semantic annotations, we use the 19
classes of Cityscapes as the reference definition and remap
classes of the other datasets. However, certain classes do
not exist in the adaptation datasets (wall, traffic light, bus,
train). For consistency across the datasets, we merge wall with
building and remove the other three classes. Additionally, we
merge motorcycle and bicycle into two-wheeler to increase
the number of annotated pixels. Consequently, we consider
nine “stuff” classes and five “thing” classes, listed in Table V.
Note that sky is not included in SemKITTI-DVPS due to using
LiDAR annotations and hence excluded in the evaluation on
this dataset.

B. Pretraining Protocol

The initial state of the network weights before adaptation is
obtained by initializing the encoders using pretrained weights
from the ImageNet dataset, followed by training the entire
model on the Cityscapes dataset. In detail, we use the Adam
optimizer with a constant learning rate lr = 0.0001 and
train the entire network for 250 epochs. In our experiments,
we compare the performance of our approach to directly
training on the target dataset, which can be considered as a
theoretical upper limit having full target knowledge. Due to the
unbalanced class distribution of KITTI-360, we train a copy
of the network in two steps, using the Adam optimizer with
lr = 0.0001 on sequences 00-07. We train for 45 epochs while
ignoring the most common classes road, sidewalk, building,
and vegetation, followed by 55 epochs including all classes.
Similarly, for SemKITTI-DVPS, we train another copy of the
network on sequences 00-06, 09, and 10 for 30 epochs without
the aforementioned classes plus terrain and sky, which is
not included in the dataset, followed by 30 epochs including
all classes. In Table I, we demonstrate that our implemented
network is able to reproduce the performance of the baseline
method GUDA [13].

C. Online Adaptation

In this section, we extensively evaluate our proposed
CoDEPS with respect to both adapting to a new domain and
retaining knowledge to mitigate forgetting. In detail, for all
presented experiments, we freeze the shared encoder following
the study by McCraith et al. [26]. Based on the ablation study
in Sec. IV-D, we use a buffer size of 300. For RCS, we follow
Hoyer et al. [15] and set T = 0.01. Updating the EMA model
is done with α = 0.99.

In Table II, we assess the performance of CoDEPS on
all sequences of the KITTI-360 dataset and compare it with
the baseline method “only source”, which is also pretrained
on Cityscapes but does not perform further adaptation to
the target domain T . This approach should be interpreted
as a lower performance bound that must be improved. We
demonstrate the key performance metrics of both protocols 1
and 2. As shown in Table II, CoDEPS achieves a performance
boost across the board, as measured by the mIoU metric and
all depth metrics of protocol 1. We attribute this improve-
ment to the additional supervision signals incorporated into
the segmentation head through our mixing strategy and the
self-supervised reconstruction loss for depth adaptation. The
improvement in semantic segmentation further enhances the
panoptic segmentation metrics. With respect to protocol 2,
CoDEPS reduces the depth errors on all sequences and im-
proves the performance of semantic and panoptic segmentation
on the vast majority of sequences. Note that on sequence 03 the
panoptic metrics increase significantly despite the consistent
mIoU, which we attribute to the more refined segmentation of
objects due to our proposed cross-domain mixing strategy.

For the following experiments, we consider the case of
using Cityscapes as the source domain and sequence 10 of
KITTI-360 as the target domain. In Fig. 4, we illustrate

TABLE II
ADAPTATION PERFORMANCE

Method Sequence Protocol 1 Protocol 2
mIoU ↑ PQ ↑ SQ ↑ RQ ↑ RMSE ↓ Abs Rel ↓ mIoU ↑ PQ ↑ SQ ↑ RQ ↑ RMSE ↓ Abs Rel ↓

Only source 00 51.61 39.10 72.72 50.48 6.54 0.36 49.94 35.29 72.14 45.50 6.08 0.34
CoDEPS 53.76 40.72 72.90 52.51 5.09 0.19 52.08 36.08 72.58 46.08 4.34 0.15

Only source 02 45.97 31.83 67.62 41.08 6.26 0.35 46.55 30.13 65.03 39.30 6.06 0.36
CoDEPS 46.62 32.11 67.74 41.62 4.31 0.16 47.48 30.33 65.35 39.46 3.76 0.13

Only source 03 46.63 28.15 57.41 35.23 8.20 0.34 52.10 28.20 56.67 35.77 7.34 0.29
CoDEPS 47.94 29.05 58.07 36.10 8.26 0.33 52.00 31.13 61.51 39.65 6.98 0.18

Only source 04 45.02 29.34 65.48 38.15 6.70 0.37 45.53 30.13 70.85 38.89 6.61 0.38
CoDEPS 45.40 29.78 65.89 38.84 5.00 0.19 45.68 30.63 66.18 39.89 4.33 0.17

Only source 05 48.94 32.19 66.80 41.37 6.76 0.37 44.52 27.34 60.72 35.58 5.93 0.43
CoDEPS 49.26 32.96 66.98 42.40 5.25 0.21 43.79 26.48 60.33 34.88 4.68 0.25

Only source 06 46.03 29.88 66.58 38.42 6.09 0.39 46.28 31.79 70.47 41.40 6.12 0.37
CoDEPS 46.53 30.45 66.66 39.20 4.97 0.22 47.27 31.99 70.74 41.71 4.23 0.18

Only source 07 40.54 28.48 66.52 34.42 7.83 0.34 59.07 27.62 45.88 35.41 9.64 0.38
CoDEPS 41.46 29.30 67.64 35.58 6.50 0.22 60.57 30.91 50.25 39.79 6.48 0.20

Only source 09 50.59 37.26 74.06 47.38 6.03 0.36 50.78 36.57 72.22 46.75 5.60 0.35
CoDEPS 52.29 38.02 74.88 48.21 4.74 0.19 51.53 37.56 72.87 47.99 4.56 0.16

Only source 10 51.94 32.60 71.27 32.60 8.06 0.35 45.74 30.62 69.56 39.49 7.90 0.33
CoDEPS 53.02 33.50 71.53 33.50 7.19 0.22 49.91 31.91 70.68 40.95 5.57 0.15

Comparison between our CoDEPS and the performance of the same architecture without performing online continual learning on the respective
sequence of the KITTI-360 dataset. Thus, “only source” refers to the model weights after pretraining on Cityscapes. The listed metrics are mean
intersection over union (mIoU) for semantic segmentation; panoptic quality (PQ), segmentation quality (SQ), and recognition quality (RQ) for
panoptic segmentation; root mean squared error (RMSE) and absolute relative error (Abs Rel) for monocular depth estimation. Bold values denote
the best result on each sequence.

TABLE III
CONTINUAL LEARNING FOR MONOCULAR DEPTH ESTIMATION

Method Batch Protocol 1 Protocol 2 Protocol 3
current/target/source RMSE Abs Rel δ1 δ2 δ3 RMSE Abs Rel δ1 δ2 δ3 RMSE Abs Rel δ1 δ2 δ3

Only target 0 / 0 / 0 6.13 0.15 0.84 0.93 0.96 4.78 0.12 0.88 0.95 0.97 12.22 0.26 0.51 0.82 0.94
Only source 0 / 0 / 0 8.06 0.35 0.43 0.77 0.91 7.90 0.33 0.44 0.77 0.93 10.16 0.19 0.78 0.93 0.97

Online image 1 / 0 / 0 8.33 0.27 0.64 0.84 0.93 6.06 0.33 0.46 0.73 0.90 13.72 0.57 0.30 0.50 0.68
Target replay 1 / 2 / 0 6.35 0.19 0.77 0.91 0.96 5.34 0.15 0.81 0.93 0.97 12.48 0.44 0.34 0.68 0.88
CoDEPS 1 / 2 / 2 7.19 0.22 0.73 0.89 0.94 5.57 0.15 0.81 0.93 0.97 11.38 0.21 0.75 0.91 0.96

The root mean squared error (RMSE), absolute relative error (Abs Rel) as well as accuracies δ1 = δ < 1.25, δ2 = δ < 1.252, and
δ3 = δ < 1.253, obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Best results without access to ground truth
target data (“only target”) in each category are in bold; second best are underlined.

the adaptation progress using unseen validation samples and
compare the results to the ground truth. For depth, we visualize
predictions generated by the network if it was only trained
on S and T , respectively. For panoptic segmentation, the
progressive adaptation on the target domain is particularly
visible on the sidewalk and terrain image regions, which
CoDEPS learns to differentiate from the similarly looking
classes road and vegetation. Furthermore, instances become
more pronounced, e.g., the cyclist in the right sample. Despite
the enhancements on the target domain, CoDEPS successfully
maintains its performance on the source domain with only
minimum decreases in depth estimation.

Depth Adaptation: We present the results for monocular depth
estimation in Table III. The first row “only target” shows
the theoretical performance on T (protocols 1 and 2) if the
network would have been trained directly on this domain.
Note that such a setup is infeasible in the real world when
continuous operation must be guaranteed. The second row
“only source” denotes the performance after pretraining on S
without performing online continual learning. Comparing the

absolute relative error as well as the accuracies δ1, δ2, and δ3
between these rows reveals the domain gap. Note that the
opposite gap can be observed when evaluating on S (pro-
tocol 3). While continual learning using the current online
sample increases the accuracy of protocol 1, it also overfits to
the current scene. That is, generalizability to the entire target
domain is not achieved as shown by protocol 2. Introducing
replay samples from the target buffer overcomes this issue
and accounts for online samples of poor quality, improving
protocols 1 and 2. However, both of the above result in
catastrophic forgetting with respect to S (protocol 3). The final
CoDEPS adds additional source replay yielding low errors and
high accuracy by compromising on both S and T .

Panoptic Adaptation: In Table IV, we also demonstrate the
domain gap between S and T for semantic and panoptic seg-
mentation. Similar to depth estimation, both “only target” and
“only source” only perform well on their respective training
domain without being able to generalize to the other. We
further evaluate CoDEPS by comparing it with two competi-
tive baselines that perform domain adaptation on segmentation

Source domain Target domain

Co
nt

in
ua

l l
ea

rn
in

g

0

1000

2500

Co
nt

in
ua

l l
ea

rn
in

g

Ground
truth

Fig. 4. Qualitative results for Cityscapes to KITTI-360 adaptation after pretraining on the source, i.e., 0 steps, and after having seen 1,000 and 2,500 frames.
As shown in the left column, CoDEPS is able to avoid catastrophic forgetting on the source domain. The progressive adaptation on the target domain is
particularly visible in the image areas highlighted by yellow boxes. “Stuff” classes of similar appearance like sidewalk vs. road (left image) and terrain vs.
vegetation (right image) can be better distinguished by CoDEPS. Furthermore, instances become more pronounced as can be observed for the highlighted car
(left image) and the cyclist (right image).

TABLE IV
CONTINUAL LEARNING FOR PANOPTIC SEGMENTATION

Method Protocol 1 Protocol 2 Protocol 3
mIoU PQ SQ RQ mIoU PQ SQ RQ mIoU PQ SQ RQ

Only target 64.65 41.91 76.68 51.48 55.12 36.58 67.41 46.15 46.33 28.24 70.03 36.92
Only source 51.94 32.60 71.27 42.44 45.74 30.62 69.56 39.49 72.87 49.19 77.45 60.40

GUDA [13] 45.56 29.70 70.67 39.05 47.62 31.03 64.00 40.49 66.57 44.39 75.95 55.32
DACS [31] 51.14 32.09 71.12 42.23 45.24 29.05 69.47 38.11 72.66 49.27 77.33 60.60

CoDEPS (online image) 53.22 33.46 71.63 43.46 49.51 31.49 64.17 40.71 72.81 49.83 77.25 61.49
CoDEPS (random sampling) 52.36 33.24 71.60 43.25 48.78 31.50 68.83 40.56 72.05 49.11 77.18 60.52

CoDEPS 53.02 33.50 71.53 43.62 49.91 31.91 70.68 40.95 72.90 49.76 77.49 61.22

The mean intersection over union (mIoU), panoptic quality (PQ), semantic quality (SQ), and recognition quality
(RQ) are obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Best results without access
to ground truth target data (“only target”) in each category are in bold; second best are underlined.

tasks: GUDA [13], which combines semantic segmentation
and depth estimation, rendering their task comparable to
ours, and DACS [31], which employs a class-mix strategy
for offline domain adaptation of semantic segmentation. To
ensure a fair comparison, both baselines are evaluated using
the same settings as CoDEPS, including diversity sampling-
based experience replay. The results in Table IV indicate that
both approaches lead to a significant performance decrease
across all three protocols. GUDA’s reliance on self-supervised
feature alignment using depth training is not effective in the
continual learning setting, as shown in the results. DACS also
suffers from a decline in performance, likely due to the strong
intervention of its mixing strategy into the pretrained network,
which can already produce reasonable predictions on the target
domain without adaptation.

These results imply that traditional approaches from offline
sim-to-real adaptation may not perform well in the online
continual learning scenario. To further assess the impact of
target replay and our diversity-based buffer sampling, we
selectively deactivate both components. Applying the proposed
cross-domain mixing strategy results in an improvement in
protocol 1. However, similar to depth adaptation, the results
are not fully generalizable to the entire target domain, e.g.,
SQ of protocol 2. Instead of diversity-based sampling, we
use random sampling when both creating the source buffer
and when updating the target buffer. Compared to CoDEPS,
the performance heavily degrades demonstrating the efficacy
of the sampling method. Finally, we present the classwise
evaluation of the segmentation performance in Table V, which
demonstrates improvements of CoDEPS in the IoU metrics for
most classes. In particular, we observe significant enhance-
ments of the two-wheeler and terrain classes. The latter can
also be observed in Fig. 4. In fact, CoDEPS outperforms even
the model trained directly on the target domain using ground
truth supervision for the latter class.

D. Ablation Study of the Replay Buffer

We extensively study different sizes of the replay buffer and
the effect of diversity sampling as explained in Sec. III-B.
We list our results in Table VI. Note that an infinite replay
buffer contains 2,975 source and a maximum of 2,683 target
samples in the employed setting, i.e., adapting from Cityscapes

TABLE V
CLASSWISE EVALUATION

Class Only target Only source CoDEPS

St
uf

f

Road 93 89 91
Sidewalk 40 32 37
Building 88 85 85
Fence 43 14 22
Pole 35 29 32
Traffic sign 40 35 38
Vegetation 78 73 75
Terrain 54 21 39
Sky 82 79 81

T
hi

ng

Person 47 38 38
Rider 47 29 36
Car 91 83 84
Truck 1 4 2
Two-wheeler 33 27 38

Mean 55.1 45.7 49.9

The classwise mIoU is based on protocol 2 in Table IV.
We compare CoDEPS against two baselines that were trained
using source (“only source”) or target data (“only target”),
respectively. CoDEPS provides a significant performance boost
of 4.2% in terms of the mIoU metric.

train to KITTI-360 using sequence 10 adapt. Generally, a
larger replay buffer yields higher performance with respect to
both adaptation capability and avoiding catastrophic forgetting.
Additionally, the proposed diversity sampling using semantic
classes for the source and image features for the target samples
increases the performance throughout the experiments. How-
ever, a greater buffer size increases the required storage posing
a challenge for real-world deployment. Based on the presented
results, we select a buffer size of 300 with active diversity
sampling as for smaller sizes the performance of semantic
segmentation on the target domain degrades.

E. Continual Adaptation

Finally, we evaluate the performance of CoDEPS in the
context of multi-domain adaptation, i.e., S → T1 → T2.
In particular, we first adapt to sequence 10 of KITTI-360
followed by sequence 08 of SemKITTI-DVPS, then we invert
the adaptation order. To analyze forward and backward transfer
as defined for continual learning [23], we compute the metrics
on the val split of the source and the adapt parts of the
respective target domains. We report the results in Table VII.
Note that we use αS�T1

= 0.9 and αT1�T2
= 0.7 for

updating the EMA model according to Eq. 10 since the
network should adapt more strongly when deployed to T2 due

TABLE VI
ABLATION STUDY ON THE REPLAY BUFFER

Size Div. Protocol 2 Protocol 3
mIoU ↑ PQ ↑ SQ ↑ RQ ↑ RMSE ↓ Abs Rel ↓ mIoU ↑ PQ ↑ SQ ↑ RQ ↑ RMSE ↓ Abs Rel ↓

∞ 49.15 31.95 69.08 40.96 4.94 0.15 73.25 50.37 77.77 61.87 10.76 0.21

1000 49.11±0.69 31.85±0.25 66.82±3.06 40.93±0.06 5.04±0.01 0.14±0.00 72.84±0.33 49.93±0.20 77.51±0.05 61.39±0.28 11.35±0.39 0.22±0.01
1000 ✓ 49.36 31.83 68.89 41.01 5.30 0.15 73.50 50.05 77.67 61.48 12.06 0.23
500 48.77±0.39 31.54±0.39 67.39±2.16 40.66±0.54 5.20±0.20 0.15±0.00 72.38±0.26 49.48±0.14 77.45±0.16 60.90±0.23 11.14±0.54 0.22±0.01
500 ✓ 49.56 31.83 70.11 40.96 5.55 0.16 72.78 49.68 77.39 61.10 11.30 0.22
300 48.78±0.05 31.50±0.19 68.83±2.31 40.56±0.15 5.27±0.16 0.15±0.00 72.05±0.25 49.11±0.30 77.18±0.07 60.52±0.35 11.14±0.22 0.22±0.01
300 ✓ 49.91 31.91 70.68 40.95 5.57 0.15 72.90 49.76 77.49 61.22 11.38 0.21
100 48.27±0.84 30.71±0.41 63.95±0.41 39.79±0.38 5.83±0.15 0.16±0.00 69.75±1.77 47.94±0.95 76.66±0.25 59.39±1.16 10.86±0.56 0.22±0.02
100 ✓ 48.40 30.85 64.07 39.95 5.31 0.16 72.35 48.81 77.16 60.25 11.71 0.22
25 46.03±1.03 29.62±0.37 66.10±2.26 38.48±0.45 5.25±0.26 0.14±0.01 67.23±0.85 45.90±0.66 75.69±0.38 57.21±0.76 11.81±0.22 0.22±0.01
25 ✓ 46.35 29.73 63.35 38.58 5.62 0.17 68.84 46.34 76.06 57.78 12.51 0.24

The numbers above are obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Here, an infinite buffer size equals 2,975 source samples
and a maximum of 2,683 target samples. Note that the effective size is two times the shown value as it refers to both source and target replay. The term
“Div.” refers to diversity sampling. Where diversity sampling is not used, the same experiment is repeated three times with different random seeds to
ensure a statistically reliable measure of performance. The results of these experiments are presented as the mean and standard deviation. Best results in
each category are in bold; second best are underlined.

TABLE VII
CONTINUAL LEARNING ON MULTIPLE DOMAINS

Domain mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel

−−−→ Pretraining on Cityscapes −−−−−−−−−−−−→ Adaptation on KITTI-360 −−−−−−−−−−→ Adaptation on SemKITTI-DVPS −−−→
Cityscapes 72.87 49.19 77.45 60.40 10.16 0.19 72.90 49.76 77.49 61.22 11.38 0.21 72.42 48.74 77.08 60.20 10.65 0.21
KITTI-360 seq. 10 45.74 30.62 69.56 39.49 7.90 0.33 49.91 31.91 70.68 40.95 5.57 0.15 49.26 32.32 64.08 40.95 5.23 0.15
SemKITTI-DVPS seq. 08 51.95 45.24 76.07 57.20 6.17 0.34 49.48 43.26 74.24 57.26 5.60 0.21 53.70 46.50 76.53 59.43 4.32 0.16

−−−→ Pretraining on Cityscapes −−−−−−−−−−→ Adaptation on SemKITTI-DVPS −−−−−−−−−−→ Adaptation on KITTI-360 −−−−−→
Cityscapes 72.87 49.19 77.45 60.40 10.16 0.19 72.75 49.01 77.36 60.35 10.82 0.22 72.51 48.87 76.98 60.28 11.41 0.21
KITTI-360 seq. 10 45.74 30.62 69.56 39.49 7.90 0.33 49.26 31.66 70.26 41.40 6.30 0.17 50.05 31.92 70.50 41.48 5.47 0.16
SemKITTI-DVPS seq. 08 51.95 45.24 76.07 57.20 6.17 0.34 52.31 44.29 75.58 56.87 4.56 0.16 53.83 47.29 76.55 60.01 4.25 0.16

CoDEPS is continually applied to three domains using Cityscapes as the initial source domain and then adapting to KITTI-360 and SemKITTI-DVPS.
The listed numbers on the target domains are based on protocol 2.

to the larger amount of previously seen data. As shown in
the first row of both adaptation orders, CoDEPS is able to
mitigate catastrophic forgetting with respect to S maintaining
its performance. We make a similar observation when re-
evaluating T1 after the second adaptation step to T2. In
particular, CoDEPS achieves positive backward transfer on
SemKITTI-DVPS when adapting to KITTI-360. On the same
adaptation order, we observe positive forward transfer for
KITTI-360, i.e., the performance increases although CoDEPS
was only adapted to SemKITTI-DVPS.

In Fig. 5, we illustrate the evolution of the performance
metrics on SemKITTI-DVPS sequence 08 during adaptation
(protocol 1). We compare the error without adaptation to
directly adapting to SemKITTI-DVPS versus first adapting to
KITTI-360. For both semantic segmentation and depth estima-
tion, it can be clearly observed that the performance improves
if more images have been seen. Additionally, adapting first to
KITTI-360 results in a large performance increase for both
semantic and panoptic segmentation. We account this to the
fact that KITTI-360 sequence 10 leads to strongly improved
performance, shown in Table VII, that can be transferred to
the SemKITTI-DVPS domain.

V. CONCLUSION

In this paper, we present CoDEPS as the first approach for
online continual learning for joint monocular depth estimation
and panoptic segmentation. CoDEPS enables the vision system
of a robotic platform to continually enhance its performance

45.0

50.0

55.0

60.0

m
Io
U

Only source S → T1 S → T2 → T1

42.5

45.0

47.5

50.0

P
Q

0 500 1000 1500 2000 2500

Number of frames

0.15

0.20

0.25

0.30

0.35

A
b
s
R
el

Fig. 5. Evolution of performance metrics on SemKITTI-DVPS sequence 08
during adaptation (protocol 1). The metrics are averaged until the given
frame number. The target domains T1 and T2 refer to SemKITTI-DVPS and
KITTI-360, respectively. It can be seen that there is positive forward transfer
when first adapting on T2.

in an online fashion. In particular, we propose a new cross-
domain mixing strategy to adapt panoptic segmentation com-
bining annotated source data with unlabeled images from a
target domain. To mitigate catastrophic forgetting, CoDEPS
leverages experience replay using a buffer composed of source
and target samples. We explicitly address the limited storage

capacity of robotic platforms by setting a fixed size for
the replay buffer. To ensure distinct replay samples, we use
rare class sampling on the source set and employ image-
based diversity sampling when updating the target buffer.
Using extensive evaluations, we demonstrate that CoDEPS
outperforms competitive baselines while avoiding catastrophic
forgetting in the online continual learning setting. Future work
will explore cross-task synergies and the use of pretext tasks
for domain adaptation.

ACKNOWLEDGMENT

This work was partly funded by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 871449-OpenDR and the Bundesministerium
für Bildung und Forschung (BMBF) under grant agreement
No FKZ 16ME0027.

REFERENCES

[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua
Bengio. Gradient based sample selection for online
continual learning. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Conference on Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
manticKITTI: A dataset for semantic scene understand-
ing of LiDAR sequences. In International Conference
on Computer Vision, 2019.

[3] Borna Bešić and Abhinav Valada. Dynamic object
removal and spatio-temporal RGB-D inpainting via
geometry-aware adversarial learning. IEEE Transactions
on Intelligent Vehicles, 7(2):170–185, 2022.

[4] Borna Bešić, Nikhil Gosala, Daniele Cattaneo, and Abhi-
nav Valada. Unsupervised domain adaptation for LiDAR
panoptic segmentation. IEEE Robotics and Automation
Letters, 7(2):3404–3411, 2022.

[5] Vincent Casser, Soeren Pirk, Reza Mahjourian, and
Anelia Angelova. Unsupervised monocular depth and
ego-motion learning with structure and semantics. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[6] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting
Liu, Thomas S. Huang, Hartwig Adam, and Liang-
Chieh Chen. Panoptic-DeepLab: A simple, strong, and
fast baseline for bottom-up panoptic segmentation. In
IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 12472–12482, 2020.

[7] Gong Cheng and James H. Elder. VCSeg: Virtual camera
adaptation for road segmentation. In IEEE/CVF Winter
Conference on Applications of Computer Vision, pages
1969–1978, 2022.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The

Cityscapes dataset for semantic urban scene understand-
ing. In IEEE/CVF Conference Computer Vision and
Pattern Recognition, pages 3213–3223, 2016.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, pages 3354–3361, 2012.

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, pages 270–279, 2017.

[11] Clement Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel Brostow. Digging into self-supervised monocular
depth estimation. In International Conference on Com-
puter Vision, pages 3827–3837, 2019.

[12] Nikhil Gosala and Abhinav Valada. Bird’s-eye-view
panoptic segmentation using monocular frontal view im-
ages. IEEE Robotics and Automation Letters, 7(2):1968–
1975, 2022.

[13] Vitor Guizilini, Jie Li, Rares, Ambrus, , and Adrien
Gaidon. Geometric unsupervised domain adaptation for
semantic segmentation. In International Conference on
Computer Vision, pages 8537–8547, 2021.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[15] Lukas Hoyer, Dengxin Dai, and Luc Van Gool.
DAFormer: Improving network architectures and training
strategies for domain-adaptive semantic segmentation.
In IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 9924–9935, 2022.

[16] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.
Cross-view regularization for domain adaptive panoptic
segmentation. In IEEE/CVF Conference Computer Vision
and Pattern Recognition, pages 10133–10144, 2021.

[17] Marvin Klingner, Mouadh Ayache, and Tim Fingscheidt.
Continual batchnorm adaptation (CBNA) for semantic
segmentation. IEEE Transactions on Intelligent Trans-
portation Systems, 23(11):20899–20911, 2022.

[18] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
CoMoDA: Continuous monocular depth adaptation us-
ing past experiences. In IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2907–2917,
2021.

[19] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
Towards unsupervised online domain adaptation for se-
mantic segmentation. In European Conference on Com-
puter Vision, pages 261–271, 2022.

[20] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser,
and Anelia Angelova. Unsupervised monocular depth
learning in dynamic scenes. In Conference on Robot
Learning, pages 1908–1917. PMLR, 2021.

[21] Shunkai Li, Xin Wang, Yingdian Cao, Fei Xue, Zike Yan,
and Hongbin Zha. Self-supervised deep visual odometry
with online adaptation. In IEEE/CVF Conference Com-

puter Vision and Pattern Recognition, pages 6339–6348,
2020.

[22] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360:
A novel dataset and benchmarks for urban scene under-
standing in 2d and 3d. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2022.

[23] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient
episodic memory for continual learning. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Conference
on Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[24] Adrian Lopez-Rodriguez and Krystian Mikolajczyk.
DESC: Domain adaptation for depth estimation via se-
mantic consistency. International Journal of Computer
Vision, 131(3):752–771, Mar 2023.

[25] Giulio Mattolin, Luca Zanella, Elisa Ricci, and Yim-
ing Wang. ConfMix: Unsupervised domain adaptation
for object detection via confidence-based mixing. In
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 423–433, January 2023.

[26] Robert McCraith, Lukas Neumann, Andrew Zisserman,
and Andrea Vedaldi. Monocular depth estimation with
self-supervised instance adaptation. arXiv preprint
arXiv:2004.05821, 2020.

[27] Rohit Mohan and Abhinav Valada. Amodal panoptic
segmentation. In IEEE/CVF Conference Computer Vision
and Pattern Recognition, pages 20991–21000, 2022.

[28] Rohit Mohan and Abhinav Valada. Perceiving the invis-
ible: Proposal-free amodal panoptic segmentation. IEEE
Robotics and Automation Letters, 7(4):9302–9309, 2022.

[29] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and
Lennart Svensson. ClassMix: Segmentation-based data
augmentation for semi-supervised learning. In IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 1368–1377, 2021.

[30] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille,
and Liang-Chieh Chen. ViP-DeepLab: Learning visual
perception with depth-aware video panoptic segmenta-
tion. In IEEE/CVF Conference Computer Vision and

Pattern Recognition, pages 3996–4007, 2021.
[31] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and

Lennart Svensson. DACS: Domain adaptation via cross-
domain mixed sampling. In IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1378–
1388, 2021.

[32] Abhinav Valada, Gabriel Oliveira, Thomas Brox, and
Wolfram Burgard. Towards robust semantic segmentation
using deep fusion. In Robotics: Science and Systems
Workshop, Are the Sceptics Right, 2016.

[33] Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and
Abhinav Valada. Continual SLAM: Beyond lifelong
simultaneous localization and mapping through continual
learning. In Aude Billard, Tamim Asfour, and Oussama
Khatib, editors, Robotics Research, pages 19–35, Cham,
2023. Springer Nature Switzerland.

[34] Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and
Abhinav Valada. CoVIO: Online continual learning for
visual-inertial odometry. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops,
2023.

[35] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In IEEE/CVF
Conference Computer Vision and Pattern Recognition,
pages 7201–7211, 2022.

[36] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel
Cremers. D3VO: Deep depth, deep pose and deep
uncertainty for monocular visual odometry. In IEEE/CVF
Conference Computer Vision and Pattern Recognition,
pages 1281–1292, 2020.

[37] Zhenyu Zhang, Stéphane Lathuilière, Elisa Ricci, Nicu
Sebe, Yan Yan, and Jian Yang. Online depth learning
against forgetting in monocular videos. In IEEE/CVF
Conference Computer Vision and Pattern Recognition,
pages 4493–4502, 2020.

[38] Tinghui Zhou, Matthew Brown, Noah Snavely, and
David G Lowe. Unsupervised learning of depth and ego-
motion from video. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, pages 1851–1858, 2017.

D4.4: Final report on deep environment active perception and cognition 66/112

7.2 Deep Label Embedding Learning for Classification

The appended paper (under review) follows.

OpenDR No. 871449

Deep Label Embedding Learning for Classification

Paraskevi Nousia, Anastasios Tefasa

aDepartment of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

The one-hot 0/1 encoding method is the most popularized encoding method
of class labels for classification tasks. Despite its simplicity and popularity,
it comes with limitations and weaknesses, like failing to capture the inherent
uncertainty in data labels, and making classifiers more prone to overfitting.
In this paper, we tackle these shortcomings with a framework for learning soft
label embeddings. Two variants are proposed: first, a learnable general-class
embedding which aims to capture information regarding inter-class similar-
ities, and second, a neural architecture which can be added to any neural
classifier and aims to learn inter-instance similarities. The inherent uncer-
tainty in data labels is thus somewhat alleviated, allowing the network to
focus on incorrectly classified samples, instead of difficult but correctly clas-
sified ones. Our experimental study on multiple classification benchmarks of
increasing difficulty, using neural networks of varying depth and width, show
that the proposed method leads to better classification accuracy, highlighting
its ability to generalize to unseen samples.

Keywords: label embedding, soft labels, class similarities, instance
similarities

1. Introduction

The one-hot 0/1 encoding method is the most popularized encoding method
of class labels for classification tasks. Most existing neural network based
classification methods use this encoding along with some variant of the cross
entropy loss function [1]. Despite its simplicity and popularity, it comes with
limitations and weaknesses which we investigate in this work.

Email addresses: paranous@csd.auth.gr (Paraskevi Nousi), tefas@csd.auth.gr
(Anastasios Tefas)

Preprint submitted to Elsevier August 23, 2023

One-hot encoding fails to capture the inherent uncertainty in data la-
beling processes. There are multiple aspects to this issue. First, a dataset
typically consists of data samples belonging to classes of the same category,
e.g., MNIST depicts handwritten digits. In general, a class of digits may
resemble another class more or less than the remaining classes. For example,
fours tend to resemble - and be confused as - nines more often than any other
digit. Class similarities like these are present in most classification datasets,
even more generic ones. Second, some instances of a class may heavily resem-
ble instances of other classes, much like a small dog may resemble a cat or a
fox, or a flying bird may resemble a plane. These similarities are specific to
each instance of the dataset and may be considered as outliers. Finally, there
is always the potential of human error, either related to the aforementioned
uncertainties or simply by mistake.

Figure 1 illustrates this point using the CIFAR10 dataset [2]. Two dimen-
sional representations are obtained using t-SNE [3] and a DenseNet [4] clas-
sifier, using the representations of the penultimate layer. The general class
similarities, like those between the dog and cat classes, or the automobile
and truck classes, reflect the actual similarity between these real categories.
Instance specific similarities exist as well, as shown in the marked misclassi-
fied samples: (a) a dog misclassified as a cat, (b) a truck misclassified as a
car, (c) a deer misclassified as a horse, (d) a bird misclassified as a ship, (e)
a bird misclassified as a ship, (f) a deer misclassified as a horse, and (g) a
dog misclassified as a bird.

Furthermore, one-hot encoding can lead to overfitting more easily, as
neural networks have the capacity to bend their representation space in ways
such that they perfectly capture the training samples, despite their outlying
status. As an example, consider a binary classification example, where a
difficult sample may be correctly classified with a predicted probability of
0.8. Despite the prediction being correct, most recent approaches to this
problem would further modify the network weights such that the predicted
probability lies closer to 1. In order to do so, the separating hyperplane
may bend in a way that excludes unseen samples even if they lie close to the
groups of training samples.

In this paper, we tackle these shortcomings with a framework for learn-
ing soft label embeddings. Two variants are proposed: first, a learnable
general-class embedding which aims to capture information regarding inter-
class similarities, and second, a neural architecture which can be added to any
neural classifier and aims to learn inter-instance similarities. The inherent

2

(f)

(g)

(c)

(e)

(b)

(d)

(a)

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

Figure 1: Visualization of feature vectors from the CIFAR10 dataset using t-SNE.

3

uncertainty in data labels is thus somewhat alleviated, allowing the network
to focus on incorrectly classified samples, instead of difficult but correctly
classified ones. The concept of this framework is similar to real-life learning
procedures, where uncertainty rules over many subjects. Students are en-
couraged to eventually become teachers themselves, in the broader sense of
these words, and to achieve that they must be allowed some liberties when
learning a new subject which presents uncertainties. During the learning
process, students may draw from their own experiences and go on to even
enhance the subject with their understanding of it. To the best of our knowl-
edge, our work is the first label embedding framework to consider similarities
the class level as well as at the instance level as well as a combination of the
two.

The rest of this paper is structured as follows. Section 3 introduces the
notation used in the proposed method as well as the general concept. Sec-
tions 3.1 and 3.2 describe the two variants of the proposed method, aiming
to capture general-class and instance-specific similarities in the soft embed-
ding. The method for combining of the two embedding variants is presented
in Section 3.3. Finally, Section 4 summarizes our experimental results and
our conclusions are drawn in Section 5.

2. Related Work

Soft labels, label embedding and label smoothing are all problems similar
to the one tackled in this work, and they have been studied to some extent
in recent literature.

Image annotation is a tedious and uninspiring task, prone to errors, in
both objective and subjective criteria. Subjective errors in particular are
almost impossible to overcome, forcing neural networks to either learn these
mistakes or to find ways to overcome these noisy labels. In fact, labelling
errors are evident in the large number of works revolving around learning
from noisy labels. In [5], two types of label noise are considered: label flips,
where images have been assigned a wrong class, and outliers, where the image
does not depict any of the classes in the dataset but has been erroneously
assigned to one. To mitigate these errors, a linear layer was added at the final
softmax layer, to learn the noise distribution without supervision, i.e., prior
modeling of this distribution. More recently, in [6], a single layer network
was used to learn to generate soft labels from noisy labels.

4

Soft labels have been studied in the past, in the context of simpler classi-
fiers like the k-Nearest Neighbor one [7], and recently scientific research in this
task has resurfaced. In [8], a method for modeling subjectivity in emotion
recognition was proposed. An ensemble method, where different networks
are trained with different annotators, was compared against a single network
trained on soft labels, generated by averaging the labels from different anno-
tators. In [9], a soft label method was introduced for ordinal regression, i.e.,
classification problems were classes are not independent, but follow some sort
of order. Maintaining inter-class relationships is crucial in such tasks, and we
further argue that a natural order between classes can be found in most clas-
sification datasets, especially as the number of classes increases. In [10], soft
labels were learned in a meta learning fashion, by treating them as learnable
parameters, modeling both class-level and instance-level similarities.

Soft labels have also recently been linked to knowledge distillation meth-
ods [11, 12]. In [13], soft labels were explored in the context of relation
extraction with neural networks. A teacher network was used to learn well-
informed soft labels and its knowledge was distilled and transferred to a stu-
dent network. In [11], posterior class probabilities were estimated using the
data samples, which were used as soft labels, encoding information about the
similarities between the data samples. Further, in [12], a distillation method
aiming to reveal subclass similarities was introduced. In [14], a teacher-free
knowledge distillation method was proposed, using label smoothing regular-
ization. It was also proven that knowledge distillation is a type of learned
label smoothing.

The significance of label smoothing has been gaining interest in recent
years. In [15], it was shown that label smoothing does not hurt the general-
ization of a model’s predictions, but using a simple label smoothing method
on a network makes it a less effective teacher in a knowledge-distillation set-
ting. In [16], it was shown that label smoothing can indeed be useful to
teacher networks in the presence of noisy labels. In [17], an investigation was
conducted into the effect of label smoothing regularization on the convergence
of stochastic gradient descent methods. It was shown that label smoothing
can help speed up the convergence. In [18], a theoretical framework was in-
troduced, to explain how label smoothing controls the generalization loss. In
[19], an online label smoothing strategy was proposed, to generate soft labels
based on the statistics of the model’s predictions.

Label embedding is closely related to label smoothing. In [20], a label em-
bedding method was proposed for text classification, in a multi-task learning

5

context. Also in text classification, in [21], a model-based label embedding
method was coupled with a self-interaction attention mechanism. In [22], a
label embedding network was introduced for soft training of deep neural net-
works. The embedding network learns from the predictions of the classifier
and the two networks are trained in unison. Label embedding is also useful
in multi-label classification tasks, as recently showcased in [23].

We are interested in modelling relationships both at a class-level and an
instance-level into the proposed label embedding methods. Inter-class simi-
larities were also studied in [24], using a label smoothing technique to instill
general class similarity information into the learning task. We achieve the
same goal using a simple linear network, which learns to map the one-hot
encodings into soft versions of themselves, using the network’s predictions.
Instance-specific labels were recently studied in [25], in a self-distillation
mechanism. Instead of self-learning the instance-specific labels, we use an
external observer, in the form of an Autoencoder (AE) [26], to uncover the
instance level similarities in its learned latent space.

3. Proposed Methodology

Let xi ∈ RD denote an input sample and yi ∈ {0, 1}K such that
∑K

k=1 yi,k =
1 be its one-hot encoding, in a set of i = 1, . . . , N training samples spanning
over K distinct classes. A standard classifier f(x) is trained to map the input
samples xi to their corresponding one-hot labels and to make predictions on
unseen samples. Typically, the Cross Entropy loss function is used for this
purpose:

CE(y,p) = −
K∑

k=1

yk · log(pk) (1)

where p are the probabilities predicted by f(x), obtained as the output of
a softmax function on the output, or logits, of the classifier. We propose
the use of soft labels ŷi ∈ RK such that

∑K
k=1 ŷi,k = 1 for all samples in

the dataset, such that they capture not only the groundtruth label of each
sample but also inter-class similarities as well as similarities between each
sample and other samples present in the dataset. Our hypothesis is that by
using soft labels, a neural classifier can learn to generalize better, as the sum
of errors from correctly-classified but difficult samples will decrease. In terms

6

of the representation learned, less effort will be consumed towards separating
such samples from their similar neighbors.

The new learning task is formulated as:

CE(ŷ,p) = −
K∑

k=1

ŷk · log(pk) (2)

where ŷ, i.e., the soft labels, are given by a differentiable function g(·), the
parameters of which can be learned in conjunction with the parameters of
the classifier during training.

In the following Sections we define two methods to generate such soft la-
bels. In both cases, the label embedding learned stems from the representa-
tions learned by the classifier itself, hence the title of self-learned embedding.
The first method aims to capture resemblances between the classes present
in the dataset and is described in Section 3.1. The second method aims
to capture resemblances between each sample and any and all instances in
the dataset, regardless of their corresponding classes. Section 3.2 describes
this method in detail, while Section 3.3 presents our proposed method of
combining the aforementioned methods in a single architecture.

3.1. General Class Soft-Label Embedding

We formulate the function g(·) for the case of general class similarities
as a simple embedding of the form ŷ = g(y) = W · y where W ∈ RK×K is
a learnable weights matrix. This can be viewed as a neural network with a
single linear hidden layer. Despite its simplicity, this embedding can model
extreme cases where:

W = IK (3)

corresponding to the 0/1 one-hot encoding, or:

W =
1

K
JK (4)

where the notation JK denotes an all-ones matrix of size K×K, correspond-
ing to the case where all class probabilities are equal.

We are, however, interested in the more generic case where each class
label is given as a linear combination of all classes, including itself which
should intuitively hold a larger weight:

Ŷ = g(Y) = W ·Y = W. (5)

7

where Ŷ ∈ RK×K is the soft label matrix, i.e., each row ŷk corresponds to
the soft labels of the k-th class, and Y = IK holds the one-hot encodings of
all classes. That is, the new label vector for the k-th class is given by:

ŷk = g(yk) = W · yk = [Wk1,Wk2, . . . ,Wkk, . . . ,WkK] (6)

i.e., practically the k-th row of the weight matrix W, as yk is the one-
hot encoding of the k-th class. As mentioned, the weights matrix should
optimally conform to:

Wkk ≥
K∑

l 6=k

Wkl, (7)

so as to retain the groundtruth information. A softmax function is applied
on ŷk to ensure that

∑K
l=1 ŷkl = 1.

Figure 2 illustrates the use of the proposed general-class network alongside
a generic neural classifier. The two networks are trained in parallel using a
single learning objective, optimizing the cross entropy given by Eq. (2) for
all input samples. If not for the constraint imposed by Eq. (7), it is evident
that this architecture is in direct danger of collapsing to the case presented
in Eq. (4), where all class labels are equal and both networks learn random
weights. There are multiple straightforward ways to avoid this scenario.
One is to add a regularization term to the loss to directly enforce Eq. (7).
However, this entails the threat of collapsing to the case Eq. (3), i.e., the
labels remain binary. Instead, we enforce this constraint by first initializing
the weights matrix using an identity matrix. Some noise is added to these
weights to avoid harsh 0/1 numbers. Furthermore, a different learning rate
is used for the label embedding network which forces the network weights to
update slowly in comparison to the weights of the classification network, for
which a larger learning rate is used. Another way to circumvent this issue
is to set the new classification targets to be a weighted combination of the
one-hot encoding and their linear combinations given by g(y), i.e.:

ŷk = α · g(yk) + (1− α) · yk (8)

where α ∈ (0, 1) controls the softness of the labels. This approach is used in
this work, for its simplicity.

8

Figure 2: Schematic representation of the learning procedure of a classification network
attached with the proposed general-class label embedding network.

3.2. Instance Specific Soft-Label Embedding

In the instance-specific case, the soft labels for each instance xi are a
function of the instance itself, that is:

ŷi = h(xi). (9)

The criterion from Eq. (2) still applies in this case and the function h(·) can
take the form of a network which takes xi as input and outputs ŷi.

An external and objective representation of xi can be extracted using
an Autencoder, where the intermediate representation zi is set to be K-
dimensional. An AE can be formally defined by its two parts, the encoder
and decoder networks, as a composite function:

x̂i = hdec(h(xi)), (10)

where h(·), hdec(·) are the encoding and decoding functions respectively, and
x̂i ∈ RD is the network’s output, which is trained to approximate the input.
The intermediate representation zi = h(xi) is given by the encoder. To
ensure a proper mapping between the AEs latent dimensions and the one-
hot encoding, a cross entropy criterion is added to the objective. In this
setting, in an extreme case of overfitting, the intermediate representation
can take the form of a one-hot encoding at the cost of large reconstruction
errors. Furthermore, it is also possible that the AE objective will collapse to
mapping every sample to the same representation, which is another tedious
solution of the problem. Both of these scenarios are mitigated by the addition

9

of the reconstruction loss of the AE, in terms of MSE between its input and
predicted output x̃:

MSE(x, x̃) = ‖x− x̃‖22. (11)

The final learning objective is a weighted combination of the reconstruc-
tion, intermediate representation to labels association and final classification
loss functions:

L =
1

N

N∑

i=1

CE(yi, σ(zi)) + CE(ŷi,pi) + λ ·MSE(xi, x̃i) (12)

where λ is a constant introduced to weigh the classification and reconstruc-
tion losses. Figure 3 summarizes the proposed architecture for this case. The
input is fed into both the classifier and an AE. The intermediate represen-
tation of the AE is trained to match the groundtruth labels using a softmax
function σ(·), and the cross entropy criterion. The AE is also trained using
the MSE between the input and its prediction. Finally, the classifier’s pre-
dictions are matched to the soft targets, which are given by the intermediate
representation. An equation similar to Eq. 8 is used to generate the soft
targets, so as to maintain the groundtruth information:

ŷk = β · σ(zk/T) + (1− β) · yk (13)

where T denotes the softmax temperature.

3.3. Combined General-Class and Instance-Specific Label Embedding

The two methods described in the previous Sections can easily be com-
bined into a single architecture, at the cost of increased training time. The
combination is straightforward and a graphical description is given by Fig-
ure 4. The main difference to the instance-specific case is the addition of
the general-class label embedding network g(y), and the learning objective
is modified accordingly:

L =
1

N

N∑

i=1

CE(yi, σ(zi)) + β · CE(ŷi,pi) + γ ·MSE(xi, x̃i) (14)

where β and γ weigh the classification and reconstruction losses. In this case,
it is crucial to properly initialize the general-class embedding network so as

10

Figure 3: Schematic representation of the learning procedure of a classification network
attached with the proposed instance-specific label embedding network.

to output labels as close as possible to the groundtruth one-hot encoding. In
practice, the soft labels ŷ which are used to train the classifier, are a linear
combination of the one-hot groundtruth labels, the general-class embeddings
and the instance-specific embeddings, weighted by two hyperparameters to
control the effect of each embedding on the final targets, i.e.:

ŷk = α · g(yk) + β · σ(zk/T) + (1− α− β) · yk (15)

4. Experimental Study

4.1. Experiments Setup

Datasets. We conducted experiments on CIFAR10, CIFAR100 [2], Fashion
MNIST [27], STL10 [28] and SVHN [29] datasets. The CIFAR-10 dataset
consists of 60000 RGB images of size 32 × 32, spanning over 10 classes,
i.e., with 6000 images per class. The training set contains 50000 and the
remaining 10000 images constitue the test set. The CIFAR100 dataset is
similar, except it contains 100 classes with 600 images each, 500 of which
are used for training and the remaining 100 are used for testing. The STL10
dataset is similar to the CIFAR10 dataset, but each class has fewer labeled
training examples. There are 10 classes in this dataset, the images are of size

11

Figure 4: Schematic representation of the learning procedure of a classification network
attached with the combination of the proposed general-class and instance-specific label
embedding networks.

96×96 and colour, and there are 500 training images and 800 test images per
class. The SVHN dataset is a real-world image dataset for digit recognition.
There are 10 classes in the dataset, the digits are cropped and resized to
32 × 32, and in total there are 73257 digits for training, and 26032 digits
for testing. Finally, the FashionMNIST dataset consists of a training set of
60000 samples and a test set of 10000 samples. Each sample is a 28 × 28
grayscale image and there are 10 classes in this dataset, corresponding to
clothing categories.

Networks. Four types of networks are used based on the ResNet [30] archi-
tecture: a ResNet-8, a ResNet-18, a ResNet-6 model, and a version of the
ResNet-6 net with fewer channels, specifically using only a quarter of the
learnable filters (ResNet-6l0.25). The models are chosen for their parameter
efficiency, and the two most lightweight ones were chosen so that they can
run at real-time on embedded devices for HD inputs.

12

Hyperparameters. We train all networks for 100 epochs for all datasets, start-
ing with a learning rate of 0.1 and dividing it by 0.1 every 25 epochs. For
α, β we use 0.1 for the class level and 0.2 instance level similarities, while
setting the temperature T to 10. The AE architecture used is based on a
ResNet-18 encoder and similar decoder, and pretrained on the dataset for 25
epochs.

4.2. Experimental Results

The results of our experiments are summarized in Tables 1,2,3 and 4
for the ResNet6-l0.25, ResNet-6, ResNet-8 and ResNet-18 networks and all
datasets. The general-class method is denoted as GC, the instance-specific
case as IS and a combination of the two is also investigated and denoted
as GC+IS. The proposed variants lead to increases in accuracy in all cases
over the baseline models. Note that, despite the increased training cost, the
cost during deployments remains the same as that of the baseline models.
All experiments are run 5 times and performance is noted in terms of mean
accuracy and the corresponding standard deviation.

Table 1: ResNet-6l0.25 results on all datasets in terms of classification accuracy.

Dataset Baseline GC IS GC+IS

SVHN 94.18± 0.11 94.51± 0.17 94.58± 0.05 94.66± 0.18
FashionMNIST 92.62± 0.14 92.81± 0.12 93.19± 0.06 93.08± 0.09
CIFAR10 87.28± 0.11 87.66± 0.21 88.35± 0.31 88.10± 0.29

STL10 67.76± 0.77 68.28± 1.19 70.39± 0.55 70.40± 0.63
CIFAR100 61.55± 0.39 61.82± 0.19 62.44± 0.29 62.48± 0.15

For the lightweight ResNet-6l0.25 model, all of the proposed variants
improve the performance in terms of accuracy over the baseline training,
i.e., using standard cross entropy. Furthermore, the instance-specific meth-
ods outperform the general-class ones. Note that, GC+IS, despite offering
slightly improved mean accuracy, overall leads to less stable performance
compared to IS, as indicated by the larger standard deviation in all datasets
except for CIFAR100.

The results are similar for the ResNet-6 model. The proposed GC, IS
and GC+IS outperform the baseline training for all datasets. The combined
GC+IS variant exceeds the performance of each of the GC, IS methods only

13

on the CIFAR100 dataset in this case. Note that this classifier contains four
times as many learnable parameters as the ResNet-6l0.25 model, which is
visible in the overall better results as well as larger improvements of the
proposed variants over the baseline training, i.e., +3.41% for STL10, com-
pared to +2.64% for the same dataset using ResNet-6l0.25, and +1.49 for
CIFAR100 compared to +0.93 for ResNet-6l0.25.

Table 2: ResNet-6 results on all datasets in terms of classification accuracy.

Dataset Baseline GC IS GC+IS

SVHN 95.05± 0.37 95.67± 0.14 95.40± 0.09 95.44± 0.09
FashionMNIST 93.09± 0.14 93.40± 0.18 93.81± 0.15 93.78± 0.14
CIFAR10 90.78± 0.09 91.27± 0.30 92.55± 0.25 92.51± 0.09

STL10 72.21± 0.94 72.61± 1.26 75.62± 0.19 75.45± 0.31
CIFAR100 69.76± 0.32 70.34± 0.37 70.97± 0.26 71.25± 0.10

Moving on to the ResNet-8 model, the performance of the baseline model
is significantly better than the previous, more lightweight models. Further-
more, all proposed methods improve upon that baseline. The GC variant
slightly outperforms IS and GC+IS, although performance is generally more
stable when using the IS method, as indicated by the lower standard devia-
tions with FashionMNIST being the only exception.

Table 3: ResNet-8 results on all datasets in terms of classification accuracy.

Dataset Baseline GC IS GC+IS

SVHN 95.59± 0.06 95.76± 0.08 95.90± 0.06 95.86± 0.04
FashionMNIST 93.80± 0.12 94.12± 0.05 93.98± 0.14 94.03± 0.07
CIFAR10 93.26± 0.15 93.94± 0.13 93.93± 0.13 93.80± 0.16

STL10 73.94± 0.60 74.94± 0.42 78.03± 0.19 77.81± 0.26
CIFAR100 73.81± 0.29 74.69± 0.19 74.37± 0.10 74.24± 0.26

Finally, the deepest network, namely ResNet-18, achieves overall better
baseline results than the previous models. For this model, we also evalu-
ate the proposed methods on the larger and more challenging Caltech-101
[31] and Tiny-Imagenet datasets [32]. Once again, all of the proposed vari-
ants improve the performance of the model on all datasets. Notice that the

14

combined GC+IS method performs better than the GC and IS methods for
three out of six datasets for this model. The performance gain is greater in
the CIFAR10, CIFAR100, STL10, Caltech-101 and Tiny-ImageNet datasets,
and smaller for SVHN and FashionMNIST, although it is consistent over the
baseline training in all datasets and networks.

Table 4: ResNet-18 results on all datasets in terms of classification accuracy.

Dataset Baseline GC IS GC+IS

SVHN 95.88± 0.08 96.30± 0.13 96.24± 0.07 96.21± 0.06
FashionMNIST 94.03± 0.18 94.07± 0.15 94.42± 0.10 94.31± 0.12
CIFAR10 94.23± 0.10 94.38± 0.07 94.30± 0.07 94.40± 0.03

STL10 80.65± 0.27 82.01± 0.21 81.88± 0.33 81.97± 0.48
CIFAR100 75.74± 0.30 77.15± 0.18 77.27± 0.32 77.40± 0.20

Caltech-101 60.29± 0.55 61.53± 1.32 64.19± 1.12 64.55± 1.35
Tiny-ImageNet 58.45± 0.18 60.58± 0.28 62.26± 0.26 62.44± 0.10

As mentioned, the combination of the two methods is riskier than each of
the methods used separately, and it seems to work better when the classifier
used has a higher learning capacity. This can be attributed to two factors.
First, to the better performance of the deeper baseline networks, correspond-
ing to a deeper knowledge of the datasets. Second, the networks with more
parameters have greater capacity for learning complex relationships.

Figures 5a and 5b show the loss and accuracy error progression during
training of the ResNet-18 model on the CIFAR100 dataset, for the baseline
and GC methods. The proposed method improves accuracy in the long run,
even if the classification loss (but not the corresponding accuracy error) is
lower at some point during training for the baseline method. Overall, the
results indicate that the proposed method works well on complex datasets
with multiple classes, and especially when the classes are semantically re-
lated. Figures 6a and 6b show the accuracy improvement for each network,
and the datasets have been arranged in increasing difficulty. The improve-
ment that the proposed method offers is larger for the more complex datasets,
and is larger in general for the smaller networks than it is for the heaviest
ResNet-18.

We finally compare the performance of the proposed method with various
state-of-the-art soft label methods, in the CIFAR100 dataset. The results are

15

1 25 50 75 100

0.010

0.015

0.020

0.025

0.030

0.035

Loss
baseline
GC

(a)

1 25 50 75 100
20

30

40

50

60

70

80

90
Error

baseline
GC

(b)

Figure 5: (a) Loss curves and (b) accuracy error progression, for baseline and GC methods,
using ResNet-18 on CIFAR100.

SVHN
FashionMNIST

CIFAR10 STL10
CIFAR100

Caltech-101
Tiny-ImageNet

50

60

70

80

90

100

Ac
cu

ra
cy

Accuracy improvement per dataset
ResNet18
ResNet8
ResNet6
ResNet6l

(a)

SVHN
FashionMNIST

CIFAR10 STL10
CIFAR100

Caltech-101
Tiny-ImageNet

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Absolute accuracy improvement per dataset
ResNet18
ResNet8
ResNet6
ResNet6l

(b)

Figure 6: (a) Baseline and GC+IS accuracy, and (b) absolute accuracy improvement, for
baseline and GC+IS methods.

presented in Table 5, in terms of baseline accuracy, accuracy using each com-
pared method, and relative improvement in accuracy, to account for different
training hyperparameters for each method. The proposed method provides
a significant improvement, and the best result on this dataset, compared to
similar methods.

4.3. Label Visualization

Figures 7 and 8 are visualizations, via t-SNE, of the soft labels acquired
by the proposed IS method for CIFAR10 and Tiny-ImageNet respectively. In

16

Table 5: Comparative improvement in accuracy for the CIFAR100 dataset.

Network Method Baseline Acc Acc w/ Method

ResNet-18 Ours, GC
75.74

77.15
Ours, IS 77.27
Ours, GC+IS 77.40
Tf-KD [14] 75.87 77.10
LabelEmb [22] 72.65 76.03

ResNet-56 OLS [19] 74.73 76.09
LS [15] 72.1 72.7

Figure 7, only the soft embeddings are shown, as opposed to the final targets
which are a combination of these with the groundtruth one-hot encodings of
the classes. From uncorrelated, binary representations, the labels now have
distributions which are in agreement with the feature visualizations shown
in Figure 1. In other words, the labels capture the information we aimed
to embed in them, encoding instance-specific similarities as well as general
class similarities. Furthermore, clusters appear within each class distribution,
which is more intuitive than a harsh binary representation.

Figure 8 is a visualization of the targets set for the IS scenario on the
Tiny-ImageNet dataset. Only the first twenty classes are shown for better
visualization. Notice that class-level similarities are also captured, i.e., the
“tarantula” and “black widow” classes are close together, as are the “brain
coral” and “jellyfish” ones. Some instances of these classes also form their
own clusters within the confines of their class.

Finally, Figure 9 is a visualization of the GC targets pre-softmax for 30
classes of the Caltech-101 dataset. The classes shown are sorted by their con-
tribution to the “Face” class, resulting in this specific pattern. Note that the
method is able to capture the similarity between intuitively similar classes,
with the most notable example being the classes “Faces” and “Faces easy”.
Intuitively, a classifier confusing these two classes for each other should be
punished less than it would for confusing them with other completely unre-
lated classes, an intuition that is captured by the proposed framework.

17

Classes
plane
car
bird
cat
deer
dog
frog
horse
ship
truck

Figure 7: t-SNE visualization of soft labels generated by the proposed instance-specific
method for the CIFAR10 dataset. Note that the final targets are a combination of these
labels and the groundtruth one-hot encodings.

Classes
goldfish
European fire salamander
bullfrog
tailed frog
American alligator
boa constrictor
trilobite
scorpion
black widow
tarantula
centipede
goose
koala
jellyfish
brain coral
snail
slug

Figure 8: t-SNE visualization of targets generated by the proposed instance-specific
method for the first 20 classes of the Tiny ImageNet dataset.

5. Conclusions

In this paper, soft label embedding methods were studied and two vari-
ants were proposed, with an aim to capture both general-class resemblances

18

Fa
ce

s
Fa

ce
s_

ea
sy

co
ug

ar
_f

ac
e

bu
tte

rfl
y

ch
ai

r
co

ug
ar

_b
od

y
ch

an
de

lie
r

bu
dd

ha
br

ai
n

M
ot

or
bi

ke
s

cr
ay

fis
h

cr
ab

ba
ss

ba
rre

l
ce

ilin
g_

fa
n

bi
no

cu
la

r
an

t
an

ch
or

ai
rp

la
ne

s
br

on
to

sa
ur

us
ca

nn
on

be
av

er
ca

m
er

a
cr

oc
od

ile
bo

ns
ai

ac
co

rd
io

n
ca

r_
sid

e
ce

llp
ho

ne
Le

op
ar

ds
cr

oc
od

ile
_h

ea
d

Faces
Faces_easy

cougar_face
butterfly

chair
cougar_body

chandelier
buddha

brain
Motorbikes

crayfish
crab
bass

barrel
ceiling_fan

binocular
ant

anchor
airplanes

brontosaurus
cannon
beaver
camera

crocodile
bonsai

accordion
car_side

cellphone
Leopards

crocodile_head

10 1

10 2

10 1

100

101

102

103

104

Figure 9: Caltech101 generic class similarities as captured by the proposed GC method.

as well as instance-specific similarities, and to incorporate these into the
training process of neural classifiers in order to ease the training process. For
the general-class a simple linear network was used to generate labels which
are a linear combination of the groundtruth one-hot encodings. As the train-
ing process progresses, the network learns to capture general correlations
between the classes and uses these relationships to soften the groundtruth
labels essentially blurring the classification boundaries between them. In the
instance-specific case, the addition of a decoder network and corresponding
reconstruction error leads the logits learned by the classifier to retain infor-
mation necessary for the reconstruction, which acts as a regularizer upon the
class labels. The proposed methods were shown experimentally to lead to
increased performance in various networks and datasets, both in the general-
class and instance-specific cases, as well as in a combination of the two.

19

Acknowledgements

This work was supported by the European Union’s Horizon2020 Research
and Innovation Program (OpenDR) under Grant 871449. This publication
reflects the authors’ views only. The European Commission is not responsible
for any use that may be made of the information it contains.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of
the IEEE international conference on computer vision, 2015, pp. 1026–
1034.

[2] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features
from tiny images (2009).

[3] L. Van der Maaten, G. Hinton, Visualizing data using t-sne., Journal of
machine learning research 9 (11) (2008).

[4] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely con-
nected convolutional networks, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[5] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, R. Fergus, Training con-
volutional networks with noisy labels, arXiv preprint arXiv:1406.2080
(2014).

[6] G. Algan, I. Ulusoy, Metalabelnet: Learning to generate soft-labels from
noisy-labels, arXiv preprint arXiv:2103.10869 (2021).

[7] N. El Gayar, F. Schwenker, G. Palm, A study of the robustness of knn
classifiers trained using soft labels, in: IAPR Workshop on Artificial
Neural Networks in Pattern Recognition, Springer, 2006, pp. 67–80.

[8] H. M. Fayek, M. Lech, L. Cavedon, Modeling subjectiveness in emotion
recognition with deep neural networks: Ensembles vs soft labels, in:
2016 international joint conference on neural networks (IJCNN), IEEE,
2016, pp. 566–570.

20

[9] R. Diaz, A. Marathe, Soft labels for ordinal regression, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 4738–4747.

[10] N. Vyas, S. Saxena, T. Voice, Learning soft labels via meta learning,
arXiv preprint arXiv:2009.09496 (2020).

[11] M. Tzelepi, A. Tefas, Efficient training of lightweight neural networks
using online self-acquired knowledge distillation, in: 2021 IEEE Inter-
national Conference on Multimedia and Expo (ICME), IEEE, 2021, pp.
1–6.

[12] M. Tzelepi, N. Passalis, A. Tefas, Online subclass knowledge distillation,
Expert Systems with Applications 181 (2021) 115132.

[13] Z. Zhang, X. Shu, B. Yu, T. Liu, J. Zhao, Q. Li, L. Guo, Distilling knowl-
edge from well-informed soft labels for neural relation extraction, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34,
2020, pp. 9620–9627.

[14] L. Yuan, F. E. Tay, G. Li, T. Wang, J. Feng, Revisiting knowledge
distillation via label smoothing regularization, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3903–3911.

[15] R. Müller, S. Kornblith, G. Hinton, When does label smoothing help?,
arXiv preprint arXiv:1906.02629 (2019).

[16] M. Lukasik, S. Bhojanapalli, A. Menon, S. Kumar, Does label smoothing
mitigate label noise?, in: International Conference on Machine Learning,
PMLR, 2020, pp. 6448–6458.

[17] Y. Xu, Y. Xu, Q. Qian, H. Li, R. Jin, Towards understanding label
smoothing, arXiv preprint arXiv:2006.11653 (2020).

[18] B. Chen, L. Ziyin, Z. Wang, P. P. Liang, An investigation of how la-
bel smoothing affects generalization, arXiv preprint arXiv:2010.12648
(2020).

[19] C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, M.-M. Cheng,
Delving deep into label smoothing, IEEE Transactions on Image Pro-
cessing 30 (2021) 5984–5996.

21

[20] H. Zhang, L. Xiao, W. Chen, Y. Wang, Y. Jin, Multi-task label embed-
ding for text classification, arXiv preprint arXiv:1710.07210 (2017).

[21] Y. Dong, P. Liu, Z. Zhu, Q. Wang, Q. Zhang, A fusion model-based label
embedding and self-interaction attention for text classification, IEEE
Access 8 (2019) 30548–30559.

[22] X. Sun, B. Wei, X. Ren, S. Ma, Label embedding network: Learning
label representation for soft training of deep networks, arXiv preprint
arXiv:1710.10393 (2017).

[23] C. Chen, H. Wang, W. Liu, X. Zhao, T. Hu, G. Chen, Two-stage label
embedding via neural factorization machine for multi-label classifica-
tion, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, 2019, pp. 3304–3311.

[24] C. Liu, J. JaJa, Class-similarity based label smoothing for generalized
confidence calibration, arXiv preprint arXiv:2006.14028 (2020).

[25] Z. Zhang, M. R. Sabuncu, Self-distillation as instance-specific label
smoothing, arXiv preprint arXiv:2006.05065 (2020).

[26] P. Nousi, A. Tefas, Deep learning algorithms for discriminant autoen-
coding, Neurocomputing 266 (2017) 325–335.

[27] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms (2017).
arXiv:cs.LG/1708.07747.

[28] A. Coates, A. Ng, H. Lee, An analysis of single-layer networks in unsu-
pervised feature learning, in: Proceedings of the fourteenth international
conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, 2011, pp. 215–223.

[29] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading
digits in natural images with unsupervised feature learning (2011).

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

22

[31] F.-F. Li, M. Andreeto, M. Ranzato, P. Perona, Caltech 101 (Apr 2022).
doi:10.22002/D1.20086.

[32] Y. Le, X. Yang, Tiny imagenet visual recognition challenge, CS 231N
7 (7) (2015) 3.

23

D4.4: Final report on deep environment active perception and cognition 90/112

7.3 Variational Voxel Pseudo Image Tracking

The appended paper [70] follows.

OpenDR No. 871449

Variational Voxel Pseudo Image Tracking
Illia Oleksiienko∗, Paraskevi Nousi†, Nikolaos Passalis†, Anastasios Tefas† and Alexandros Iosifidis∗

∗DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark
†Department of Informatics, Aristotle University of Thessaloniki, Greece

{io, ai}@ece.au.dk {paranous, passalis, tefas}@csd.auth.gr

Abstract—Uncertainty estimation is an important task for
critical problems, such as robotics and autonomous driving,
because it allows creating statistically better perception models
and signaling the model’s certainty in its predictions to the
decision method or a human supervisor. In this paper, we propose
a Variational Neural Network-based version of a Voxel Pseudo
Image Tracking (VPIT) method for 3D Single Object Tracking.
The Variational Feature Generation Network of the proposed
Variational VPIT computes features for target and search regions
and the corresponding uncertainties, which are later combined
using an uncertainty-aware cross-correlation module in one of
two ways: by computing similarity between the corresponding
uncertainties and adding it to the regular cross-correlation values,
or by penalizing the uncertain feature channels to increase
influence of the certain features. In experiments, we show that
both methods improve tracking performance, while penalization
of uncertain features provides the best uncertainty quality.

Index Terms—3D Single Object Tracking, Point Cloud, Uncer-
tainty Estimation, Bayesian Neural Networks, Variational Neural
Networks

I. INTRODUCTION

3D Singe Object Tracking (3D SOT) is the task of tracking
an object in a 3D scene based on the given initial object
position. This task combines challenges from both 3D Object
Detection, as objects have to be accurately located in space,
and 3D Multiple Object Tracking, as the object of interest has
to be distinguished from similar objects. There is a variety
of sensors that can be used for 3D SOT, including single
or double camera setups, Lidar and Radar. While the camera
setups are the cheapest option, they capture images which lack
valuable for 3D SOT depth information, which can be provided
by Lidar sensors. Lidars generate point clouds, which are sets
of 3D points detected as the positions in the 3D scene of light
beam reflections. The explicit depth information makes Lidar
the most common choice for many 3D perception methods,
including 3D SOT. The SOT is performed by predicting the
offset of the object’s position with respect to its previous
known position. This has been approached by using correlation
filters [1], [2], deep learning methods to directly predict the
object’s offset [3], or by using Siamese methods which search
for the position with the highest similarity score [4]–[8]. Since
3D perception methods are often used in critical fields, such
as robotics or autonomous driving, it is important to provide
accurate predictions and confidence estimations to avoid costly
damages.

Uncertainty estimation in neural networks allows for using
the network’s outputs to better indicate the confidence in its
predictions and to improve their statistical qualities, leading to
better performance. The practical applications of uncertainty
estimation are studied for several perception tasks, including
3D Object Detection [9]–[11], 3D Object Tracking [12], [13],
3D Human Pose Tracking [14], and Steering Angle Prediction
[15]. These methods provide an improvement in percep-
tion and control by using an uncertainty estimation process.
However, most of these methods adopt single deterministic
approaches to estimate different types of uncertainty, or use
Monte Carlo Dropout (MCD) [16] as an approach to estimate
epistemic uncertainty. According to experiments in [17] on the
uncertainty quality of different types of Bayesian Neural Net-
works (BNNs), MCD achieves the worst uncertainty quality.

In this paper, we introduce a Variational Neural Network
(VNN) [18] based version of the fastest 3D SOT method
called Voxel Pseudo Image Tracking (VPIT) [8] and propose
two ways, i.e., the uncertainty similarity approach and the
penalization approach, to utilize the estimated uncertainty
and improve the tracking performance of the model. The
similarity-based approach computes a similarity between the
estimated uncertainties to serve as an additional similarity
score, while the penalization approach focuses on certain
features by penalizing the feature values corresponding to
high uncertainties. We train a VNN version of PointPillars for
3D Object Detection to serve as backbone for the proposed
Variational VPIT (VVPIT) method. We, then, train the whole
network following the VPIT’s training procedure, but use
the uncertainty-aware cross-correlation function and multiple
samples of the Variational Feature Generation Network to
compute uncertainty in the produced features. In experiments,
we show that the use of uncertainty leads to an improvement
in the model’s tracking performance, and the choice of the
penalty-based uncertainty utilization strategy leads to the high-
est improvement in Success and Precision metrics.

The remainder of the paper is structured as follows. Section
II describes related and prior work. In Section III we de-
scribe the proposed approach, including the Variational TANet
model and its training and the proposed uncertainty-aware
AB3DMOt. Section IV outlines the experimental protocol and
provides experimental results. Section V concludes this paper1.

1Our code is available at gitlab.au.dk/maleci/opendr/vnn vpit opendr

ar
X

iv
:2

30
2.

05
91

4v
1

 [
cs

.C
V

]
 1

2
Fe

b
20

23

II. RELATED WORK

Gawlikowski et al. [19] define four main categories of
uncertainty estimation methods, based on the strategies they
use to estimate the uncertainty of the model. Deterministic
Methods [12], [20] use a single deterministic network and
either predict its uncertainty by using an additional regression
branch, or estimate it by analyzing the output of the model.
Bayesian Neural Networks (BNNs) [21], [22] consider a distri-
bution over weights of the network and compute the outputs of
multiple model samples for the same input. The variance in the
network’s outputs expresses the estimated uncertainty, while
the mean of outputs is used as the prediction value. Ensemble
Methods [23], [24] consider a categorical distribution over the
weights of the network and train multiple models at once.
Test-Time Data Augmentation methods [25]–[27] apply data
augmentations commonly used in the training phase during
the inference to pass distorted inputs to a single deterministic
network and compute the variance in the model’s outputs.

Variational Neural Networks [18], [28] are similar to BNNs,
but instead of considering a distribution over weights, they
place a Gaussian distribution over the outputs of each layer and
estimate its mean and variance values by the corresponding
sub-layers. All types of uncertainty estimation methods, except
those in the Deterministic Methods category, use multiple
model passes to compute the variance in the network’s outputs.
This means the Deterministic Methods generally have the
lowest computational impact on the model, but they usually
perform worse than other methods. The single determinis-
tic network approach can be improved by considering the
Bayesian alternative, as it can be seen as a case of BNNs
with the simple Dirac delta distribution over weights, which
places the whole distributional mass on a single weight point.

The 3D SOT task is usually approached by using point-
based Siamese networks, which consider a pair of target and
search regions, predict a position of the target region inside
the search region and compute the object offset relative to the
previous object position. P2B [29], BAT [30], Point-Track-
Transformer (PTT) [31], [32] and 3D-SiamRPN [4] use point-
wise Siamese networks and predict object positions based
on the comparison of target and search point clouds. 3D
Siam-2D [33] uses one Siamese network in a 2D Birds-Eye-
View (BEV) space to create fast object proposals and another
Siamese network in 3D space to select the true object proposal
and regress the bounding box. Voxel Pseudo Image Tracking
(VPIT) [8] uses voxel pseudo images in BEV space and
deploys a SiamFC-like module [5] to extract and compare
features from target and search regions. Instead of using
different scales, VPIT uses a multi-rotation search to find the
correct vertical rotation angle.

Bayesian YOLO [34] is a 2D object detection method that
estimates uncertainty by combining Monte Carlo Dropout
(MCD) [16] with a deterministic approach and predicts
aleatoric uncertainty with a special regression branch, while
computing the epistemic uncertainty from the variance in
MCD model predictions. Feng et al. [9] use a Lidar-based 3D

object detection method and estimate the uncertainty in the
predictions of the model in a similar way to Bayesian YOLO,
by using a partially MCD model for the epistemic uncertainty
estimation and using a separate regression branch for the
aleatoric uncertainty estimation. LazerNet [10] predicts the
uncertainty of a 3D bounding box using a single deterministic
network and utilizes the predicted uncertainty during the
non-maximum suppression process. This approach is further
improved by estimating the ground truth labels’ uncertainty
based on the IoU between the 3D bounding box and the
convex hull of the enclosed point cloud, and using the provided
uncertainties during the training process [11].

Zhong et al. [12] perform 3D Multiple Object Tracking
(MOT) by using a single deterministic network for 3D Object
Detection to predict the uncertainty in outputs and providing
the estimated uncertainties to the tracker by replacing the unit-
Gaussian measurement noise in Kalman filter [35] with the
predicted uncertainties. Uncertainty-Aware Siamese Tracking
(UAST) [36] performs 2D single object tracking by using a
single deterministic network and computing the distribution
over the outputs by quantizing over the specific range of values
and predicting the softmax score for each quantized value. The
final regression value is computed as an expectation of the
corresponding quantized distribution, and the distributions are
used to estimate better confidence scores and select the best
box predictions.

To the best of our knowledge, there are no methods that
utilize uncertainty for 3D Single Object Tracking. Moreover,
the estimation of uncertainty for related tasks, such as 2D
Single Object Tracking, 3D Multiple Object Tracking or 3D
Object Detection, is based on single deterministic networks
or MCD, despite the fact that the statistical quality of single
deterministic networks can be improved by using a Bayesian
alternative, and that MCD tends to produce the worst quality
of uncertainty between BNNs [17].

III. METHODOLOGY

Voxel Pseudo Image Tracking (VPIT) uses PointPillars
[37] as a backbone to create voxel pseudo images and to
process them with a Feature Generation Network (FGN),
which consists of the convolutional part of the PointPillars’
Region Proposal Network. The search and target features are
compared with a convolutional cross-correlation function that
calculates a pixel-wise similarity map. The highest value in
this similarity map is used to determine the object position
offset between frames. The structure of VPIT is present on
Fig. 1.

We train a Variational VPIT (VVPIT) by replacing the
FGN subnetwork with a Variational Neural Network (VNN)
[18], [28] based version of it, i.e., we create a Variational
FGN (VFGN). We use multiple samples of the network for
each input to compute mean and variance for the output
features. The number of samples can be dynamic and is
not required to be the same during training and inference.
For each of target and search regions, VFGN produces a
set of outputs in the form Y = {yi, i ∈ [1, . . . , P]} which

Fig. 1: Voxel Pseudo Image Tracking structure.

correspond to the outputs of P sampled VFGN models, with
Y s = {ysi , i ∈ [1, . . . , P]} corresponding to the search region
output set and Y t = {yti , i ∈ [1, . . . , P]} to the target region
output set. The number of samples P can be different for each
set, but for simplicity, we use the same number of samples for
both target and search regions. The mean and variance of the
outputs are computed as follows:

ysm =
1

P

P∑

i

ysi ,

ytm =
1

P

P∑

i

yti ,

ysv = diag

(
1

P

P∑

i

(ysi − ysm)(ysi − ysm)T

)
,

ytv = diag

(
1

P

P∑

i

(yti − ytm)(yti − ytm)T

)
,

(1)

where ysm, y
s
v and ytm, y

t
v are the mean and variance values

of search and target output sets, respectively, and diag(·) is
a function that returns the main diagonal of a matrix. Fig. 2
shows an example of the mean and variance values of features

generated by the VFGN for a search region with a car in the
center. The background pixels have mostly high certainty, as
all sampled models agree on them being irrelevant. The high
magnitude features at the top part of the car have the highest
uncertainty, as different model samples can disagree on the
details in the appearance of the object.

The proposed VVPIT method can utilize the predicted
uncertainties in different ways. The simplest way is to entirely
ignore the uncertainty values and process the mean outputs
only with the regular cross-correlation function g(a, b), de-
fined as a 2D convolution conv2Dω=b(a) with ω being the
kernel weights. This still leads to a statistically better model
which can provide better predictions, but it can be further
improved by utilizing the predicted uncertainties in the cross-
correlation module. Since most 3D SOT methods compare
region features in a similarity manner, we focus on similarity-
based approaches to use the uncertainty values, instead of
applying distance-based approaches. We propose a double
similarity-based process to utilize uncertainty, which treats
mean and variance values as separate feature sets and uses
the convolutional similarity function g(a, b) on both of them
independently. The final similarity value ĝdouble is obtained
by linearly the similarities of the mean and variance of the
outputs as follows:

ĝdouble(y
s
m, y

t
m, y

s
v, y

t
v) = g(ysm, y

t
m) + λg(ysv, y

t
v), (2)

where λ is a variance weight hyperparameter. This approach
is based on the idea that positions with similar uncertainties
should be prioritized, as there is a high chance of them repre-
senting the same object. Humans can also treat uncertainties
as separate features. Let us consider a task of classifying
triangle and circle images, where some objects are rounded
triangles. Based on the deformation degree, people will have
different values of aleatoric uncertainty in their predictions,
as they will have harder time classifying rounded triangles
as only one of the two classes. If a person is asked to track
these objects, the aleatoric uncertainty in predictions may be
the only feature needed to distinguish between objects, given
that size, thickness and other features are identical. This is
achieved by describing the tracked objects as “definitely a
circle”, “triangle with some curves”, “in between the circle and
the triangle”, which leads to low chances of mixing up these
objects during tracking. The same principle can be applied for
Lidar-based 3D SOT task. However, there are many different
sources of uncertainty, considering the varying point cloud
density, possible occlusions and object rotation. Some parts
of the object of interest may have uncertain features, and
this uncertainty is likely to be preserved during the tracking
process.

In addition to the above approach, we also define an uncer-
tainty penalization process which places focus on features with
higher certainty and penalizes the uncertain feature values.
This is achieved by dividing each mean feature value during
the convolutional process by the corresponding normalized

(a) Mean (b) Variance (c) Mean & certainty

Fig. 2: An example of (a) mean, (b) variance and (c) mean and
certainty features of a search region with a car in the center.
Lighter color in the mean and variance images corresponds to
higher values. Red color channel represents certainty in the
corresponding pixel values, and blue color channel represents
the mean feature values. The purple color indicates that the
feature values and the certainty in those values is equally high,
while the blue pixels signal features with high values and low
certainty.

variance score, as follows:

∀c, vcn(v) = (ρ− 1)
vc −min(vc)

max(vc)−min(vc)
+ 1,

∀px,∀py, ĝpen(ysm, ytm, ysv, ytv)px,py =

=
2ỹsm

px,py ỹtm
px,py

vn(ỹsv)
px,py + vn(ỹtv)

px,py

,

(3)

where the vn(v) function is used to normalize the variance
predictions by the channel-wise minimum and maximum val-
ues to be in [1, ρ] range, with a hyperparameter ρ that defines
how much the uncertain predictions are penalized, vcn(v)
implements the normalization procedure for a single channel
c. For an input j, j̃ represents the tensor with convolutional
patches of j, and jpx,py corresponds to the values of j at
position (px, py).

We follow the VPIT’s training protocol and initialize a
VVPIT model based on the VNN version of PointPillars for
3D Object Detection. After the initialization, the model is
trained with the Binary Cross-Entropy (BCE) loss between
the ground truth and the predicted score maps. Multiple
VFGN samples are used during both training and inference
to compute the mean and the variance in the target and
search region features, which are later combined by using an
uncertainty-aware cross-correlation module using one of the
processes described above.

IV. EXPERIMENTS

We use the KITTI [38] tracking dataset to train and test
models. Following the standard protocol, we use KITTI track-
ing training subset for both training and testing, as the test
subset does not provide the initial ground truth positions. The
tracks [0, . . . , 18] are used for training and validation, and
tracks 19 and 20 are used to test the trained models. Model
performance is computed using the Precision and Success [39]
metrics, which are based on the predicted and ground truth
objects’ center difference and 3D Intersection Over Union,

TABLE I: Precision and Success values on the KITTI single
object tracking experiments for VPIT and Variational VPIT
(VVPIT) models.

Method Uncertainty Success Precision

VPIT - 50.49 64.53
VVPIT averaging 51.97 66.69
VVPIT double similarity 52.62 66.56
VVPIT uncertainty penalization 53.30 67.79

respectively. VPIT uses a pre-trained PointPillars network
to initialize its pseudo image generation and FGN modules.
To follow the same procedure, we train a VNNs version of
PointPillars on the KITTI [38] detection dataset, use it to
initialize the VPIT model and train the corresponding model
for 64, 000 steps with different number of training VFGN
samples per step in [1, . . . , 20] range.

Table I contains the evaluation results of regular VPIT and
the Variational VPIT (VVPIT) models with different ways to
utilize the predicted uncertainty. We report the best-performing
models for each uncertainty utilization process, which are
obtained by using 20 samples of the VFGN module. By com-
puting the average of predictions and discarding the variances,
VVPIT achieves higher tracking performance compared to the
VPIT model. By utilizing uncertainties, the Success and Pre-
cision values are further improved. Both double similarity and
uncertainty penalization processes lead to better models, but
the penalization process leads to a better tracking performance.

V. CONCLUSIONS

In this paper, we proposed a method to utilize uncertainty
in 3D Single Object Tracking which uses a Variational Neural
Network (VNN) based version of the VPIT 3D Single Object
Tracking method to estimate uncertainty in target and search
features and combines these features with an uncertainty-
aware cross-correlation module. We proposed two ways to uti-
lize uncertainty in cross-correlation, i.e., by double similarity
which adds a similarity in uncertainties to the regular cross-
correlation, and by uncertainty penalization which penalizes
uncertain features to shift focus to the more reliable feature
channels. Additionally, we tested the model’s performance
without exploiting the estimated uncertainties, as it still leads
to a statistically better model compared to regular VPIT. The
use of VNNs improves the tracking performance of VPIT in
all cases, with the uncertainty penalization leading to the best
Success and Precision values.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871449 (OpenDR). This publication reflects
the authors’ views only. The European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and Yui Man Lui,
“Visual object tracking using adaptive correlation filters,” in CVPR,
2010, pp. 2544–2550.

[2] Joao F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista, “High-
speed tracking with kernelized correlation filters,” TPAMI, vol. 37, no.
3, pp. 583–596, 2015.

[3] David Held, Sebastian Thrun, and Silvio Savarese, “Learning to track
at 100 fps with deep regression networks,” 1604.01802, 2016.

[4] Zheng Fang, Sifan Zhou, Yubo Cui, and Sebastian Scherer, “3d-siamrpn:
An end-to-end learning method for real-time 3d single object tracking
using raw point cloud,” Sensors, vol. 21, no. 4, pp. 4995–5011, 2021.

[5] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea Vedaldi,
and Philip HS Torr, “Fully-convolutional siamese networks for object
tracking,” arXiv:1606.09549, 2016.

[6] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu, “High
performance visual tracking with siamese region proposal network,” in
CVPR, 2018, pp. 8971–8980.

[7] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie
Yan, “Siamrpn++: Evolution of siamese visual tracking with very deep
networks,” arXiv:1812.11703, 2018.

[8] Illia Oleksiienko, Paraskevi Nousi, Nikolaos Passalis, Anastasios Tefas,
and Alexandros Iosifidis, “Vpit: Real-time embedded single object 3d
tracking using voxel pseudo images,” arXiv:2206.02619, 2022.

[9] Di Feng, Lars Rosenbaum, and Klaus Dietmayer, “Towards safe
autonomous driving: Capture uncertainty in the deep neural network
for lidar 3d vehicle detection,” in ITSC, 2018, pp. 3266–3273.

[10] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez,
and Carl K. Wellington, “Lasernet: An efficient probabilistic 3d object
detector for autonomous driving,” in CVPR, 2019, pp. 12677–12686.

[11] Gregory P. Meyer and Niranjan Thakurdesai, “Learning an uncertainty-
aware object detector for autonomous driving,” in IROS, 2020, pp.
10521–10527.

[12] Yuanxin Zhong, Minghan Zhu, and Huei Peng, “Uncertainty-aware
voxel based 3d object detection and tracking with von-mises loss,”
arXiv:2011.02553, 2020.

[13] Jianren Wang, Siddharth Ancha, Yi-Ting Chen, and David Held,
“Uncertainty-aware self-supervised 3d data association,” in RSJ, 2020,
pp. 8125–8132.

[14] Ben Daubney and Xianghua Xie, “Tracking 3d human pose with large
root node uncertainty,” in CVPR, 2011, pp. 1321–1328.

[15] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza, “A general
framework for uncertainty estimation in deep learning,” RA-L, vol. 5,
no. 2, pp. 3153–3160, 2020.

[16] Yarin Gal and Zoubin Ghahramani, “Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning,” in JMLR, 2016,
vol. 48, pp. 1050–1059.

[17] Ian Osband, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi,
Xiyuan Lu, and Benjamin Van Roy, “Epistemic Neural Networks,”
arXiv:2107.08924, 2021.

[18] Illia Oleksiienko, Dat Thanh Tran, and Alexandros Iosifidis, “Variational
neural networks,” arxiv:2207.01524, 2022.

[19] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali,
Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna M. Kruspe,
Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad, Wen
Yang, Richard Bamler, and Xiao Xiang Zhu, “A survey of uncertainty
in deep neural networks,” arxiv:2107.03342, 2021.

[20] Murat Sensoy, Lance Kaplan, and Melih Kandemir, “Evidential deep
learning to quantify classification uncertainty,” in NeurIPS, 2018, p.
3183–3193.

[21] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra, “Weight Uncertainty in Neural Networks,” in JMLR, 2015,
vol. 37, pp. 1613–1622.

[22] Martin Magris and Alexandros Iosifidis, “Bayesian learning for neural
networks: an algorithmic survey,” Artificial Intelligence Review, 2023.

[23] Ian Osband, John Aslanides, and Albin Cassirer, “Randomized prior
functions for deep reinforcement learning,” in NeurIPS, 2018, vol. 31,
pp. 8626–8638.

[24] Matias Valdenegro-Toro, “Deep sub-ensembles for fast uncertainty
estimation in image classification,” arxiv:1910.08168, 2019.

[25] Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren, “Au-
tomatic brain tumor segmentation using convolutional neural networks

with test-time augmentation,” in BrainLes. 2018, vol. 11384, pp. 61–72,
Springer.

[26] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien
Ourselin, and Tom Vercauteren, “Aleatoric uncertainty estimation with
test-time augmentation for medical image segmentation with convolu-
tional neural networks,” Neurocomputing, vol. 338, pp. 34–45, 2019.

[27] Ibrahem Kandel and Mauro Castelli, “Improving convolutional neural
networks performance for image classification using test time augmen-
tation: a case study using MURA dataset,” Health Inf. Sci. Syst., vol. 9,
no. 1, pp. 33, 2021.

[28] Illia Oleksiienko, Dat Thanh Tran, and Alexandros Iosifidis, “Variational
neural networks implementation in pytorch and jax,” Software Impacts,
vol. 14, pp. 100431, 2022.

[29] Haozhe Qi, Chen Feng, Zhiguo Cao, Feng Zhao, and Yang Xiao,
“P2b: Point-to-box network for 3d object tracking in point clouds,”
arXiv:2005.13888, 2020.

[30] Chaoda Zheng, Xu Yan, Jiantao Gao, Weibing Zhao, Wei Zhang, Zhen
Li, and Shuguang Cui, “Box-aware feature enhancement for single
object tracking on point clouds,” in ICCV, 2021, pp. 13199–13208.

[31] Jiayao Shan, Sifan Zhou, Zheng Fang, and Yubo Cui, “Ptt: Point-
track-transformer module for 3d single object tracking in point clouds,”
arXiv:2108.06455, 2021.

[32] Shan Jiayao, Sifan Zhou, Yubo Cui, and Zheng Fang, “Real-time 3d
single object tracking with transformer,” IEEE Trans Multimedia, 2022.

[33] Jesus Zarzar, Silvio Giancola, and Bernard Ghanem, “Efficient bird eye
view proposals for 3d siamese tracking,” arXiv:1903.10168, 2020.

[34] Florian Kraus and Klaus Dietmayer, “Uncertainty estimation in one-
stage object detection,” in ITSC, 2019, pp. 53–60.

[35] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.

[36] Dawei Zhang, Yanwei Fu, and Zhonglong Zheng, “UAST: Uncertainty-
aware siamese tracking,” in ICML, 2022, vol. 162 of PMLR, pp. 26161–
26175.

[37] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang,
and Oscar Beijbom, “PointPillars: Fast Encoders for Object Detection
from Point Clouds,” in CVPR, 2019.

[38] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are we ready for
autonomous driving? the KITTI vision benchmark suite,” in CVPR,
2012, pp. 3354–3361.

[39] Matej Kristan, Jiri Matas, Ales Leonardis, Tomas Vojir, Roman
Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka
Cehovin, “A novel performance evaluation methodology for single-
target trackers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 11, pp. 2137–2155, 2016.

D4.4: Final report on deep environment active perception and cognition 96/112

7.4 Uncertainty-Aware AB3DMOT by Variational 3D Object
Detection

The appended paper [?] follows.

OpenDR No. 871449

Uncertainty-Aware AB3DMOT by
Variational 3D Object Detection

Illia Oleksiienko and Alexandros Iosifidis
DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark

{io,ai}@ece.au.dk

Abstract—Autonomous driving needs to rely on high-quality
3D object detection to ensure safe navigation in the world.
Uncertainty estimation is an effective tool to provide statistically
accurate predictions, while the associated detection uncertainty
can be used to implement a more safe navigation protocol or in-
clude the user in the loop. In this paper, we propose a Variational
Neural Network-based TANet 3D object detector to generate 3D
object detections with uncertainty and introduce these detections
to an uncertainty-aware AB3DMOT tracker. This is done by
applying a linear transformation to the estimated uncertainty
matrix, which is subsequently used as a measurement noise for
the adopted Kalman filter. We implement two ways to estimate
output uncertainty, i.e., internally, by computing the variance of
the CNNs outputs and then propagating the uncertainty through
the post-processing, and externally, by associating the final
predictions of different samples and computing the covariance of
each predicted box. In experiments, we show that the external
uncertainty estimation leads to better results, outperforming both
internal uncertainty estimation and classical tracking approaches.
Furthermore, we propose a method to initialize the Variational
3D object detector with a pretrained TANet model, which leads
to the best performing models.

Index Terms—3D Object Detection, 3D Object Tracking, Point
Cloud, Uncertainty Estimation, Bayesian Neural Networks, Vari-
ational Neural Networks

I. INTRODUCTION

3D Object Detection (3D OD) is the problem that aims
to detect objects in the 3D world, providing the coordinates
relative to the sensor and true world sizes of the detected
objects. In contrast to 2D Object Detection which is commonly
based on the appearance of objects in an image or video frame,
in 3D OD the size of objects is not distorted by projections and
rigid objects retain their size on every data frame. However,
to obtain the data that can accurately represent objects in 3D
requires specialized sensors. Even though color images [1]–
[5] or stereo images [6]–[8] can be utilized to obtain 2D-like
object detections and use those to estimate the corresponding
3D bounding boxes, the detection accuracy and speed of such
methods is inferior to that of methods, such as VoxelNet [9],
SECOND [10], PointPillars [11] and TANet [12], utilizing
point cloud data captured by Lidar sensors.

3D Multiple Object (3D MOT) tracking aims to not only
find the position of objects in the 3D world, but also assign a
unique ID to each of them for the entire duration that an object
appears in the data sequence. 3D MOT can be performed in
a single stage, where the object detection in each frame and
objects associations in successive frames are performed by the
same model [13]–[15], or in two stages, where the detections

(a) 3D bounding box with the uncertainty provided by the Variational
TANet 3D object detector

(b) 3D bounding boxes with uncertainties provided to the Kalman
filter of the uncertainty-aware AB3DMOT tracker

Fig. 1: Examples of a 3D bounding boxes with raw un-
certainties obtained by the proposed Variational TANet (top
figure), and the uncertainties provided to the Kalman filter of
the proposed Uncertainty-aware AB3DMOT (bottom figure).
Yellow color represents higher probability, while the purple
color represents lower probability. Blue boxes correspond to
the mean predictions.

are generated by a 3D OD model and the object associations
in successive frames are performed separately.

Most 3D OD methods exploit object detections provided
by powerful object detectors, commonly based on deep neural
networks providing point estimates of their outputs. While
recent advances in deep learning have led to remarkable
results, this approach strongly restricts the ability of the object
association step to exploit possible uncertainties in the object
detections. Moreover, there has been some evidence that the
predictive uncertainty of accurate deep learning models does
not necessarily correlate with their confidence in their outputs
[16], [17]. Uncertainty estimation in neural networks allows
using the uncertainty in predictions to perform better decision-

ar
X

iv
:2

30
2.

05
92

3v
1

 [
cs

.C
V

]
 1

2
Fe

b
20

23

making, which is important in critical fields, such as medical
image analysis or autonomous driving. The practical applica-
tion of uncertainty estimation includes 3D Object Tracking
[18], [19], 3D Object Detection [20]–[22], 3D Human Pose
Tracking [23], Steering Angle Prediction [24], providing better
prediction and control than without the use of uncertainty.

In this paper, we propose an uncertainty-aware 3D object
tracking pipeline. We show how the TANet 3D object detector
[12] can be formulated and trained as a Variational Neural
Network [25] to generate object detections with uncertainty
in two ways, i.e., internally with variance estimation, and
externally with covariance estimation. We combine them with
a two-stage 3D MOT method called AB3DMOT [26] that
utilizes a 3D Kalman filter [27] for state prediction and
Hungarian algorithm [28] for objects’ association. We modify
AB3DMOT to use the predicted output uncertainty of the 3D
OD model in the 3D Kalman Filter and show that this improves
the Multi Object Tracking Accuracy (MOTA), F1 score and
Mostly Lost (ML) metrics.

The remainder of the paper is structured as follows. Section
II describes related and prior work. In Section III we de-
scribe the proposed approach, including the Variational TANet
model and its training and the proposed uncertainty-aware
AB3DMOt. Section IV outlines the experimental protocol and
provides experimental results. Section V concludes this paper1.

II. RELATED WORK

3D OD based on Lidar point clouds cannot be performed
with standard CNNs, as the point cloud data consists of a set
of irregular 3D point positions. In order to introduced point
cloud data as inputs to Deep Learning methods, one needs
to structure it first, with voxelization being the most popular
way of doing so. Voxelization is performed by selecting a
region of interest in the 3D space and splitting it using a
grid of same-sized cuboid shapes, called voxels. VoxelNet [18]
creates a 3D grid of voxels and processes points inside each
voxel to create voxel features, which are later processed by
3D and 2D convolutional layers. To accelerate the process,
PointPillars [11] uses voxels with the maximum vertical size
called pillars resulting in a 2D grid that can be used as
input to a 2D CNN model, which is much faster than using
3D convolutions. TANet [12] introduces the Triple Attention
module for extracting better features from pillars and a Coarse-
to-Fine regression module that produces coarse detections first
and then refines them with an additional subnetwork.

The fastest 2D Multiple Object Tracking (MOT) method
called SORT [29] utilizes 2D Kalman Filter [27] and Hun-
garian algorithm [28] to associate the 2D object detections
provided by a Deep Learning model. The 3D version of SORT,
called AB3DMOT [26], performs better than SORT in 3D
MOT by utilizing a 3D Kalman Filter instead of a 2D one.
In [18], the use of uncertainty for 3D SOT is investigated
by training the voxel-based 3D OD method SECOND [10]
with an additional branch to predict the model’s uncertainty,

1Our code is available at gitlab.au.dk/maleci/opendr/ua-ab3dmot

Then, the predicted uncertainty is used in the Kalman filter’s
measurement noise leading to better tracking results. The use
of predicted uncertainty, instead of assuming a unit-Gaussian
distribution over the measurements expressed by using the
identity matrix, for measurement noise is also supported by
[30].

Uncertainty estimation in neural networks can be performed
using different ways to model uncertainty. The four main
categories of uncertainty estimation methods defined in [31]
are: Deterministic Methods [18], [32] which use a single
network pass with uncertainty estimated from one of the
network branches or by analyzing the behavior of the network;
Bayesian Neural Networks (BNNs) [33], [34] that sample
different models from the corresponding weight distribution
and process the input using them resulting in a set of pre-
dictions, mean and variance of which are used to estimating
the predictive distribution; Ensemble Methods [35], [36], that
can also be seen as BNNs with Categorical distribution; and
Test-Time Data Augmentation methods [37]–[39] that apply
different augmentations to the input to create a set of slightly
different inputs that are processed by the same model.

While Deterministic Methods require a single pass of the
network leading to lower inference time, they usually perform
worse than the rest of the methods as they can be seen as
a point estimation of statistically better Bayesian approaches.
Variational Neural Networks [25], [40] are similar to BNNs,
but consider a Gaussian distribution over the outputs of each
layer, the mean and variance of which are generated by the
corresponding sub-layers. The output uncertainty is calculated
by sampling different values from the corresponding Gaussian
distributions, resulting in multiple predictions for the same
input.

III. UNCERTAINTY-AWARE 3D OBJECT TRACKING

A. Variational TANet

TANet [12] is a pillar-based 3D Object Detection model
that improves PointPillars by introducing the Triple Attention
module to extract better pillar (voxel) features and by using
the Coarse-to-Fine fully convolutional network to process the
voxel pseudo image and generate the bounding box predic-
tions. TANet is an anchor-based method [41], which means
that the output from the Coarse-to-Fine network is a voxel-
wise prediction with position and sizes predicted as offsets
from the corresponding anchor. This output is then processed
by a Non-maximum-suppression module to select the most
likely boxes and decoded based on the anchors to create the
final 3D bounding boxes.

We train a Variational TANet (VTANet) by replacing the
fully convolutional Coarse-to-Fine module with a Variational
Neural Network (VNN) [25], [40] based version of it. The
training is performed using the same loss function and training
procedure, except we use multiple model samples per each
data input and train for the mean of the predictions of all
samples.

We propose two ways for the VTANet model to pro-
vide its estimated uncertainty to the subsequent tracker. The

first, namely internal, way computes mean and variance of
predictions of the Variational Coarse-to-Fine network and
provides the variance through the decoding stage by treating
the values as Gaussian random variables. The outputs of
the CNN are voxel-wise in the form of (x, y, z, w, l, h, r)
with respect to an anchor of the same data format, where
(x, y, z) is the relative position vector, (w, l, h) is the
relative size vector and r is the relative rotation angle.
For a set of predictions from (xi, yi, zi, wi, li, hi, ri), i ∈
[1, S], where S is the number of samples, we compute
the mean prediction (mx,my,mz,mw,ml,mh,mr) and the
corresponding variance (vx, vy, vz, vw, vl, vh, vr). The anchor
(xa, ya, za, wa, la, ha, ra) that corresponds to the prediction is
used to create the decoded predictions (x̂, ŷ, ẑ, ŵ, l̂, ĥ, r̂) as
follows:

d =
√
l2a + w2

a,

(x̂, ŷ) = (mx,my)d+ (xa, ya),

(ŵ, l̂, ĥ) = (emwwa, e
ml la, e

mhha),

r̂ = mr + ra,

ẑ = mzha + za + ha/2− ĥ/2.

(1)

The corresponding variances (vx̂, vŷ, vẑ, vŵ, vl̂, vĥ, vr̂) are cal-
culated as follows:

d =
√
l2a + w2

a,

vexp(m, v) = e2m+2v − e2m+v,

(vx̂, vŷ) = (vx, vy)d2,

(vŵ, vl̂, vĥ) =

(vexp(ŵ, vw)w2
a, vexp(l̂, vl)l

2
a, vexp(ĥ, vh)h2a)

r̂ = vr,

vẑ = vzh
2
a,

(2)

where vexp(m, v) is the variance of the exponent of the
Gaussian random variable.

The second, namely external, way to compute uncertainty
runs the full pipeline of TANet to create S 3D bounding box
predictions, where S is the number of neural network param-
eter samples. These predictions are then grouped by finding
the best association for each predicted object, similarly to the
Hungarian algorithm on the tracking step. Consider the set of
predictions PS = {pi | i ∈ [1, . . . , S]} where each element pi
is a set of 3D bounding boxes pi = {bk | k ∈ [1, . . . ,Ki]},
where Ki is the number of predicted boxes for the sample i.
For different neural network parameter samples, some boxes
with high uncertainty may or may not appear, which results in
slightly different values of Ki. We define the association set
A(P) as a set of box groups {gq} where each group consists
of 3D bounding boxes from different samples with the closest
distances to each other, but no more than 1 meter. The groups
are created by iterating through all boxes for each sample and
checking the smallest distance to the average position of each
existing group. If the distance is lower than 1 meter, the object

is added to the selected group, and otherwise it creates a new
group:

∀i ∈ [1..S] ∀k ∈ [1..Ki]

Ĝ(bk) = argmin
gq

|avg({bx,y,z ∈ gq})− bx,y,zk |

G(bk) =

{
Ĝ(bk), if |avg({bx,y,z ∈ Ĝ(bk)})− bx,y,zk | ≤ 1,

gnew, otherwise,

gq = {bk |G(bk) = q, i ∈ [1..S], k ∈ [1..Ki]},
(3)

where bx,y,z is a position of the bounding box b and avg(·)
is the averaging function. For each group gq , we compute the
mean bounding box and the covariance matrix in the form of
a 7×7 matrix for position (x, y, z), size (w, h, l) and rotation
α.

B. Initialization of Variational TANet by pretrained model

Instead of training the VTANet model from scratch, we
can initialize it based on an already trained TANet model
which provides point estimates. This can be done based on
the fact that infinitely small variance in a Gaussian distri-
bution transforms it into a Dirac delta distribution, with all
distributional mass placed on the mean value. By following
the reverse process, we initialize the VTANet model with
means from the corresponding pretrained TANet parameters,
and the variance weights are set to be small values by either
filling them with constant values or by using Xavier normal
or uniform initialization [42]. Small variance values will not
deviate too much from the initial pretrained values, but allow
for training the whole model together and to find the optimal
variance and mean parameters.

C. Uncertainty-Aware AB3DMOT

As shown in [18], [30], the Kalman filter benefits from
providing actual uncertainties instead of assuming a unit-
Gaussian distribution over the measurements. We follow this
approach and provide the modified variance diagonal matrices
or covariance matrices from the predicted uncertainties to the
Kalman filter. We modify the uncertainty matrices provided
by the detector with a linear transformation:

Σ̂ = αI + βΣ, (4)

where Σ̂ is the uncertainty provided to the Kalman filter, Σ
is the uncertainty predicted by the VTANet object detector,
α is a hyperparameter used to control the contribution of
the base uncertainty to Σ̂, and β is a hyperparameter that
controls the contribution of the predicted uncertainty to Σ̂.
This transformation aims to provide a degree of freedom for
the Kalman filter in using the predicted object detections while
utilizing the actual uncertainties in the predictions. Using the
values α = 1 and β = 0 leads to the standard AB3DMOT
exploiting unit-Gaussian distribution measurement noise in
the Kalman filter. Fig. 1 shows the difference between the
uncertainty from the detector and the modified uncertainty
provided to the Kalman filter.

TABLE I: Tracking results on KITTI tracking dataset.

Model Uncertainty
method

Training
Samples

Inference
Samples

Tracking
Parameters

MOTA%↑ F1%↑ ML%↓

Voxel von-Mises [18] deterministic - - SORT [29] - 55.10 30.60
TANet [12] - - - AB3DMOT [26] 68.71 85.69 8.58
IVTANet + UA-AB3DMOT covar 2 4 α = 0.6, β = 5 72.30 87.34 7.74
IVTANet + UA-AB3DMOT covar 2 4 α = 0, β = 1 72.13 87.26 7.74
IVTANet + UA-AB3DMOT covar 2 4 α = 1, β = 0 72.05 87.22 7.74
VTANet + UA-AB3DMOT covar 3 3 α = 0.6, β = 5 69.63 86.46 7.95
VTANet + UA-AB3DMOT covar 3 3 α = 0, β = 1 69.48 86.39 8.16
VTANet + UA-AB3DMOT covar 3 4 α = 0.6, β = 5 69.42 86.38 9.00
VTANet + UA-AB3DMOT covar 3 3 α = 1, β = 0 69.15 86.31 9.00
VTANet + UA-AB3DMOT covar 3 4 α = 1, β = 0 68.86 85.04 9.21
VTANet + UA-AB3DMOT covar 2 4 α = 0.6, β = 5 68.54 86.13 8.16
VTANet + UA-AB3DMOT var 3 4 α = 0.5, β = 5 68.46 85.91 7.95

IV. EXPERIMENTS

We train TANet and VTANet models using the standard
training procedure on KITTI [43] dataset described in [12].
VTANet models are trained with sample count in [1, . . . , 4]
range and each model is evaluated with AB3DMOT on KITTI
tracking dataset with every number of samples from the same
range. We train the internal uncertainty VTANet models that
provide the variance values and the external uncertainty mod-
els that provide the covariance values. Each model is evaluated
with the different configuration of uncertainty transformation
parameters α and β, including α = 0, β = 1 for the
predicted uncertainty only, α = 1, β = 0 to not use the
predicted uncertainty and different combinations of α ∈ [0, 1]
and β ∈ {0.1, 1, 5, 10, 50}. Additionally, we train IVTANet
models which are initialized with a pretrained TANet values
for means and small variance weights and trained using the
same training procedure as VTANet models. We compare the
performance of the proposed method with that of the Voxel
von-Mises method [18], which is the only method we found in
the literature incorporating uncertainty estimation in 3D object
tracking. This method employs SECOND [10] for 3D OD and
SORT [29] for objects associations.

Table I shows the performance of the competing models
on the KITTI tracking dataset based on three performance
metrics, namely the Multi Object Tracking Accuracy (MOTA),
F1 score, and Mostly Lost (ML). This table also provides
information on the hyperparameter values used for different
model, i.e., the type of adopted uncertainty estimation, the
number of network parameter samples used during training
and inference, and the tracking method and hyperparameter
values.

As can be seen, the proposed uncertainty-aware 3D MOT
method with a VTANet trained from scratch, i.e., VTANet +
UA-AB3DMOT, provides better MOTA, F1 and ML scores
compared to the classic 3D MOT approach combining TANet
with AB3DMOT, i.e., TANet + AB3DMOT, due to the use
of uncertainty. The external way to compute uncertainty as
covariance provides better results compared to the internal
one providing variance across all configurations, and therefore,
only a sub-set of configurations is provided in the results. The
Voxel von-Mises method [18] provides much worse results due

to the use of inferior methods for each of its processing steps,
i.e., it adopts the less accurate 3D detector SECOND [10], the
less suited for 3D object detection tracker SORT [29] and a
deterministic uncertainty estimation method that does not rely
on a BNN or an Ensemble method during training. The best
MOTA, F1 and ML scores are achieved by the configurations
of the proposed method which employ a VTANet pretrained
using a TANet providing point estimates. Those are denoted
by IVTANet + UA-AB3DMOT in Table I. As can be seen in
the results, the use of an IVTANet 3D object detector improves
performance compared to the classic 3D MOT approach even
without exploiting the estimated uncertainty (i.e., when α = 1
and β = 0). Overall, the highest performance is achieved
by using a VTANet obtained by training a pretrained TANet
combined with the AB3DMOT model exploiting the estimated
uncertainty (IVTANet + UA-AB3DMOT). It is interesting to
see that the use of the same linear combination values (α = 0.6
and β = 5) leads to the best performance when both VTANet
and IVTANet 3D object detectors are used.

V. CONCLUSIONS

In this paper, we proposed an uncertainty-aware 3D object
tracking pipeline that utilizes a Variational Neural Network-
based version of TANet 3D object detector to generate pre-
dictions with uncertainty in two different ways, i.e., internally
with variance estimation and externally with covariance es-
timation. Predictions from the detector are introduced into
the uncertainty-aware tracker that utilizes the estimated uncer-
tainty to determine the measurement noise in the Kalman filter,
leading to an improvement in MOTA, F1 and ML metrics.
We use a pretrained TANet model to initialize mean weights
of a Variational TANet and initialize the variance weights
with small values. The resulting model is trained using the
regular training procedure and leads to a much better tracking
performance compare to the models trained from scratch.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No 871449 (OpenDR). This publication reflects the authors’ views
only. The European Commission is not responsible for any use that
may be made of the information it contains.

REFERENCES

[1] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler,
and Raquel Urtasun, “Monocular 3d object detection for autonomous
driving,” in CVPR, 2016, pp. 2147–2156.

[2] Tong He and Stefano Soatto, “Mono3d++: Monocular 3d vehicle
detection with two-scale 3d hypotheses and task priors,” in AAAI, 2019,
pp. 8409–8416.

[3] Bin Xu and Zhenzhong Chen, “Multi-level fusion based 3d object
detection from monocular images,” in CVPR, 2018, pp. 2345–2353.

[4] Zengyi Qin, Jinglu Wang, and Yan Lu, “Monogrnet: A geometric
reasoning network for monocular 3d object localization,” in AAAI, 2019,
pp. 8851–8858.

[5] Thomas Roddick, Alex Kendall, and Roberto Cipolla, “Orthographic
feature transform for monocular 3d object detection,” in BMVC, 2019,
p. 285.

[6] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark E.
Campbell, and Kilian Q. Weinberger, “Pseudo-lidar from visual depth
estimation: Bridging the gap in 3d object detection for autonomous
driving,” in CVPR, 2019, pp. 8445–8453.

[7] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss,
Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger, “Pseudo-
LiDAR++: Accurate Depth for 3D Object Detection in Autonomous
Driving,” in ICLR, 2020.

[8] Chengyao Li, Jason Ku, and Steven L. Waslander, “Confidence guided
stereo 3d object detection with split depth estimation,” IROS, pp. 5776–
5783, 2020.

[9] Yin Zhou and Oncel Tuzel, “Voxelnet: End-to-end learning for point
cloud based 3d object detection,” in CVPR, 2018, pp. 4490–4499.

[10] Yan Yan, Yuxing Mao, and Bo Li, “SECOND: sparsely embedded
convolutional detection,” Sensors, vol. 18, no. 10, pp. 3337, 2018.

[11] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang,
and Oscar Beijbom, “PointPillars: Fast Encoders for Object Detection
from Point Clouds,” in CVPR, 2019.

[12] Zhe Liu, Xin Zhao, Tengteng Huang, Ruolan Hu, Yu Zhou, and Xiang
Bai, “Tanet: Robust 3d object detection from point clouds with triple
attention,” in AAAI, 2020, pp. 11677–11684.

[13] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl, “Center-based 3d
object detection and tracking,” CoRR, vol. abs/2006.11275, 2020.

[14] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun, Philipp
Krähenbühl, Trevor Darrell, and Fisher Yu, “Joint monocular 3d vehicle
detection and tracking,” in CVF, 2019, pp. 5389–5398.

[15] Martin Simon, Karl Amende, Andrea Kraus, Jens Honer, Timo Sämann,
Hauke Kaulbersch, Stefan Milz, and Horst-Michael Gross, “Complexer-
yolo: Real-time 3d object detection and tracking on semantic point
clouds,” in CVPR, 2019, pp. 1190–1199.

[16] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger, “On
calibration of modern neural networks,” in ICML, 2017, pp. 1321–1330.

[17] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Ann
Hubis, Xiaohua Zhai, Neil Houlsby, Dustin Tran, and Mario Lucic,
“Revisiting the Calibration of Modern Neural Networks,” in NeurIPS,
2021.

[18] Yuanxin Zhong, Minghan Zhu, and Huei Peng, “Uncertainty-aware
voxel based 3d object detection and tracking with von-mises loss,”
arXiv:2011.02553, 2020.

[19] Jianren Wang, Siddharth Ancha, Yi-Ting Chen, and David Held,
“Uncertainty-aware self-supervised 3d data association,” in RSJ, 2020,
pp. 8125–8132.

[20] Di Feng, Lars Rosenbaum, and Klaus Dietmayer, “Towards safe
autonomous driving: Capture uncertainty in the deep neural network
for lidar 3d vehicle detection,” in ITSC, 2018, pp. 3266–3273.

[21] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez,
and Carl K. Wellington, “Lasernet: An efficient probabilistic 3d object
detector for autonomous driving,” in CVPR, 2019, pp. 12677–12686.

[22] Gregory P. Meyer and Niranjan Thakurdesai, “Learning an uncertainty-
aware object detector for autonomous driving,” in IROS, 2020, pp.
10521–10527.

[23] Ben Daubney and Xianghua Xie, “Tracking 3d human pose with large
root node uncertainty,” in CVPR, 2011, pp. 1321–1328.

[24] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza, “A general
framework for uncertainty estimation in deep learning,” RA-L, vol. 5,
no. 2, pp. 3153–3160, 2020.

[25] Illia Oleksiienko, Dat Thanh Tran, and Alexandros Iosifidis, “Variational
neural networks,” arxiv:2207.01524, 2022.

[26] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani, “3D Multi-
Object Tracking: A Baseline and New Evaluation Metrics,” IROS, 2020.

[27] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.

[28] H. W. Kuhn, “The hungarian method for the assignment problem,” Nav.
Res. Logist., vol. 2, no. 1-2, pp. 83–97, 1955.

[29] Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Tozeto Ramos, and Ben
Upcroft, “Simple online and realtime tracking,” in IEEE International
Conference on Image Processing, 2016, pp. 3464–3468.

[30] Rebecca L. Russell and Christopher Reale, “Multivariate uncertainty in
deep learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 12, pp. 7937–7943, 2022.

[31] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali,
Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna M. Kruspe,
Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad, Wen
Yang, Richard Bamler, and Xiao Xiang Zhu, “A survey of uncertainty
in deep neural networks,” arxiv:2107.03342, 2021.

[32] Murat Sensoy, Lance Kaplan, and Melih Kandemir, “Evidential deep
learning to quantify classification uncertainty,” in NeurIPS, 2018, p.
3183–3193.

[33] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra, “Weight Uncertainty in Neural Networks,” in JMLR, 2015,
vol. 37, pp. 1613–1622.

[34] Martin Magris and Alexandros Iosifidis, “Bayesian learning for neural
networks: an algorithmic survey,” Artificial Intelligence Review, 2023.

[35] Ian Osband, John Aslanides, and Albin Cassirer, “Randomized prior
functions for deep reinforcement learning,” in NeurIPS, 2018, vol. 31,
pp. 8626–8638.

[36] Matias Valdenegro-Toro, “Deep sub-ensembles for fast uncertainty
estimation in image classification,” arxiv:1910.08168, 2019.

[37] Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren, “Au-
tomatic brain tumor segmentation using convolutional neural networks
with test-time augmentation,” in BrainLes. 2018, vol. 11384, pp. 61–72,
Springer.

[38] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien
Ourselin, and Tom Vercauteren, “Aleatoric uncertainty estimation with
test-time augmentation for medical image segmentation with convolu-
tional neural networks,” Neurocomputing, vol. 338, pp. 34–45, 2019.

[39] Ibrahem Kandel and Mauro Castelli, “Improving convolutional neural
networks performance for image classification using test time augmen-
tation: a case study using MURA dataset,” Health Inf. Sci. Syst., vol. 9,
no. 1, pp. 33, 2021.

[40] Illia Oleksiienko, Dat Thanh Tran, and Alexandros Iosifidis, “Variational
neural networks implementation in pytorch and jax,” Software Impacts,
vol. 14, pp. 100431, 2022.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, ,” in Advances
in Neural Information Processing Systems, 2015, vol. 28.

[42] Xavier Glorot and Yoshua Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in AISTATS, 2010, vol. 9,
pp. 249–256.

[43] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are we ready for
autonomous driving? the KITTI vision benchmark suite,” in CVPR,
2012, pp. 3354–3361.

D4.4: Final report on deep environment active perception and cognition 102/112

7.5 CoVIO: Online Continual Learning for Visual-Inertial Odom-
etry

The appended paper [98] follows.

OpenDR No. 871449

CoVIO: Online Continual Learning for Visual-Inertial Odometry

Niclas Vödisch1 Daniele Cattaneo1 Wolfram Burgard2 Abhinav Valada1
1University of Freiburg 2University of Technology Nuremberg

Abstract

Visual odometry is a fundamental task for many applica-
tions on mobile devices and robotic platforms. Since such
applications are oftentimes not limited to predefined target
domains and learning-based vision systems are known to
generalize poorly to unseen environments, methods for con-
tinual adaptation during inference time are of significant
interest. In this work, we introduce CoVIO for online con-
tinual learning of visual-inertial odometry. CoVIO effec-
tively adapts to new domains while mitigating catastrophic
forgetting by exploiting experience replay. In particular, we
propose a novel sampling strategy to maximize image diver-
sity in a fixed-size replay buffer that targets the limited stor-
age capacity of embedded devices. We further provide an
asynchronous version that decouples the odometry estima-
tion from the network weight update step enabling continu-
ous inference in real time. We extensively evaluate CoVIO
on various real-world datasets demonstrating that it suc-
cessfully adapts to new domains while outperforming previ-
ous methods. The code of our work is publicly available at
http://continual-slam.cs.uni-freiburg.de.

1. Introduction
Reliable estimation of a robot’s motion based on its on-

board sensors is a fundamental requirement for many down-
stream tasks including localization and navigation. Devices
such as inertial measurement units (IMU) or inertial nav-
igation systems (INS) provide a way to directly measure
the robot’s motion based on acceleration and GNSS read-
ings. An alternative is to use visual odometry (VO) lever-
aging image data from monocular or stereo cameras. Such
VO methods have been successfully used in UAVs [4], mo-
bile applications [24], and even mars rovers [21]. Similar to
other vision tasks, learning-based VO has gained increasing
attention as the learnable high-level features can circumvent
problems in textureless regions [27, 28] or in the presence
of dynamic objects [1] where classical handcrafted meth-
ods suffer. However, learning-based VO lacks the ability to
generalize to unseen domains, hindering their open-world
deployment. Recently, adaptive VO [18] has opened a new

Pretraining
Source data

replayReplay

Online continual learning

replayReplay

Online continual learning

Source data
Replay data

Network weights
Transfer of:

Ground truth
Only source
CoVIO

Ground truth
Only source
CoVIO

Figure 1. We propose CoVIO for online continual learning of
visual-inertial odometry. After pretraining on a source domain that
is then discarded, CoVIO further updates the network weights dur-
ing inference on a target domain. Using experience replay CoVIO
successfully mitigates catastrophic forgetting.

avenue of research, e.g., by using continual learning (CL)
methodologies to enhance VO during inference time [30].

Most commonly, learning-based VO leverages monocu-
lar depth estimation as an auxiliary task [13,18,30] and ex-
ploits an unsupervised joint training scheme of a PoseNet,
estimating the camera motion between two frames, and a
DepthNet, estimating depth from a single image [6]. Due
to the unsupervised nature of this approach, learning-based
VO can be continuously trained also during inference time.
In addition to classical domain adaptation [2], where knowl-
edge is transferred from a single source to a single target
domain, the recent study on continual SLAM [30] also in-
vestigates a sequential multi-domain setting as illustrated in
Fig. 1. The authors introduce CL-SLAM, which fuses adap-
tive VO with a graph-based SLAM backend. To avoid catas-
trophic forgetting, i.e., overfitting to the current domain
while losing the ability to perform well on past domains,
CL-SLAM employs a dual-network architecture compris-
ing an expert and a generalizer for both efficient domain

1

ar
X

iv
:2

30
3.

10
14

9v
1

 [
cs

.R
O

]
 1

7
M

ar
 2

02
3

adaptation and knowledge retention combined with experi-
ence replay. However, the previously proposed CL-SLAM
suffers from three main drawbacks: First, network weights
are transferred from the generalizer to the expert upon the
start of a new evaluation sequence, i.e., a human supervi-
sor decides when new data should be classified as a do-
main change. Second, the utilized replay buffer of the gen-
eralizer is of infinite size and, thus, does not consider the
limited storage capacity of real-world applications. Finally,
since every received frame triggers an update of the network
weights before yielding the VO estimate, real-time usage is
difficult to achieve on low-power devices such as embedded
hardware in robots.

In this work, we propose a novel adaptive visual-
inertial odometry estimation method called CoVIO that ex-
plicitly addresses all of the aforementioned drawbacks of
CL-SLAM. Similar to Kuznietsov et al. [11], we consider a
source-free setting, i.e., experience replay does not include
data from the source domain used for pretraining. In par-
ticular, the contributions of this work can be summarized as
follows:

1. We replace the dual-network architecture with a sin-
gle network addressing both domain adaptation and
knowledge retention but simplifying the overall archi-
tecture and reducing the GPU memory footprint. Ad-
ditionally, this resolves the issue of transferring net-
work weights without domain classification.

2. We propose a fixed-size replay buffer that maximizes
image diversity and addresses the limited storage ca-
pacity of embedded devices.

3. We present an asynchronous version of CoVIO that
separates the core motion estimation from the network
update step allowing true continuous inference

4. We perform extensive evaluations of CoVIO on var-
ious datasets, both publicly available and in-house,
demonstrating its efficacy compared to other visual
odometry methods.

5. We release the code of our work and trained models at
http://continual-slam.cs.uni-freiburg.de.

2. Related Work

In this section, we provide a brief introduction to contin-
ual and lifelong learning and summarize previous methods
for domain adaptation of learning-based visual odometry.

Continual Learning: Deep learning-based models are com-
monly trained for a specific task, which is defined a pri-
ori, using a fixed set of training data. During inference,
the model is then employed on previously unseen data from
the same domain without further updates of the network
weights. However, in many real-world scenarios, this as-
sumption does not hold true, e.g., the initially used training
data might not well represent the data seen during inference,

thus leading to a domain gap and suboptimal performance.
Additionally, the objective of the task can change over time.
Continual learning (CL) and lifelong learning [26] aim to
overcome these challenges by enabling a method to contin-
ually learn additional tasks given new training data. In con-
trast to vanilla domain adaptation [2], CL methods should
maintain the capability to solve previously learned tasks,
i.e., avoiding catastrophic forgetting. Ideally, learning a
task also yields improved performance on previous tasks
(positive backward transfer) as well as on yet unknown fu-
ture tasks (positive forward transfer) [16]. The majority
of CL approaches can be categorized into three strategies.
First, experience replay directly tackles catastrophic for-
getting from a data-driven perspective. For instance, both
CoMoDA [10] and CL-SLAM [30] store images in a re-
play buffer and combine online data with replay samples
when updating the network weights. Second, regulariza-
tion techniques such as knowledge distillation [29] preserve
information on a more abstract feature level. Finally, ar-
chitectural methods prevent forgetting by using certain net-
work structures, e.g., LSTMs [13] and dual-network archi-
tectures [30], or by directly freezing internal model param-
eters. Online continual learning [17,31] describes an exten-
sion of CL by considering a setting, where the model is con-
tinuously updated on a stream of data during inference time.
Online CL also includes scenarios, which gradually change
from one domain to another [25]. In this work, we employ
online CL with experience replay for learning-based visual-
inertial odometry estimation.

Adaptive Visual Odometry: Online adaptation of learning-
based visual odometry (VO) and simultaneous localiza-
tion and mapping (SLAM) aims to enhance performance
on the fly allowing robotic systems to operate more reli-
ably in previously unseen environments. Most commonly,
learning-based VO relies on monocular depth estimation as
an auxiliary task enabling joint training of a DepthNet and a
PoseNet in an unsupervised manner [6]. In an early work on
adaptive VO, Luo et al. [18] accumulate images from an on-
line camera stream and leverage the unsupervised training
scheme to update both networks. Different to experience
replay in CL, the buffer of accumulated images is emptied
after the update step, i.e., each sample is only seen once.
Li et al. [13] propose an architectural CL technique, replac-
ing the standard convolutional layers with LSTM variants
to prevent forgetting. During deployment, the networks are
continuously trained using only the online data. In a follow-
up work by the same authors [14], the PoseNet is substituted
with optical flow-based point matching. Similarly, GeoRe-
fine [9] combines online depth refinement with dense vi-
sual mapping. While the DepthNet is updated following
the aforementioned works, GeoRefine uses a non-adaptive
odometry and tracking module based on optical flow. Loo et
al. [15] propose an adaptive visual SLAM system that com-

2

Ti
m

e

Image stream Batch generation

Diversity-based
buffer update

Combine online
and replay dataReplay buffer

Online continual learning

Update
weights

PoseNet

DepthNet

Figure 2. Our proposed CoVIO performs online continual learning on a stream of RGB images leveraging unsupervised monocular depth
estimation as an auxiliary task. In each update step, the image triplet consisting of the current and the two previous frames is combined
with samples from a replay buffer and then fed to the networks to update their weights via backpropagation. The estimated camera motion
between the previous and the current image corresponds to the generated VO output. The replay buffer is optionally updated if the current
frame is sufficiently different from the existing content.

bines experience replay with a variant of elastic weight con-
solidation (EWC) to further regularize the weight updates
of both the DepthNet and the PoseNet. Finally, to avoid
catastrophic forgetting in a multi-domain adaptation setting,
CL-SLAM [30] exploits a dual-network architecture, which
is composed of an expert to perform effective online adapta-
tion to the new domain and a generalizer to retain previously
acquired knowledge by leveraging experience replay. In this
work, we propose an adaptive method for visual-inertial
odometry built on CL-SLAM that explicitly addresses its
shortcomings as outlined in Sec. 1.

3. Technical Approach
In the following sections, we first describe the net-

work architecture along with the pretraining procedure on
a source domain. Then, we introduce CoVIO and provide
detailed explanations of all contributions.

3.1. Network Architecture and Pretraining

In this section, we detail the network architecture of our
proposed CoVIO and the loss functions that we employ dur-
ing the initial training phase.
Network Architecture: We build our network following the
common scheme of unsupervised monocular depth estima-
tion leveraging two separate networks that we refer to as
DepthNet and PoseNet as depicted in Fig. 2. Similar to
CL-SLAM [30], for an image triplet {It−2, It−1, It} we use
Monodepth2 [6] to jointly predict a dense depth map Dt−1

of the center image and the camera motion with respect to
both neighboring frames, i.e., Ot−2�t−1 and Ot−1�t. In
CoVIO, we then output the latter as the VO estimate. In par-

ticular, we use an implementation comprising two separate
ResNet-18 [8] encoders for the DepthNet and the PoseNet.
Source Domain Pretraining: To initialize CoVIO, we per-
form unsupervised training on a source domain S in an of-
fline manner. In detail, we exploit the photometric reprojec-
tion loss Lpr and the image smoothness loss Lsm to train
the DepthNet and the PoseNet [6]. We additionally super-
vise the PoseNet with scalar velocity readings from the ve-
hicle’s IMU [7]. The applied velocity supervision term Lvel

enforces metric scale-aware odometry estimates. Thus, our
total loss is composed of three terms:

L = Lpr + γLsm + λLvel, (1)

with weighting factors γ and λ.

3.2. Online Continual Learning

After pretraining on a source domain S , we use CoVIO
to perform online continual learning on an unseen target do-
main T . As illustrated in Fig. 2, each new RGB image trig-
gers the following steps:
(1) Create a data triplet comprising the new frame It and

the two previous frames It−1 and It−2 along with the
corresponding IMU readings.

(2) Check whether this triplet should be added to the re-
play buffer using the proposed diversity-based update
mechanism.

(3) Sample from the replay buffer and combine the sam-
ples with the previously generated data triplet.

(4) Estimate the depth map Dt−1 and the camera motions
Ot−2�t−1 and Ot−1�t.

3

(5) Compute the loss defined in Eq. (1) and update the net-
work weights via backpropagation.

(6) Repeat steps (4) and (5) for c iterations.
(7) Output Ot−1�t as the odometry estimate.

In the following, we provide more details on the proposed
replay buffer and the online continual learning strategy of
CoVIO. Finally, we propose an asynchronous version of
CoVIO that separates the motion estimation from the net-
work update step allowing continuous inference.

3.2.1 Replay Buffer

As outlined in Sec. 1, previous works [10, 30] typically as-
sumed an infinitely sized replay buffer without considering
the limited storage capacity on robotic platforms or mobile
devices. To address this issue, we use a replay buffer with a
fixed maximum size and propose an image diversity-based
update mechanism that is comprised of two steps shown in
Fig. 3. First, determine whether to add the current online
data into the replay buffer and, second, if adding the data re-
sults in exceeding the predefined buffer size, select a sample
that will be removed from the buffer.

Inspired by the loop closure detection in visual
SLAM [12, 30], we interpret the cosine similarity between
image feature maps as a distance measure between two
frames I1 and I2:

simcos = cos (feat(I1), feat(I2)) , (2)

where feat(·) denotes the respective image features. In or-
der to determine whether adding a new sample would in-
crease the diversity of the replay buffer, we compute its co-
sine similarity with respect to all samples that are already in
the buffer and take the maximum value.

simB(It) = max
Ii∈B

cos (feat(It), feat(Ii)) , (3)

where Ii ∈ B refers to the current content of the buffer. If
simB(It) < θth , the data triplet associated with It is added
to the replay buffer. In case this results in a buffer size larger
than the allowed size, we have to remove a sample from the
buffer. Instead of using random sampling, we remove the
sample that yields maximal diversity within the remaining
samples. Formally, we remove the following sample:

argmax
Ii∈B

∑

Ij∈B

cos (feat(Ii), feat(Ij)) (4)

As described in the next section, we do not update the en-
coder weights of CoVIO. Therefore, to avoid the overhead
of a separate network, we use the encoder of the DepthNet
to generate image features.

Replay buffer

?
0.91

0.92

0.88

0.90

(a) An image is added to the replay buffer if the cosine similarity
to the most similar image in the buffer is below a threshold, e.g.,
θth = 0.95. Here, the image will be added since 0.92 < θth .

1.00
1.00

1.00
1.00

1.00

0.88
0.90
0.90
0.91

0.89
0.89
0.88

0.88
0.89
0.91

0.91
0.88
0.90
0.92

0.88 0.90
0.89

0.91
0.90 0.92 4.61

4.57
4.54
4.60
4.62

(b) If adding a new image results in exceeding the allowed size of
the replay buffer, the image that is the most similar with respect to
all other images is removed. The table shows the cosine distance
between two frames.

Figure 3. Diversity-based update mechanism of the replay buffer,
separated in (a) adding and (b) removing a sample.

3.2.2 Adaptive Visual-Inertial Odometry

After the replay buffer has been updated, we construct a
batch bt consisting of the data triplet of the current image
It and N samples from the replay buffer.

bt = {It, I1, I2, . . . , IN} (5)

To query the samples from the buffer, we use a uniform
probability distribution across all samples and avoid select-
ing the same sample multiple times if the current size of
the buffer is greater than the requested number of samples.
To further increase diversity, we augment the replay images
in terms of brightness, contrast, saturation, and hue value.
Next, the batch bt, comprising RGB images and velocity
measurements, is fed to the DepthNet to estimate a dense
depth map of the center images and to the PoseNet to es-
timate the camera motion with respect to both neighboring
frames. Following the same procedure as during pretrain-
ing (see Sec. 3.1), we then compute the loss L defined in
Eq. (1) and perform backpropagation to update the network
weights. Following McCraith et al. [22], we do not update
the weights of the encoders but only of the decoders.

4

Predictor LearnerImage stream Image stream

network
weights

network
weights

Figure 4. Illustration of the asynchronous variant of CoVIO. While
the predictor generates visual odometry estimates in real time, the
learner updates the network weights via backpropagation. After a
given number of update cycles, the network weights are transferred
from the learner to the predictor.

3.2.3 Asynchronous CoVIO

Finally, we propose an asynchronous variant of CoVIO to
address true continuous inference on robotic platforms in
a real-time capable setting. Since multiple update itera-
tions c can result in a situation, in which the network update
takes longer than the frame rate of the input camera stream,
we also design a version that decouples the VO estimation
from the CL updates. As illustrated in Fig. 4, the predic-
tor continuously generates VO estimates for each incom-
ing image. The learner contains a copy of the network that
is updated using the previously introduced online CL strat-
egy but disregards images if the update step takes longer
than the time until the next frame is available. Compared
to caching frames, this strategy ensures that always the lat-
est information is used to update the network. Then, after
a given number of update cycles, the network weights are
transferred from the learner to the predictor. We include
implementations in both ROS and ROS2 in our published
code base.

4. Experimental Evaluation
In this section, we present extensive experimental results

on the efficiency and efficacy of our proposed CoVIO, com-
pared to previous works. We further conduct multiple ab-
lation studies to demonstrate the effect of newly introduced
hyperparameters and to justify certain design choices.

Throughout all experiments, we report the translation er-
ror terr (in %) and the rotation error rerr (in °/m) as pro-

posed by Geiger et al. [5]. These metrics evaluate the er-
ror as a function of the trajectory length. To ensure a fair
comparison with the base work CL-SLAM [30], we further
utilize the set of network weights that is provided by the au-
thors and was pretrained on the Cityscapes Dataset [3]. We
also follow CL-SLAM and only consider new frames when
the IMU measures a driven distance of at least 0.2m.

4.1. Datasets

We employ our method on various datasets simulating
a diverse set of environments. In particular, we initial-
ize CoVIO with network weights trained on Cityscapes [3]
and perform online continual learning on sequences from
the KITTI odometry benchmark [5], the Oxford RobotCar
Dataset [20], and in-house data.
Cityscapes: The Cityscapes Dataset [3] is a large-scale au-
tonomous driving dataset that contains RGB images and ve-
hicle metadata such as velocity. It was recorded in 50 cities
in Germany, France, and Switzerland. In this work, we use
network weights pretrained on Cityscapes that are provided
by Vödisch et al. [30].
KITTI: The KITTI Dataset [5] is a pioneering autonomous
driving dataset that was recorded in Karlsruhe, Germany.
For continual learning of new domains, we use images and
ground truth poses of multiple sequences from the odometry
benchmark and combine them with the respective IMU data
from the raw dataset.
Oxford RobotCar: The Oxford RobotCar Dataset [20] pro-
vides multiple recordings of the same route that were cap-
tured across one year. We use the included RGB images and
the IMU data. To compute the error metrics, we exploit the
separately released RTK ground truth positions [19].
In-House: Finally, we employ CoVIO on an in-house
dataset recorded in Freiburg, Germany. Our robotic plat-
form includes forward-facing RGB cameras and an inertial
navigation system (INS), that we use to compute the veloc-
ity supervision loss.

4.2. Evaluation of Online Continual Learning

In this section, we conduct a series of experiments
including both simple online domain adaptation from a
source S to a target domain T and online continual learn-
ing from S to a sequence of target domains {T1, T2, . . . }.
Based on the ablation studies in Sec. 4.3, we use a replay
buffer size of |B| = 100, an update batch size of |bt| = 3,
and c = 5 backpropagation steps allowing a fair compari-
son with the base work CL-SLAM [30]. We set a similar-
ity threshold of θth = 0.95 for the diversity-based update
scheme of the replay buffer. For the loss weights, we follow
CL-SLAM and use γ = 0.001 and λ = 0.05. To compare
with other methods, we do not use the asynchronous version
but the same learning scheme as in CL-SLAM.

5

(a) Seq. 04 (b) Seq. 05 (c) Seq. 06 (d) Seq. 07 (e) Seq. 10

Ground truth CoVIO

Figure 5. Online continual learning results on the KITTI odometry benchmark after pretraining on the Cityscapes dataset.

Table 1. Comparison of continual odometry estimation on the KITTI odometry benchmark.

Method Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 10
terr rerr terr rerr terr rerr terr rerr terr rerr

ORB-SLAM [23] 0.62 0.11 2.51 0.25 7.80 0.35 1.53 0.35 2.96 0.52

Only target 10.72 1.69 34.55 11.88 15.20 5.62 12.77 6.80 55.27 9.50
DeepSLAM [12] 5.22 2.27 4.04 1.40 5.99 1.54 4.88 2.14 10.77 4.45

Only source 28.94 4.64 46.13 19.20 49.57 20.79 37.75 25.42 30.91 15.28
CL-SLAM [30] 4.37 0.51 4.30 1.01 2.53 0.63 2.10 0.83 11.18 1.74
CoVIO (ours) 2.11 0.53 2.88 0.94 2.13 0.47 3.19 1.26 3.71 1.55

Comparison of the translation and rotation errors of our CoVIO with baseline methods evaluated on the KITTI odometry benchmark. “Only target”
and DeepSLAM are trained on sequences {00, 01, 02, 08, 09} without further adaptation. “Only source”, CL-SLAM, and CoVIO are trained on
Cityscapes. Both CL-SLAM and CoVIO perform online adaptation on the respective KITTI sequence. The values of CL-SLAM and “only target” are
reported by Vödisch et al. [30]. The errors of the paths predicted by ORB-SLAM are based on ground truth scaling and hence not directly comparable
to the other methods. The smallest and second smallest errors across the methods producing metric predictions are shown in bold and underlined.

4.2.1 Cityscapes to KITTI

We use our proposed CoVIO to perform online continual
adaptation from Cityscapes to KITTI and compare its per-
formance to other methods shown in Tab. 1. In detail, we
compare with the traditional ORB-SLAM [23] as well as
the following learning-based methods: “Only target” and
DeepSLAM [12] are trained on the KITTI sequences {00,
01, 02, 08, 09} without further adaptation; “only source”,
CL-SLAM [30], and CoVIO are trained on Cityscapes with
online adaptation to KITTI for both CL-SLAM and CoVIO.
Generally, the difference between “only source” and “only
target” demonstrates the domain gap that online adaptation
aims to overcome. Our proposed CoVIO outperforms the
base method CL-SLAM on the majority of sequences and
also improves performance compared to offline training on
the target domain. We visualize the predicted and ground
truth odometry in Fig. 5. Note that, unlike CL-SLAM and
DeepSLAM, we do not include loop closures in CoVIO.

We further perform online continual learning on all se-
quences in a sequential manner, i.e., after pretraining on
Cityscapes, adapt to sequence 04, then sequence 05, etc.,
and list the results in Tab. 2. In particular, we compute
the translation and rotation errors after each step on all se-
quences to determine both forward and backward transfer,
i.e., the effect on previous and yet unseen future sequences.
Since all the sequences of a dataset could be considered to

represent similar domains, e.g., the same camera parameters
and comparable environments, we observe a general trend
of positive forward transfer. Although the performance on
previous sequences cannot be fully retained, CoVIO suc-
cessfully mitigates catastrophic forgetting compared to the
initial performance after pretraining on the source domain.

4.2.2 Cityscapes to In-House Data

Next, we utilize CoVIO to estimate visual odometry on
an in-house dataset, after pretraining on Cityscapes. In
Fig. 6, we provide a qualitative comparison of CoVIO to
CL-SLAM [30] with disabled loop closure detection, no on-
line adaptation, and the measured GNSS position. Since we
do not have access to highly accurate RTK readings, we
omit computing error metrics for this dataset. However, as
demonstrated in Fig. 6, CoVIO is able to maintain accurate
odometry tracking for a longer distance than CL-SLAM.

4.2.3 Cityscapes to KITTI and RobotCar

We further investigate the capability of CoVIO to retain
knowledge in a multi-target setting. In detail, we per-
form the same experiment as conducted by CL-SLAM [30].
After initialization on Cityscapes, we sequentially deploy
CoVIO to KITTI sequence 09, a sequence from RobotCar,
KITTI sequence 10, and another sequence from RobotCar.

6

Table 2. Continual odometry estimation results on the KITTI odometry benchmark.

Sequence Images terr rerr terr rerr terr rerr terr rerr terr rerr terr rerr

Cityscapes −−−−−→ Seq. 04 −−−−−→ Seq. 05 −−−−−→ Seq. 06 −−−−−→ Seq. 07 −−−−−→ Seq. 10

Seq. 04 269 28.94 4.64 2.11 0.53 7.66 7.05 8.21 1.48 7.88 3.41 9.80 3.82
Seq. 05 2676 46.13 19.20 59.51 16.99 2.85 1.05 8.49 3.77 6.84 3.64 13.73 5.36
Seq. 06 1099 49.57 20.79 65.39 22.33 20.01 10.83 3.08 1.16 7.77 4.25 5.76 1.92
Seq. 07 993 37.75 25.42 67.67 29.85 7.26 4.93 7.13 3.38 6.05 3.53 9.60 5.33
Seq. 10 1127 30.91 15.28 35.37 10.18 11.13 9.48 5.08 2.47 17.53 7.73 2.65 1.15

We continually employ CoVIO on five KITTI sequences after initialization on Cityscapes. The number of images corresponds to the
number of update batches of a sequence. The cells highlighted in gray denote the results of the current adaptation step. Along one
row, we can measure forward and backward transfer.

−200 −100 0 100 200 300 400

−400

−300

−200

−100

0

100
GNSS

Only source

CL-SLAM

CoVIO

Figure 6. Continual odometry estimation results on in-house data.

For further details on the RobotCar sequences, we refer the
reader to [30]. In Tab. 3, we report the adaptation qual-
ity (AQ) and the retention quality (RQ) as introduced by
Vödisch et al. [30]. Broadly, the AQ score measures the
ability of a method to adapt to a previously unseen en-
vironment, whereas the RQ measures the ability to retain
long-term knowledge when being redeployed to a previ-
ously seen domain. Compared to CL-SLAM, CoVIO im-
proves the AQ score and, with a high margin, the RQ with
respect to the translation error. Although RQrot suffers from
a small decrease, the absolute rotation errors on the four
considered sequences are smaller than those of CL-SLAM,
hence smaller differences between with and without an in-
termediate domain influence the RQ more strongly.

4.3. Ablation Study

In this section, we present the results of various ablation
studies substantiating the design choices for the sizes of the
update batch bt and the replay buffer B. We further demon-
strate that CoVIO is less sensitive to the number of back-
propagation steps per update batch than a previous method.
In the following studies, we always report the translation
and rotation errors of sequences 04 and 06.

Table 3. Comparison of adaptation and retention quality.

Previous Current CL-SLAM [30] CoVIO (ours)
sequences sequence terr rerr terr rerr

ct k9 2.50 0.37 3.89 1.49
ct r1 28.94 5.63 6.62 2.61

ct � r1 k9 3.24 0.54 4.09 1.18
ct � k9 r1 30.13 5.87 11.00 3.44

⇒ AQtrans / AQrot 0.85 0.98 0.94 0.99

ct � k9 � r1 k10 4.85 1.59 1.86 0.70
ct � k9 � r1 � k10 r2 20.50 4.77 5.66 3.99

ct � k9 k10 7.48 1.63 1.43 0.73
ct � k9 � r1 r2 16.41 4.58 7.67 3.42

⇒ RQtrans / RQrot ×10−3 -7.30 -0.42 7.89 -1.53

Adaptation quality (AQ) and retention quality (RQ) [30] with respect
to the translation and rotation errors. ct denotes the Cityscapes training
set, k9 and k10 refer to sequences 09 and 10 of the KITTI odometry
benchmark, and r1 and r2 correspond to sequences [30] from Robot-
Car. The values of CL-SLAM are reported by the authors. The best
scores in each category are shown in bold.

4.3.1 Size of the Update Batch

We first investigate the effect of varying sizes of the update
batch, i.e., the number of replay samples. In Tab. 4, we
list the errors for batch sizes bt = {1, 2, 3, 4, 5} given an
unlimited replay buffer. Note that b = 1 implies that ex-
perience replay is disabled. Therefore, this strategy corre-
sponds to CL-SLAM [30] for source-to-target domain adap-
tation. Generally, the translation error can be reduced by
using replay data, whereas the rotation error is the smallest
when only training with the current sample. As we deem
the translation error more important in terms of mapping
and localization accuracy, we select b = 3.

4.3.2 Size of the Replay Buffer

In the next study, we restrict the size of the replay buffer
to address both scalability of the method and the lim-
ited storage capacity on mobile devices and robotic plat-
forms. In detail, we report the error for buffer sizes |B| =
{10, 25, 50, 100,∞} in Tab. 5. For all the buffers of limited

7

Table 4. Ablation study on the size of the update batch.

Batch size Seq. 04 Seq. 06
terr rerr terr rerr

1 3.56 0.15 2.30 0.18
2 2.97 0.59 1.81 0.50
3 2.79 0.54 1.98 0.59
4 2.89 0.73 1.99 0.54
5 2.89 0.63 2.46 0.70

In this study, we use a replay buffer of infinite size. Batch
sizes greater than 1 imply using replay data in addition
to the online image, i.e., the first row corresponds to the
strategy of CL-SLAM. The smallest and second smallest
errors are shown in bold and underlined, respectively.

Table 5. Ablation study on the size of replay buffer.

Buffer Diversity Seq. 04 Seq. 06
size update terr rerr terr rerr

∞ 2.79 0.54 1.98 0.59

100 2.62 0.52 1.75 0.48
100 ✓ 2.11 0.53 2.13 0.47
50 2.64 0.42 2.72 0.91
50 ✓ 2.11 0.53 2.13 0.47
25 2.51 0.40 2.42 0.77
25 ✓ 2.11 0.53 2.20 0.50
10 2.82 0.33 2.08 0.64
10 ✓ 2.12 0.56 2.21 0.59

In this study, we use a batch size of 3. The effectively
used buffer size of sequence 04 is the same for 25, 50,
and 100. Similarly, in sequence 06 the same number of
samples is added when buffer sizes of 50 and 100 are
available. The first row corresponds to the strategy of
CL-SLAM. The smallest and second smallest errors are
shown in bold and underlined, respectively.

size, we both enable and disable our proposed diversity-
based updating mechanism. Interestingly, the positive ef-
fect of enforcing a high diversity is more pronounced for
sequence 04, where CoVIO generally yields smaller trans-
lation errors with fewer samples in the buffer. It should
further be noted that due to the length of the sequences,
the diversity-based buffer contains the same samples for
|BSeq. 04| = {25, 50, 100} and |BSeq. 06| = {50, 100}. For
CoVIO, we select |B| = 100 to account for the increased
storage requirements in a multi-target setting.

4.3.3 Number of Update Cycles

Lastly, we report the sensitivity of CoVIO with respect to
the number of backpropagation steps c for a single up-
date batch. As shown in Tab. 6, more steps decrease both
the errors confirming the results of CL-SLAM [30]. How-
ever, in contrast to the performance reported for CL-SLAM,
CoVIO is noticeably less sensitive and already yields rela-
tively small errors for c = 1. We conclude that this is caused
by using experience replay also for the online learner. To

Table 6. Ablation study on the number of update cycles.

Update cycles Seq. 04 Seq. 06
terr rerr terr rerr

1 3.13 1.65 4.07 1.14
2 2.80 1.06 2.62 0.64
3 2.49 0.77 2.61 0.63
4 2.29 0.61 2.31 0.52
5 2.11 0.53 2.13 0.47
6 1.98 0.50 2.15 0.49

For a fair comparison, we use the same number of update cy-
cles c = 5 as CL-SLAM [30]. The smallest and second small-
est errors are shown in bold and underlined, respectively.

enable direct comparison with CL-SLAM, we use the same
value c = 5.

5. Conclusion
In this paper, we presented CoVIO for online continual

learning of visual-inertial odometry. CoVIO exploits an un-
supervised training scheme during inference time and thus
seamlessly adapts to new domains. In particular, we ex-
plicitly address the shortcomings of previous works by de-
signing a lightweight network architecture and by propos-
ing a novel fixed-size replay buffer that maximizes im-
age diversity. Using experience replay, CoVIO success-
fully mitigates catastrophic forgetting while achieving ef-
ficient online domain adaptation. We further provide an
asynchronous version of CoVIO separating the core motion
estimation from the network update step, hence allowing
true continuous inference in real time. In extensive evalu-
ations, we demonstrated that CoVIO outperforms competi-
tive baselines. We also made the code and models publicly
available to facilitate future research. Future work will fo-
cus on extending this work to a multi-task setup for robotic
vision systems.

Acknowledgment
This work was funded by the European Union’s Horizon

2020 research and innovation program under grant agree-
ment No 871449-OpenDR. We thank Kürsat Petek for the
extensive discussions concerning the replay buffer and for
supporting the collection of our in-house data. We further
thank Ahmet Selim Çanakçı for helping us with the imple-
mentation of the asynchronous version of CoVIO.

References
[1] Borna Bešić and Abhinav Valada. Dynamic object removal

and spatio-temporal RGB-D inpainting via geometry-aware
adversarial learning. IEEE Transactions on Intelligent Vehi-
cles, 7(2):170–185, 2022. 1

[2] Borna Bešić, Nikhil Gosala, Daniele Cattaneo, and Abhinav
Valada. Unsupervised domain adaptation for LiDAR panop-

8

tic segmentation. IEEE Robotics and Automation Letters,
7(2):3404–3411, 2022. 1, 2

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
dataset for semantic urban scene understanding. In
IEEE/CVF Conference Computer Vision and Pattern Recog-
nition, pages 3213–3223, 2016. 5

[4] Changhong Fu, Adrian Carrio, and Pascual Campoy. Effi-
cient visual odometry and mapping for unmanned aerial ve-
hicle using arm-based stereo vision pre-processing system.
In International Conference on Unmanned Aircraft Systems,
pages 957–962, 2015. 1

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In IEEE/CVF Conference Computer Vision and
Pattern Recognition, pages 3354–3361, 2012. 5

[6] Clement Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel Brostow. Digging into self-supervised monocular
depth estimation. In International Conference on Computer
Vision, pages 3827–3837, 2019. 1, 2, 3

[7] Vitor Guizilini, Rares, Ambrus, , Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3D packing for self-supervised
monocular depth estimation. In IEEE/CVF Conference Com-
puter Vision and Pattern Recognition, 2020. 3

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE/CVF
Conference Computer Vision and Pattern Recognition, pages
770–778, 2016. 3

[9] Pan Ji, Qingan Yan, Yuxin Ma, and Yi Xu. Georefine: Self-
supervised online depth refinement for accurate dense map-
ping. In European Conference on Computer Vision, pages
360–377, 2022. 2

[10] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
CoMoDA: Continuous monocular depth adaptation using
past experiences. In IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 2021. 2, 4

[11] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
Towards unsupervised online domain adaptation for seman-
tic segmentation. In European Conference on Computer Vi-
sion, pages 261–271, 2022. 2

[12] Ruihao Li, Sen Wang, and Dongbing Gu. DeepSLAM:
A robust monocular SLAM system with unsupervised deep
learning. IEEE Transactions on Industrial Electronics,
68(4):3577–3587, 2021. 4, 6

[13] Shunkai Li, Xin Wang, Yingdian Cao, Fei Xue, Zike Yan,
and Hongbin Zha. Self-supervised deep visual odometry
with online adaptation. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, 2020. 1, 2

[14] Shunkai Li, Xin Wu, Yingdian Cao, and Hongbin Zha. Gen-
eralizing to the open world: Deep visual odometry with on-
line adaptation. In IEEE/CVF Conference Computer Vision
and Pattern Recognition, pages 13179–13188, 2021. 2

[15] Shing Yan Loo, Moein Shakeri, Sai Hong Tang, Syam-
siah Mashohor, and Hong Zhang. Online mutual adapta-
tion of deep depth prediction and visual slam. arXiv preprint
arXiv:2111.04096, 2021. 2

[16] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient
episodic memory for continual learning. In Conference on
Neural Information Processing Systems, volume 30, 2017. 2

[17] Mayank Lunayach, James Smith, and Zsolt Kira. Lifelong
wandering: A realistic few-shot online continual learning
setting. arXiv preprint arXiv:2206.07932, 2022. 2

[18] Hongcheng Luo, Yang Gao, Yuhao Wu, Chunyuan Liao, Xin
Yang, and Kwang-Ting Cheng. Real-time dense monocular
SLAM with online adapted depth prediction network. IEEE
Transactions on Multimedia, 21(2):470–483, 2019. 1, 2

[19] Will Maddern, Geoffrey Pascoe, Matthew Gadd, Dan
Barnes, Brian Yeomans, and Paul Newman. Real-time kine-
matic ground truth for the oxford robotcar dataset. arXiv
preprint arXiv:2002.10152, 2020. 5

[20] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul New-
man. 1 year, 1000km: The Oxford RobotCar dataset. In-
ternational Journal of Robotics Research, 36(1):3–15, 2017.
5

[21] Mark Maimone, Yang Cheng, and Larry Matthies. Two years
of visual odometry on the mars exploration rovers. Journal
of Field Robotics, 24(3):169–186, 2007. 1

[22] Robert McCraith, Lukas Neumann, Andrew Zisserman,
and Andrea Vedaldi. Monocular depth estimation
with self-supervised instance adaptation. arXiv preprint
arXiv:2004.05821, 2020. 4

[23] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-
SLAM: A versatile and accurate monocular SLAM system.
IEEE Transactions on Robotics, 31(5):1147–1163, 2015. 6

[24] Thomas Schöps, Jakob Engel, and Daniel Cremers. Semi-
dense visual odometry for ar on a smartphone. In IEEE Inter-
national Symposium on Mixed and Augmented Reality, pages
145–150, 2014. 1

[25] Abu Md Niamul Taufique, Chowdhury Sadman Jahan, and
Andreas Savakis. Unsupervised continual learning for grad-
ually varying domains. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages
3739–3749, 2022. 2

[26] Sebastian Thrun. Is learning the n-th thing any easier than
learning the first? In Conference on Neural Information Pro-
cessing Systems, volume 8, 1995. 2

[27] Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep
auxiliary learning for visual localization and odometry. In
IEEE International Conference on Robotics and Automation,
pages 6939–6946, 2018. 1

[28] Abhinav Valada, Noha Radwan, and Wolfram Burgard. In-
corporating semantic and geometric priors in deep pose re-
gression. Workshop on learning and inference in robotics:
Integrating structure, priors and models at robotics: Science
and systems (RSS), 1(3), 2018. 1

[29] Francisco Rivera Valverde, Juana Valeria Hurtado, and Ab-
hinav Valada. There is more than meets the eye: Self-
supervised multi-object detection and tracking with sound by
distilling multimodal knowledge. In IEEE/CVF Conference
Computer Vision and Pattern Recognition, pages 11607–
11616, 2021. 2

[30] Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and
Abhinav Valada. Continual SLAM: Beyond lifelong simulta-
neous localization and mapping through continual learning.

9

In Aude Billard, Tamim Asfour, and Oussama Khatib, edi-
tors, Robotics Research, pages 19–35, Cham, 2023. Springer
Nature Switzerland. 1, 2, 3, 4, 5, 6, 7, 8

[31] Jianren Wang, Xin Wang, Yue Shang-Guan, and Abhinav
Gupta. Wanderlust: Online continual object detection in the
real world. In International Conference on Computer Vision,
pages 10809–10818, 2021. 2

10

