
OpenDR —
Open Deep Learning Toolkit for Robotics

Project Start Date: 01.01.2020
Duration: 48 months
Lead contractor: Aristotle University of Thessaloniki

Deliverable D5.4: Final report on deep robot
action and decision making

Date of delivery: 29 September 2023

Contributing Partners: TUD, ALU-FR, TAU, AUTH, AU
Version: v2.0

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
871449.

D5.4: Final report on deep robot action and decision making 2/131

Title D5.4: Final report on deep robot action and decision making
Project OpenDR (ICT-10-2019-2020 RIA)
Nature Report
Dissemination Level: PU
Authors Bas van der Heijden (TUD), Jelle Luijkx (TUD), Laura Ferranti

(TUD), Jens Kober (TUD), Robert Babuška (TUD), Avramelou
Loukia (AUTH), Kakaletsis Efstratios (AUTH), Passalis Nikolaos
(AUTH), Kirtas Emmanouil (AUTH), Nousi Paraskevi (AUTH),
Tzelepi Maria (AUTH), Symeonidis Charalampos (AUTH),
Spanos Dimitrios (AUTH), Tefas Anastasios (AUTH), Niko-
laidis Nikolaos (AUTH), Halil Ibrahim Ugurlu (AU), Amir
Ramezani Dooraki (AU), Erdal Kayacan (AU), Alexandros Iosi-
fidis (AU), Daniel Honerkamp (ALU-FR), Nikolai Dorka (ALU-
FR), Tim Welschehold (ALU-FR), Abhinav Valada (ALU-FR),
Roel Pieters (TAU), Akif Ekrekli (TAU), Mikael Petäjä (TAU)

Lead Beneficiary TUD (Technische Universiteit Delft)
WP 5
Doc ID: OPENDR D5.4.pdf

Document History

Version Date Reason of change
v1.0 22/9/2023 Draft ready for review
v2.0 25/9/2023 Final version

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 3/131

Contents

1 Introduction 7
1.1 Deep Planning (T5.1) . 7

1.1.1 Objectives . 7
1.1.2 Innovations and achieved results . 7
1.1.3 Ongoing and future work . 7

1.2 Deep Navigation (T5.2) . 7
1.2.1 Objectives . 7
1.2.2 Innovations and achieved results . 7
1.2.3 Ongoing and future work . 8

1.3 Deep Action and Control (T5.3) . 8
1.3.1 Objectives . 8
1.3.2 Innovations and achieved results . 8
1.3.3 Ongoing and future work . 8

1.4 Human Robot Interaction (T5.4) . 9
1.4.1 Objectives . 9
1.4.2 Innovations and achieved results . 9
1.4.3 Ongoing and future work . 9

1.5 Connection to Project Objectives . 10

2 Deep Planning 11
2.1 Lyapunov-inspired deep reinforcement learning for obstacle avoidance 11

2.1.1 Introduction and objectives . 11
2.1.2 Description of work performed so far 12
2.1.3 Future work . 12

2.2 Curiosity-Driven Reinforcement Learning based Low-Level Flight Control . . . 12
2.2.1 Introduction and objectives . 12
2.2.2 Description of work performed so far 13
2.2.3 Future work . 13

3 Deep Navigation 13
3.1 Learning Hierarchical Interactive Multi-Object Search for Mobile Manipulation 13

3.1.1 Introduction and objectives . 13
3.1.2 Description of work performed so far 14
3.1.3 Future work . 14

3.2 Deep Reinforcement Learning with Action Masking for Diffential-drive Robot
Navigation using Low-Cost Sensors . 14
3.2.1 Introduction and objectives . 14
3.2.2 Description of work performed so far 15
3.2.3 Future Work . 16

3.3 Improving Inertial-based UAV Localization using Data-efficient Deep Rein-
forcement Learning . 16
3.3.1 Introduction and work performed so far 16
3.3.2 Future Work . 16

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 4/131

4 Deep action and control 16
4.1 EAGERx: Graph-Based Framework for Sim2real Robot Learning 16

4.1.1 Introduction and objectives . 16
4.1.2 Description of work performed so far 17
4.1.3 Future work . 17

4.2 Prioritizing States with Action Sensitive Return in Experience Replay 17
4.2.1 Introduction and objectives . 17
4.2.2 Description of work performed so far 17
4.2.3 Future work . 18

5 Human robot interaction 18
5.1 EValueAction: a proposal for policy evaluation in simulation to support inter-

active imitation learning . 18
5.1.1 Introduction and objectives . 18
5.1.2 Description of work performed so far 18
5.1.3 Future work . 19

5.2 Sensor-based Human-Robot Collaboration for Industrial Tasks 19
5.2.1 Introduction and objectives . 19
5.2.2 Description of work performed so far 19
5.2.3 Future work . 20

5.3 Co-speech Gestures for Human-Robot Collaboration 20
5.3.1 Introduction and objectives . 20
5.3.2 Description of work performed so far 20
5.3.3 Future work . 20

6 Conclusions 21

A Lyapunov-inspired deep reinforcement learning for robot navigation in obstacle
environments 25

B Curiosity-Driven Reinforcement Learning based Low-Level Flight Control 32

C Deep Reinforcement Learning with Action Masking for Differential-drive Robot
Navigation using Low-Cost Sensors 45

D Data efficient Deep Reinforcement Learning for Robust Inertial-based UAV Local-
ization 52

E Learning Hierarchical Interactive Multi-Object Search for Mobile Manipulation 73

F EAGERx: Graph-Based Framework for Sim2real Robot Learning 84

G Prioritizing States with Action Sensitive Return in Experience Replay 93

H EValueAction: a proposal for policy evaluation in simulation to support interactive
imitation learning 106

I Sensor-Based Human-Robot Collaboration for Industrial Tasks 113

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 5/131

J Co-speech Gestures for Human-Robot Collaboration 127

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 6/131

Executive Summary
This document presents the final update of the work performed between M36 and M45 for
WP5–Deep robot action and decision making. WP5 consists of four main tasks, that are Task
5.1–Deep Planning, Task 5.2–Deep Navigation, Task 5.3–Deep Action and Control, and Task
5.4–Human Robot Interaction.

After a general introduction that provides an overview of the individual chapters with a link
to the main objectives of the project, the document dedicates a chapter to each tasks. Each
chapter (i) provides an overview on the state of the art for the individual topics and existing
toolboxes, (ii) details the partners’ current work in each task with initial performance results,
and (iii) describes the next steps for the individual tasks. Finally, a conclusion chapter provides
a final overview of the work and the planned future work for each individual task.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 7/131

1 Introduction
This document describes the work done during the fourth year of the project in the four major
research areas of WP5 namely deep planning, deep navigation, deep action and control, and
human-robot interactions.

More details related to the implementations of the proposed methods in the OpenDR Toolkit
can be found in D7.3 (WP7). Details related to evaluation and benchmarking of the proposed
methods can be found in D8.2 and D8.3 (WP8).

1.1 Deep Planning (T5.1)

1.1.1 Objectives

Planning in low and high dimensional state spaces is one of the important directions for de-
veloping solutions in a wide range of robotics tasks. Using learning-based methods such as
reinforcement learning it is possible to develop end to end planning methods.

1.1.2 Innovations and achieved results

Within this year, AU proposed a novel methodology for obstacle avoidance based on Lyapunov-
inspired deep reinforcement learning. Moreover, AU proposed a curiosity-driven reinforcement
learning based method for low-level flight control, which is capable of learning to control and
navigate a quad-copter UAV towards the desired position where the inputs to the learned model
are odometry data, and the output is motor speeds.

1.1.3 Ongoing and future work

We are further extending our work on is the machine imagination, and specifically exploring
the effect of combining machine imagination in low and high level UAV control methods.

1.2 Deep Navigation (T5.2)

1.2.1 Objectives

Navigation is required for a vast range of robotic tasks. As pure navigation approaches mature,
challenges move more towards unexplored environments and integration into more complex
robotic systems such as mobile manipulators.

1.2.2 Innovations and achieved results

Within this year, ALU-FR has proposed a novel interactive multi-object search task that re-
quires robots to manipulate their surroundings to achieve their goal by opening doors that are
blocking their path or looking inside drawers and cabinets. Furthermore, ALU-FR has proposed
a hierarchical reinforcement learning agent that learns to reason on an object and instance level
to combine exploration, navigation and manipulation. Building on previous work from the
OpenDR project for low-level subpolicies. This agent achieves impressive results on this novel
task. Also, AUTH developed a novel DRL-based end-to-end trainable agent for differential-
drive wheeled robot navigation, while also developing the appropriate techniques to improve

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 8/131

learning efficiency. Finally, AUTH also further developed a data efficient DRL approach for
robust inertial-based UAV localization.

1.2.3 Ongoing and future work

We are further extending our work on exploration and mobile manipulation in unexplored in-
door environments. We plan to incorporate more complex manipulation actions within the hi-
erarchical framework as well as to connect the current reinforcement learning based reasoning
with the semantic knowledge that is embedded in large language models.

1.3 Deep Action and Control (T5.3)

1.3.1 Objectives

TUD’s key objective was to address the challenges associated with transferring control policies
from simulated environments to real-world robotics, commonly known as the sim2real prob-
lem. We aimed to develop a unified framework, EAGERx, which could harmonize the different
aspects of both simulated and real robotic learning. The framework sought to overcome issues
such as model discrepancies, asynchronous control, and inaccuracies in physical phenomena.

Also TUD worked towards enhancing the sample efficiency and stabilize the training pro-
cess in off-policy reinforcement learning. To that end, TUD focused on addressing the issue
of irrelevant samples in experience replay buffers that hamper an agent’s performance. TUD
introduced a novel method, Action Sensitive Experience Replay (ASER), designed to prioritize
relevant states in the replay buffer, particularly those where non-optimal actions significantly
affect the return.

1.3.2 Innovations and achieved results

TUD introduced EAGERx, a novel framework with a unified software pipeline designed to mit-
igate the sim2real gap. The framework is compatible with various simulators and incorporates
features like integrated delay simulation, domain randomization, and a unique synchronization
algorithm. TUD evaluated EAGERx on two benchmark robotic tasks, demonstrating its effec-
tiveness in enabling consistent behavior across both simulated and real-world scenarios. The
results were summarized in a paper currently under review.

TUD developed ASER, a novel experience replay method that reallocates modeling re-
sources to prioritize states where the return is especially sensitive to action choice. This inno-
vation led to substantial improvements in sample efficiency, stability, and overall performance.
Moreover, TUD demonstrated that the approach enables smaller function approximators, like
neural networks with fewer neurons, to perform well in environments where they would usually
struggle. The results were summarized in an accepted workshop paper.

1.3.3 Ongoing and future work

As future work, TUD will maintain EAGERx as an open source project, and showcase its use-
fulness in the agile production use-case.

In addition, TUD aims to extend the evaluation of ASER across a larger array of environ-
ments to better understand its implications and limitations. Potential directions include the

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 9/131

implementation of ASER in discrete action-space algorithms like DQN and exploring its appli-
cability in transfer learning, particularly in sim-to-real scenarios.

1.4 Human Robot Interaction (T5.4)

1.4.1 Objectives

The objective of the TUD was to simplify the interaction between humans and robots in in-
dustrial settings. We aimed to develop a system, EValueAction (EVA), that reduces the cost
and complexity associated with collecting interactive demonstrations for learning from demon-
stration techniques. The system is designed to pre-train policies using human demonstrations
and refine them interactively, providing a safe and efficient framework for human-robot col-
laboration. The ultimate goal was to achieve a balance between exploration and exploitation
in interactive imitation learning (IIL), thereby enabling the robot to generalize well in various
scenarios.

Interaction and collaboration between human and robot requires effective modes of commu-
nication to assign robot tasks and coordinate activities. As communication can utilize different
modalities, a multi-modal approach can be more expressive than single modal models alone.
The objective of TAU was to utilize different sensor inputs either individually and combined in
human-robot collaborative tasks.

1.4.2 Innovations and achieved results

TUD introduced EVA, a novel system to streamline the process of collecting interactive demon-
strations for IIL. EVA leverages simulations to preemptively identify and mitigate failures, thus
ensuring a safer environment for human-robot interaction. TUD’s approach resulted in an ini-
tial policy that could be iteratively refined, making the system more adaptive and robust. A
case study validated the effectiveness of EVA by highlighting the crucial role of informative
demonstrations for achieving good generalization. The work was summarized in an accepted
conference paper.

TAU has demonstrated how human-robot collaboration can be supported by visual percep-
tion models, for the detection of objects, targets, humans and their actions. For each model
we present details with respect to the required data, the training of a model and its inference
on real images. Moreover, we provide all developments for the integration of the models to an
industrially relevant use case, in terms of software for training data generation and human-robot
collaboration experiments. In addition, TAU has developed a co-speech gesture model that can
assign robot tasks for human-robot collaboration, by utilizing speech commands, gestures and
object perception.

1.4.3 Ongoing and future work

TUD plans to fully implementing the EVA system and rigorously evaluate its real-world per-
formance. This will lay the groundwork for implementing EVA as a standard solution for
enhancing human-robot interaction in Industry 5.0.

TAU plans to extend the human-robot collaboration scenario to long-term tasks and repet-
itive actions. Human commands and perception coordinates the shared tasks, thereby offering
lower workload and better ergonomics for the human operator.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 10/131

1.5 Connection to Project Objectives
The work performed within WP5, as summarized in the previous subsections, perfectly aligns
with the project objectives. More specifically, the conducted work progressed the state-of-the-
art towards meeting following objectives of the project:

O2.c To provide lightweight deep learning methods for deep robot action and decision making,
namely:

O2.c.i Deep reinforcement learning (RL) and related control methods.

* AU proposed a novel methodology for obstacle avoidance based on Lyapunov-
inspired deep reinforcement learning, presented in Section 2.1.

* AU proposed a curiosity-driven reinforcement learning based method for learn-
ing low-level control of quad-copter UAV exploring a newly introduced new
curiosity approach called High Level Curiosity (HCM), presented in Section
2.2. In this approach, the algorithm trains a policy using intrinsic and extrin-
sic rewards to control the UAV, avoid Obstacles, and control the Yaw Direction
toward the desired position.

* The EAGERx toolkit presented by TUD in Section 4.1 enables users to use a
single pipeline for both the real and simulated environment. Hence, this re-
duces the chance for mismatches between the two implementations. Therefore,
EAGERx facilitates the application of deep RL methods in practice.

* The experience replay method presented by TUD in Section 4.2 enables users
to efficiently learn control policies with off-policy RL algorithms.

* The hierarchical interactive multi-object search approach introduced by ALU-
FR develops a high-level reinforcement learning agent to coordinate low-level
subpolicies across complex long-horizon tasks.

O2.c.ii Deep planning and navigation methods that can be trained in end-to-end fashion.

* AUTH developed a DRL-based end-to-end trainable agent for differential-drive
wheeled robot navigation, while also developing the appropriate techniques to
improve learning efficiency (Section 3.2). AUTH also continued working on
the data efficient DRL approach for robust inertial-based UAV localization de-
veloped in D5.3, providing additional evaluation experiments (Section 3.3).

* ALU-FR developed a hierarchical multi-object search approach, described in
Section 3.1. This method uses a high-level reinforcement learning agent to
coordinate low-level subpolicies, resulting in autonomous exploration and in-
teraction of unexplored environments over very long-horizons.

O2.c.iii Enable robots to decide on actions based on observations in WP3, as well as to learn
from observations.

* TUD has contributed to this objective as described in Section 4.1 with the graph
structure of environments in the EAGERx toolkit. This functionality allows the
user to use the perception algorithms in WP3 as nodes.

* ALU-FR extended its multi-object search to a hierarchical method, centered
around a semantic map that serves as central memory component across high-
and low-level policies.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 11/131

* TAU has contributed to this objectives with different methods that utilize per-
ception (speech, visual and multi-modal) to coordinate robot actions in indus-
trial human-robot collaborative tasks, presented in Section 5.3

O2.c.iv Enable efficient and effective human robot interaction

* TUD has contributed to this objective as described in Section 5.1 with a novel
system to streamline the process of collecting interactive demonstrations for
interactive imitation learning. EVA uniquely leverages simulations to preemp-
tively identify and mitigate failures, thus ensuring a safer environment for human-
robot interaction.

* TAU has contributed to this objectives with different methods that utilize per-
ception for enabling efficient and effective human robot collaboration, pre-
sented in Section 5.2. Both individual perception tools and tools that fuse mul-
tiple modalities are evaluated for industrial human-robot collaborative tasks.

2 Deep Planning

2.1 Lyapunov-inspired deep reinforcement learning for obstacle avoid-
ance

2.1.1 Introduction and objectives

Despite the remarkable success of learning-based policies in various robot platforms and tasks
[21, 20, 23], they have been subject to criticism due to their limited interpretability, particularly
in terms of safety and stability. Ensuring stability in robotic systems is of utmost importance
to mitigate undesirable behaviors and potential hazards. To tackle these concerns, researchers
have explored various approaches at different levels. While advancements in more sophisti-
cated algorithms have demonstrated improved safety experimentally across several domains
[12], there has also been a concerted effort to integrate concepts from conventional control
theory in an attempt to bridge this interpretability gap [3]. For instance, recent advancements
include the synthesis of Lyapunov-stable neural network controllers for non-linear state feed-
back control [4], offering promising avenues for achieving stability in learning-based control
systems. However, these methods are computationally expensive, and challenging to scale in
higher state-space dimensions.

We proposed a novel approach for robotic navigation with obstacle presence using a deep
reinforcement learning (DRL) strategy inspired by the principles of Lyapunov theory to enhance
stability and safety. To achieve this, we formalize the robot planning problem as a state-space
control problem, integrating obstacle locations into the state representation. The objective of
the control is to achieve constant velocity movement. A Lyapunov function is then designed
to provide conditions for the safe travel of the robot. A reward-shaping strategy is introduced,
leveraging the Lyapunov function designed for the environment, guiding the learning process.
Furthermore, we introduced a constrained exploration strategy for DRL training, incorporat-
ing the Lyapunov condition to improve exploration efficiency and accelerate the training. By
adopting the proposed strategy, the policy learns to satisfy the Lyapunov conditions, resulting
in improved stability, convergence, and overall performance of the robotic navigation system in
complex environments.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 12/131

2.1.2 Description of work performed so far

Details of this work can be found in the pre-print listed below, which is also provided in Ap-
pendix A:

• H. I. Ugurlu and E. Kayacan “Lyapunov-inspired deep reinforcement learning for robot
navigation in obstacle environments” (to be submitted to American Control Conference -
2024)

After its success in games and simulated control tasks, deep reinforcement learning is stud-
ied extensively for robotics to learn neural network-based planners or controllers. However, in
contrast to conventional control-theoretic methods, neural network controllers lack an under-
standing of safety or stability due to their black-box nature. We propose a deep reinforcement
learning (DRL) strategy inspired by Lyapunov theory for addressing safe robot navigation prob-
lems with obstacle presence. The robot planning problem is formulated as a state-space control
problem, incorporating obstacle locations as part of the state representation. A reward-shaping
strategy is introduced, leveraging a Lyapunov function designed for the environment. Addition-
ally, a constrained exploration method is proposed to guide the DRL training process. Exper-
imental results demonstrate that the proposed method trains faster than a vanilla DRL policy
and achieves better exploration, leading to the learning of superior policies in terms of comple-
tion rates compromising maintenance of speeds closer to the desired target speed. The findings
highlight the potential of incorporating Lyapunov theory into DRL approaches for improving
robot navigation.

2.1.3 Future work

In the future, there are several directions for further exploration and improvement based on
the findings of this research. Firstly, it would be valuable to extend the proposed DRL train-
ing strategy to more complex and dynamic environments, where the robot needs to adapt to
changing obstacles or varying task requirements. Additionally, investigating the scalability of
the approach to large-scale robotic systems would be crucial. Lastly, it would be interesting to
explore the transferability and generalization capabilities of the trained policies to real-world
environments or tasks. Addressing these aspects would contribute to a deeper understanding
and practical applicability of the proposed DRL approach for robot navigation problems.

2.2 Curiosity-Driven Reinforcement Learning based Low-Level Flight Con-
trol

2.2.1 Introduction and objectives

Curiosity is one of the main motives in many of the natural creatures with measurable levels
of intelligence for exploration and, as a result, more efficient learning. It makes it possible for
humans and many animals to explore efficiently by searching for being in states that make them
surprised with the goal of learning more about what they do not know. As a result, while being
curious, they learn better. In the machine learning literature, curiosity is mostly combined with
reinforcement learning-based algorithms as an intrinsic reward.

We proposed an algorithm based on the drive of curiosity for autonomous learning to control
by generating proper motor speeds from odometry data. The quadcopter controlled by our

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 13/131

proposed algorithm can pass through obstacles while controlling the Yaw direction of the quad-
copter toward the desired location. To achieve that, we also proposed a new curiosity approach
based on prediction error. We ran tests using on-policy, off-policy, on-policy plus curiosity, and
the proposed algorithm and visualized the effect of curiosity in evolving exploration patterns.
Results show the capability of the proposed algorithm to learn optimal policy and maximize
reward where other algorithms fail to do so.

2.2.2 Description of work performed so far

Details of this work can be found in the pre-print listed below, which is also provided in Ap-
pendix B:

• Ramezani Dooraki, A., Iosifidis, A., 2023. Curiosity-Driven Reinforcement Learning
based Low-Level Flight Control. https://arxiv.org/abs/2307.15724.

This work proposes using a policy gradient-based reinforcement learning algorithm to learn
an optimal policy. However, the off-the-shelf policy gradient algorithms such as Proximal Pol-
icy Optimization (PPO) and Soft Actor-Critic (SAC) cannot learn an optimal policy for our
problem. To solve the problem, we change the PPO algorithm by adding 1) A new state value
function network and 2) Introducing a new curiosity approach for motivating meaningful ex-
ploration. To implement and test the capability of our algorithm in a real work problem. We
design and implement a new simulation-based environment in Gazebo simulator. Moreover,
we implement our algorithm in Python, and for the connection between our algorithm and the
environment, we use Robot Operating System (ROS).

2.2.3 Future work

In the future work, we plan to increase the speed and efficiency of learning-based flight con-
trollers based on machine imagination (MI). We expect MI to allow the learning-based con-
troller calculate the effect of a trajectory of interaction with the environment using the model
learned from the environment (without executing the trajectory in the actual environment).
There are different methodologies for implementing machine imagination, such as RNN-based
and Transformer-based. We plan to implement both of the mentioned methods and measure
their similarities and differences.

3 Deep Navigation

3.1 Learning Hierarchical Interactive Multi-Object Search for Mobile
Manipulation

3.1.1 Introduction and objectives

We propose an interactive multi-object search task in which the agent as to manipulate the en-
vironment to find the objects of interest as doors may block its path and objects may be hidden
within articulated objects such as cabinets and drawers. We then introduce a hierarchical rein-
forcement learning approach that learns to compose exploration, navigation, and manipulation
skills. To achieve this, we design an abstract high-level action space around a semantic map
memory and leverage the explored environment as instance navigation points. This is enabled

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 14/131

by our previous work on mobile manipulation [7, 8] and exploration [18] within the OpenDR
project, which now serve as powerful low-level subpolicies for the agent.

3.1.2 Description of work performed so far

Details of this work can be found in the publication listed below, which is also provided in
Appendix E.

• [19] F. Schmalstieg, D. Honerkamp, T. Welschehold and A. Valada, “Learning Hierar-
chical Interactive Multi-Object Search for Mobile Manipulation”, Jul. 2023,
DOI: 10.48550/ARXIV.2307.06125.

In this work, we propose Hierarchical Interactive Multi-Object Search (HIMOS), a hierar-
chical reinforcement learning approach to learn both exploration and manipulation skills and to
reason at a high level about the required steps. We combine learned motions for local explo-
ration in continuous action spaces and frontier exploration for long-horizon exploration together
with mobile manipulation skills for object interactions. We use semantic maps as the central
memory component, which have shown to be an expressive and sample-efficient representation
for these tasks and design a high-level action space that exploits the acquired knowledge about
the environment. By leveraging explored object instance locations as navigation waypoints,
our approach efficiently learns these complex tasks from little data and consistently achieves
success rates above 90% even as the number of target objects increases. By equipping all the
low-level skills with mobility, we remove the ”hand-off” problem in which subpolicies have to
terminate in the initial set of the following skill. Lastly, we transfer the trained agent to the real
world and demonstrate that it successfully accomplishes these tasks in a real office environment.
In particular, we replace the subpolicies from simulation with unseen real-world variations and
find that the policy is able to generalize to these unseen subpolicies and is robust to failures in
their execution, making it highly modular and flexible for transfer. Finally, we present ablation
studies to evaluate the impact of the main design decisions.

3.1.3 Future work

In the future, we plan to investigate the benefits of jointly training the high- and low-behavior
and integrate more sophisticated mapping modules to build a semantic map directly from the
robot sensors. Further, additional low-level behaviors could extend environment interaction
options or perform more goal-oriented active perception actions.

3.2 Deep Reinforcement Learning with Action Masking for Diffential-
drive Robot Navigation using Low-Cost Sensors

3.2.1 Introduction and objectives

Autonomous navigation of mobile robots has been a popular research topic in the field of
robotics for decades. The ability to navigate in complex and dynamic environments is essential
for many applications, such as search and rescue, logistics, and home care. One of the most
common and versatile types of mobile robots is the differential-drive wheeled robot. These
robots are easy to build and control, and their differential-drive system allows them to turn on
the spot and move in any direction. At the same time, Deep Reinforcement Learning (DRL) [2]

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 15/131

has also emerged as a promising technique for training autonomous agents to perform com-
plex tasks, leading to several robotics applications [16], including navigation, manipulation,
and control.

However, recent research mainly targets robots that use multiple sensors and relatively ex-
pensive configurations with LiDAR, depth cameras and others. One such example is in [5],
where the authors used a Jetson Nano for obstacle avoidance using a monocular camera. In
another work [1], the authors used the Turtlebot 3 Waffle Pi, and trained a Double DQN [22]
agent to navigate to a target. In a more recent work using the same robot [24], a mapless
local path planning approach was presented, that used variants of Deep Q-Network [14] to in-
crease success rates, proposing the n-Step Dueling Double DQN with Reward-Based ε-Greedy
(RND3QN) algorithm. In [17], the authors successfully used Deep Deterministic Policy Gradi-
ent [11] to train an agent to drive a differential-drive robot to a target, improving on this paper’s
authors’ earlier work in [10]. They used curriculum learning [15] to gradually train the agent
on a small set of increasingly difficult maps. Another more generic example is the established
Robot Operating System (ROS)1 navigation stack, which while it can work with inexpensive
ultrasonic distance sensors, it is more well-suited to work with LiDAR and depth sensors. As a
result, many DRL stacks are designed exclusively for high-end robotic hardware, which limits
their potential impact in a wide range of applications, from education to low-cost mass pro-
duction robots. At the same time, training DRL agents with low-fidelity and noisy sensors can
worsen sample efficiency. This necessitates the use of more sample-efficient paradigms in such
applications.

3.2.2 Description of work performed so far

In this work, we propose a method for training an agent to drive a low-cost differential-drive
wheeled robot navigating to a target while avoiding obstacles, using the well-established Prox-
imal Policy Optimization (PPO) [6] RL algorithm. To improve training efficiency we employ
invalid action masking [9], also known as Maskable PPO, after appropriately designing two
masks that can lead to increased performance. This work a) introduces a more systematic and
effective approach to perform action masking, as well as b) paves the way for introducing a
state-of-the-art DRL approach using low-cost sensors in the robotic navigation domain. The
agent used, apart from its sensor values, takes only the relative angle and distance to its target
and not its own or the target’s absolute position, and thus can act as a local path planner and
navigate dynamically in unknown environments. We developed a randomized procedural map
generation method within the Webots robotics simulator [13], to be able to train and realistically
evaluate the agent in complex environments with obstacles of various challenging shapes, using
realistic noisy sensors. We experimentally demonstrate that the proposed agent can robustly
navigate to a given target even in unknown procedurally generated environments, or even when
denying part of its sensor input. Finally, we demonstrated a practical use-case using object
detection to dynamically search for, and move to objects within unknown environments.

The proposed method, along with a detailed evaluation in several different scenarios, are
provided in Appendix C:

C K. Tsampazis, M. Kirtas, P. Tosidis, N. Passalis, and A. Tefas “Deep Reinforcement
Learning with Action Masking for Differential-Drive Robot Navigation using Low-cost

1https://www.ros.org/

OpenDR No. 871449

https://www.ros.org/

D5.4: Final report on deep robot action and decision making 16/131

Sensors”, IEEE International Workshop on Machine Learning for Signal Processing (ac-
cepted), 2023.

3.2.3 Future Work

AUTH will continue working on integrating and evaluating OpenDR tools according to the
toolkit’s specifications and plan.

3.3 Improving Inertial-based UAV Localization using Data-efficient Deep
Reinforcement Learning

3.3.1 Introduction and work performed so far

AUTH also continued working on evaluating and further improving the proposed inertial-based
UAV localization approach using data-efficient DRL, as initially introduced in D5.3. To this
end, among others, additional experiments have been performed to evaluate the impact of the
individual components involved in the proposed method, as well as to quantitatively evaluate
the effect of the proposed method on different trajectories. AUTH will continue on working
on toolkit integration according to the toolkit’s specifications. The updated technical report is
provided in Appendix D:

D D. Tsiakmakis, N. Passalis, and A. Tefas. “Improving Inertial-based UAV Localization
using Data-efficient Deep Reinforcement Learning”, Technical Report (AUTH), 2023.

3.3.2 Future Work

AUTH will continue working on integrating and evaluating OpenDR tools according to the
toolkit’s specifications and plan.

4 Deep action and control

4.1 EAGERx: Graph-Based Framework for Sim2real Robot Learning

4.1.1 Introduction and objectives

The main focus of this work revolves around the challenge of transferring control policies from
simulation to real-world robotic systems, a problem known as sim2real. Simulations provide
a risk-free and cost-effective platform for the development and testing of robotic algorithms.
However, the transfer of these algorithms faces hurdles due to the sim2real gap, caused by
various factors like inaccurate modeling of physical phenomena, separate software implemen-
tations, and asynchronous control in real-world robotics. Addressing these challenges requires
the integration of various kinds of abstractions and simulator environments to make the sim-
ulation more consistent with the real world. Existing solutions often restrict users to specific
simulation environments and fail to synchronize parallel components effectively. Our objective
is to present EAGERx, a novel framework designed to bridge these gaps efficiently and flexibly.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 17/131

4.1.2 Description of work performed so far

Sim2real, that is, the transfer of learned control policies from simulation to real world, is an
area of growing interest in robotics due to its potential to efficiently handle complex tasks. The
sim2real approach, however, is hampered by discrepancies between simulation and reality, in-
accuracies in physical phenomena modeling, and asynchronous control, among others. To this
end, we introduce EAGERx, a framework with a unified software pipeline for both real and
simulated robot learning. It can support various simulators and aids in integrating state, action
and time-scale abstractions to facilitate learning. EAGERx’s integrated delay simulation, do-
main randomization features, and proposed synchronization algorithm contribute to narrowing
the sim2real gap. We demonstrate the efficacy of EAGERx in accommodating diverse robotic
systems and maintaining consistent simulation behavior. EAGERx is open source and its code
is available at https://eagerx.readthedocs.io.

The proposed method, along with a detailed evaluation are provided in Appendix F:

F B. van der Heijden, J. Luijkx, L. Ferranti, J. Kober and R. Babuska “EAGERx: Graph-
Based Framework for Sim2real Robot Learning”, IEEE Robotics and Automation Letters
(under review), 2023.

4.1.3 Future work

As future work, TUD will maintain EAGERx as an open source project, and showcase its use-
fulness in the agile production use-case.

4.2 Prioritizing States with Action Sensitive Return in Experience Replay

4.2.1 Introduction and objectives

This work is focused on addressing the efficiency of experience replay in reinforcement learn-
ing, particularly for algorithms that employ state-action value functions. In the conventional
use of experience replay, all state transitions are treated equally, which does not necessarily
lead to an optimal policy. Previous works have demonstrated that every sample is not equally
relevant for learning a good policy, and this inefficiency is amplified when global function ap-
proximators, like neural networks, are used. We introduce Action Sensitive Experience Replay
(ASER), a method that seeks to prioritize “decision points” in the replay buffer to enhance learn-
ing efficiency. Our key objective is to fine-tune the replay distribution by defining a modeling
importance criterion that assesses the sensitivity on return of taking a suboptimal action. The
ultimate aim is to optimize the allocation of computational resources and improve both sample
efficiency and final policy performance.

4.2.2 Description of work performed so far

Experience replay for off-policy reinforcement learning has been shown to improve sample
efficiency and stabilize training. However, typical uniformly sampled replay includes many
irrelevant samples for the agent to reach good performance. We introduce Action Sensitive
Experience Replay (ASER), a method to prioritize samples in the replay buffer and selectively
model parts of the state-space more accurately where choosing sub-optimal actions has a larger
effect on the return. We experimentally show that this can make training more sample efficient

OpenDR No. 871449

https://eagerx.readthedocs.io

D5.4: Final report on deep robot action and decision making 18/131

and that this allows smaller parametric function approximators – like neural networks with few
neurons – to achieve good performance in environments where they would otherwise struggle.

The proposed method, along with a detailed evaluation are provided in Appendix G:

G A. Keijzer, B. van der Heijden, and J. Kober “Prioritizing States with Action Sensitive
Return in Experience Replay”, Sixteenth European Workshop on Reinforcement Learning
(accepted), 2023.

4.2.3 Future work

We aim to extend the evaluation of ASER across a larger array of environments to better under-
stand its implications and limitations. Potential directions include the implementation of ASER
in discrete action-space algorithms like DQN and exploring its applicability in transfer learning,
particularly in sim-to-real scenarios.

5 Human robot interaction

5.1 EValueAction: a proposal for policy evaluation in simulation to sup-
port interactive imitation learning

5.1.1 Introduction and objectives

The development of Industry 4.0 has paved the way for the implementation of Artificial Intel-
ligence (AI) in various industrial settings. In particular, Learning from Demonstration (LfD)
emerges as a technique to facilitate human-robot collaboration. However, existing LfD meth-
ods encounter issues of dataset bias and overfitting, which limit their generalization capabilities.
This project aims to address these challenges by introducing the EValueAction (EVA) frame-
work. The primary objectives are twofold: 1) to reduce the number of demonstrations needed
for effective learning and 2) to improve the quality of these demonstrations, thereby minimizing
both mental and physical effort on the human side. This work aligns with the larger research
agenda towards Industry 5.0, emphasizing sustainable, value-driven, and human-centric pro-
duction processes.

5.1.2 Description of work performed so far

The up-and-coming concept of Industry 5.0 fore-sees human-centric flexible production lines,
where collaborative robots support human workforce. In order to allow a seamless collabora-
tion between intelligent robots and human workers, designing solutions for non-expert users
is crucial. Learning from demonstration emerged as the enabling approach to address such a
problem. However, more focus should be put on finding safe solutions which optimize the cost
associated with the demonstrations collection process. This paper introduces a preliminary out-
line of a system, namely EValueAction (EVA), designed to assist the human in the process of
collecting interactive demonstrations taking advantage of simulation to safely avoid failures. A
policy is pre-trained with human-demonstrations and, where needed, new informative data are
interactively gathered and aggregated to iteratively improve the initial policy. A trial case study
further reinforces the relevance of the work by demonstrating the crucial role of informative
demonstrations for generalization.

The proposed method, along with a detailed evaluation are provided in Appendix H:

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 19/131

H F. Sibona, J. Luijkx, B. van der Heijden, L. Ferranti, and M. Indri “EValueAction: a
proposal for policy evaluation in simulation to support interactive imitation learning”,
IEEE 21st International Conference on Industrial Informatics (INDIN) (accepted), 2023.

5.1.3 Future work

As future work, we intend to implement the EVA framework on a real system and benchmark
its usefulness in making real-time risk assessments of task failure.

5.2 Sensor-based Human-Robot Collaboration for Industrial Tasks

5.2.1 Introduction and objectives

Collaboration between human and robot requires interaction modalities that suit the context of
the shared tasks and the environment in which it takes place. While an industrial environment
can be tailored to favor certain conditions (e.g., lighting), some limitations cannot so easily be
addressed (e.g., noise, dirt). In addition, operators are typically continuously active and cannot
spare long time instances away from their tasks engaging with physical user interfaces. Sensor-
based approaches that recognize humans and their actions to interact with a robot have therefor
great potential. This work demonstrates how human-robot collaboration can be supported by
visual perception models, for the detection of objects, targets, humans and their actions. For
each model we present details with respect to the required data, the training of a model and
its inference on real images. Moreover, we provide all developments for the integration of the
models to an industrially relevant use case, in terms of software for training data generation
and human-robot collaboration experiments. Results are discussed in terms of performance and
robustness of the models, and their limitations. Although the results are promising, learning-
based models are not trivial to apply to new situations or tasks. Therefore, we discuss the
challenges identified, when integrating them into an industrially relevant environment.

5.2.2 Description of work performed so far

The details of this work can found in the submitted publication listed below, and can be found
in Appendix I:

I A. Angleraud, A. Ekrekli, K. Samarawickrama, G. Sharma, R. Pieters “Sensor-based
Human-Robot Collaboration for Industrial Tasks”, Robotics and Computer-Integrated
Manufacturing (accepted), 2023.

In this work the current limitations in perception models and situational awareness for in-
dustrial human-robot collaboration is addressed. Perception and situational awareness of robot
systems can be enhanced, such that fluent and responsive collaboration between human and
robot is possible. We believe that perception models, based on deep learning, are ideal for this,
as they can be accurate, reliable and fast to execute. These can then provide the required sensory
input for interaction, such as the human body and its pose, human actions or gestures, and the
pose of objects and targets in the scene. Developing and integrating such models for robotics
in industry are hard tasks, often requiring expertise from many different areas. Therefore, we
additionally provided a general HRC software framework, based on ROS, which can be utilized
to replicate our developments. The framework is build around OpenDR and has the perception
tools integrated for a practical and industrially relevant use case in agile production. The visual

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 20/131

perception tools are human skeleton detection, human action recognition and the detection and
pose estimation of objects and targets in the scene.

5.2.3 Future work

The results of our work demonstrate that deep learning-based perception models can be easily
trained and deployed to robotic environments and achieve reliable detection and recognition re-
sults. Results also demonstrated that multiple perception models can be utilized simultaneously,
enabling the fusion of different sensors or utilizing different detection modules in parallel. As
such, this work has established a baseline for future directions. These include the fusion of
different sensor information, from similar or dissimilar modalities. This sensor fusion would
enable a higher robustness then single sensor models and introduces a redundancy of sensing,
for example, in case one sensor fails or is occluded. Exploration of these topics will be done as
future work.

5.3 Co-speech Gestures for Human-Robot Collaboration

5.3.1 Introduction and objectives

Fluent interaction between human and robot requires reliable perception to capture the com-
mands of a person. While recent approaches in deep learning have established impressive tools
to detect e.g., human pose, gestures and speech, single tools alone can not always convey eas-
ily the commands intended. Reasons for this are the limited expressions available for different
modes of communication and the limitations in perception performance. Human hand gestures,
for example, contain much less information content than speech. On the other hand, gesture
detection can be done much quicker than speech recognition, leading to a faster response time.
These conflicting properties motivate to combine multiple perception tools into a single multi-
modal detection model that utilizes communication from human to robot for assigning tasks
and coordinating the collaboration.

5.3.2 Description of work performed so far

The details of this work can found in the submitted publication listed below, and can be found
in Appendix J:

J A. Ekrekli, A. Angleraud, G. Sharma, R. Pieters “Co-speech Gestures for Human-Robot
Collaboration”, under review, 2023.

In this work we compare different perception tools and analyse them with respect to their
suitability for human-robot collaboration. A co-speech gesture model is then developed that
combines speech, human hand gestures and object detection to achieve effective communication
of desired robot tasks, such as picking human-specified objects and robot to human hand-overs.
The developments are intended for industrial human-robot collaboration where a collaborative
robot shares its tasks, and works in close collaboration with, a human operator.

5.3.3 Future work

In future work we will aim to extend the sensor-fusion approach to multiple perception modali-
ties, with higher-level speech commands and visual-language models. This should lead to more
intuitive coordination of the human by more suitable and effective commands.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 21/131

6 Conclusions
This document presented the work performed on WP5. After a short introduction on the work
done on the individual tasks, the document provided a detailed overview of the individual tasks,
as detailed below.

Chapter 2 presented the status of the work performed for Task 5.1–Deep Planning. AU pre-
sented a novel DRL training strategy for addressing robot navigation problems by leveraging the
principles of the Lyapunov theory. The robot planning problem in an obstacle environment was
formulated as a state-space control problem, where obstacle locations are treated as part of the
state representation. To guide the learning process, a reward-shaping strategy was introduced
which is based on a Lyapunov function designed specifically for the formulated environment.
Additionally, a constrained exploration scenario for DRL training that incorporates the Lya-
punov condition was proposed. Experimental results demonstrate that the proposed method
achieves improved exploration, leading to the learning of a superior policy. AU also proposed
a novel approach for learning the low-level flight control of UAV robots. Using the proposed
low-level flight controller, a quadcopter can learn to fly and avoid obstacles while controlling
its yaw direction toward the desired position. Reinforcement learning is used in combination
with curiosity. Experiments show that using existing curiosity methods could not provide the
desired results. Thus, a new curiosity approach called the High Curiosity Module (HCM) was
proposed. Using the new curiosity module and combining it with PPO as the reinforcement
learning method, the new approach could learn optimal policies where other existing methods
failed to do so.

Chapter 3 detailed the status of the work performed for Task 5.2–Deep Navigation. ALU-
FR introduced an approach that learns to coordinate and combine previous OpenDR works on
exploration and mobile manipulation to autonomously solve a novel interactive multi-object-
search task. This methods enables autonomous navigation and search in unexplored environ-
ments over very long horizons. The method is evaluated in both simulation and the real world
and currently under peer-review. Furthermore, AUTH worked towards O2c by developing a
DRL-based end-to-end trainable agent for differential-drive wheeled robot navigation, while
also developing the appropriate techniques to improve learning efficiency. Furthermore, AUTH
also continued working on O2c on the data efficient DRL approach for robust inertial-based
UAV localization developed in D5.3, concluding this work.

Chapter 4 highlighted the work performed for Task 5.3–Deep Action and Control. TUD
focused on two main aspects: mitigating the sim2real gap and enhancing sample efficiency in
off-policy reinforcement learning. EAGERx, a novel framework, was developed to address the
sim2real problem by unifying software pipelines for simulated and real robotic learning. In
parallel, ASER was introduced to prioritize relevant states in the experience replay buffer, thus
improving sample efficiency, stability, and overall performance. Both methods were validated
through benchmark tasks and summarized in academic papers.

Finally, Chapter 5 highlighted the work performed for Task 5.4–Human Robot Interaction.
TUD’s primary objective was to simplify and make safer the collaboration between humans
and robots in an industrial context. TUD developed EValueAction (EVA), a novel system for
streamlining the collection of interactive demonstrations for interactive imitation learning (IIL).
EVA incorporates simulation to safely avoid failures, enabling a more adaptive and robust policy
that can be iteratively refined. The work has shown promising results in a case study and was
accepted for publication in a conference paper. TAU’s main objective was to utilize perception
for human-robot collaboration, either by individual perception tools or by combining input from

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 22/131

multiple tools into a fused output. Human speech, gestures and object perception provided the
input for commanding robot actions and enabling collaboration in shared industrial tasks.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 23/131

References
[1] H. Aydemir, M. Gök, and M. Tekerek. Reinforcement learning based local path planning

for mobile robot. In Interdisciplinary Conf. Mechanics, Computers and Electrics, 11 2021.

[2] C. Berner et al. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019.

[3] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-based ap-
proach to safe reinforcement learning. Advances in neural information processing systems,
31, 2018.

[4] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake. Lyapunov-stable neural-network
control. In Robotics: Science and Systems, 2021.

[5] T.-V. Dang and N.-T. Bui. Obstacle avoidance strategy for mobile robot based on monoc-
ular camera. Electronics, 12(8), 2023.

[6] J. S. et al. Proximal policy optimization algorithms. arXiv 1707.06347, 2017.

[7] D. Honerkamp, T. Welschehold, and A. Valada. Learning kinematic feasibility for mo-
bile manipulation through deep reinforcement learning. IEEE Robotics and Automation
Letters, 6(4):6289–6296, 2021.

[8] D. Honerkamp, T. Welschehold, and A. Valada. N2m2: Learning navigation for arbitrary
mobile manipulation motions in unseen and dynamic environments. IROS 2022 Workshop
on Mobile Manipulation and Embodied Intelligence, 2022.

[9] S. Huang and S. Ontañ ón. A closer look at invalid action masking in policy gradient
algorithms. The Intl. FLAIRS Conf. Proceedings, 35, may 2022.

[10] M. Kirtas et al. Deepbots: A webots-based deep reinforcement learning framework for
robotics. In Artificial Intelligence Applications and Innovations, pages 64–75, Cham,
2020. Springer Intl. Publishing.

[11] T. P. Lillicrap et al. Continuous control with deep reinforcement learning. arXiv
1509.02971, 2015.

[12] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza. Learn-
ing high-speed flight in the wild. Science Robotics, 6(59):eabg5810, 2021.

[13] O. Michel. WebotsTM: Professional Mobile Robot Simulation. Int. Journal of Advanced
Robotic Systems, 1, 03 2004.

[14] V. Mnih et al. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602,
2013.

[15] S. Narvekar et al. Curriculum learning for reinforcement learning domains: A framework
and survey. arXiv 2003.04960, 2020.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 24/131

[16] N. Passalis et al. OpenDR: An open toolkit for enabling high performance, low footprint
deep learning for robotics. In Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Systems,
2022.

[17] A. S. Sadr et al. An efficient planning method for autonomous navigation of a wheeled-
robot based on deep reinforcement learning. In 12th Intl. Conf. Computer and Knowledge
Engineering, pages 136–141, 2022.

[18] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada. Learning long-horizon
robot exploration strategies for multi-object search in continuous action spaces. Proceed-
ings of the International Symposium on Robotics Research (ISRR), 2022.

[19] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada. Learning hierarchical
interactive multi-object search for mobile manipulation. arXiv preprint arXiv:2111.12673,
2023.

[20] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza. Learning perception-aware agile flight
in cluttered environments. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1989–1995, 2023.

[21] H. I. Ugurlu, X. H. Pham, and E. Kayacan. Sim-to-real deep reinforcement learning for
safe end-to-end planning of aerial robots. Robotics, 11(5):109, 2022.

[22] H. van Hasselt et al. Deep reinforcement learning with double q-learning. CoRR,
abs/1509.06461, 2015.

[23] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous
manipulation from images: Autonomous real-world rl via substep guidance. In IEEE
International Conference on Robotics and Automation (ICRA), pages 5938–5945, 2023.

[24] Y. Yin, Z. Chen, G. Liu, and J. Guo. A mapless local path planning approach using deep
reinforcement learning framework. Sensors, 23(4), 2023.

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 25/131

A Lyapunov-inspired deep reinforcement learning for robot
navigation in obstacle environments

Lyapunov-inspired deep reinforcement learning for robot navigation in
obstacle environments

Halil Ibrahim Ugurlu and Erdal Kayacan

Abstract— After its success in games and simulated control
tasks, deep reinforcement learning is studied extensively for
robotics to learn neural network-based planners or controllers.
However, in contrast to conventional control-theoretic methods,
neural network controllers lack an understanding of safety or
stability due to their black-box nature. This research paper
proposes a deep reinforcement learning (DRL) strategy inspired
by Lyapunov theory for addressing safe robot navigation
problems with obstacle presence. The robot planning problem
is formulated as a state-space control problem, incorporating
obstacle locations as part of the state representation. A reward-
shaping strategy is introduced, leveraging a Lyapunov function
designed for the environment. Additionally, a constrained explo-
ration method is proposed to guide the DRL training process.
Experimental results demonstrate that the proposed method
trains faster than a vanilla DRL policy and achieves better
exploration, leading to the learning of superior policies in terms
of completion rates compromising maintenance of speeds closer
to the desired target speed. The findings highlight the potential
of incorporating Lyapunov theory into DRL approaches for
improving robot navigation.

I. INTRODUCTION

Despite the remarkable success of learning-based policies
in various robot platforms and tasks [1, 2, 3], they have
been subject to criticism due to their limited interpretability,
particularly in terms of safety and stability. Ensuring stability
in robotic systems is of utmost importance to mitigate
undesirable behaviors and potential hazards. To tackle these
concerns, researchers have explored various approaches at
different levels. While advancements in more sophisticated
algorithms have demonstrated improved safety experimen-
tally across several domains [4], there has also been a
concerted effort to integrate concepts from conventional
control theory in an attempt to bridge this interpretability
gap [5]. For instance, recent advancements include the syn-
thesis of Lyapunov-stable neural network controllers for non-
linear state feedback control [6], offering promising avenues
for achieving stability in learning-based control systems.
However, these methods are computationally expensive, and
challenging to scale in higher state-space dimensions.

This research paper presents a novel approach for robotic
navigation with obstacle presence using a deep reinforcement
learning (DRL) strategy inspired by the principles of Lya-
punov theory to enhance stability and safety. To achieve this,
we formalize the robot planning problem as a state-space

H. I. Ugurlu is with the Artificial Intelligence in Robotics Laboratory
(Air Lab), Department of Electrical and Computer Engineering, Aarhus
University, 8000 Aarhus C, Denmark halil at ece.au.dk E.
Kayacan is with the Automatic Control Group, Department of Electrical
Engineering and Information Technology, Paderborn University, Paderborn,
Germany (email: erdal.kayacan at uni-paderborn.de)

o1

o2

o3

yb

xb

r1

r2

r3

xt+1=f(xt, at) Policy network at=π(xt)

r1

r2

r3

px

py

vx

vyxt=

−3 −2 −1 0 1 2 3 −3
−2

−1
0
1
2
3

V(x)

4

5

6

7

8

9

Lyapunov field

- reward function Rt
- exploration constraints

Deep Reinforcement
Learning

fx
fy

at=

px (m)

py (m)

Fig. 1. The policy network is trained with deep reinforcement learning for
obstacle avoidance leveraging Lyapunov theory.

control problem, integrating obstacle locations into the state
representation. The proposed method is illustrated in Fig. 1.
The objective of the control is to achieve constant velocity
movement. A Lyapunov function is then designed to provide
conditions for the safe travel of the robot. A reward-shaping
strategy is introduced, leveraging the Lyapunov function
designed for the environment, guiding the learning process.
Furthermore, we introduce a constrained exploration strategy
for DRL training, incorporating the Lyapunov condition to
improve exploration efficiency and accelerate the training. By
adopting the proposed strategy, the policy learns to satisfy
the Lyapunov conditions, resulting in improved stability, con-
vergence, and overall performance of the robotic navigation
system in complex environments.

The proposed DRL strategy holds the promise of address-
ing the shortcomings of traditional learning-based policies,
and its application in real-world robotic systems could sig-
nificantly advance the capabilities and safety of autonomous
navigation. By incorporating the principles of Lyapunov the-
ory into the DRL framework, this research aims to contribute
to a deeper understanding and practical applicability of DRL
in robotics.

A. Contributions

The contributions of this work are as follows:

• A Lyapunov-inspired reward function, along with the
Lyapunov function, for synthesizing a state-based robot
navigation policy with DRL.

• A constrained exploration strategy to accelerate the
training performance.

OpenDR No. 871449

• An open-source Webots-based simulation environment
for force-controlled obstacle avoidance task for training
and evaluation of the proposed method 1

The structure of the paper is as follows: Section II
provides a comprehensive overview of related work in the
fields of DRL and Lyapunov theory applications in learning-
based robotics. Section III provides the background on DRL
and Lyapunov stability. Section IV details the methodology
and formulation of the proposed DRL strategy inspired by
the Lyapunov theory. Section V presents the experimental
setup, including the simulation environment and training
procedures, and presents the results with a discussion of
the performance of the proposed approach compared to
alternative scenarios. Finally, Section VI concludes the paper
and highlights potential future research directions.

II. RELATED WORK

Reinforcement learning (RL) has emerged as a promi-
nent field within artificial intelligence, providing a powerful
framework for autonomous agents to learn and adapt through
interactions with their environments [7]. This paradigm en-
compasses a set of algorithms and techniques that enable
agents to make sequential decisions, aiming to maximize
cumulative rewards over time. RL has gained significant at-
tention and achieved remarkable success in various domains,
including robotics [8] and gaming [9]. Its ability to handle
complex, dynamic environments and learn optimal strate-
gies without explicit supervision has made it a compelling
approach for addressing real-world problems. The field of
DRL emerged to solve RL problems utilizing deep neural
networks. By using neural networks, DRL algorithms can
automatically learn complex and hierarchical representations,
enabling them to effectively process raw sensory input.
Several DRL algorithms have been proposed in the literature
[9, 10, 11]. In this work, the Proximal policy optimization
(PPO) [12] algorithm is utilized due to its success in state-
based tasks.

RL agents must balance between exploring new actions
and exploiting their existing knowledge to maximize rewards.
Striking the right balance is crucial for efficient learning
and achieving optimal policies. Inadequate exploration may
lead to suboptimal solutions, while excessive exploration can
hinder learning progress. Extensive research has focused on
addressing exploration, resulting in the development of algo-
rithms and techniques to guide agents in making informed
decisions during the learning process such as ϵ-greedy explo-
ration [7] in discrete state spaces and action noise or state-
dependent noise [13] in continuous state spaces. On the other
hand, the design of the environment also implicitly shapes
the exploration space.

Safe RL for robotics is a burgeoning field that addresses
the challenges of deploying learning-based algorithms in
robotic systems with guaranteed safety and stability. The
reader may refer to a recent review by Brunke et al. [14] for

1The codes, trained models, and simulation environment can be found at
github.com/open-airlab/lyapunov-rl

a detailed survey of safe learning in robotics. A particular
line of literature aims to utilize the tools from conventional
control theory, such as Lyapunov theory. Lyapunov theory
is a fundamental concept in the field of stability analysis
and control theory [15]. With the evolvement of neural
networks in the loop, the theory is addressed to provide
similar explanations. A neural network is proposed to learn
a Lyapunov function that adapts the largest safe region
[16]. The idea is later improved to train and verify the
Lyapunov network by counter-examples for piece-wise linear
systems [17], which is followed by learning the whole control
pipeline (system model, controller, and Lyapunov function)
by feedforward neural networks [6]. The Lyapunov theory is
also addressed another challenge of learned policies: to keep
the system inside an in-distribution state and actions [18].
Although these methods have reached strong conclusions,
they cannot easily be extended to higher dimensional tasks
due to their computational complexity.

III. BACKGROUND

A. Deep reinforcement learning

The RL problem is typically formulated as a Markov
Decision Process,M = (S,A, T,R, γ), consisting the set of
states, S, the set of actions, A, the state transition function,
T (s|a), the reward function, R(s, a), and the discount factor,
γ. For a state, xt ∈ S, at the timestep, t, an action, at ∈ A,
is taken, resulting in a state transition according to xt+1 ∼
T (xt, at). Note that, the states can also be represented with,
s, in the RL community; however, the common terminology
in control engineering is preferred in this paper. Similarly,
the state transition function is replaced with, f(xt, at), for
convenience in the remainder of this paper. Each transition
yields a reward, rt = R(xt, at), signaling the quality of
the taken action. The cumulative reward collected from a
sequence of states and actions starting at timestep, t, is
defined as,

Gt =

k=∞∑

k=0

γkrt+k, (1)

where γ is the discount factor determining the weight of
future rewards. The objective of the RL problem is to
maximize this discounted cumulative reward by choosing a
suitable policy, π(xt).

B. Lyapunov stability

Let a discrete-time, deterministic dynamical control sys-
tem is modeled as,

xt+1 = f(xt, at), (2)

where x ∈ S ⊂ Rn and a ∈ A ⊂ Rm represent the system
state and applied control input vectors, respectively, and
subscripts, t and t+ 1, represent the consecutive timesteps.

Definition 1 (Equilibrium state): A state, xg , is an equi-
librium state if there exists and action, ag ∈ A, such that
xg = f(xg, ag).

26

Consider a state-feedback control policy, a = π(x), for the
modeled system satisfying ag = π(xg). The system model
can be reformulated as a function of state,

xt+1 = fπ(xt) = f(xt, π(xt)), (3)

with the equilibrium state, xg = fπ(xg).
Definition 2 (Lyapunov stability): Let a Lyapunov func-

tion, V (x) : Rn → R maps the system states to a scalar.
The system, fπ(x), is locally stable in a region, X ⊂ Rn,
around the equilibrium state, xg , if there exists a Lyapunov
function satisfying the following conditions:

V (xt) > 0, ∀xt ∈ X , xt ̸= xg, (4)
V (xt+1) ≤ (1− ψ)V (xt), ∀xt ∈ X , xt ̸= xg, (5)
V (xg) = 0, (6)

where ψ > 0 is a positive scalar.

IV. LYAPUNOV-INSPIRED DRL FOR OBSTACLE
AVOIDANCE

A. Problem formulation

The obstacle-avoidance problem is formalized as state-
space control. A simplified quadrotor aerial robot model,
force-controlled particle mass, is considered as the robot in
constant altitude flight. The robot’s state, xrobot ∈ R4, is
defined as,

xrobot = [pT |vT]T = [px, py, vx, vy]
T , (7)

where p and v represent position and velocity vectors in the
world frame, respectively, each consisting of two elements
where subscripts denoting the axis. Note that, since the
transformation between the body and world frame does not
constitute rotation, the velocity is the same in both frames.
Let No be the number of obstacles in the proximity of the
robot. Each obstacle’s position in the robot body frame is
represented as,

ri = [rx,i, ry,i]
T , (8)

where i ∈ {1, . . . , No} ⊂ Z+ is the obstacle number and
x and y represents position in body coordinates. Then, the
augmented state, x ∈ R4+2No , is constructed as,

x = [xTrobot|rT1 |rT2 | . . . |rTNo
]T . (9)

The control command to the robot is defined as,

a = [Fx, Fy]
T , (10)

where Fx, Fy ∈ [−1, 1] are the force applied to the robot in
the corresponding axis. The terms explained in (7) - (10) are
illustrated in Fig. 2

The aim is to travel in a target direction with a predefined
speed while avoiding obstacles. The target direction is se-
lected as the x-axis direction without loss of generality since
the world and body frames can be rotated according to the
desired direction in the horizontal plane. Then, the goal is
defined as a subset of states,

Xg = {x|py = 0, vx = vdes, vy = 0, rx,i < 0}, (11)

xb

yb

r1r2

r3

xw
yw

p

Fy

Fxv

Fig. 2. Diagram showing body and world frames, acting forces on the
robot, obstacle position vectors in body frame, and robot’s position and
velocity vectors.

where vdes = 0.5m/s is the desired velocity of the robot.
Remark 1: Starting from any state in the goal set, x ∈ Xg ,

the constant action, ag = [Fg, 0], keeps the system in the goal
subset where Fg is a non-zero force to cancel friction force
due to the constant velocity and maintain zero acceleration.
In this case, py and vy terms stay zero since Fy = 0, vx is
kept constant due to zero acceleration, and the condition on
the obstacle position continues to hold due to vx > 0, i.e.,
rx,i decreases.

Remark 2: Since the equilibrium condition for the defined
obstacle-avoidance problem is a set instead of a single point,
Lyapunov conditions in (4)-(6) are rewritten as,

V (xt) > 0, ∀xt ∈ X , xt /∈ Xg, (12)
V (xt+1) ≤ (1− ψ)V (xt), ∀xt ∈ X , xt /∈ Xg, (13)
V (xg) = 0, ∀xg ∈ Xg. (14)

Hence, holding these conditions implies that the dynamical
system will eventually reach the goal set.

B. DRL with Lyapunov-inspired reward function

This section comprises two main components. Firstly, we
introduce a Lyapunov candidate function tailored for the
control problem formalized earlier. Secondly, we elaborate
on our deep reinforcement learning (DRL) strategy to train
a control policy to satisfy all stability conditions utilizing
the defined Lyapunov function. The Lyapunov function is
constructed as a linear combination of two distinct functions,
each catering to the objectives of efficient forward travel and
obstacle avoidance, respectively.

The first candidate function, Vpose : R4 → R, depending
only on the robot’s pose is constructed as,

Vpose(xrobot) = p2y +
√
(vx − vdes)2 + v2y. (15)

The second candidate function, Vobs : R4 → R, inputting

27

the velocity and location of one obstacle, is defined as,

Vobs(v, ri) =
(|v · ri|

ri · ri
− |v

⊥ · ri|
ri · ri

+
|v⊥|
|ri|

)
cos(θi), (16)

where · defines the dot product, v⊥ = [vy,−vx]T is
perpendicularly rotated velocity vector, v, and θi is the angle
of the obstacle with respect to the body frame clipped to the
obstacles in the forward area, defined as,

θi =

{
arctan 2(ry,i, rx,i), rx,i > 0,

0, rx,i ≤ 0.

The cosine multiplicand weights the function smoothly to
zero while passing around the obstacle. The first term of the
function assigns higher values when the robot’s velocity is
directed toward the obstacle, while the second term reduces
the energy for velocities that revolve around the obstacle.
Furthermore, the distance to the obstacle is inversely pro-
portional to the function. Hence, following the negative
gradient of this function enables the robot to move around
the obstacles while getting closer to them.

Proposition 1: Vobs(v, ri) function is non-negative. The
highest value obtained from the dot product in the substracted
term |v⊥·ri|

ri·ri is calculated as,

|v⊥||ri|
|ri||ri|

=
|v⊥|
|ri|

,

when v⊥ and ri are aligned. This amount is compensated by
adding |v⊥|

|ri| . Hence, when v and ri vectors are perpendicular,
the function is equal to zero. Vpose(xrobot) function is also
non-negative since it adds two non-negative terms.

The Lyapunov function, then, is defined as a linear com-
bination of (15)and (16),

V (x) = kpVpose(xrobot) + ko

No∑

i=1

Vobs(v, ri), (17)

where kp and ko are positive real numbers for weighting
each term.

Proposition 2 (V (x) = 0 ⇐⇒ x ∈ Xg): The function,
V (x), is zero only if the state is in the goal set.

Remark 3: V (x) holds the condition (14) by Proposition
2. V (x) holds the condition (12) since being non-negative
by Proposition 1 and non-zero if not the state is in the goal
set by Proposition 2.

Following the aforementioned remark, only the condition
(13) should be satisfied by the trained control policy. Hence,
a shaped reward function is defined as,

Rt = V (xt)− V (xt+1), (18)

which gives a higher reward if the taken action decreases the
Lyapunov candidate. The policy seeks to take actions with
positive rewards and, hence, holds the Lyapunov condition
since it is punished in the case of negative reward. Since this
reward-shaping strategy indicates the necessary conditions,
no terminal rewards are utilized. Hence, the discount factor,
γ, is proposed to be low in the DRL objective defined in

(1). Therefore, the policy is prevented from learning to take
negative reward actions to seek future positive rewards which
violates the Lyapunov conditions. The terminal cases for an
RL include a timeout in order to collect various samples and
collisions. Furthermore, an exploration rule for the RL agent
is also proposed. An episode is terminated when Rt < −ϵ
restricts the exploration region with closer to stable actions.

V. EVALUATION AND RESULTS

A. Simulation environment and experimental design

Our methodology is implemented and tested using the
Webots simulation software [19], which provides a realistic
environment for training and evaluating our approach. To
enable seamless interaction with RL algorithms, we have im-
plemented the environment as an OpenAI gym [20] wrapper.
Figure 3 illustrates the designed environment, featuring three
circle-shaped obstacles with the radius of 0.2m. The robot
is represented as a rigid body with Coulomb friction against
the floor and is simulated using 10ms timesteps. The floor
is constructed as 5m wide path.

The experiments are conducted with the number of con-
cerned obstacles, No = 3. When an obstacle is passed it is
replaced in the frontier of the robot. Obstacles are positioned
randomly according to the following distribution,

ri ∼ [U(1, 3.5),U(−1, 1)] + [xoffset, yoffset], (19)

where U(·, ·) is the uniform distribution within the provided
limits. xoffset and yoffset are set to the robot’s current
position at the time of relocation of the obstacle.

B. Experimental evaluations

We conducted training on the policies using the PPO
algorithm implementation from the stable-baselines3
[21] Python package, on a simulated environment for a
duration of two million timesteps. The policy updates were
configured to occur every 215 timesteps.

1) Effect of reward discount factor and the exploration
constraint: In the first set of experiments, the effects of
differing reward discount, γ, and constrained exploration,
ϵ, parameters are explored. Typically, the episodic discount

Fig. 3. The simulation environment with the trajectory of the quadrotor
robot is visualized. The quadrotor deals with three obstacles at a time. Passed
obstacles are replaced and shown transparently.

28

TABLE I
COMPARISON OF VANILLA REWARD DESIGN, APF-BASED REWARD DESIGN, AND DIFFERENT SETTINGS FOR THE PROPOSED LYAPUNOV-INSPIRED

DRL. THE COMPLETION RATE, COLLECTED MEAN REWARD, AND AVERAGE VELOCITIES ARE REPORTED OVER 100 EPISODES.

APF reward Vanilla reward Lyapunov-inspired PPO
+ PPO + PPO γ = 0.1 γ = 0.99 γ = 0.1 γ = 0.1

ϵ = −0.1 ϵ = −0.1 ϵ = −0.006 ϵ = −∞
Completion rate (%) 95 68 96 45 67 72

Mean reward(×10−4) 4.1 4.2 4.9 4.5 −1.1 4.5
Average velocity 0.28 0.45 0.37 0.41 0.32 0.32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time steps ×106

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

m
ea

n
ep

is
o
d

e
re

w
ar

d

γ=0.1, ε=-0.1

γ=0.99, ε=-0.1

γ=0.1, ε=-0.006

γ=0.1, ε=-∞

Fig. 4. Accumulated reward progress during training with different settings
for the proposed Lyapunov-inspired strategy. The reward collected in every
100 episodes is averaged and one standard deviation region is shadowed for
better visualization.

factor, γ, is chosen to be close to one to prioritize long-
term reward seeking. However, in our proposed Lyapunov-
based reward design, the function is uniformly distributed
over the state space as there is no specific goal other than
satisfying the Lyapunov conditions. Therefore, we conducted
experiments with a value of γ = 0.1 and compared its
performance against γ = 0.99.

The second set of experiments focuses on comparing the
parameter ϵ used to terminate episodes when the reward
falls below a certain threshold. This parameter assists the
algorithm in constraining the search space by avoiding ex-
ploration in regions with high condition violations. However,
setting ϵ too low can hinder overall exploration during
training and lead to suboptimal performance. To address this,
we compared the proposed value of ϵ = −0.1 with two
alternative cases: ϵ = −0.006, which represents the typical
lowest reward obtained by a trained model, and ϵ = −∞,
indicating no termination based on low reward.

The collected reward during the training of the RL policy
for the four settings described is depicted in Figure 4. The
plot shows the average collected rewards every 100 episodes,
with one standard deviation represented as a shaded area.
Across all models, comparable learning speeds and reward
levels are observed, except for the setting with constrained
exploration (ϵ = −0.006). In this case, although the trained
model in the default setting is not subject to this constraint
during our experiments, the algorithm fails to discover this
policy due to limited exploration.

Table I presents the results of traversing 5m long trajec-
tories for each trained policy, repeated 100 times. Consistent

with the training reward curves, the policy trained with over-
constrained exploration (ϵ = −0.006) was unable to achieve
high rewards. In comparison, the proposed method exhibits
a higher completion rate and can maintain a speed closer
to 0.5m/s when compared to the unconstrained exploration
(ϵ = −∞) scenario. Notably, the policy trained with a high
discount factor (γ = 0.99) fails to complete the trajectory,
despite being able to collect a comparable reward. It is
important to emphasize that the average reward alone does
not directly indicate success in our proposed formulation, as
the policy may risk receiving negative rewards temporarily
to ensure higher rewards in the future.

2) Baseline - vanilla reward: We have constructed a re-
ward function inspired by DRL baselines [22, 1] for obstacle
avoidance with depth images defined as,

Rvanilla = 1− 0.5
√

(vx − vdes)2 + v2y − 0.1|py|, (20)

which informs the agent to keep the desired speed and
centered position in non-terminal states. Furthermore, the
agent gets −10 and −20 negative rewards for timeout and
collisions respectively, and +5 and +20 positive rewards
when an obstacle is passed or the episode length, 10m,
is completed. In this case, the PPO algorithm is trained
with discount factor, γ = 0.99, for 2.5 million timesteps
to converge. Hence, the presented method provides a shorter
training time for the same problem. Moreover, a similar test
with 100 individual runs is conducted and reported in Table I.
The reported reward is calculated with the Lyapunov-inspired
reward for comparison. Although vanilla reward results in
more accurate tracking for the desired velocity, it encounters
collisions more often.

3) Baseline - artificial potential field (APF) based reward
design: An APF-based [23] method is constructed as the sec-
ond baseline. The conventional method generates an attractor
vector for the goal and a repulsive vector for obstacles. The
attractive vector is defined as,

pfatt = [2,−py]T , (21)

indicating the desired velocity direction and correction in the
y-axis. The repulsive vector is defined as,

pfrep =

No∑

i=1

−ri
(|ri| − 0.2)2

, (22)

indicating the reverse direction from the obstacle inversely
proportional to the distance to the obstacle. The summation
of the attractive and the repulsive vectors is considered the

29

direction of the movement. A reference velocity vector is
created with a magnitude of vdes as,

vapf = vdes
pfatt + pfrep
|pfatt + pfrep|

(23)

The parameters of the vectors are tuned with a proportional
velocity controller. Then a shaped reward is defined as
the distance between the reference velocity and the current
velocity as,

Rapf = |v− vapf |. (24)

The policy is trained with the PPO algorithm with discount
factor, γ = 0.1, for 2 million timesteps similar to the
proposed method. In this case, the training time is sufficient
since the reward is well-shaped compared to the vanilla
reward. The results are presented in Table I, similarly. Al-
though the APF-based reward design gets a high completion
rate similar to the presented method, it maintains a slower
speed on average.

VI. CONCLUSION

This paper presents a novel DRL training strategy for
addressing robot navigation problems by leveraging the
principles of the Lyapunov theory. We formulate the robot
planning problem in an obstacle environment as a state-
space control problem, where obstacle locations are treated
as part of the state representation. To guide the learning
process, we introduce a reward-shaping strategy based on
a Lyapunov function designed specifically for the formu-
lated environment. Additionally, we propose a constrained
exploration scenario for DRL training that incorporates the
Lyapunov condition. Experimental results demonstrate that
our proposed method achieves improved exploration, leading
to the learning of a superior policy.

In the future, there are several directions for further
exploration and improvement based on the findings of this
research. Firstly, it would be valuable to extend the pro-
posed DRL training strategy to more complex and dynamic
environments, where the robot needs to adapt to changing
obstacles or varying task requirements. Additionally, inves-
tigating the scalability of the approach to large-scale robotic
systems would be crucial. Lastly, it would be interesting
to explore the transferability and generalization capabilities
of the trained policies to real-world environments or tasks.
Addressing these aspects would contribute to a deeper un-
derstanding and practical applicability of the proposed DRL
approach for robot navigation problems.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
2020 Research and Innovation Program (OpenDR) under
Grant 871449. This publication reflects the authors’ views
only. The European Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] H. I. Ugurlu, X. H. Pham, and E. Kayacan, “Sim-to-real deep
reinforcement learning for safe end-to-end planning of aerial robots,”
Robotics, vol. 11, no. 5, p. 109, 2022.

[2] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza, “Learning
perception-aware agile flight in cluttered environments,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 1989–1995.

[3] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and
S. Levine, “Dexterous manipulation from images: Autonomous real-
world rl via substep guidance,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 5938–5945.

[4] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, p. eabg5810, 2021.

[5] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” Advances in
neural information processing systems, vol. 31, 2018.

[6] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Robotics: Science and Systems,
2021.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[8] H. I. Ugurlu, S. Kalkan, and A. Saranli, “Reinforcement learning
versus conventional control for controlling a planar bi-rotor platform
with tail appendage,” Journal of Intelligent & Robotic Systems, vol.
102, no. 4, pp. 1–17, 2021.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[11] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[13] A. Raffin, J. Kober, and F. Stulp, “Smooth exploration for robotic
reinforcement learning,” in Conference on Robot Learning. PMLR,
2022, pp. 1634–1644.

[14] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[15] H. K. Khalil, Nonlinear control. Pearson New York, 2015, vol. 406.
[16] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural

network: Adaptive stability certification for safe learning of dynamical
systems,” in Conference on Robot Learning. PMLR, 2018, pp. 466–
476.

[17] H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example
guided synthesis of neural network lyapunov functions for piecewise
linear systems,” in 2020 59th IEEE Conference on Decision and
Control (CDC). IEEE, 2020, pp. 1274–1281.

[18] K. Kang, P. Gradu, J. J. Choi, M. Janner, C. Tomlin, and S. Levine,
“Lyapunov density models: Constraining distribution shift in learning-
based control,” in International Conference on Machine Learning.
PMLR, 2022, pp. 10 708–10 733.

[19] O. Michel, “Cyberbotics ltd. webots™: professional mobile robot sim-
ulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, 2004.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[21] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” 2019.

[22] E. Camci, D. Campolo, and E. Kayacan, “Deep reinforcement learning
for motion planning of quadrotors using raw depth images,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1–7.

[23] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 1985, pp. 500–505.

30

D5.4: Final report on deep robot action and decision making 31/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 32/131

B Curiosity-Driven Reinforcement Learning based Low-Level
Flight Control

Curiosity-Driven Reinforcement Learning based Low-Level Flight Control

Amir Ramezani Dooraki and Alexandros Iosifidis

Abstract— Curiosity is one of the main motives in many of
the natural creatures with measurable levels of intelligence
for exploration and, as a result, more efficient learning. It
makes it possible for humans and many animals to explore
efficiently by searching for being in states that make them
surprised with the goal of learning more about what they
do not know. As a result, while being curious, they learn
better. In the machine learning literature, curiosity is mostly
combined with reinforcement learning-based algorithms as an
intrinsic reward. This work proposes an algorithm based on
the drive of curiosity for autonomous learning to control by
generating proper motor speeds from odometry data. The quad-
copter controlled by our proposed algorithm can pass through
obstacles while controlling the Yaw direction of the quad-copter
toward the desired location. To achieve that, we also propose
a new curiosity approach based on prediction error. We ran
tests using on-policy, off-policy, on-policy plus curiosity, and
the proposed algorithm and visualized the effect of curiosity
in evolving exploration patterns. Results show the capability of
the proposed algorithm to learn optimal policy and maximize
reward where other algorithms fail to do so.

I. INTRODUCTION

Humans and intelligent creatures can learn in different
ways; among them is learning by experience. Further, they
use a spectrum of motivations: some are triggered internally
(intrinsic motivations), and some are triggered externally and
by the environment (extrinsic motivations). An intelligent
creature learns to act in the direction of responding to its
motivations. Observing this paradigm in nature, machine
learning and control communities created the framework
of the Markov Decision Process (MDP) and Reinforcement
Learning (RL) algorithms to replicate this optimization pro-
cess in robots and machines. Further, several computational
models of intrinsic motivations, such as curiosity, have been
implemented in the past decades.

At the same time, considering the advances in computer
hardware, different intelligent algorithms for autonomous
control of ground, aerial, underwater, surface, and legged
robots have been created during the past decade. Specifically,
these advancements were significant for multi-copter drones
where the weight of the whole robot is significant in terms
of its ability to fly and maneuver capabilities in three axes.
Nowadays, it is possible to see the application of Unmanned
Aerial Vehicles (UAVs) such as quad-copters in several areas.
Autonomous inspection, search and rescue missions, and
navigation in unknown environments are examples of high-
level control where an algorithm takes high-level decisions
and passes it to a low-level controller for execution using

A. Ramezani Dooraki and A. Iosifidis are with the Department of
Electrical and Computer Engineering, Aarhus University, 8000 Aarhus C,
Denmark {amir, ai} at ece.au.dk

robots’ actuators. Autonomous learning of aggressive ma-
neuvers, drone racing, and fault-tolerant control are examples
of low-level flight controllers where the algorithm directly
controls the actuators.

Combining the framework of learning-based algorithms,
such as reinforcement learning and deep reinforcement learn-
ing, with UAVs pushed their autonomous control to new
frontiers, allowing them to autonomously learn to control
both in high-level and low-level state spaces.

This paper proposes a new reinforcement learning-based
low-level flight controller that learns by parameterized in-
trinsic (a computational model of curiosity) and extrinsic
(external immediate and auxiliary rewards) motivations to
directly control the quad-copter’s motor speeds and flies
toward the desired position while avoiding obstacles. Our
contributions are summarized as follows:

• We propose a new approach for learning low-level flight
policy using parameterized curiosity module.

• In our proposed approach, we consider both passing
through obstacles and controlling the Yaw direction
towards the desired location.

• To achieve the mentioned contributions, we propose a
new approach for calculating the curiosity reward based
on the prediction error.

In the rest of this paper, first, we discuss the related
literature and the difference between our work and other
related works. Next, we describe the proposed methodology
including the reinforcement learning approach, the curiosity
module, the simulation environment, and the visualization
of the curiosity effect. Then, we describe the experimental
evaluation and provide results along with a discussion about
important matters related to our work. Finally, we provide
concluding remarks.

II. LITERATURE REVIEW

In the literature on unmanned aerial vehicles’ control using
reinforcement learning, a wide range of works exists that
can be divided into two main groups, namely high-level
and low-level control. By low-level control, we refer to the
direct control of motors by providing their actual angular
velocity or by providing thrust, roll, pitch, and yaw. Low-
level control works include [1] where RL is used to learn
for direct control of UAV motors speeds from odometry,
[2] where a combination of RL and PD is used to train the
controller, [3] where RL used to learn more general policies
for low-level quad-copter control, and [4] where RL is used
for control and tracking of a trajectory. By high-level control,
we refer to a trajectory of waypoints or attitudes generated
by the controller. High-level control works include [5] where

ar
X

iv
:2

30
7.

15
72

4v
1

 [
cs

.L
G

]
 2

8
Ju

l 2
02

3

OpenDR No. 871449

an end-to-end approach using deep RL is used to learn to
control three axes of quad-copter when RGB-D image is
provided as input.

Curiosity as an intrinsic motive is observed widely in
the literature. In some early works, such as [6] and [7],
the authors defined a framework of intrinsic motivation
and curiosity as one such motivation. In recent years, and
considering the new computational capabilities offered by
advancements in hardware systems, more realistic com-
putational models of curiosity have been researched and
developed in the literature. As a result, different types of
curiosity methods, such as Information Theoretic based [8],
Prediction based (e.g., surprisal [9]), and Count based [10],
have been proposed. For example, a module called intrinsic
curiosity module (ICM) is used in [9] to predict the future
states and actions that need to be taken to reach those states,
and considered the prediction error between the actual future
states and predicted states as the curiosity reward. Further,
there are works such as [10] which considered curiosity as a
measure to count how many times a state is visited during the
agent’s lifetime. Curiosity has been used to achieve specific
qualities in robot actions. For example, [11] used curiosity
to achieve gentle touch while grasping objects. In other
literature, it used to increase the performance of well-known
objectives in robotics. For example, in [12] curiosity is used
for motion planning of humanoid robots, in [13] for control
of swarm of robots, and in [14] for robot navigation.

Curiosity in the low-level control of the quad-copter is an
area that is much less researched in the literature. In some
works, curiosity is defined as a measure of difference rather
than surprise or novelty. For example, [15] defines curiosity
as the difference between states observed by a policy at two
different times. In this work, curiosity is defined as a measure
of novelty and a parameterized function that gradually learns
the previously visited states, loses its interest in them, and
constantly searches for novel states.

III. METHODOLOGY

A. Main Algorithm

The algorithm proposed in this paper is comprised of
several parts which are illustrated in Figure 1. We introduce
an RL-based approach for training a curiosity-driven policy
network. Curiosity is incorporated to direct the exploration
of the RL method, especially in complex scenarios. Our
algorithm is designed to solve the problems formulated in
a Markov Decision Process (MDP) [16] framework. The
goal of the algorithm is to optimize the policy and value
networks in a way that they could maximize the long-term
rewards received from the environment and generated by
the curiosity module. Further, an environment is designed
and implemented to test the capabilities of the proposed
algorithm and compare it with other approaches. In the
following, different parts of the algorithm are described in
detail.

B. Reinforcement Learning

The standard formulation of RL-based algorithms is used
in this paper. Subsets of st ∈ S, at ∈ A, and rt ∈ R are
defined for states, actions, and rewards. The initial starting
state D is defined as a set of possible initial states for the
agent. Further, the following standard definitions are used
throughout the paper:

Qπ(st, at) = Est+1,at+1,...

[∑∞

l=0
γlr(st+1)

]
,

Vπ(st) = Eat,st+1,...

[∑∞

l=0
γlr(st+1)

]
,

Aπ(s, a) = Qπ(s, a)− Vπ(s).
where γ ∈ (0, 1) is a discount factor, and r(st) is the reward
the agent receives at time t.

C. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [17] is used in this
paper as the RL algorithm for optimizing the weights of the
policy and value networks. PPO is an algorithm based on and
surpassing Trusted Region Policy Optimization (TRPO) [18].
This paper briefly discusses the TRPO and PPO optimization
objectives before discussing the multiple value heads used in
our proposed method.

TRPO updates the policy and value networks parameters
by solving the following constrained optimization problem:

max
θ

Et

[
πθ(at|st)

πθold
(at|st)At

]
,

subject to: Et

[
KL(πθold(. | s) || πθ(. | s))

]
≤ δ. (1)

The constraint can be incorporated in the form of a penalty
weighted with a coefficient β:

max
θ

Êt

[
πθ(a|s)

πθold
(a|s) Ât − βKL[πθold(. | s), πθ(. | s)]

]
. (2)

The conservative policy iteration (CPI) [19] corresponds to
the following surrogate objective:

LCPI(θ) = Êt

[
πθ(at|st)

πθold
(at|st) Ât

]
= Êt

[
rt(θ)Ât

]
, (3)

where rt(θ) = πθ(at|st)
πθold

(at|st) is a probability ratio comparing
policy with parameters θ with the old policy with parameters
θold, thus, r(θold) = 1.

PPO maximizes the Equation 3 and penalizes changes
that move rt(θ) away from 1 using the following equation,
instead of using constraint:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ)Ât

)]
,

(4)
where ϵ is a hyper-parameter, that is set equal to 0.2 in this
paper.

The complete loss function defined in PPO is:

LCLIP+V F+S
t (θ) = Êt

[
LCLIP
t (θ)−c1LV F

t (θ)−c2S[πθ](st)
]

(5)

33

Fig. 1. The flow of data in our algorithm including the policy network, value networks (value heads), and curiosity module comprised of curiosity heads.

where c1 and c2 are hyper-parameters, S is an entropy bonus
similar to entropy of policy mentioned in [20]. LV F

t is a
squared-error loss, i.e., LV F

t = (Vθ(st) − V targ
t)2, where

V targ
t = Ât+Vθold(st). To calculate Ât, a truncated version

of generalized advantage estimation [21] is used:

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1,

δt = rt + γVθ(st+1)− Vθ(st), (6)

where λ ∈ (0, 1) is an exponential discount factor.

D. Multiple Value-Function Heads for PPO

As mentioned above, our method incorporates a curiosity
module which is described in Section III-H. We used it in
our algorithm to measure the interestingness of states and
direct the exploration of our algorithm.

The subtle and challenging part about a curiosity method
based on neural networks is that its output changes after
every n episodes of training. In other words, the state value
(that is, how good it is for the agent to be in a specific state)
for the RL algorithm changes and is not constant such as in a
standard approach where the states’ values are approximated
by rewards received from a constant function. The reward in
such cases is the output of the reward function and is always
constant for a specific pair of ‘state and action’. In the case of
a curious algorithm, a pair of ‘state and action’ could produce
a high prediction error and be interesting at time t (when the
state visited for the first time by the agent), and after a couple
of training epochs, the neural network output would change,
resulting in a new curiosity value (which considering the
training, would be less than the previous curiosity value).

Thus, in a setting with external and curiosity rewards, the
RL algorithm must learn a value function that changes over
time (that is, the sum of extrinsic and intrinsic values). To
have a more stable learning, we use the idea of separating
the parameterized value functions. We define two value heads
for the PPO, the first value head called ‘State Extrinsic Value
Head’ learns the extrinsic value of the state (State Extrinsic
Value) generated based on the external rewards, which is
constant and comes from the environment, and the second
parameterized value function called ‘State Intrinsic Value
Head’ learns the intrinsic value of the state (State Intrinsic
(or Curiosity) Value), which is dynamic (that is, changes over
time) and is generated based on the curiosity reward. Using
this approach makes it possible to 1) stabilize the learning
of the value function by using separate heads, and 2) use
different learning rates for each one of the heads, thus being
able to control the rate of learning the value of external
reward and curiosity separately. Figure 1 shows the flowchart
of our algorithm.

As a result, there is one extra loss function for the curiosity
value head:

LC
t (θ) = VCη(st)− VCtarg

t ,

VC
targ
t = ÂCt

+ VCηold
(st). (7)

Further, the δt estimation mentioned in Equation 6 would
change as the following:

δt = (rext + rint) + γ

(
(V (st+1)− V (st)

)

+

(
VC(t+ 1)− VC(t)

)
. (8)

34

rext and rint are rewards generated by the environment and
curiosity module and are described in Section III-O.

E. Training a Quad-copter

We designed and implemented an environment (explained
thoroughly in Section III-N) to evaluate the performance
of the proposed method and to compare it with that of
other methods. In the case of a quad-copter control using
reinforcement learning, the agent should generate 100 actions
per second (100 Hz) and collect the state, action, and reward
in each time-step. We execute the training at the end of each
episode of 16,394 steps, mainly because it is very stable, but
the algorithm can be trained in every 4,096 steps or 8,192
steps, where the training would be less stable.

F. Policy and Value Networks

The policy network is a neural network with two hidden
layers, each formed by 256 neurons. The input to the network
(the agent state or perception of the world) is formed by the
odometry data (including both linear and angular acceler-
ations), the previous motor speeds (that can be considered
as the proprioception of quad-copters’ motors state), the
distances of the obstacles to the agent, and the distance of
the agent to the goal. Distances are calculated based on
the X and Y coordinates. For each obstacle the distance
comprises of the distance in X coordinate, the distance in
Y coordinate, and Euclidean distance based on the previous
two measures, while the distance to the goal is comprised of
only the Euclidean distance based on X and Y. The odometry
part of the state is introduced as input to the network, while
the rest of the state is concatenated to the output of the first
layer, which is subsequently introduced to the second layer
of the network. The output of the policy network is a 4-
dimensional vector that is used to generate the action. An
identical structure is used for the state value network and
the curiosity value network, except for the output, which
is the state value of a particular observation. All networks
are optimized using the Proximal Policy Optimization (PPO)
algorithm.

Fig. 2. The dynamics between state, action, and reward in the ICM [9].
The method is discussed briefly at the beginning of Section III-G.

G. Intrinsic Curiosity Module

We used the idea of curiosity based on the prediction
error similar to the method in [9]. In the original Intrinsic

Curiosity Module (ICM) method, two models are defined
for calculating curiosity. The first model, called inverse
dynamics, is used to learn to predict the action that the agent
took to move from St to St+1, i.e.,:

â = g(st, st+1; θI), (9)

and a loss function is used for reducing the error between
the predicted action and the actual action:

min
θI

LI(ât, at). (10)

Further, there is a forward dynamics model that is responsible
for the prediction of the state feature ϕ(st+1) based on the
state ϕ(st) and action at:

ϕ̂(st+1) = f(ϕ(st), at; θF) (11)

with its corresponding loss function being:

LF (ϕ(st), ϕ̂(st+1)) =
1
2

∥∥∥ϕ̂(st+1)− ϕ(st+1)
∥∥∥
2

. (12)

The intrinsic (curiosity) reward in each time-step rit is then
defined to be the error of prediction between the actual
feature sate ϕ(st+1) and the predicted feature state ϕ̂(st+1),
i.e.,:

rit =
η
2

∥∥∥ϕ̂(st+1)− ϕ(st+1)
∥∥∥ . (13)

The overall loss function for the curiosity module is defined
to be:

min
θI ,θF

[
(1− β)LI + βLF

]
. (14)

Figure 2 shows a schematic of the dynamics of the described
approach.

Overall, while the above-described method is a capable ap-
proach useful in some problems, it cannot help our algorithm
learn to maximize the reward and, as shown in Section IV,
it fails to effectively train the agent. Therefore, we propose
a new curiosity approach, explained in the next section.

H. High-level Curiosity Module

The approach this paper proposes for calculating curiosity
is based on the prediction error with the following modifi-
cations:

• A new state space for the curiosity module that uses the
segment of states instead of a normal state.

• A pre-processing function that transforms the segment
of actions before using it by the curiosity module.

• In addition to predicting the curiosity using the dynam-
ics in the state and action spaces, our method uses the
dynamics between the state, action, and external rewards
for predicting the curiosity.

• Instead of using a single network, our algorithm incor-
porates an ensemble of curiosity networks, as shown in
Figure 5.

• Finally, instead of calculating a curiosity reward for
a single step, our method calculates and updates a
trajectory of the steps using a decay factor.

35

We call it High-level Curiosity Module (HCM) because it
learns based on the trajectory of the agent’s interaction with
the environment. As a result, it is a high-level approach
compared to learning from a single interaction. Further, as
Curiosity is an intrinsic value by nature, we do not use the
intrinsic name in the title of the algorithm.

I. Curiosity in States-Actions-States Space

Considering a low-level control problem where the agent
receives sensor data 100 times per second, the changes
between the states would be minor, generating a proper
curiosity reward would be challenging. One way to address
this issue is to modify the state, action, and reward space for
the curiosity module. In order to make a curious agent that
can converge to an optimal solution, we create a segment of
states called ζ where it can select a set of states in backward
pass or forward pass, considering the current time T = t.
We create a segment of the trajectory of the agent with
length n steps starting back in time and ending at the current
time-step, i.e., ζ(t−n)→t = {st−n, st−(n−1), ..., st−0}. We
also create a second segment of the trajectory of the agent
starting at the current time-step and ending n steps into the
future, i.e., ζt→(t+n) = {st, st+1, ..., st+n}. Intuitively, it
is necessary to use a segment of actions for the transition
between ζ(t−n)→t to ζt→(t+n), which we call it Λ. While
all the actions for moving from ζ(t−n)→t to ζt→(t+n) are
effective, the actions that are more near to the connection of
the two segments (or trajectories) are more important. Thus,
considering only half of the actions from each segment would
be enough. So, Λm = {at−m, ..., at+m}, i.e., it comprises
of the set of actions starting from time-step T = t − m
to T = t+m, where m = n/2. However, training a neural
network to predict Λm based on ζ(t−n)→t and ζt→(t+n) (that
is, Λm = gSS(ζ(t−n)→t, ζt→(t+n); θISS

) where θISS
is the

set of the gSS model parameters) is not trivial and does not
produce good results, mainly because of the size of Λm. A
better solution is to first convert the Λm to a low-dimensional
vector that characterizes the transition. To do this, we define
a function called FWP .

One general approach would be to define FWP as a
convolutional neural network or variational auto-encoder that
extracts the features or the latent space of the Actions
segment and consider it as the low-dimensional vector that
characterizes the transition. However, considering that we
have access to positions and attitudes in our problem, an
easier approach is to directly calculate the waypoints that
indicate the transition. A waypoint could be considered as
a ‘position’ or a combination of ‘position and attitude’
transition. Here, we consider it as a ‘position’ transition
because our goal is to reduce the dimensionality of the
Actions segment. Thus, instead of using the action space to
characterize the transition, we consider the change in position
space as the transition. Moreover, to capture the transition
adequately well, more than one waypoint is needed. We
use three waypoints in order to have a measure from the
beginning, middle, and end of the transition. As a result,
the FWP input is Λm, a subset of {ζ(t−m)→t, ζt→(t+m)}

comprised of only position data where m = n. m could
be smaller or larger than n in general approach, such as
m = n/2. The output of FWP is {wp1, wp2, wp3}.

Our parameterized inverse dynamics function called gSS

predicts the output of FWP and is defined as follows:

F̂WP (Λm) = gSS(ζ(t−n)→t, ζt→(t+n); θISS
), (15)

where θISS
is the set of the gSS model parameters, and the

loss function becomes:

min
θISS

LISS
(F̂WP (Λm), FWP (Λm)). (16)

Further, the forward dynamics are defined as follows:

ϕ̂(ζt→(t+n)) = fSS

(
ϕ(ζ(t−n)→t), FWP (Λm); θFSS

)
,(17)

where ϕ is the function to extract the features, and θFSS
is

a set of the fSS model parameters. We then minimize the
following loss function:

LFSS
(ϕ(ζt→(t+n)), ϕ̂(ζt→(t+n))) =

1
2

∥∥∥ϕ̂(ζt→(t+n))− ϕ(ζt→(t+n))
∥∥∥
2

. (18)

The curiosity reward generated by this head is calculated in
the following way:

rCSS
=

[
(1− β)LISS

+ βLFSS

]
. (19)

Finally, the total loss function is:

min
θISS

,θFSS

[
rCSS

]
. (20)

J. Curiosity in States-Actions-Rewards Space

Considering that an immediate reward exists in our prob-
lem setting, generating the curiosity reward would be more
complex because the policy constantly receives the reward
from the environment, making the problem of generating a
proper curiosity reward more challenging. In order to make
a curious agent that can converge to the optimal solution, we
define a new pair of forward and inverse dynamics models
where instead of predicting the next state, they would work
and predict the segment of external reward. In a nutshell, we
use the ζ(t−n)→t and FWP as they described in the previous
section. Further, we define a segment of external rewards and
show it by Γt→(t+n). Also, we define a new set of functions
for inverse and forward dynamics:

F̂WP (Λm) = gSR(ζ(t−n)→t,Γt→(t+n); θISR
), (21)

where θISR
is set of the gSR model parameters, and the loss

function

min
θISR

LISR
(F̂WP (Λm), FWP (Λm)). (22)

Further, the forward dynamics are defined as follows:

ϕ̂(Γt→(t+n)) = fSR(ϕ(ζ(t−n)→t), FWP (Λm); θFSR
),(23)

36

where ϕ is the function to extract the features, and θFSR
is

a set of the fSR model parameters. We then minimize the
following loss function:

LFSS
(ϕ(Γt→(t+n)), ϕ̂(Γt→(t+n))) =

1
2

∥∥∥ϕ̂(Γt→(t+n))− ϕ(Γt→(t+n))
∥∥∥
2

. (24)

The curiosity produced by this head is:

rCSR
=

[
(1− β)LISR

+ βLFSR

]
, (25)

and the total loss function is:

min
θISR

,θFSR

[
rCSR

]
. (26)

K. Ensemble of Curiosity Sub-modules

In the previous sections, two curiosity sub-modules were
defined, namely 1) curiosity error based on prediction error
in (ζ,WP (Λm), ζ) transition space (called curiosity module
part a), and 2) curiosity error based on the error of prediction
in (ζ,WP (Λm),Γ) transition space (called curiosity module
part b). To have a less biased curiosity module, we define
an ensemble of curiosity similar to [22] in terms of using
multiple networks to measure the prediction error. In our
setting, our final curiosity module comprises of five curiosity
sub-modules type ‘a’ and five curiosity sub-module type ‘b’,
as illustrated in Figure 5. The output of the curiosity module
then is the average of all networks’ outputs, and the final
formula for calculating the curiosity reward consisting of n
ensemble of networks (for each separate sub-module) is:

rcuriosity = αcuriosity ∗
(

1

2n
Σ(rCSSn

+ rCSRn
)

)
, (27)

where αcuriosity is a coefficient for curiosity reward.

Fig. 3. Part one of our proposed curiosity method where the prediction
error is based on the state segments and action segments.

L. Updating a Trajectory of State Curiosity Values

Considering that the curiosity reward generated by our
method is generated based on (ζ,WP (Λ),Γ), a segment
of states, actions, and rewards, we convert the generated
curiosity reward to a trajectory of curiosity rewards and use
it to update a trajectory of State Curiosity Values as follows:

rct±x = rct±x + κx(rcuriosity), (28)

where x = 0, 1, .., n and κϵ(0, 1) is a decay factor.

Fig. 4. Part two of our proposed curiosity method where the prediction
error is based on the state segments, action segments, and reward segments.

Fig. 5. Overall architecture of our curiosity module where n Module A
and n Module B heads are used to create the curiosity module.

M. Visualizing the Effect of Curiosity

One way to visualize the effect of curiosity is to trace
and visualize the trajectories traversed by the robot/agent,
which is the method we used and described here. We first
consider the XY plane of the agent position and trace its
movement in that plane. In order to trace its movement, we
divide the XY plane into X columns and Y rows and define
a visitation value for each cell. Further, each time the agent
passes through a row and column, we add the visitation
value of that cell by +1. Finally, we normalize the matrix
that collects this information and visualize it as an image.
A sample image that shows the agent’s movement in the
environment is shown in Figure 7.

N. Environment

The environment is an essential part of an RL-based ap-
proach considering it generates the new state st and external
reward rt by executing the action at. The environment used
in this work is based on the Gazebo simulator [23] and the
RotorS package [24], which is used to simulate a model of
Ascending Technology Hummingbird. The environment is
comprised of a quad-copter and three obstacles. To make
the environment realistic and reduce the gap between the

37

Fig. 6. Visualization of our environment (3D view (left), side view (top right), and top view (bottom right)), which is comprised of a quad-copter and
three obstacles initialized in a random position between the drone and the desire position. The goal is to 1) pass the obstacles and reach a goal destination
known by the algorithm by a position and attitude pair (the blue line draws a sample desired path), and 2) control the Yaw towards the desired position
(in this case, the coordinate frame origin), the red lines visualize the desired Yaw directions.

Fig. 7. The trajectories traversed by the agent in the environment from a
top-view point of view (i.e., in the XY plane) after 50 episodes.

simulation and real world our environment adds noise to the
motors and simulate the damping effect. The primary goal
for the quad-copter agent is to learn to fly and control itself
from any random initial position and attitude. The secondary
goal is explained using the following items:

• Pass the obstacles and fly towards the desired position
and attitude.

• Control the yaw direction toward the desired position
in terms of X and Y.

Besides that, a Python script is used to communicate with
the Gazebo simulator to retrieve the new state, generate
the extrinsic rewards after passing the action generated by
the policy network, detect the terminal states and reset the

quad-copter position, and gather all the statistical information
related to the quad-copter, the extra goals, and errors. The
communication between the Python script and the Gazebo
simulator is handled by using Robot Operating System
(ROS) [25] to enhance the mobility of the code.

O. Reward

This work defines three types of rewards for training our
RL-based policy:

• An immediate extrinsic reward is generated by the
environment in each time step; this reward is a measure
of how near the agent is to the desired position and
attitude and is defined using the following formula:

rflight =

αp

(
(1− |xd−xc|

xmax
) + (1− |yd−yc|

ymax
) + (1− |zd−zc|

zmax
)

)

−αa

(
|θd − θc|+ |ϕd − ϕc|+ |ψd − ψc|

)
, (29)

where (x, y, z) denotes the position coordinates and
(θ, ϕ, ψ) are the attitude of the agent. The index d
indicates the desired position and attitude, which are
xd = 0m, yd = 0m, zd = 1.5m, θd = 0, ϕd =
0, and ψd is equal to the Yaw that points towards
the origin of the world coordinate system. The index
c indicates the current position and attitude. αp and
αa are coefficients for error in position and error in
attitude, respectively. Finally, we use a shaping reward
technique to motivate agent activity in the desired areas
by defining a threshold for x, y, and z axes. If the agent
distance in a specific axis gets more than a predefined
threshold, the position reward for that axis would be

38

−1.0. For example, if |xd − xc| > xmax

2 then we
consider −1.0 instead.

• Two auxiliary immediate extrinsic rewards that are
generated by the environment. The first one is related
to the control of the yaw toward the goal direction, as
shown in the following:

ryaw = |ψd − ψc|, (30)

where ψ is the Yaw of the attitude of the agent, the
index d indicates the desired Yaw value, and the index
c the current Yaw value.
The second one is related to the velocity of the agent
as shown in the following:

rvel = αν ∗ ||ν||+ αω ∗ ||ω||, (31)

where ν and ω are the linear and the angular velocity
of the quad-copter, respectively, and αν and αω are
coefficients.

• An intrinsic immediate reward that is generated by the
curiosity module. This reward represents the surprise
and motivates the agent’s exploration and is fully ex-
plained in Section III-H.

Finally, the final reward is calculated in two parts, consid-
ering the two Value Heads defined for the PPO (i.e., State
Value Head and State Curiosity Value Head), the internal
reward explained in Section III-H, and the external reward
is formulated as shown in the following:

rext =

{
(rflight ∗ αflight) + (ryaw ∗ αyaw) + rvel,

−10, if quad-copter hits obstacle or crashes.
(32)

IV. EXPERIMENTS

In order to illustrate the performance of the proposed
algorithm we compared it with other powerful algorithms
which serve as the baselines:

• PPO is used as the baseline on-policy algorithm for
testing and performance comparison in our tests.

• SAC is used as an off-policy algorithm with memory
replay to compare its performance with the other on-
policy algorithms mentioned in this section.

• PPO+ICM is the PPO algorithm combined with ICM
[9] module (for the curiosity reward).

• PPO+HCM is the PPO algorithm combined with our
proposed curiosity approach (i.e., HCM).

The PPO algorithm we used here as the baseline is a highly
tuned PPO algorithm against our fly environment with explo-
ration noise generated by a Gaussian distribution with a mean
of 0 and standard deviation of 1.0. The default parameters
used for the SAC algorithm (the stable baseline version).
We tested the performance of the competing algorithms by
running our scenario multiple times. Each algorithm was
run six times, and the min, max and average results are
calculated. Our code can be found in the corresponding
GitHub repository1.

1https://github.com/a-ramezani/CDRL-L2FC_u_HCM

A. Reward Maximization and Quad-copter Low-level Con-
trol

Reward maximization is the main goal in reinforcement
learning-based algorithms. Figure 8 illustrates the perfor-
mance of the competing algorithms. Looking at the left side
of the figure, one can observe that only PPO+HCM (i.e., our
proposed curiosity-based algorithm) is able to maximize the
reward over time. In other words, only PPO+HCM can learn
to perform according to the goals mentioned in Section III-N
in the environment. The right side of the same figure displays
some information about Failed Fly. A ‘Failed Fly’ is when
the quad-copter is initiated randomly in the environment,
the algorithm cannot learn to control it and, as a result, the
quad-copter crashes. Again, only PPO+HCM can control the
quad-copter and reduce the number of ‘Failed Fly’ over time,
which is another sign that the algorithm is successful in the
environment.

Considering the problem our algorithm tries to solve is
controlling a quad-copter, the averaged position and atti-
tude errors are collected and displayed in Figure 9. The
information shown in the figure can be divided into two
categories 1) Attitude Control Information, and 2) Position
Control Information. Reducing errors for Attitude Control
implies that the algorithm can control the quad-copter and
not crash. However, it does not give any information about
how far or near the quad-copter is from the desired position.
That information can be retrieved from the Position Control-
related diagrams (i.e., the left side of the Figure 9). Overall,
both Attitude and Position control information illustrates
the capability of our proposed curiosity-based method (i.e.,
HCM) while showing the lack of ability of other algorithms
in terms of control and flying toward the desired position
and attitude.

So far, our result showed this paper’s algorithm capability
in controlling the quad-copter agent and flying toward the de-
sired position and attitude (i.e., the first part of the objectives
of the environment described in Section III-N). However,
to illustrate the algorithm’s capabilities, some information
regarding the obstacles is necessary (i.e., the second part
of the environment objectives), which is mentioned in the
following.

B. Goal and Obstacles Distances

As described in Section III-N, the algorithm should control
a quad-copter agent and fly it toward a desired location
while avoiding three obstacles. Figure 10 is comprised of
two diagrams. The left diagram shows the distance between
the quad-copter and the position of the goal, and the right
image shows the distance between the quad-copter and
obstacles in the environment. The obstacle distance is the
mean of the three Euclidean distances between the quad-
copter and each one of the obstacles in the environment.
Both diagrams in Figure 10 show the capability of PPO+HCI
in terms of decreasing the distance between the quad-copter
and the location of the goal while slightly increasing and
then maintaining the distance between the quad-copter and
obstacles. These two diagrams illustrate that the quad-copter

39

Fig. 8. Capability of each algorithm in maximizing the reward through time (left). Capability of each algorithm to reduce the Failed Fly (crashes) measure
(right).

Fig. 9. Position and attitude errors: position errors for X, Y, and Z (left), and attitude error in Roll, Pitch, and Yaw (right).

Fig. 10. Average distance between the quad-copter and the obstacles (left), and average distance between the quad-copter and the goal position (right).

controlled by PPO+HCP reaches the goal while avoiding the
obstacles.

C. Curiosity Visualization

Considering the description in Section III-M regarding the
visualization of the curiosity effect, Figure 11 and 12 show
the effect of curiosity in evolving exploration patterns when
the number of episodes increases. The figures are comprised
of two rows; the first row shows the PPO exploration pattern,
and the second row shows the PPO+HCM exploration pat-
tern. For PPO, as can be seen in the figures, the pattern does

not evolve and is almost static where it does not move toward
the center of the box (i.e., toward the desired position);
this observation is also supported by the Position Control
Information section of Figure 9, as the algorithm does not
reduce the position error by time. For the PPO+HCM, on the
other hand, as the illustrated in the second row of the figures,
the pattern of exploration is changing. By increment of the
number of episodes, the algorithm explores more trajectories
that ends up towards the center of the box (i.e., desired
position), and also, more concentration can be seen in that

40

Fig. 11. Visualization of the effect of curiosity in the agent’s trajectories (in XY plane, i.e., top-view). Starting from left to right of the figure, by increasing
the number of episodes, the curious agent would have more activities toward the center of the image or toward the desired position, but the non-curious
agent avoids moving toward the center mainly because it avoids hitting the obstacles. This figure focuses only on the areas important for exploration.

Fig. 12. Visualization of the effect of curiosity in the agent’s trajectories (in XY plane, i.e., top-view). Starting from left to right of the figure, by increasing
the number of episodes, the curious agent would have more activities toward the center of the image or toward the desired position, but the non-curious
agent avoids moving toward the center mainly because it avoids hitting the obstacles. This figure visualizes on all the areas traversed by the agent.

area.

D. Trajectories of Optimal Policy

Figure 13 shows two sample trajectories generated by an
optimal policy trained using the curiosity-based algorithm
proposed in this paper (i.e., PPO+HCM) when the quad-
copter is initiated in random initial positions and attitudes and
three obstacles are initiated in three random positions. The
trajectories are visualized using the right-hand coordinate
system where the red arrow shows the Yaw orientation of
the quad-copter. As can be seen, the algorithm can control
the quad-copter and pass the obstacles while controlling the
vehicle’s Yaw toward the desired location.

V. DISCUSSION

In this section, we discuss some matters that need further
explanation.

A. Algorithm Selection Strategy

We used the PPO as the baseline algorithm for the
performance test because it is the algorithm that is mostly
used for learning to fly such as in [1] [2] [3] and is a
powerful on-policy algorithm. Moreover, we also selected
SAC to show the result of a powerful off-policy RL algorithm
that incorporates a memory replay. Our goal in this paper
was to show that integrating curiosity with reinforcement
learning-based flight controller makes solving complex low-
level flight control problems possible. Thus, we selected
PPO+ICM for testing the performance. Finally, we showed

41

Fig. 13. Visualization of two sample trajectories of our optimal policy (the top view and 3D view of each trajectory are shown per row). The quad-copter
is initialized in random position and attitude, and obstacles are initiated in random positions.

the capability of the proposed algorithm (i.e., PPO+HCM)
compared with the competing ones and the importance of
our contribution at the algorithm level.

B. The Gap between the Simulation and Real World

One area for improvement with the simulation-based
learning algorithm is the gap between the simulation and the
real world. One way to address this problem is by reducing
the difference between the simulation and the real-world
environments. However, this paper focuses on the learning
part and the effect of adding curiosity to the learning policy
for low-level flight control. For this reason, we did not
enter the area of real-world tests in this paper, especially
considering that it is already proven in [2] [3] [4] that a
reinforcement learning-based policy can be used in a real-
world quad-copter for low-level control.

C. Exploration, Exploitation, and Curiosity

It is a well-known capability of curiosity to increase and
orient the exploration towards surprise, or in better words, to
explore the environment meaningfully. While reinforcement
learning algorithms, by default, use a trade-off between ex-
ploitation and random exploration (exploration mechanisms
such as epsilon greedy in Q-learning or noise injected to the
output action in methods such as DDPG, SAC, and PPO),
they do purely random explorations. However, curiosity, as
implemented in our work, generates an intrinsic reward that
increases in the states unknown to the agent (by measuring
the agent prediction error on those states) and decreases in
the states that the agent visited frequently. Thus, curiosity

can be seen as a parameterized neural network architecture
that rewards the agent more in surprising states, motivating
the agent to explore those states more. As a result, curiosity
aims to make the exploitation part of the RL more efficient
while still using the default exploration mechanism.

D. Computational Time

Considering adding an extra head to PPO networks and
having ten sub-modules in the proposed curiosity algorithm,
the learning part is much heavier than regular RL-based low-
level flight control learning. However, that is only for the
learning time, which usually happens on a powerful machine.
For the execution time or deployment on an actual quad-
copter, our approach is similar to the mentioned approaches
because only one network (i.e., Policy Network) is needed.

VI. CONCLUSION

In this work, we proposed a new approach for autonomous
learning of low-level control policy. To achieve that, we
proposed a new approach for implementing a computa-
tional model of curiosity motive using prediction error. To
measure the capability of our algorithm, we designed and
implemented a complex environment in Gazebo for learning
quad-copter low-level flight control policy. In the designed
environment, the algorithm should learn to directly control
the quad-copter by generating the proper motor speed from
odometry data. Further, the algorithm should learn to fly
through obstacles while controlling the Yaw direction of
the quad-copter toward the desired location. We ran tests

42

to measure and compare the proposed algorithm to other
baseline algorithms.

As shown in Section IV of this paper, the proposed
approach (i.e., PPO+HCM) can learn a flight policy when
other algorithms fail to do so. By incorporating the proposed
curiosity module, the algorithm can evolve the exploration
pattern and fly to areas where other algorithms avoid flying.
As a result, it can learn to control the quad-copter, control the
Yaw direction of the quad-copter toward the desired location,
and avoid hitting obstacles (as a low-level controller). In
future works, we plan to measure the effect of incorporating
machine imagination in a low-level framework.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon
2020 Research and Innovation Program (OpenDR) under
Grant 871449. This publication reflects the authors’ views
only. The European Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] A. Ramezani Dooraki and D.-J. Lee, “An innovative bio-inspired
flight controller for quad-rotor drones: Quad-rotor drone learning
to fly using reinforcement learning,” Robotics and Autonomous
Systems, vol. 135, p. 103671, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S092188902030511X

[2] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of
a quadrotor with reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 2096–2103, oct 2017. [Online].
Available: https://doi.org/10.1109%2Flra.2017.2720851

[3] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and
G. S. Sukhatme, “Sim-to-(multi)-real: Transfer of low-level robust
control policies to multiple quadrotors,” CoRR, vol. abs/1903.04628,
2019. [Online]. Available: http://arxiv.org/abs/1903.04628

[4] C.-H. Pi, K.-C. Hu, S. Cheng, and I.-C. Wu, “Low-level
autonomous control and tracking of quadrotor using reinforcement
learning,” Control Engineering Practice, vol. 95, p. 104222, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0967066119301923

[5] A. Ramezani Dooraki and D.-J. Lee, “A multi-objective reinforcement
learning based controller for autonomous navigation in challenging
environments,” Machines, vol. 10, no. 7, 2022. [Online]. Available:
https://www.mdpi.com/2075-1702/10/7/500

[6] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a
typology of computational approaches,” Frontiers in Neurorobotics,
vol. 1, 2007. [Online]. Available: https://www.frontiersin.org/articles/
10.3389/neuro.12.006.2007

[7] J. Gottlieb, P.-Y. Oudeyer, M. Lopes, and A. Baranes,
“Information-seeking, curiosity, and attention: computational and
neural mechanisms,” Trends in Cognitive Sciences, vol. 17,
no. 11, pp. 585–593, 2013. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1364661313002052

[8] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck,
and P. Abbeel, “Curiosity-driven exploration in deep reinforcement
learning via bayesian neural networks,” CoRR, vol. abs/1605.09674,
2016. [Online]. Available: http://arxiv.org/abs/1605.09674

[9] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” CoRR, vol. abs/1705.05363,
2017. [Online]. Available: http://arxiv.org/abs/1705.05363

[10] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” in Proceedings
of the 34th International Conference on Machine Learning - Volume
70, ser. ICML’17. JMLR.org, 2017, p. 2721–2730.

[11] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa,
P. M. Pilarski, and R. Hadsell, “Learning gentle object manipulation
with curiosity-driven deep reinforcement learning,” CoRR, vol.
abs/1903.08542, 2019. [Online]. Available: http://arxiv.org/abs/1903.
08542

[12] M. Frank, J. Leitner, M. Stollenga, A. Förster, and J. Schmidhuber,
“Curiosity driven reinforcement learning for motion planning
on humanoids,” Frontiers in Neurorobotics, vol. 7, 2014.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.
2013.00025

[13] T. K. Kaiser and H. Hamann, “Innate motivation for robot swarms
by minimizing surprise: From simple simulations to real-world exper-
iments,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3582–3601,
2022.

[14] K. Cai, W. Chen, C. Wang, H. Zhang, and M. Q.-H. Meng, “Curiosity-
based robot navigation under uncertainty in crowded environments,”
IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 800–807,
2023.

[15] Q. Sun, J. Fang, W. X. Zheng, and Y. Tang, “Aggressive quadrotor
flight using curiosity-driven reinforcement learning,” 2022.

[16] “Markov decision process,” https://en.wikipedia.org/wiki/Markov
decision process, accessed: 2023-03-16.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[18] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477

[19] S. Kakade and J. Langford, “Approximately optimal approximate
reinforcement learning,” in Proceedings of the Nineteenth
International Conference on Machine Learning, ser. ICML ’02.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002,
pp. 267–274. [Online]. Available: http://dl.acm.org/citation.cfm?id=
645531.656005

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1928–1937.
[Online]. Available: http://proceedings.mlr.press/v48/mniha16.html

[21] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” 2015.

[22] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,” in
Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6405–6416.

[23] “Gazebo simulator,” http://gazebosim.org/, accessed: 2023-03-16.
[24] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating

System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo MAV
Simulator Framework, pp. 595–625.

[25] “Robot operating system,” https://www.ros.org/, accessed: 2023-03-16.

43

D5.4: Final report on deep robot action and decision making 44/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 45/131

C

2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

DEEP REINFORCEMENT LEARNING WITH ACTION MASKING FOR
DIFFERENTIAL-DRIVE ROBOT NAVIGATION USING LOW-COST SENSORS

Konstantinos Tsampazis, Manos Kirtas, Pavlos Tosidis, Nikolaos Passalis, Anastasios Tefas

Computational Intelligence and Deep Learning (CIDL) Group, AIIA Lab.,
Department of Informatics,

Aristotle University of Thessaloniki, Thessaloniki, Greece
E-mails: {tsampaka, eakirtas, ptosidis, passalis, tefas}@csd.auth.gr

ABSTRACT

Driving a wheeled differential-drive robot to a target can be a
complicated matter when trying to also avoid obstacles. Usu-
ally, such robots employ a variety of sensors, such as LiDAR,
depth cameras, and others, that can be quite expensive. To
this end, in this paper, we focus on a simple differential-drive
wheeled robot that uses only inexpensive ultrasonic distance
sensors and touch sensors. We propose a method for training a
Reinforcement Learning (RL) agent to perform robot naviga-
tion to a target while avoiding obstacles. In order to increase
the efficiency of the proposed approach we design appropri-
ate action masks that can significantly increase the learning
speed and effectiveness of the learned policy. As we experi-
mentally demonstrated, the proposed agent can robustly navi-
gate to a given target even in unknown procedurally generated
environments, or even when denying part of its sensor input.
Finally, we show a practical use-case using object detection to
dynamically search for, and move to objects within unknown
environments. The code used for conducted experiments is
available online on Github.

Index Terms— Robot Navigation, Low-Cost Robot Sen-
sors, Deep Reinforcement Learning, Action Masking

1. INTRODUCTION

Autonomous navigation of mobile robots has been a popu-
lar research topic in the field of robotics for decades. The
ability to navigate in complex and dynamic environments is
essential for many applications, such as search and rescue,
logistics, and home care. One of the most common and ver-
satile types of mobile robots is the differential-drive wheeled
robot. These robots are easy to build and control, and their
differential-drive system allows them to turn on the spot and
move in any direction. At the same time, Deep Reinforce-
ment Learning (DRL) [1] has also emerged as a promising
technique for training autonomous agents to perform complex
tasks, leading to several robotics applications [2], including
navigation, manipulation, and control.

Recent research mainly targets robots that use multiple
sensors and relatively expensive configurations with LiDAR,
depth cameras and others. One such example is in [3], where
the authors used a Jetson Nano for obstacle avoidance us-
ing a monocular camera. In another work [4], the authors
used the Turtlebot 3 Waffle Pi, and trained a Double DQN [5]
agent to navigate to a target. In a more recent work using
the same robot [6], a mapless local path planning approach
was presented, that used variants of Deep Q-Network [7] to
increase success rates, proposing the n-Step Dueling Double
DQN with Reward-Based ϵ-Greedy (RND3QN) algorithm. In
[8], the authors successfully used Deep Deterministic Policy
Gradient [9] to train an agent to drive a differential-drive robot
to a target, improving on this paper’s authors’ earlier work in
[10]. They used curriculum learning [11] to gradually train
the agent on a small set of increasingly difficult maps. An-
other more generic example is the established Robot Oper-
ating System (ROS)1 navigation stack, which while it can
work with inexpensive ultrasonic distance sensors, it is more
well-suited to work with LiDAR and depth sensors. As a re-
sult, many DRL stacks are designed exclusively for high-end
robotic hardware, which limits their potential impact in a wide
range of applications, from education to low-cost mass pro-
duction robots. At the same time, training DRL agents with
low-fidelity and noisy sensors can worsen sample efficiency.
This necessitates the use of more sample-efficient paradigms
in such applications.

In this paper, we propose a method for training an agent to
drive a low-cost differential-drive wheeled robot navigating to
a target while avoiding obstacles, using the well-established
Proximal Policy Optimization (PPO) [12] RL algorithm. To
improve training efficiency we employ invalid action mask-
ing [13], also known as Maskable PPO, after appropriately
designing two masks that can lead to increased performance.
This work a) introduces a more systematic and effective ap-
proach to perform action masking, as well as b) paves the
way for introducing a state-of-the-art DRL approach using

1https://www.ros.org/

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

OpenDR No. 871449

low-cost sensors in the robotic navigation domain. The agent
used, apart from its sensor values, takes only the relative an-
gle and distance to its target and not its own or the target’s
absolute position, and thus can act as a local path planner and
navigate dynamically in unknown environments. We devel-
oped a randomized procedural map generation method within
the Webots robotics simulator [14], to be able to train and re-
alistically evaluate the agent in complex environments with
obstacles of various challenging shapes, using realistic noisy
sensors. The code used for conducted experiments is avail-
able online2.

The rest of the paper is structured as follows. The pro-
posed method is provided in Section 2, while the experimen-
tal evaluation is provided in Section 3. Finally, Section 4 con-
cludes the paper.

2. PROPOSED METHOD

2.1. Background and Setup

In this work, we employ a custom robot, as shown in Fig. 1a.
This robot is created in Webots and consists of two motors
connected to wheels providing differential drive, a forward-
placed bumper that is split between two touch sensors, one left
and one right, and 13 forward-facing ultrasonic distance sen-
sors that are placed in equal-spaced angles between [−π, π].
The ultrasonic distance sensors have a range of 1m and return
valid values when their ray angle of incidence to obstacles
is close to vertical. Moreover, the values returned are noisy,
simulating real ultrasonic distance sensors.

We used a discrete action space with a set of five actions
that cumulatively control the motor speeds of the robot. The
first one increases both motor speeds by a fixed amount up to a
limit, the second decreases them, the third and fourth increase
one motor speed but decrease the other and the fifth action
does not cause any changes to the motor speeds. We refer
to these actions as “forward”, “backward”, “left”, “right” and
“no action”.

The observation space of the agent is primarily described
by the following vectors:

at = [dt, at,ml,t,mr,t, tsl,t, tsr,t], (1)

where dt is the current Euclidean distance to the target, at is
the current angle to the target in regards to the facing angle of
the robot, ml,t and mr,t are the current left and right motor
speeds, and finally tsl,t and tsr,t are the left and right touch
sensor values, for timestep t and

bt = [ac0,t, ..., ac4,t, ds0,t, ..., ds12,t], (2)

where aci,t for i ∈ [0, 4] is the one-hot vector representing the
previous action, and dsj,t for j ∈ [0, 12] represents the latest
distance sensors values.

2https://github.com/aidudezzz/deepworlds/tree/
dev/examples/find_and_avoid_v2

(a) (b)

(c) (d)

Fig. 1. (a) the robot used, (b) random map with all 25 obsta-
cles, (c) corridor map with 2 rows of obstacles, (d) corridor
map with 4 rows of obstacles.

To construct the full observation ot at each timestep t, we
concatenate at and bt with at−w and bt−w, where at−w and
bt−w are the vectors containing the values of timestep t − w
approximately one second before timestep t. Therefore, the
full observation is defined as:

ot = [dt, at, ..., ds12,t, dt−w, at−w, ..., ds12,t−w], (3)

where w = ⌈ 1000s ⌉ and s is a single timestep time defined in
milliseconds. This way, even though the agent uses a simple
feed forward neural network, it takes a time window as ob-
servation giving it insight into how the observation values are
changing over time, which experimentally provided the best
results. All values are normalized appropriately in the [−1, 1]
range.

The reward R is defined as R = wdrdr + warar +
wdsrdsr + wrtrrtr + wcrcr, where dr is the distance to
target reward, ar is the angle to target reward, dsr is the
distance sensors reward, rtr is the reach target reward and cr
is the collision reward, who all lie within or are normalized
in the range [−1, 1]. Then every sub-reward is multiplied by
their corresponding weights (experimentally) set as wdr =
1.0, war = 1.0, wdsr = 10.0, wrtr = 1000.0, wcr = 100.0.
The distance to target reward is comprised of two components
itself, one continuous that penalizes the agent the farther away
it is from the target, and one discrete that rewards the agent
every time it achieves a new minimum distance to the target.
The agent is rewarded when facing the target or when it turns
towards the target, and penalized when it turns away from the
target. The angle reward is zeroed out when there are obsta-
cles detected nearby, to enable the agent to turn away from

46

Fig. 2. The proposed mask flowchart.

the target to avoid them. The distance sensors reward penal-
izes the agent when the sensors are reading below a threshold
value and rewards it otherwise. When the agent reaches the
target it is rewarded, but the reward is scaled based on the
episode time elapsed, i.e. when the agent instantaneously
reaches the target the reward is 1.0 and when it reaches the
target just before the episode ends it is rewarded with 0.5.
Finally, the agent is penalized when it collides with obstacles
as detected by its touch sensors. An episode is terminated
when the agent either reaches the target or it collides with
obstacles for 4, 096 steps.

2.2. Proposed Action Masking

Invalid action masking [13] is a technique used with PPO to
handle tasks involving invalid or forbidden actions. It pre-
vents the agent from selecting invalid actions during training
and evaluation by setting their probability to zero. This leads
to more efficient policies, especially in tasks with common
invalid actions or severe consequences. It can be applied to
both large and small action spaces. The technique has been
most notably, successfully used in Dota 2 [1].

In this work we propose two different masking ap-
proaches, a “simple” baseline action mask and a more so-
phisticated “advanced” mask. Typically, the masks provide
a vector of truth values, one for each action, that are either
true, enabling or unmasking the action, or are false, disabling
or masking the action. These vectors are calculated for every
simulation step.

The simple mask developed initially, masks the forward
action when close to obstacles or masks the backward action
when no obstacles are detected. This prevents unnecessary

collisions and unwarranted backwards driving. The mask also
prevents turning into obstacles by masking left or right actions
when respective sensors detect low values.

The advanced mask flowchart is provided in Fig. 2. This
method runs in every simulation step starting with all actions
unmasked and returns the final mask for the next step. As
can be seen in the flowchart, the mask method is split into
two components, one using the distance sensors and one us-
ing the touch sensors. As long as nothing is detected with the
touch sensors, the robot’s actions are masked via the relative
current target angle and distance sensors. When the distance
sensors component fails and a collision is detected, the touch
sensors component takes over until the robot is clear of obsta-
cles. Thus, the robust touch sensors act as a fallback for the
ultrasonic distance sensors which are quite unreliable, as the
incidence angle of their rays to the obstacles must be close to
vertical to return a valid value. However, obstacles that can
be detected via distance sensors can be effectively avoided.

3. EXPERIMENTAL EVALUATION

3.1. Training

For all the conducted experiments we used a simple feed
forward neural network that has three hidden layers with
[1024, 512, 256] neurons for the actor and [2048, 1024, 512]
for the critic. To this end, we utilized the RL implementation
provided by stable-baselines33. All other network architec-
ture values and training parameters are left at their default
values apart from γ set to 0.999, entropy coefficient set to

3https://github.com/DLR-RM/stable-baselines3

47

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

0.2

0.4

0.6

0.8

1

Success Rate

proposed

simple mask

no mask

Steps

S
uc

ce
ss

 R
at

e

(a)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M

-400K

-300K

-200K

-100K

0K
Episode Reward

proposed

simple mask

no mask

Steps

R
ew

ar
d

pe
r

E
pi

so
de

(b)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0K

2K

4K

6K

8K

10K

12K

14K

16K

Episode Length

proposed

simple mask

no mask

Steps

S
te

ps
 p

er
 E

pi
so

de

(c)

Fig. 3. The training results for the three masks used over
training steps: (a) the average success percentage, (b) the av-
erage episode reward, (c) the average episode length. Each
masking method was trained for 6 different seeds and the av-
erage results are presented.

0.001 and base learning rate set to 3e-4 and decaying with a
linear schedule.

We leveraged the open-source robotics simulator We-
bots [14] to create a randomizable environment for training
and evaluating the agents. The stable-baselines3 agent im-
plementation was integrated with the simulator through the
deepbots [10] framework, which enables the creation of cus-
tom OpenAI gym-compliant4 RL environments in Webots.
The training and evaluation maps consist of walled arenas
with various shapes of obstacles, known as “random maps”.
The number of obstacles can be customized, and the robot
and target are placed randomly in free spaces with varying
distances between them. An example map can be seen in
Fig. 1b. Moreover, the map can be randomly generated as a
corridor with adjustable number of rows of obstacles between
the robot and the target, referred to as “corridor map”, as can
be seen in Fig. 1c, d.

The agents undergo a total of 3, 407, 872 training steps,
with each new map serving as an episode lasting 16, 384
steps. We employed curriculum learning [11] during train-
ing, gradually increasing the difficulty. Initially, for 262, 144
steps, we used the “random map” configuration with 10 ran-
dom obstacles. The target was placed at a Manhattan distance
of 10 from the robot. This setup provided open maps with
few obstacles and wide paths, making it the easiest starting
point for the agents. Subsequently, we introduced a series

4https://github.com/openai/gym

of “corridor maps” of increasing difficulty, with the agents
trained for 524, 288 steps on each difficulty level. They start
out with 1 row of 2 obstacles and end up with 5 rows of 10
obstacles between the target and the robot. Fig. 1d illustrates
the challenging nature of corridor maps, which feature dead
ends and intricate paths to navigate. Moreover, even in its
easiest configuration the “corridor map” puts obstacles be-
tween the robot and the target, forcing the agents to learn to
traverse around the obstacles. Finally, the agents are trained
for another 1, 048, 576 steps on a “random map” with all 25
available obstacles and the target Manhattan distance set to
a random value between 10 and 12. This configuration pro-
vides the agents with a more realistic environment with many
obstacles spread around.

The training results can be seen in Fig. 3. The average
success percentage over the timesteps seen in Fig. 3a is the
ratio of episodes that the robot reached the target over the to-
tal number of episodes. The agent without any mask only
ever achieves ≈ 47.0% success percentage before decaying
to under ≈ 30% at the end of its training with its average
reward collapsing. The episodes terminate early due to colli-
sions, thus achieving a lower average episode length than the
simple-mask agent. The agent that uses the simple mask has
much better performance, as it begins with a success percent-
age of≈ 80% and drops to just under 60% before the training
ends. The proposed method with the advanced mask quickly
achieves a success percentage of close to 100% in the initial
easy maps and decays over time to 98.5%, as the curriculum
gets harder. As expected, all methods have sharp drops in
their initial average episode length as the agents get better at
reaching the target efficiently, and increase over time as the
maps get more and more complicated.

3.2. Evaluation

Baseline Proposed Proposed
(no mask) (simple mask) (advanced mask)

Success (%) 43.7± 20.9 64.1± 23.1 98.8± 0.2

Reward (×102) −14.6± 6.3 −2.1± 3.0 8.8± 0.1

Ep. Len. (×103) 8.6± 10.8 10.8± 8.6 2.5± 1.9

Table 1. The evaluation results for the different masks used,
averaged across 6 runs with different seeds and their corre-
sponding standard deviation.

To evaluate the trained agents in the various mask con-
figurations, we used a set of 600 previously unseen maps of
6 difficulty setups with 100 maps each, using the same seed
to get exactly the same robot/target and obstacles randomiza-
tion for all agents to provide a fair evaluation and comparison.
Starting out, the first 100 maps are simple “corridor maps”
without any obstacles, that show whether the agent can ef-
ficiently move straight to the target that is placed in various

48

distances along the corridor. Earlier in development, unsuc-
cessful agents had trouble reaching the target even in empty
corridors and would overshoot or hug the walls. The next 4
sets of 100 maps each are “corridor maps” of increasing dif-
ficulty in terms of how many rows of obstacles are placed
between the robot and the target, similar to the training setup
described previously. The last set of 100 maps uses the “ran-
dom map” configuration that includes all 25 available obsta-
cles. Note that the seed used for evaluation is different from
the training seeds, thus the maps used in evaluation are not
previously seen by the agents.

The reward function weights were set aswdr = 0.0, war =
0.0, wdsr = 0.0, wrtr = 1000.0, wcr = 1.0 to provide a bet-
ter constrained reward score, where the agent gets rewarded
only by reaching the target or punished for colliding. The
average evaluation results can be seen in Table 1, along with
their standard deviation across the 6 seeds. Similar to the
training results, the no mask setup ends episodes prematurely
due to collisions without reaching the target, which is re-
flected in the poor success rate and more decisively in the low
average episode reward, and as a consequence gets a lower
average episode length than the simple mask. The proposed
method converges to a near optimal policy that manages to
solve ≈ 98.8% of the evaluation maps with a high average
reward of ≈ 880 and low average episode length of ≈ 2500
steps, outperforming the other two methods by far. Finally,
the proposed advanced masking method shows much better
consistency represented by the very low standard deviation
values across the seeds.

3.3. Component ablation and sensor denial

No DS 50% DS No TS Only mask Full

Success (%) 93.8 95.5 84.5 69.3 98.6

Reward (×102) 4.9 7.4 8.0 -6.8 8.7

Length (×103) 2.2 3.4 8.0 15.2 2.3

Table 2. The results of the various component ablation and
sensor denial experiments. “DS” refers to distance sensors
and “TS” refers to touch sensors.

We evaluated one of the trained agents with the advanced
mask in the evaluation maps using the same seed and proce-
dure, but in three different sensor configurations: disabling
all distance sensors, randomly disabling 50% of the distance
sensors in each episode, and removing touch sensors entirely
setting their values to zero. Removing the distance sensors
effectively disables the part of the proposed mask depends
on them, and similarly, removing the touch sensors disables
the touch sensor part of the mask. Disabling sensors also
means that the agent has to work with an incomplete obser-
vation. Moreover, we evaluated a random policy that practi-
cally only uses the advanced mask to navigate, picking ran-

dom unmasked actions with equal probability. All the results
can be seen in Table 2, where the four ablation configurations
are compared to the full method. Denying half or all of the
distance sensors decreases performance slightly in terms of
success percentage. Without any distance sensors the agent
moves blindly colliding with obstacles a lot, thus decreasing
its average reward, but also less cautiously making it reach the
target faster. The agent without touch sensors, is hampered in
its ability to reach the target, resulting in a decrease of approx-
imately ≈ 14% in success percentage and prolonged naviga-
tion times due to the limitations of realistic ultrasonic distance
sensors in detecting obstacles effectively. The high reward
is a byproduct of the touch sensors not detecting any colli-
sions. Using the mask alone, that includes the human expert
knowledge, coupled with a random policy yields the worse
results in all of the metrics, demonstrating that the learned be-
haviour of the agent via the reward function is a crucial com-
ponent. These results show that the method is resilient to dis-
tance sensor denial, and has an adequate success percentage
even without the touch sensors. On a real robot the distance
sensors used in simulation can be emulated by a single dis-
tance sensor rotating on a servo motor in predetermined po-
sitions, which will affect the proposed method’s performance
marginally due to its resiliency to the distance sensor denial
shown.

3.4. Example Use-Case

(a) (b)

Fig. 4. Screenshots of the robot (green box on the map) look-
ing for the rubber duck in a random map: (a) robot is moving
towards a random exploration target (light blue box), (b) robot
has acquired the target (yellow box) and moving towards it.
The path the robot has followed is roughly sketched in blue.
On top-left the perspective of the camera can be seen, as well
as the bounding box of the detected object on screenshot (b).
The current map can be seen on the bottom-left.

We used the trained agent with the advanced mask on a
more practical use-case, combined with object detection pro-
vided by the simulator and a simple custom mapping func-
tionality, where the agent searches the map for a rubber duck
as can be seen in Fig. 4. The mapping functionality relies only
on the distance sensors, starting out with a black map image

49

that, as the robot moves around slowly gets filled with white
pixels for empty space and red pixels for obstacles detected
by the distance sensors, as can be seen on the lower-left parts
of the screenshots on Fig.4. The mapping functionality pro-
vides exploration targets to the agent that lie in black patches,
i.e. unexplored parts of the current map. As the agent ex-
plores the environment with the help of these targets, it can
detect the rubber duck via the camera’s object detection mod-
ule. When this happens the agent is provided with a target that
corresponds to the rubber duck’s position as approximated by
the bounding box on the camera image. Consequently, using
the trained agent with the proposed method as a local path
planner and a rudimentary exploration and mapping function-
ality, the robot can find targets within the environment and
navigate successfully and efficiently to them, using only sim-
ple distance and touch sensors as well as a camera for target
object acquisition.

4. CONCLUSIONS

In this paper, we demonstrated that by crafting an appropri-
ate masking function we can effectively combine RL with
expert human knowledge to provide an efficient policy for
differential-drive robot navigation without using expensive
robot configurations and sensors. We trained the three meth-
ods on multiple seeds and evaluated the trained agents on the
same random maps to provide a fair comparison, while also
conducting sensor ablation and denial experiments. The ex-
perimental results suggest that the proposed masking method
yields significantly better results than the baseline and con-
verges to a near-perfect policy. The proposed method was
also able to successfully navigate to the target in nearly all
the evaluation maps, even though the random map generation
method used produces very complicated maps with a variety
of obstacles both in terms of size and shape, that the realistic
noisy ultrasonic distance sensors have a great difficulty de-
tecting. The nature of the proposed method makes it suitable
to be used as a local path planning algorithm of low cost
once trained, which is shown via an example use-case that
uses a rudimentary custom mapping functionality and object
detection via a camera. In the few failure cases, the agent
gets stuck in narrow passages between obstacles it cannot de-
tect or gets trapped in long dead-end paths, that are expected
shortcomings of the nature of the method and sensor setup.
Future work includes incorporating RGB camera input, as
well as adding end-to-end mapping capabilities to the agent
to address these challenges.

Acknowledgments This work was supported by the Euro-
pean Union’s Horizon 2020 Research and Innovation Pro-
gram (OpenDR) under Grant 871449. This publication re-
flects the authors’ views only. The European Commission is
not responsible for any use that may be made of the informa-
tion it contains.

5. REFERENCES

[1] Christopher Berner et al., “Dota 2 with large scale deep
reinforcement learning,” CoRR, vol. abs/1912.06680,
2019.

[2] Nikolaos Passalis et al., “OpenDR: An open toolkit for
enabling high performance, low footprint deep learning
for robotics,” in Proc. IEEE/RSJ Intl. Conf. Intelligent
Robots and Systems, 2022.

[3] Thai-Viet Dang and Ngoc-Tam Bui, “Obstacle avoid-
ance strategy for mobile robot based on monocular cam-
era,” Electronics, vol. 12, no. 8, 2023.

[4] Hamza Aydemir, Mehmet Gök, and Mehmet Tekerek,
“Reinforcement learning based local path planning for
mobile robot,” in Interdisciplinary Conf. Mechanics,
Computers and Electrics, 11 2021.

[5] Hado van Hasselt et al., “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461,
2015.

[6] Yan Yin, Zhiyu Chen, Gang Liu, and Jianwei Guo, “A
mapless local path planning approach using deep rein-
forcement learning framework,” Sensors, vol. 23, no. 4,
2023.

[7] Volodymyr Mnih et al., “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

[8] Ali Salimi Sadr et al., “An efficient planning method
for autonomous navigation of a wheeled-robot based on
deep reinforcement learning,” in 12th Intl. Conf. Com-
puter and Knowledge Engineering, 2022, pp. 136–141.

[9] Timothy P. Lillicrap et al., “Continuous control with
deep reinforcement learning,” arXiv 1509.02971, 2015.

[10] M. Kirtas et al, “Deepbots: A webots-based deep rein-
forcement learning framework for robotics,” in Artificial
Intelligence Applications and Innovations, Cham, 2020,
pp. 64–75, Springer Intl. Publishing.

[11] Sanmit Narvekar et al., “Curriculum learning for rein-
forcement learning domains: A framework and survey,”
arXiv 2003.04960, 2020.

[12] John Schulman et al., “Proximal policy optimization
algorithms,” arXiv 1707.06347, 2017.

[13] Shengyi Huang and Santiago Ontañ ón, “A closer look
at invalid action masking in policy gradient algorithms,”
The Intl. FLAIRS Conf. Proceedings, vol. 35, may 2022.

[14] Olivier Michel, “Webotstm: Professional mobile robot
simulation,” Int. Journal of Advanced Robotic Systems,
vol. 1, 03 2004.

50

D5.4: Final report on deep robot action and decision making 51/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 52/131

D

Data efficient Deep Reinforcement Learning for Robust

Inertial-based UAV Localization

Dimitrios Tsiakmakisa, Nikolaos Passalisa, Anastasios Tefasa

aComputational Intelligence and Deep Learning (CIDL) Group, Artificial Intelligence
and Information Analysis (AIIA) Lab., Department of Informatics, Aristotle University

of Thessaloniki, Thessaloniki, 541 24, Greece

Abstract

Precise localization is a critical task for many UAV-based applications. In-
ertial Measurement Units (IMUs), which measure acceleration and angular
velocity, are commonly used for UAV localization due to their low cost and
small size. However, IMU-based localization is prone to accumulating errors
over time, which can significantly impact the accuracy of the localization.
To address this issue, we propose a data efficient Deep Reinforcement Learn-
ing (DRL) method that enables learning how to correct localization errors
from IMUs. Our approach utilizes a novel data augmentation method, along
with an appropriate “hint” loss that can provide additional supervision dur-
ing the training process. As a result, the proposed method requires a very
small number of real-world examples and can be implemented using widely
available low cost RGB sensors, ensuring that it can be readily applied in
a wide range of different applications. We demonstrate the effectiveness of
the proposed method in both simulation and real-world UAV experiments.
In comparison to traditional supervised and DRL approaches, the proposed
approach allows for achieving more precise localization with fewer real-world
examples, making it a practical tool for adapting DL-based localization mod-
els for UAV applications.

Keywords: Deep Reinforcement Learning, Inertial-based Localization,
Data Augmentation

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are increas-
ingly being used for a wide range of applications, including precision agricul-

Preprint submitted to Robotics and Autonomous Systems August 17, 2023

OpenDR No. 871449

ture (Radoglou-Grammatikis et al., 2020), search and rescue operations (Alotaibi
et al., 2019), and indoor surveillance (Boonyathanmig et al., 2021). The abil-
ity to accurately determine the location of a UAV is critical for the success of
these applications, as well as the majority of other UAV-based applications,
since localization of UAVs is crucial for both mission control and safety rea-
sons, i.e., avoiding flying over prohibited regions. Various techniques to UAV
localization have been developed, with each depending on various sensors and
delivering a different level of accuracy.

One of the most common methods for localizing a UAV is through the
use of satellite-based radio-navigation systems, such as the Global Positioning
System (GPS) (Sukkarieh et al., 1999; Han and Wang, 2012). These systems
are relatively inexpensive, but they can be prone to inaccuracies, which can
hinder the performance of UAV applications that require precise localization.
Despite these limitations, GPS and similar technologies are widely used due
to their convenience and ease of implementation. According to the official
GPS documentation, GPS-enabled devices are typically precise to within 4.9
meters (16 feet), which is insufficient for a wide range of tasks. In addition,
there are a variety of locations without GPS coverage (Vetrella and Fasano,
2016), and these methods cannot be deployed indoors due to the same cause.
One way to minimize the inaccuracies of satellite-based radio-navigation sys-
tems is through the use of real-time kinematic (RTK) positioning (Henkel
et al., 2016), which involves the use of additional base stations to provide
more precise location information. While RTK positioning can improve the
accuracy of UAV localization, it can also increase the cost and decrease the
adaptability of UAVs due to the need for additional base stations. Another
option for UAV localization is the use of light detection and ranging (LIDAR)
systems (Jaboyedoff et al., 2012; Xu and Zhang, 2021), which can provide
high-precision localization when used in combination with simultaneous local-
ization and mapping (SLAM) techniques (Liu et al., 2022a; Giubilato et al.,
2022). However, LIDAR systems often require expensive sensors and have
higher computational and energy requirements compared to other localiza-
tion methods (Gyagenda et al., 2022). Other techniques have been proposed
by taking advance of radiation fields (Newaz et al., 2016) or computationally
intensive monocular vision (Xiao et al., 2019).

On the other hand, Inertial Measurement Units (IMUs) consist of a com-
bination of accelerometers, gyroscopes, and magnetometers (Ahmad et al.,
2013), and they can provide low-cost solutions for UAV localization that
do not require external hardware or connectivity, such as satellites or base

2

53

stations. An Inertial Navigation System (INS) uses IMU data for dead reck-
oning to achieve localization (Barshan and Durrant-Whyte, 1995). There
have also been investigations into using visual simultaneous localization and
mapping (SLAM) with mono (Jin et al., 2022; He et al., 2022) and stereo
cameras (Koestler et al., 2022) for UAV localization, but these methods tend
to have higher computational costs. INS are often implemented using Micro
Electro-Mechanical Systems (MEMS), which is a type of sensor technology
that has become popular due to their compact size, low cost, and ability to
be easily integrated into a wide range of robots, including UAV applications.
These sensors provide real-time measurements and are capable of measuring
linear acceleration and rotational velocity with a small margin of error. How-
ever, over time, the errors in these measurements can accumulate and result
in significant position drift, which can compromise the accuracy of the sensor
in mission-critical applications where it is being used as the sole localization
sensor.

These restrictions have stimulated research into methods for improving
UAV inertial-based navigation (Brossard et al., 2019; Cortés et al., 2018;
Herath et al., 2020). Recent methods often use deep learning (DL)-based
models that considerably enhance the localization process. Nevertheless, de-
spite these enhancements, these methods have a significant drawback. These
approaches use supervised learning, either regression-based or classification-
based. As a result, they require a large number of annotated samples that
need to be collected in order to train the corresponding models, which signif-
icantly increases the cost of data acquisition. In some cases, this might not
even be possible since it might require increasing the payload of the drone,
e.g., by adding additional sensors. Also, these approaches typically depend
on the hardware used to collect the data, while when they are used on differ-
ent hardware their performance can deteriorate. This means that new data
needs to be collected and the models need to be retrained. Moreover, even
when employing equivalent hardware, manufacturing tolerances may result
in sensors with varying noise characteristics, making the use of supervised
learning approaches challenging.

On the other hand, Deep Reinforcement Learning (DRL) could poten-
tially allow for overcoming these limitations by enabling the IMU correction
model to directly adapt to the underlying hardware and operate on more eas-
ily obtainable reward signals instead of accurate ground truth annotations.
This signal can be sparse, i.e., provided only at the end of a training episode,
and can be noisy, e.g., low cost RGB cameras can be used to generate a

3

54

reward based on fixed landmarks, which significantly reduces the annotation
cost compared to supervised learning and improves the flexibility of DRL ap-
proaches. However, an important challenge is that DRL algorithms typically
require a large number of episodes or iterations to learn effectively, which
can be impractical for UAVs due to their limited onboard computing power
and energy constraints. While it is possible to bypass the first limitation
by using visual cues to generate a reward signal, the low data efficiency of
DRL techniques remains a significant barrier to their practical use in UAV
navigation.

In this work we propose a pipeline that can enable the use of DRL on
UAVs for inertial-based navigation. The proposed method addresses the
aforementioned challenges, including the need for a feedback signal to eval-
uate the learned policy and the high number of episodes typically required
for learning. To achieve this, we introduce a two-stage pipeline. In the first
step we propose training a generic DL backbone network that learns the dy-
namics of IMUs without focusing on a single sensor. This enables the more
efficient application of transfer learning using DRL. Indeed, in the second
step, DRL is applied by directly using a UAV to adapt the aforementioned
backbone to correct the errors introduced by the onboard IMU. In order to
ensure that the proposed method can be applied in practice, we propose two
application-specific DRL improvements towards significantly improving the
data efficiency of the learning process. First, we employ a data augmenta-
tion approach that generates numerous simulated episode trajectories from
a single actual episode. Second, we propose an additional loss function that
provides extra feedback when fine-tuning the learned policy depending on the
sign of the observed reward signal. Finally, for obtaining the reward signal
we employ a simple, yet efficient visual landmark-based method for obtaining
a reward signal using low-resolution RGB cameras. In this way, the proposed
method enables adapting the IMU model to each drone separately, account-
ing for possible drone-specific dynamics, with a very small cost compared
to supervised approaches, e.g., (Herath et al., 2020). Extensive experiments
using both simulations and actual hardware were performed demonstrating
the improvements obtained using the proposed method.

The rest of the paper is structured as follows. First, Section 2 introduces
the proposed methodology, while the experimental evaluation of the proposed
method is provided in Section 3. Finally, conclusions are drawn in Section 4.

4

55

2. Proposed Method

2.1. Background

The simplest method to localize a UAV using an inertial-based approach
is to employ a first-order numerical approach to solve ordinary differential
equations (ODEs), which is sometimes referred to as Euler’s method. There-
fore, using Euler’s method we obtain:

p(t+ h) = p(t) + ∆tv(t), (1)

where p(t) denotes the position at time step t, ∆t the time step duration, and
v(t) the velocity estimated by the IMU, typically as v(t) = v(t− 1) + dv

dt
∆t.

Thus, we estimate the next instant position, taking into account an initial
position at every constant time step. Note, we assume that the velocity
between two measurements remains constant throughout the flight. This
simple approach enables UAV localization through IMU sensors that can
provide speed estimates. However, the noise that is introduced by IMUs
can lead to a significant drift in the estimation of UAV position using this
approach.

Neural Networks (NNs) can be employed in a supervised learning setting
in order to learn how these errors should be corrected, allowing for improving
localization accuracy. Let GW : Rm → Rn denote a regression model, pa-
rameterized by weights W, with m inputs and n outputs. Also, let v ∈ Rm

denote a vector that contains the most recent displacement measurements,
including the current one, provided by the IMU. Then, the model y = GW(·)
can be trained to provide corrected displacement estimates for the current
state, denoted by y ∈ Rn. Furthermore, in this paper we opted to deal only
with the errors in the 2D plane (n = 2), since the vertical component is typ-
ically provided by barometric altimeters which are much more accurate in
measuring displacements in typical conditions (Tang et al., 2005). Similarly,
m is typically set to m = 2 × T , where T denotes the history (number of
time steps) to include in the input that will be fed to the neural network that
will provide the corrected displacement estimates. After collecting adequate
training samples of IMU velocity estimations and the associated ground-
truth displacements then the model GW(·) can be trivially trained, e.g., by
minimizing the mean square error between the predictions and ground truth
data. During the supervised training step the model is trained to correct
IMU errors using pairs of noisy IMU displacement observations and ground

5

56

truth displacement annotations. These are generated in simulation by us-
ing predefined noise models and the parameters of the simulation to get the
absolute position of the drone. The setup is very similar to the learning
from demonstrations paradigm (Puranic et al., 2021). After estimating the
displacement error, we can acquire a more reliable estimation of the UAV’s
position. Therefore, the final position at time step t is estimated as:

p(t+ h) = p(t) + ∆tv(t) +GW(vt), (2)

where vt denotes the velocity vector at time step t.

2.2. Data efficient DRL-based training

Even though the aforementioned process can be easily performed inside
a simulation environment, it is very expensive to perform using real UAVs,
since extra equipment is required for measuring the accurate position of a
UAV and a large number of samples need to be collected. Therefore, in this
paper we propose a two step pipeline that consists of the following steps as
shown in Fig. 1: a) train a generic DL-based backbone model in a simula-
tor and b) fine-tune this model on a real UAV using DRL. In this way, the
employed DRL fine-tuning approach allows for dealing with potential incon-
sistencies between the simulation environment and the real drone, as well as
for adapting the employed model to the exact dynamics of each drone. This
process can overcome the need to collect a large number of annotated train-
ing samples using a real UAV. However, as mentioned in Introduction, DRL
methods are also data intensive. To overcome this limitation, we proposed
to use a data augmentation method coupled with an additional loss function
that can increase data efficiency. As we demonstrate in Section 3, this can
drastically reduce the number of training data that needs to be collected,
making it feasible to apply the proposed method in real world scenarios.

In this work, we propose to employ a DRL agent in order to provide
continuous corrections to UAVs estimates. More specifically, we introduce
a virtual agent that controls the estimation of the UAV’s position. Hence,
there are two positions: the actual UAV state and a sphere indicating its
estimated position/state. The DRL agent controls the latter by providing
continuous corrections in the two axes of the 2d plane. To make the devel-
oped agent agnostic to the reference point of the used coordinate system, we
employ displacements instead of actual positions. Therefore, the state space
of the agent S ∈ [−dmax, dmax]

2 consists of all possible displacements in 2D

6

57

the drone can have in one time step, where dmax denotes the maximum dis-
placement that can occur in one time step. Then, an observation ot at each
time step consists of the displacements estimated by the drone’s IMU. For
a state st ∈ S the corresponding observation ot is generated through a non-
deterministic function h(·) that models the IMU dynamics, i.e., ot = h(st).
Then, the action space is defined to be identical with the state space, i.e.,
A = S, since the goal of the DRL agent is to actually estimate its state based
on the current observation. In other words, the goal of the DRL formulation
employed in the proposed method is to model the function h(·) by enabling
the agent to estimate its state. Then, the agent’s reward is provided by mea-
suring how much error we have experienced in state estimations at the end of
one training episode. Also, note that the Markov property is satisfied, since
indeed the evolution of the process only depends on the present state and
the past behavior does not affect in any other way the future.

This setup also enables an easy way to acquire the feedback signal for
training the agent both in simulation and in the real word. More specifically,
in simulation, for each episode the UAV runs a predetermined course, e.g.,
2 meters to the North and 1 meter to the East. Then, when the episode
is finished, we project the virtual UAV’s position as a black mark onto the
floor, and then, the UAV uses its camera to snap an image and provide the
reward signal. To present this concept with an example to be more intuitive,
if the position of the UAV is accurate, the black mark will be centered in the
captured image. In contrast, the black mark would be in a different location
if the positions of the actual and virtual locations are different. Then, the
reward for each axis k can be calculated as:

rk =
1

1 + |pk|
, (3)

where pk is the distance in pixels between the black mark and the center of
the captured image (which represents the position of the UAV). In a real
deployment, the black mark will represent the desired UAV position based
on the provided control command. Then, the reward can be calculated in a
similar fashion and provide the same behavior (maximize as the agent better
corrects the displacement estimations). This process enables training the
DRL agent without having access to ground truth data regarding the actual
speed and/or displacement on each step.

In this work, we employ Proximal Policy Optimization (PPO) (Schulman
et al., 2017) for training the agent. This is without loss of generality, since

7

58

any DRL method that can support continuous action spaces can be used.
Furthermore, since the aim is to accelerate the learning process as much as
possible, we employed the supervised learning model that was pre-trained
on the simulator to initialize the weights of the actor model. Therefore, the
DRL method is employed to adapt the DL model to the actual hardware
used in the UAV. To further increase the efficiency of the learning process we
designed and used a data augmentation method to create additional episodes
during the training. The main concept is that the reward of an episode
remains unchanged if the angle of velocity vectors and the actions are rotated
simultaneously. To this end, the proposed method selects the episode with
the highest reward from the buffered episodes and then several synthetic
episodes are created by rotating the velocities and actions by a random angle
ϕ ∈ [0, 360). This process is shown in Fig. 1 and significantly improves the
generalization abilities of the agent by providing angle invariance without
the need for collecting additional data.

Finally, to further increase the learning speed and minimize the number
of training episodes required to fine-tune the agent to the actual IMU used,
we propose employing a hint loss that provides additional supervision during
the training process. The aim of the proposed hint loss is to provide a
direct way to alter the direction of weight updates based on the structure
(overshooting or undershooting) of observed errors in order to accelerate the
learning process and increase data efficiency. The proposed hint loss for each
axis is defined as:

Lhint,k = −αhint · δk · gRL(x) (4)

where αhint is the weight of the hint loss, δk is a binary variable {−1, 1}
indicating whether we are currently overshooting or undershooting the target
position and gRL(x) is the agent’s output. Then, the overall loss is calculated
by simply adding the proposed hint loss for both axes to the PPO loss.

3. Experimental Evaluation

3.1. Experimental Setup

We performed tests employing both a simulated environment, i.e., for su-
pervised learning and validation of the proposed DRL methodology, as well
as a real UAV. For the simulated experiments, we employed Webots (Michel,
2004). For supervised learning, we collected 500 episodes with velocities and
ground truth positions. We also experimentally found that the IMU measure-
ments of the drone (DJI Mavic Mini 2) used in the conducted experiments is

8

59

biased depending on the vehicle’s velocity and it is always underestimated.
We use the following noise model for speed measurements v′ when generating
IMU observations:

v′ =
v

(1 + 1/(1 + c ∗ |v|)) , (5)

where c ∼ N (µ, σ), µ and σ are IMU-depended factors, N (µ, σ) denotes
a normal distribution with mean µ and standard deviation σ and v is the
ground truth velocity. Therefore, the trained agent tries to uncover the
structure of errors induced by this noise model (either directly - when trained
in a supervised fashion - or indirectly - when trained using DRL). For training
the supervised learning model, we used c = 5 and σ = 0.1. The DRL
experiments focused on evaluating the ability of the proposed method to
promptly adapt to changes that can occur due to configuration changes, e.g.,
changing the characteristics of the drone or even deploying the trained agent
into other platforms. Therefore, after pre-training the backbone network, we
changed the value of c to 2 (σ is still set to 0.1) to simulate the drift that
can occur due to the aforementioned changes.

In this work, we opted for a multi-layer perceptron (MLP)-based archi-
tecture since recent studies on similar tasks showed small differences between
MLPs and more powerful estimators (Liu et al., 2022b). The MLP used has
two hidden layers, each containing 12 neurons, and used the hyperbolic tan-
gent (tanh) activation function. The output of the MLP was fed into two
branches, each of which was responsible for predicting a continuous value
(one corresponding to the velocity error of each axis). In every branch, there
are two extra trainable parameters that are used for shifting and scaling the
output of the network. We found that when we re-training the network with
new data, using these parameters to adjust the output allows for promptly
shifting and scaling the output without refitting all the weights of the back-
bone. The network receives a one-second time frame of velocities, i.e., 25
measurements along each of the two axes, and returns two corrections, one
of each axis. The mean squared error loss function was used for the super-
vised model training. The Adam optimizer with a learning rate of 3× 10−2

was used. The default hyper parameters (i.e., α and β) were used (Kingma
and Ba, 2014). The optimization ran for 10 epochs with a batch size of 512,
while the learning rate was reduced when the learning process approached a
plateau (the reduction factor was set to 0.1 and patience to 10).

For the DRL experiments we used an actor-critic architecture. We di-
rectly used the above network as the DRL actor. For the critic model we

9

60

Table 1: DRL fine-tuning evaluation on Webots (straight trajectories) using a distribution
shift scenario (c ∼ N (2, 0.1))

10 secs

metric baseline supervised proposed

MSFPE 12.297 2.975 0.142
MFPE 3.438 1.692 0.324
MPE 1.714 0.931 0.242
ATE 2.008 1.073 0.290

100 secs

MSFPE 1225.922 312.100 18.832
MFPE 34.437 17.444 3.816
MPE 18.376 141.05 2.053
ATE 21.014 10.696 7.613

used a similar MLP with two hidden layers of 12 neurons. The models were
trained for 100 epochs with a learning rate of 5× 10−5 and 5× 10−3 in actor
and critic models accordingly. The PPO algorithm was used for fitting the
DRL agent, while the clipping factor was set to 0.15. For these experiments,
an episode is defined as a predetermined sequence of M micro-steps during
flight. In each episode the drone follows a random trajectory that consists
of M steps. For instance, a random episode may involve 20 micro-steps for-
ward followed by 40 micro-steps left. For all the conducted experiments the
episode duration was set to 10 seconds (M = 300), while the IMU was pooled
at a frequency of 25 Hz. Finally, we have conducted various experiments to
evaluate the impact of the weight of the hint loss ahint. These experiments
indicated that for values around 2.5 we obtain the best performance consis-
tently (ahint = 2.6 was used for all the conducted experiments).

3.2. Evaluation in Simulation Environment

First, we evaluated the proposed method in a simulation environment
using Webots. The results are reported in Table 1 (straight trajectories) and
in Table 2 (circular trajectories), where we report the mean squared final
position error (MSFPE), mean final position error (MFPE), mean positional
error (MPE), and absolute trajectory error (ATE) between the ground truth
displacement and the estimated by the DRL model. We introduce the first
two metrics and calculate the error between the last actual and estimated
vehicle’s position. These results (Table 1) indicate that the proposed method

10

61

Table 2: DRL fine-tuning evaluation on Webots (circular trajectories) using a distribution
shift scenario (c ∼ N (2, 0.1))

10-20 secs

metric baseline supervised proposed

MSFPE 20.22 4.99 0.47
MFPE 4.45 2.22 0.66
MPE 2.63 1.39 0.49
ATE 3.01 1.57 0.55

40-50 secs

MSFPE 26.52 6.27 0.65
MFPE 4.99 2.48 0.77
MPE 3.19 1.62 0.58
ATE 3.52 1.78 0.64

Table 3: DRL fine-tuning evaluation on Webots (circular trajectories) using a distribution
shift scenario (c ∼ N (2, 0.5))

10-20 secs

metric baseline supervised proposed

MSFPE 21.35 5.58 0.61
MFPE 4.57 2.35 0.75
MPE 2.70 1.46 0.54
ATE 3.09 1.65 0.61

40-50 secs

MSFPE 28.23 7.13 0.82
MFPE 5.15 2.64 0.87
MPE 3.28 1.71 0.64
ATE 3.62 1.89 0.71

11

62

can improve DRL agents’ performance when training under a constrained
number of episodes (i.e., 15 only episodes). Note that as the duration of
an episode increases, the error still accumulates. Note that for both types
of trajectories, i.e., both straight and circular ones, the proposed method
leads to significant improvements in all the evaluated metrics, even though
the error is slightly higher on the more complex trajectories. Furthermore,
we also investigated the sensitivity of the evaluated methods by alerting the
standard deviation of noise (σ) in the IMU model. The experimental results
are reported in Table 3. Again, the proposed method still reduces the error
significantly, while only slightly reducing the accuracy compared to the best
results reported in Table 2.

A qualitative comparison between Euler’s method with no adjustments,
the supervised method trained on a model with c = 5, and the proposed
RL-based fine-tuning of the supervised model are shown in Fig. 2. Again in
this evaluation we include both straight trajectories (first three evaluations),
as well as circular ones (remaining nine evaluations). We demonstrate that
employing DRL for the purpose of fine-tuning the model that was learned in
simulation leads to significant improvements. Indeed, the proposed method
manages to significantly reduce all the error metrics compared to the baseline.

Next, we performed additional experiments to evaluate the impact of
using the proposed data efficient DRL strategy compared to directly using
vanilla DRL. The results for different numbers of episodes are shown in Ta-
ble 4. It is worth noting that the proposed method can lead to significant
improvements since in just three episodes we can achieve the same perfor-
mance as the vanilla PPO in fifteen episodes. Furthermore, we conducted
an ablation study to evaluate the impact of each component of the proposed
method in order to better justify the main design choices of the proposed
method. The experimental evaluation of this ablation study is reported in
Fig. 3. First, note that the proposed augmentation method leads to improve-
ments, but the improvements are evident after at least 30 episodes, which
can be prohibitive for real applications. Then, in order to further accelerate
the learning process, we employ the proposed hint loss which accelerates the
learning process from the beginning. Finally, combining both approaches can
lead to improvements during the early stages of the learning process, which
are the most crucial for real applications. However, as the training progress
the benefits obtained using the data augmentation approach are smaller.

12

63

Table 4: Comparing the agent’s performance relative to training episodes with and without
using the proposed data efficient DRL method.

PPO

episodes 0 3 6 9 12 15

MSFPE 3.03 2.18 1.71 1.39 1.48 1.60
MFPE 1.71 1.45 1.30 1.16 1.20 1.24
MPE 0.92 0.79 0.72 0.66 0.68 0.71
ATE 1.07 0.91 0.84 0.77 0.79 0.82

PPO + PROPOSED

MSFPE 3.03 1.67 1.12 0.60 0.37 0.14
MFPE 1.71 1.26 1.04 0.73 0.57 0.32
MPE 0.92 0.69 0.56 0.44 0.29 0.24
ATE 1.07 0.80 0.65 0.51 0.34 0.29

Zero in episodes indicates directly using the supervised model without DRL fine-tuning for the specific

UAV.

Table 5: DRL fine-tuning evaluation using a DJI Mavic Mini 2 UAV.

Vel. (m/s) 0.1 0.3 1.1 1.4 2.2 2.8

baseline (%) 46.58 86.20 87.51 94.46 96.06 95.70
proposed (%) 80.59 98.14 106.89 99.31 102.98 98.14

The percentage of estimated distance covered to the true distance (MPE, %) is reported for different flying

speeds.

Table 6: Experimental evaluation using a DJI Mavic Mini 2 using specific target distances
for various speeds

baseline proposed

Goal Velocity TF GT AETD% TF GT AETD%

12.7 0.31 49.77 16.85 75.38 42.84 14.5 87.58
12.2 0.31 49.04 16.09 75.83 42.37 13.9 87.77
25.2 0.61 45.64 28.61 88.07 43.07 27.0 93.33
14.0 1.71 9.30 15.05 93.03 8.96 14.5 96.55

13

64

3.3. Evaluation using a real UAV

We also conducted experiments using data collected from a real UAV. We
used two independent setups, where a DJI Mavic Mini 2 was employed. First,
we validated the trained agent proposed method using several trajectories
performed at different velocities. The results are reported in Table 5. The
obtained results confirm that for a wide range of different speeds the proposed
method indeed leads to better performance in relation to the baseline.

We also conducted a second evaluation, in which we measure the total
positional error of several UAV flights. In this experiment we used the fol-
lowing setup: the user requested that the UAV move forward by x meters
at a constant velocity. Thus, using any localization method, the UAV will
be able to travel at a predetermined speed toward the user-specified loca-
tion. When the employed localization method estimates that the UAV has
traveled at least x meters, then it immediately stops its movement. This
experiment allows us to evaluate both the accuracy of the localization, as
well as to examine the impact of total flight time in the accumulated errors.
The results are reported in Table 6, where TF denotes the total time-flight in
seconds, GT is the ground-truth displacement in meters and AETD denotes
the validation metric which is defined as the proportion of the actual distance
over the predicted distance whether the vehicle has moved in straight ahead
(only forward/backward). The proposed RL method was compared to the
baseline Euler’s method in this experiment.

Four experimental flights were conducted to this end. For the first ex-
periment, we set the drone’s goal to move 12.7 meters forward at a speed
of 0.31 meters per second. Using the baseline approach the drone traveled
16.85 meters while using the proposed method it stopped significantly closer
to the target reaching 14.5 meters. For the second experiment, we used a
slightly smaller distance, and similar results were observed. For the subse-
quent experiments, we increased the speed and varied the target distance to
be traveled. In all cases, we observed that the obtained error got smaller as
the speed increased. The obtained error got even smaller as the total flight
duration got smaller, as expected.

4. Conclusions

In this paper we introduced a method for improving the accuracy of data-
driven navigation for UAVs using IMUs. The proposed method involves
training a base model using supervised learning, followed by fine-tuning with

14

65

an appropriately modified data efficient DRL technique in order to accom-
modate the needs of the specific application. We demonstrated that the
proposed method can effectively improve inertial-based navigation, particu-
larly in situations where the IMUs on UAVs may have diverse characteristics
and require customized fine-tuning with only a small number of actual flight
episodes. We demonstrated the effectiveness of the proposed method on
different trajectory types, including both straight and circular trajectories.
However, the performance of the proposed method on different applications
might be dependent on the actual characteristics of the involved trajectories.

References

Ahmad, N., Ghazilla, R.A.R., Khairi, N.M., Kasi, V., 2013. Reviews on
various inertial measurement unit (imu) sensor applications. International
Journal of Signal Processing Systems 1, 256–262.

Alotaibi, E.T., Alqefari, S.S., Koubaa, A., 2019. Lsar: Multi-UAV collabo-
ration for search and rescue missions. IEEE Access 7, 55817–55832.

Barshan, B., Durrant-Whyte, H.F., 1995. Inertial navigation systems for
mobile robots. IEEE Transactions on Robotics and Automation 11, 328–
342.

Boonyathanmig, N., Gongmanee, S., Kayunyeam, P., Wutticho, P.,
Prongnuch, S., 2021. Design and implementation of mini-UAV for indoor
surveillance, in: Proceedings of the 9th International Electrical Engineer-
ing Congress, pp. 305–308.

Brossard, M., Barrau, A., Bonnabel, S., 2019. Rins-w: Robust inertial nav-
igation system on wheels, in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2068–2075.

Cortés, S., Solin, A., Kannala, J., 2018. Deep learning based speed esti-
mation for constraining strapdown inertial navigation on smartphones, in:
Proceedings of the IEEE International Workshop on Machine Learning for
Signal Processing, pp. 1–6.

Giubilato, R., Stürzl, W., Wedler, A., Triebel, R., 2022. Challenges of slam
in extremely unstructured environments: The dlr planetary stereo, solid-
state lidar, inertial dataset. IEEE Robotics and Automation Letters 7,
8721–8728.

15

66

Gyagenda, N., Hatilima, J.V., Roth, H., Zhmud, V., 2022. A review of
gnss-independent uav navigation techniques. Robotics and Autonomous
Systems , 104069.

Han, S., Wang, J., 2012. Integrated GPS/ins navigation system with dual-
rate kalman filter. GPS Solutions 16, 389–404.

He, Y., Yuan, M., Zhao, L., Dong, S., 2022. Application of compressed
sensing in mono slam system with fusion of imu, in: Advances in Guidance,
Navigation and Control, pp. 5121–5130.

Henkel, P., Mittmann, U., Iafrancesco, M., 2016. Real-time kinematic po-
sitioning with GPS and glonass, in: Proceedings of the 24th European
Signal Processing Conference, pp. 1063–1067.

Herath, S., Yan, H., Furukawa, Y., 2020. Ronin: Robust neural inertial
navigation in the wild: Benchmark, evaluations, & new methods , 3146–
3152.

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger,
R., Pedrazzini, A., 2012. Use of lidar in landslide investigations: a review.
Natural Hazards 61, 5–28.

Jin, Y., Yu, L., Chen, Z., Fei, S., 2022. A mono slam method based on
depth estimation by densenet-cnn. IEEE Sensors Journal 22, 2447–2455.
doi:10.1109/JSEN.2021.3134014.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

Koestler, L., Yang, N., Zeller, N., Cremers, D., 2022. Tandem: Tracking and
dense mapping in real-time using deep multi-view stereo, in: Conference
on Robot Learning, pp. 34–45.

Liu, X., Nardari, G.V., Ojeda, F.C., Tao, Y., Zhou, A., Donnelly, T., Qu,
C., Chen, S.W., Romero, R.A., Taylor, C.J., et al., 2022a. Large-scale
autonomous flight with real-time semantic slam under dense forest canopy.
IEEE Robotics and Automation Letters 7, 5512–5519.

Liu, Y., Luo, Q., Zhou, Y., 2022b. Deep learning-enabled fusion to bridge
gps outages for ins/gps integrated navigation. IEEE Sensors Journal 22,
8974–8985.

16

67

Michel, O., 2004. Cyberbotics ltd. webots™: professional mobile robot simu-
lation. International Journal of Advanced Robotic Systems 1, 5.

Newaz, A.A.R., Jeong, S., Lee, H., Ryu, H., Chong, N.Y., 2016. Uav-
based multiple source localization and contour mapping of radiation fields.
Robotics and Autonomous Systems 85, 12–25.

Puranic, A.G., Deshmukh, J.V., Nikolaidis, S., 2021. Learning from demon-
strations using signal temporal logic in stochastic and continuous domains.
IEEE Robotics and Automation Letters 6, 6250–6257.

Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., Moscholios, I.,
2020. A compilation of UAV applications for precision agriculture. Com-
puter Networks 172, 107148.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F., 1999. A high integrity
imu/GPS navigation loop for autonomous land vehicle applications. IEEE
Transactions on Robotics and Automation 15, 572–578.

Tang, W., Howell, G., Tsai, Y.H., 2005. Barometric altimeter short-term
accuracy analysis. IEEE Aerospace and Electronic Systems Magazine 20,
24–26.

Vetrella, A.R., Fasano, G., 2016. Cooperative uav navigation under nominal
gps coverage and in gps-challenging environments, in: Proc. IEEE Inter-
national Forum on Research and Technologies for Society and Industry
Leveraging a better tomorrow, pp. 1–5.

Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X., 2019. Dynamic-slam: Se-
mantic monocular visual localization and mapping based on deep learn-
ing in dynamic environment. Robotics and Autonomous Systems 117,
1–16. URL: https://www.sciencedirect.com/science/article/pii/
S0921889018308029, doi:https://doi.org/10.1016/j.robot.2019.03.
012.

Xu, W., Zhang, F., 2021. Fast-lio: A fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter. IEEE Robotics and Au-
tomation Letters 6, 3317–3324.

17

68

Figure 1: The proposed method employs a two step pipeline. First, we train a generic DL-
based backbone model in a simulator in a supervised fashion and b) fine-tune this model
on a real UAV using DRL. To increase data efficiency and reduce the number of episodes
required to fine-tune the model we employ both a hint loss and a data augmentation
method to generate synthetic episodes by rotating existing episodes by a random angle.

18

69

Baseline Supervised Proposed

Figure 2: Comparison between baseline (Euler’s method) (left of each triplet), supervised
training (middle of each triplet) and RL-based fine-tuning (right of each triplet). Each axis
corresponds to the displacement of a UAV in the 2d space when flying on a pre-determined
course, including four different trajectory types used for the evaluations.

19

70

Figure 3: Ablation study evaluating the impact of each of the proposed components of the
proposed method.

20

71

D5.4: Final report on deep robot action and decision making 72/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 73/131

E

Learning Hierarchical Interactive Multi-Object Search
for Mobile Manipulation

Fabian Schmalstieg∗, Daniel Honerkamp∗, Tim Welschehold, and Abhinav Valada

Abstract—Existing object-search approaches enable robots
to search through free pathways, however, robots operating
in unstructured human-centered environments frequently also
have to manipulate the environment to their needs. In this
work, we introduce a novel interactive multi-object search
task in which a robot has to open doors to navigate rooms
and search inside cabinets and drawers to find target objects.
These new challenges require combining manipulation and
navigation skills in unexplored environments. We present HIMOS,
a hierarchical reinforcement learning approach that learns to
compose exploration, navigation, and manipulation skills. To
achieve this, we design an abstract high-level action space around
a semantic map memory and leverage the explored environment
as instance navigation points. We perform extensive experiments
in simulation and the real-world that demonstrate that HIMOS
effectively transfers to new environments in a zero-shot manner. It
shows robustness to unseen subpolicies, failures in their execution,
and different robot kinematics. These capabilities open the door
to a wide range of downstream tasks across embodied AI and
real-world use cases.

I. INTRODUCTION

Autonomous navigation and exploration in unstructured
indoor environments require a large variety of skills and
capabilities. Pathways may be blocked and objects of interest
may be stored away. Thus far, existing multi-object search
tasks and methods have focused on environments that can be
freely navigated with openly visible target objects [1], [2], [3].
We introduce a novel Interactive Multi-Object Search task in
which target objects may be located inside articulated objects
such as drawers and closed doors have to be opened to explore
the environment. As a result, only navigation is insufficient to
accomplish the task and the robotic agent has to physically
interact with the environment to manipulate it to its needs.

Multi-object search tasks pose long-horizon problems with
non-trivial optimal policies. Methods such as frontier explo-
ration [4] offer guarantees to explore the entire environment if
given enough time. However, they often do not take the context
of the environment into account and result in long far from opti-
mal paths while moving from one frontier point to the next. On
the other end of the spectrum, learning-based methods can take
unstructured observations into account and have been shown to
learn good exploration strategies [1], [3], but they struggle with
the long-horizon nature of the task. Moreover, since the robot
also has to interact with the environment, both the action space
and task horizon increase even further, and existing exploration
methods are insufficient to accomplish the task.

∗These authors contributed equally.
Department of Computer Science, University of Freiburg, Germany.
This work was funded by the European Union’s Horizon 2020 research

and innovation program under grant agreement No 871449-OpenDR. Toyota
Motor Europe supported this project with an HSR robot for experiments.

Fig. 1. We introduce the Interactive Multi-Object Search task in which an
agent has to autonomously search and manipulate the environment to find a
set of target objects. To succeed, the agent has to free pathways by opening
doors and searching inside articulated objects such as cabinets and drawers.

In this work, we propose Hierarchical Interactive Multi-
Object Search (HIMOS), a hierarchical reinforcement learning
approach to learn both exploration and manipulation skills
and to reason at a high level about the required steps. We
combine learned motions for local exploration in continuous
action spaces [3] and frontier exploration for long-horizon
exploration [4] together with mobile manipulation skills for
object interactions [5]. We use semantic maps as the central
memory component, which have shown to be an expressive
and sample-efficient representation for these tasks [3] and
design a high-level action space that exploits the acquired
knowledge about the environment. By leveraging explored
object instance locations as navigation waypoints, our approach
efficiently learns these complex tasks from little data and
consistently achieves success rates above 90% even as the
number of target objects increases. By equipping all the low-
level skills with mobility, we remove the ”hand-off” problem
in which subpolicies have to terminate in the initial set of the
following skill [6], [7]. Lastly, we transfer the trained agent to
the real world and demonstrate that it successfully accomplishes
these tasks in a real office environment. In particular, we
replace the subpolicies from simulation with unseen real-world
variations and find that the policy is able to generalize to these
unseen subpolicies and is robust to failures in their execution,
making it highly modular and flexible for transfer. Finally, we
present ablation studies to evaluate the impact of the main
design decisions.

To summarize, the following are the main contributions:

ar
X

iv
:2

30
7.

06
12

5v
1

 [
cs

.R
O

]
 1

2
Ju

l 2
02

3

OpenDR No. 871449

1) We propose an interactive multi-object search task that
requires physical interactions with articulated objects,
opening doors, and searching in cabinets and drawers.

2) We present a hierarchical reinforcement learning approach
that combines exploration and manipulation skills based
on semantic knowledge and instance navigation points to
efficiently solve these long-horizon tasks.

3) We demonstrate the capabilities of this approach in both
simulated and real-world experiments and show that it
achieves zero-shot transfer to the real world, unseen
environments, unseen subpolicies, and is robust to unseen
failures.

4) We make the code for both the task and models publicly
available at http://himos.cs.uni-freiburg.de.

II. RELATED WORK

Object search tasks: Exploration and the ability to find items of
interest is a key requirement for a wide range of downstream
tasks. Previous work has proposed methods to maximize
coverage of explored space [8] and to find specific objects
of interest based on vision [9], auditory signals [10], [11]
or target object categories [12], [13]. In ordered multi-object
search tasks, the agent has to find k items in a fixed order
in game environments [14] or realistic 3D apartments [1]. In
unordered multi-object search, the agent simply has to find the
target objects as fast as possible, irrespective of the order [2],
[3]. We focus on this unordered task. As we aim to demonstrate
our system on a real robot, we follow Schmalstieg et al. [3]
and use the full continuous action space. This is in contrast
to most previous work which focuses on a simplified granular
discrete action space. Existing search tasks assume that the
desired goals can be freely reached by the agent. The interactive
navigation task [15] relaxes this assumption by placing objects
that the robot has to push away to reach the target. In contrast,
we introduce an interactive search task for mobile robots
equipped with a manipulator, that requires interaction with
articulated objects to clear the path or reveal concealed objects.
This requires integrating navigation and manipulation. Lastly,
in contrast to most previous work, we demonstrate that our
approach successfully transfers to the real world.

Exploration requires both understanding and memorizing the
seen environment and decision-making to explore the remaining
space. Previous work has introduced both implicit and explicit
memory mechanisms. Implicit memory agents either learn a
direct end-to-end mapping from RGB-D images to actions
or store embeddings of previous observations and retrieve
them with an attention mechanism [2]. Other methods build
explicit maps of the environment by projecting the RGB-
D inputs into a global map. Commonly, this map is also
annotated with semantic labels [14], [3], [1]. Further, combining
short- and long-term exploration by learning an auxiliary
prediction of the direction to the next closest object has
proven to result in a strong performance in continuous action
spaces [3]. We use this approach for low-level exploration.
Frontier exploration [4] samples points on the frontier of the
explored space and then navigate to these points. Instead of
sampling, Ramakrishnan et al. [16] predict a potential function

towards a target object. SGoLAM [17] combines mapping
and a goal detection module. If no goal object is detected,
it explores with frontier exploration and navigates directly to
the goal otherwise. This results in strong results without any
learning component. We include a similar exploration strategy
as option in our hierarchical approach.

Articulated object manipulation such as opening doors and
drawers requires control of both the base and arm of the
robot [18]. Existing approaches often separate both aspects
and execute sequential navigation and manipulation. In our
evaluation in simulation, we follow this approach and use
BiRRT [19] to generate a motion plan for the robot arm.
Recent work trains an agent to control the base of the
robot via reinforcement learning to follow given end-effector
motions [20], [5]. We use this method in our real world
evaluation as it has been shown to generalize across different
robots, tasks, and environments.

Hierarchical methods introduce layers of abstraction by decom-
posing the decision-making into higher and lower-level policies.
This shortens the time horizon of the Markov decision process
(MDP) for the higher-level policies and enables the agent
to combine different modules or skills at lower levels. At the
same time, joint training of low- and high-level policies is often
unstable and hard to optimize [21]. We focus on combining
pretrained subpolicies. Joint finetuning of these policies offers
a path to further performance improvements in the future.
Pretraining is a common approach to increase the stability of
the policy in hierarchical reinforcement learning [22]. While
naive skill-chaining of arbitrary skills often results in ”hand-off”
failures in which the subsequent skill cannot start from the
current state [7], we resolve this issue by adding mobility to
all the low-level skills in the real world execution, without the
need for region-rewards [6]. A common navigation abstraction
is to learn to set waypoints [23], [24], however, these often end
up as very near points to the agent. In contrast, we propose
instance navigation that provides a prior on important locations
and action granularity. ASC [25] learns to combine combine
navigation and pick skills for given receptacle locations. In
contrast, we learn to search in unexplored environments with
objects hidden in articulated objects. Alternatively, behavior
trees are often used to decompose tasks hierarchically into
a tree structure. These trees can either be fully constructed
manually or be used in conjunction with a planner [26]. In
contrast to these approaches, our proposed HIMOS learns
high-level decision-making with a two-layer hierarchy.

III. INTERACTIVE MULTI-OBJECT SEARCH

We propose an interactive object search task in which a
robotic agent with a mobile base and a manipulator arm is
randomly spawned in an unexplored indoor environment. The
agent receives a goal vector that indicates k objects out of
c categories that it has to find. The episode is considered
successful if the agent finds all k objects, where an object
is considered found when the agent has seen the object and
navigated within a distance of 1.3m of it. The episode is
terminated early if the agent exceeds 1,000 timesteps. To
succeed, the agent has to explore the space while opening

74

Fig. 2. Schematic overview of HIMOS. A semantic map Mt serves as a
central memory component and is used and updated across low- as well as
high-level modules. This map is extended to a partial panoptic map with
instance IDs of relevant objects. Given the remaining target objects gt to find,
the robot state srobot,t, and the derived valid actions vt, the high-level policy
acts in an abstract action space. Low-level actions comprise local and global
exploration, navigation to previously mapped object instances, and a mobile
manipulation policy.

doors that block the way and opening the cabinets that contain
the target objects. This results in very long-horizon tasks with
complex shortest paths, as in contrast to previous multi-object
search tasks [2], [14], [1], [3], the agent needs to manipulate
its environment to achieve its goals.

The agent is acting in a goal-conditional Partially
Observable Markov Decision Process (POMDP) M =
(S,A,O, T (s′|s, a), P (o|s), R(s, a, g)), where S, A and O
are the state, action, and observation spaces, T (s′|s, a) and
P (o|s) describe the transition and observation probabilities
and R(s, a, g) is the reward function. The objective is to learn
a policy π(a|o, g) that maximises the discounted, expected
return Eπ[

∑T
t=1 γ

tR(st, at, g)], where γ is the discount factor.
In each step, the agent receives a visual observation o from an
RGB-D and semantic camera, together with its current pose in
the environment and a binary vector g indicating the objects it
has to find. The true state s of the environment is unknown
and can only be inferred from its observations.

IV. HIERARCHICAL INTERACTIVE MULTI-OBJECT SEARCH

The challenges introduced by this task require the robot to
master an increasing number of different behaviors and skills.
To stem this increase in complexity, we propose a hierarchical
reinforcement learning approach and design efficient abstrac-
tions over states and actions. The model consists of three
main components: a mapping module, a set of subpolicies
for exploration, navigation, and interaction, and a high-level
policy module to select the next low-level action to execute.
An overview of the approach is depicted in Figure 2.

Assumptions: The focus of this work is on learning long-horizon
decision-making, exploration, and search. We abstract from real-
world perception and assume to have access to the following:
(i) a semantic camera that produces accurate semantic object
labels, (ii) accurate depth and localization, (iii) an object
detection module to perceive object poses in the environment
and to detect whether an object interaction was successful.

In training and simulation, the object detection module uses
ground truth poses from the simulator while in real-world
experiments, we rely on AR markers placed on the respective
objects. Interaction failure is detected based on the change in
pose of these markers after the interaction.

A. Mapping Module

A semantic map of the environment serves as a central
memory component across all policies and modules. To
construct this map, we build upon our previously introduced
mapping module [3]. In the simulation, the robot receives the
semantic labels from the simulator’s semantic camera, then uses
the 128× 128 pixels depth and semantic camera observations
to project the points into a local top-down map. In the real
world, we simulate access to semantic labels as follows: we
pre-build a map of the environment using Hector SLAM [27]
and annotate it with labels for target objects, cabinets, and
doors. All the other occupied space is mapped to the wall
category. At test time, we then use the robot’s depth camera
to build the same local map as in the simulation and overlay
it with this pre-annotated semantic map. Localization in the
real world is done on the same pre-recorded map. With the
local map and its current localization, the agent then updates
an internal global map which is further annotated with the
agent’s trace and encoded into an RGB image.

In each step, the agent then extracts an egocentric map from
the global map and passes two representations of this map to
the encoder: a coarse map of dimension 224 × 224 × 3 at a
resolution of 6.6 cm and a fine-grained map of dimension
84 × 84 × 3 at a resolution of 3.3 cm. I.e., they cover
14.8m× 14.8m and 2.77m× 2.77m, respectively. After the
agent has segmented and approached a target object, it updates
the object’s annotation to a fixed color coding to mark the
corresponding object as “found”. We extend this map to a
partial panoptic segmentation [28] map by labeling task-specific
objects such as doors and cabinets with an instance-specific
color, which is randomly assigned whenever a new instance
is detected, i.e. an instance’s color changes from episode to
episode, but remains consistent within an episode.

B. Subpolicy Behaviors

In this section, we describe the different subpolicy behaviors
that are available to the high-level policy.

Local Exploration: Object search requires smart movement for
local navigation and efficient exploration around corners and
corridors. For this, we use our previously introduced exploration
policy [3]. The policy receives the semantic map, robot state,
and target objects and predicts the direction to the next
closest target object. It then communicates this prediction to a
reinforcement learning agent which produces target velocities
for the base of the robot. The local exploration policy is
pretrained on the multi-object-search task [3] in the same
train/test split. However, we change the robot to Fetch, adapt
the collision penalty from −0.1 to −0.15, and include open
doors in the scenes. After the exploration policy is trained, it
is kept frozen during high-level policy training. We adjust the

75

panoptic labels provided by the mapping module on the fly to
match the simpler, instance-unaware, semantic map that this
subpolicy was trained with. In particular, doors and cabinets are
colored as obstacles for the subpolicy. This shields the subpolicy
from information that is not required to solve the downstream
task. During training, when selected by the high-level policy,
the exploration policy is executed for four time steps, giving the
high-level policy control to quickly react to new knowledge of
the environment. During the evaluation, we found it beneficial
to execute it for a longer period of 20 time steps.

Global Exploration: While the local exploration policy has
been shown to produce efficient search behavior, it can struggle
to navigate to faraway areas. This, however, is a strength of
frontier exploration [4], which samples points at the frontier to
(often far away) unexplored areas. While frontier exploration
on its own can lead to long inefficient paths, the high-level
policy can learn to select the appropriate exploration strategy
for the current context. In each iteration, the sampled frontier
point is drawn onto the map, allowing the high-level policy
to observe where it would navigate to before deciding which
subpolicy to execute. Frontier points that lie outside the range
of the agent’s egocentric map are projected onto a circle around
the agent and marked in a different color, indicating that it
is potentially a long-distance navigation. If selected by the
high-level policy, the agent uses its navigation policy described
below to navigate to the frontier point.

Instance Navigation: Learning navigation at the right level
of abstraction can be challenging. Approaches such as
setting waypoints are often difficult to optimize or decay to
only selecting nearby points, removing the benefits of the
abstraction. Instead, we leverage the acquired knowledge
about the environment by using object instances as navigation
points: the high-level policy can directly navigate to the
discovered object instances by selecting their instance ID (for
simplicity restricted to target objects, doors, and cabinets).
We implement this action space as a one-hot encoding that
maps to instance colors on its map (this assumes a maximum
number of instances). We furthermore find it beneficial for
learning speed [29] to only allow the agent to navigate to
doors or cabinets that have not been successfully opened yet
(cf. invalid action masking below). While less fine-grained than
arbitrary waypoints, this results in an efficient set of navigable
points across the map that, as we demonstrate in Section V,
is well optimizable and results in a strong final policy.

The respective navigation goals are set to a pose slightly
in front, or for the goal objects directly to the detected pose
of the corresponding object. This navigation goal is then fed
to an A∗-planner which produces a trajectory at a resolution
of 0.5m. For training speed, we do not execute the full path
in simulation, but set the robot’s base pose to the generated
waypoints and only collect observations from these points. In
the real world, we use the ROS navigation stack to move the
robot to the goal. The policy may fail in some situations, for
example due to collision with obstacles or narrow doorways.
In this case, the agent returns to the last feasible waypoint,
and given the updated semantic map Mt, the high-level policy
has to make a new decision.

Object Interaction and Manipulation: If the high-level policy
chooses to navigate to a closed door or cabinet, this automati-
cally triggers an interaction action that is executed once the
navigation has been successfully completed. For fast simulation,
we train the agent with magic actions that either open the object
successfully or fail with a probability of 15% and leave the
object untouched, in which case the agent has to decide whether
to try to open it again. The training with failure cases enables
it to learn a re-trial behavior to recover from failed attempts.

At test time, the agent has to physically execute the
interactions. In the simulation, we replace the interaction
subpolicy with a BiRRT motion planner [19] and inverse
kinematics to execute a push-pull motion. The success of
these motions depends on the pose of the robot and the object.
Implementation details can be found in the supplementary
material. In the real world, we replace these subpolicies
with the N2M2 mobile manipulation policy [5]. Given the
pose of the object handle (based on an AR marker) and
the object label (door, drawer, or cabinet), it generates end-
effector motions learned from demonstrations to open the object
together with base commands that ensure that these motions
remain kinematically feasible. The model is pretrained without
additional retraining or finetuning. The agent returns a success
indicator to the high-level policy and in case of failure, the
agent again has to decide whether to repeat the interaction.

C. High-level Decision Making

Efficient high-level decision making requires the right level
of abstractions of states and actions. We hypothesize that object-
and instance-level decision making is such an efficient level
of abstraction for embodied search tasks. We design a high-
level policy around this idea. In particular: (i) We propose
an instance navigation subpolicy that leverages the agent’s
accumulated knowledge about the environment. It provides a
prior on important places and on the granularity of navigation
points, making it data-efficient and well-optimizable. (ii) As
objects are discrete instances, the resulting full action space
remains discrete, avoiding the complexities of mixed action
spaces. At the same time, all the subpolicies still act directly
in continuous action spaces, allowing for direct transfer to
real robotic systems. (iii) We abstract from reasoning about
exact robot placements in the real world by shifting the
responsibility of mobility into the subpolicies. This ensures that
the subpolicies can start from a large set of initial positions,
resolving the ”hand-off” problem from naive skill-chaining [7]
and strongly simplifies the learning process for the high-level
policy. Furthermore, it enables us to change out the subpolicies
to unseen subpolicies in the real world. (iv) We incorporate
subpolicy failures into the training process, enabling the high-
level policy to learn a retrial behavior if execution fails.

The high-level policy acts in a Semi-Markov Decision
Process (SMDP) in which the actions model temporarily
extended behaviors and act at irregular intervals [30]. The
high-level action space consists of (i) invoking the local explo-
ration policy [3], (ii) invoking global frontier exploration [4],
(iii) instance navigation with subsequent object interaction (if
available), where instance IDs are selected through a one-hot

76

vector mapping to fixed colors. The current task instantiation
assumes a maximum of ten instances per episode, resulting in
an overall 12-dimensional discrete action space.

Adaptive Discounting: The high-level policy acts at irregular
intervals, as the duration of the subpolicies varies largely. We
correct for this time bias and accurately reflect the long-term
consequences of actions with adaptive discounting [31].

Invalid Action Masking: The availability of high-level actions
varies with the state of the environment, e.g. navigating to an
object instance depends on the instance being mapped, opening
a cabinet is only possible if it is mapped and closed. We infer
a valid actions vector vt from the agent’s observations and
incorporate it into the training process by masking out invalid
actions as well as including it in the observation space of the
agent. As a result, the agent can learn more effectively, speeding
up the training process [29]. We implement the masking by
replacing the logits of the invalid actions with a large negative
number.

Architecture: The high-level policy observes the coarse se-
mantic map which it encodes with a ResNet-18 [32]. Then it
concatenates the features with the target object vector gt, the
binary valid actions vector vt (see invalid action masking) and
a robot state vector srobot,t consisting of linear and angular
base velocities, sum of collisions over the last ten steps, a
current collision flag, and a normalized history over the last
16 high-level actions taken. The high-level policy is trained
with Proximal Policy Optimization (PPO) [33], based on an
open-source implementation [34]. We report hyperparameters
and architecture details in the supplementary material.

Reward Functions: The high-level policy is trained with
the accumulated rewards of the invoked subpolicies. The
subpolicies collect the following rewards: (i) A sparse positive
reward of +10 for finding a target object, (ii) A sparse positive
reward of +3 for opening a door, (iii) A penalty of -0.1
per collision for navigation policies, (iv) A negative traveled
distance reward to encourage the high-level policy to find
efficient compositions of the subpolicies. As the navigation
policy does not get physically executed during training, we set
it to −0.05 for each invocation of the local exploration policy
and to −0.05 ∗ number of waypoints for the navigation policy.
This results in a similar penalty per distance traveled.

V. EXPERIMENTAL EVALUATIONS

We extensively evaluate our approach both in simulation
and real-world experiments. We aim to answer the following
questions:
I) Does the high-level policy learn to take decisions that lead
to efficient exploration of the environment, improving over
alternative decision rules?
II) What is the impact of the different subpolicies, in particular
the local and global exploration policies?
III) Does the learned behavior transfer to the real world and
to execution with different subpolicies?
IV) Is the overall system capable of successfully solving
extended tasks involving many physical interactions within
a single episode in the real world?

A. Experimental Setup

We instantiate the task in the iGibson simulator [35]. Each
scene contains three cabinets placed randomly across a set of
feasible locations. All the doors in the scene are initially in
a closed state. We then construct tasks of finding 1-6 target
objects, matching the hardest setting in previous work [1], [3].
We randomly place up to three target objects across the free
space of the entire apartment and up to three objects inside
the cabinets. We use the same eight training scenes as the
iGibson challenge and use the remaining seven apartments for
evaluation. The embodied agent is a Fetch robot, equipped with
a mobile base with a differential drive, a height-adjustable torso,
and a 7-DoF arm. We scale the robot’s size by a factor of 0.85
to be able to navigate the narrow corridors of all apartments.
Its raw 10-dimensional action space consists of a continuous
linear and angular velocity for the base together with the torso
and arm-joint velocities. The robot is equipped with an RGB-D
camera with a field of view of 79 degrees and a maximum
depth of 5.6m.

B. Baselines

We compare our approach against different high-level
decision-making modules and ablations of the action space.
Greedy: A greedy high-level decision-making strategy that
immediately drives to any newly mapped task object (door,
cabinet, target object) if available and otherwise selects either
the local or global exploration policies with equal probability.
SGoLAM+: SGoLAM [17] combines non-learning based
approaches to achieve very strong performance on the CVPR
2021 MultiOn challenge. It explores the map with frontier
exploration until it localizes a target object, then switches to a
planner to navigate to the target. We reimplement the author’s
approach for continuous action spaces and directly use the
semantic camera for goal localization which further improves
the performance. We then modify the action execution to open
doors and cabinets when applicable.
HIMOS: The hierarchical reinforcement learning approach
presented in Section IV.
w/o frontier removes global exploration from the subpolicy set.
w/o expl removes local exploration from the subpolicy set.
w/o IAM removes the invalid action masking and instead
penalizes the agent with -2.5 for selecting invalid actions.

Metrics: We evaluate the models’ ability to find all the desired
objects using the success rate and we evaluate the optimality
of the search path with the success-weighted path length
(SPL) [36]. In the simulation, we evaluate 25 episodes per
scene, the number of target objects, and report the average
over three random training seeds. This results in a total of
25 · 6 · 8 · 3 = 3600 episodes for seen and 25 · 6 · 7 · 3 = 3150
episodes for unseen apartments for each approach.

C. Simulation Experiments

To test the models’ abilities to learn to complete the tasks,
we first evaluate them in the seen apartments for variable
numbers of target objects. The results are reported in Table I.
We find that all the compared models achieve good success

77

TABLE I
EVALUATION OF SEEN ENVIRONMENTS, REPORTING THE SUCCESS RATE (TOP) AND SPL (BOTTOM).

Model 1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg 1-6

Su
cc

es
s

Greedy 93.7 92.6 91.5 91.8 88.3 85.9 90.6
SGoLAM+ 92.2 89.3 88.1 85.6 84.7 83.3 87.2
w/o frontier 81.1 75.0 69.7 69.4 69.9 64.2 71.6
w/o expl 93.2 90.8 89.6 90.1 89.6 84.4 89.6
w/o IAM 95.1 95.1 93.5 92.5 90.8 90.2 92.9
HIMOS 98.5 98.3 96.3 95.4 93.8 93.3 96.0

SP
L

Greedy 44.7 44.6 45.4 45.5 46.2 47.3 45.6
SGoLAM+ 43.3 42.4 44.5 45.4 46.1 47.3 44.8
w/o frontier 41.0 41.1 41.7 42.5 45.6 45.9 43.0
w/o expl 43.3 44.5 44.8 44.0 44.9 44.9 44.4
w/o IAM 46.9 47.7 49.1 46.5 49.4 49.7 48.2
HIMOS 49.1 50.5 51.4 50.9 53.5 54.2 51.6

TABLE II
EVALUATION OF UNSEEN ENVIRONMENTS, REPORTING THE SUCCESS RATE (TOP) AND SPL (BOTTOM).

Model 1-obj 2-obj 3-obj 4-obj 5-obj 6-obj Avg 1-6

Su
cc

es
s

Greedy 94.8 94.8 92.4 92.3 89.2 87.2 91.8
SGoLAM+ 92.5 89.6 88.5 88.6 88.7 85.8 88.6
w/o frontier 82.2 78.2 73.8 70.8 69.7 66.5 73.5
w/o expl 93.4 91.8 89.8 87.8 84.4 83.6 88.5
w/o IAM 96.5 95.4 94.3 91.4 90.2 88.2 92.7
HIMOS 97.7 96.9 96.8 96.0 96.0 94.7 96.3

SP
L

Greedy 44.6 46.2 47.9 50.3 49.9 50.4 48.2
SGoLAM+ 44.5 43.7 46.2 47.5 48.8 50.0 46.8
w/o frontier 32.0 38.6 42.7 43.6 44.8 45.2 41.1
w/o expl 40.9 42.0 46.7 48.7 48.1 48.8 45.9
w/o IAM 45.9 46.1 45.8 48.1 49.3 49.8 47.5
HIMOS 52.2 51.5 51.8 55.7 57.4 58.4 54.5

Fig. 3. Example trajectories of HIMOS in unseen apartments. Black:
unexplored, blue: free space, green: walls, red: agent trace, grey: (found)
target objects, other colors: miscellaneous objects. Bottom right: the agent
failed to find the last object, marked by the red circle, in the given time.

rates. All three high-level decision-making variations, greedy,
SGoLAM+, HIMOS, are able to make reasonable decisions,
demonstrating the benefits of the design of the high-level
abstractions discussed in Section IV-C. Furthermore, our
proposed method, HIMOS, further improves over the baselines,
consistently achieving the highest success rate and the most
efficient paths, as measured by the SPL metric.

We then evaluate the models in the unseen apartments. Note

that neither the low- nor high-level policies have seen these
scenes during training. The results are shown in Table II. We
find that the models learned to generalize without any clear
generalization gap. The performance is even slightly higher
than on the seen apartments, this is in accordance to previous
observations [3]. This may be due to the validation split
containing potentially simpler scenes than the training scenes.
The evaluations on unseen scenes confirm the observations
from the training scenes: HIMOS consistently achieves the
highest success rate and the best SPL across all the numbers of
target objects. Finally, we find that our hierarchical approach
scales very well to longer scenarios, with a very small drop in
success rates as the number of target objects increases. To find
all six objects, the agent often has to explore the majority of
the apartments and interact with a large number of articulated
objects.

D. Ablation Study

Exploration Subpolicies: To evaluate the impact of the explo-
ration policies, we compare HIMOS to w/o frontier and w/o
expl. We find frontier exploration to have a large impact on
success rates. Removing this component reduces the success
rate to 73.5%. Removing the local exploration policy leads to a
smaller, but nonetheless significant drop of 7.7 ppt in average
success rates as well as a clear drop in SPL. This indicates
on one hand the different strengths of the two exploration
behaviors, and on the other hand that HIMOS learned to use

78

TABLE III
REAL WORLD EXPERIMENTS ON THE HSR ROBOT.

Model 1-
obj

2-
obj

3-
obj

4-
obj

5-
obj

6-
obj

Total

Success 5 4 4 3 4 3 23
Collision 0 0 1 0 0 1 2
Interaction failure 0 1 0 0 1 1 3
Navigation failure 0 0 0 2 0 0 2
Total Episodes 5 5 5 5 5 5 30

the local exploration policy to increase search efficiency. Again,
we find this effect to be consistent across both seen and unseen
apartments.

Invalid Action Masking: We observe that removing the invalid
action masking also leads to a drop in both success rates and
SPL. Furthermore, we found that masking improves conver-
gence speed by up to 2.5 times. Note that the action masking
does not use any further privileged information beyond our
perception assumptions (Section IV) of inferring object states.

Qualitatively, we find that the agent learned sensible behav-
iors for the task at hand. Figure 3 depicts example episodes
in the unseen scenes. The agent learned to frequently invoke
the local exploration policy while the apartment is still largely
unexplored, to then use the global exploration policy to navigate
to unexplored corners where target objects could be hidden.
Generally, areas further away are being used in order to travel
faster to certain areas of interest. The high-level policy also
frequently uses frontier-based navigation when the exploration
policy is stuck in some area. When a target object lies on the
way to another relevant navigation point (a frontier, cabinet, or
door), the high-level policy learned to navigate directly to the
latter, instead of sequentially navigating to the target object
and then proceeding. This behavior saves time and improves
efficiency.

E. Real World Experiments

We transfer the trained policy to a Toyota HSR robot.
The robot has a height-adjustable torso and a 5-DOF arm
for environment interactions. It is equipped with an RGB-
D camera used for mapping and a 2D lidar employed for
localization in the pre-built map and object avoidance by the
ROS navigation stack. Both the local exploration policy and
the high-level behavior policy are transferred to this real-world
setting without any further retraining or fine-tuning. The agent
requires only minor adjustments to account for the differences
in robot geometry and subpolicies. See Section IV-B and the
supplementary material for details on the real-world subpolicies.

The experiments are performed in an office building covering
three rooms connected by a hallway with a total of three doors.
The operation space covers roughly 180 square meters. We
place three articulated objects, two cabinets with a revolute
door, and one drawer in the environment. These objects are
never seen during training. We evaluate runs with 1-6 target
objects in five different scenarios, for a total of 30 episodes.
Each scenario defines new positions for the three articulated
objects. We randomly chose which doors start in an open or
closed state, and start each episode from the room that the

Fig. 4. Top: map of the real world environment. Initial door state and cabinet
positions are randomized between episodes. Below: example trajectory in the
real world. From top left to bottom right: the agent decides to look inside
a target object, then navigates to the hallway, opens a different cabinet and
finally opens and drives through a closed door.

last episode terminated in. We cover glass doors to prevent
the agent from directly looking through them. This evaluation
tests (i) the generalization abilities of both low- and high-level
behaviors to the real world, (ii) the generalization abilities of
the local exploration policy and high-level policy to a different
robot, and (iii) the high-level policy’s generalization to unseen
subpolicies, as we change both the navigation and manipulation
modules. This is an important ability for transfers to different
robot models and execution requirements. Lastly, (iv) the map
representation enables easy transfer to different objects as it
only requires a mapping to known semantic and instance colors.

The results of the experiments are summarized in Table III
and example episodes are shown in Figure 4 as well as in
the supplementary video. The agent successfully completes
76.7% of the episodes, requiring long sequences of autonomous
navigation and physical interactions. The high-level policy
proves robust to failures in the subpolicies. These include
navigation failures if the planner does not find a valid path
to a frontier point and manipulation failures in which the
mobile manipulation skill failed to grasp the handle of an
articulated object. In this case, the agent is capable of re-
triggering the interactions after detecting the failure. A few
irrecoverable failures occurred that did not allow the agent to
continue: reaching a safety limit of the wrist joint during door
opening, base collisions, and in two cases repeated failures
of the navigation stack from which the agent was unable to
recover.

VI. CONCLUSION

We introduced the interactive multi-object search task in
which the agent has to manipulate the environment in order to

79

fully explore it, resembling common household settings. We
proposed a novel hierarchical reinforcement learning approach
capable of solving this complex task in both simulation and
the real world. By combining a high-level policy on abstract
action spaces with low-level robot behaviors, we are able to
perform long-term reasoning while acting in continuous action
spaces. Our approach decouples the perception from decision
making which allows a seamless transition to unknown and real-
world environments on a differing embodiment. In extensive
experiments, we demonstrated the capabilities of our approach
and the importance of the individual components in ablation
studies. In future work, we will investigate the benefits of
jointly training the high- and low-behavior and integrate more
sophisticated mapping modules to build a semantic map directly
from the robot sensors. Further, additional low-level behaviors
could extend environment interaction options or perform more
goal-oriented active perception actions.

REFERENCES

[1] S. Wani, S. Patel, U. Jain, A. Chang, and M. Savva, “Multion:
Benchmarking semantic map memory using multi-object navigation,”
Proc. of the Conf. on Neural Information Processing Systems (NeurIPS),
vol. 33, pp. 9700–9712, 2020.

[2] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory
transformer for embodied agents in long-horizon tasks,” in Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition, 2019, pp.
538–547.

[3] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada, “Learning
long-horizon robot exploration strategies for multi-object search in
continuous action spaces,” Proceedings of the International Symposium
on Robotics Research (ISRR), 2022.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proc. of the IEEE Int. Symp. on Comput. Intell. in Rob. and Aut.
(CIRA), 1997, pp. 146–151.

[5] D. Honerkamp, T. Welschehold, and A. Valada, “N2m2: Learning
navigation for arbitrary mobile manipulation motions in unseen and
dynamic environments,” IEEE Transactions on Robotics, 2023.

[6] J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile
manipulation for object rearrangement,” arXiv preprint arXiv:2209.02778,
2022.

[7] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets et al., “Habitat
2.0: Training home assistants to rearrange their habitat,” Advances in
Neural Information Processing Systems, vol. 34, pp. 251–266, 2021.

[8] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” in International Conference on Learning Representations,
2019.

[9] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in International Confer-
ence on Learning Representations, 2020.

[10] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu,
P. Robinson, and K. Grauman, “Soundspaces: Audio-visual navigation
in 3d environments,” in Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2020, pp. 17–36.

[11] A. Younes, D. Honerkamp, T. Welschehold, and A. Valada, “Catch me if
you hear me: Audio-visual navigation in complex unmapped environments
with moving sounds,” IEEE Rob. and Automation Letters, vol. 8, no. 2,
pp. 928–935, 2023.

[12] Y. Qiu, A. Pal, and H. I. Christensen, “Learning hierarchical relationships
for object-goal navigation,” in 2020 Conference on Robot Learning
(CoRL), 2020.

[13] R. Druon, Y. Yoshiyasu, A. Kanezaki, and A. Watt, “Visual object search
by learning spatial context,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 1279–1286, 2020.

[14] E. Beeching, J. Debangoye, O. Simonin, and C. Wolf, “Deep rein-
forcement learning on a budget: 3d control and reasoning without a
supercomputer,” in 25th International Conference on Pattern Recognition
(ICPR), 2021, pp. 158–165.

[15] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev,
R. Martı́n-Martı́n, and S. Savarese, “Interactive gibson benchmark: A
benchmark for interactive navigation in cluttered environments,” IEEE
Rob. and Automation Letters, vol. 5, no. 2, pp. 713–720, 2020.

[16] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Malik, and
K. Grauman, “Poni: Potential functions for objectgoal navigation with
interaction-free learning,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, 2022, pp. 18 890–18 900.

[17] J. Kim, E. S. Lee, M. Lee, D. Zhang, and Y. M. Kim, “Sgolam:
Simultaneous goal localization and mapping for multi-object goal
navigation,” arXiv preprint arXiv:2110.07171, 2021.

[18] A. Röfer, G. Bartels, W. Burgard, A. Valada, and M. Beetz, “Kineverse:
A symbolic articulation model framework for model-agnostic mobile
manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
3372–3379, 2022.

[19] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered environ-
ments,” Robotics and Autonomous Systems, vol. 68, pp. 1–11, 2015.

[20] D. Honerkamp, T. Welschehold, and A. Valada, “Learning kinematic
feasibility for mobile manipulation through deep reinforcement learning,”
IEEE Rob. and Automation Letters, vol. 6, no. 4, pp. 6289–6296, 2021.

[21] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” Advances in neural information processing
systems, vol. 31, 2018.

[22] M. Hutsebaut-Buysse, K. Mets, and S. Latré, “Hierarchical reinforcement
learning: A survey and open research challenges,” Machine Learning
and Knowledge Extraction, vol. 4, no. 1, pp. 172–221, 2022.

[23] J. Krantz, A. Gokaslan, D. Batra, S. Lee, and O. Maksymets, “Waypoint
models for instruction-guided navigation in continuous environments,”
in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
2021, pp. 15 162–15 171.

[24] C. Chen, S. Majumder, Z. Al-Halah, R. Gao, S. K. Ramakrishnan, and
K. Grauman, “Learning to set waypoints for audio-visual navigation,” in
International Conference on Learning Representations, 2020.

[25] N. Yokoyama, A. W. Clegg, E. Undersander, S. Ha, D. Batra, and A. Rai,
“Adaptive skill coordination for robotic mobile manipulation,” arXiv
preprint arXiv:2304.00410, 2023.

[26] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and ai,” Robotics and Autonomous Systems,
vol. 154, p. 104096, 2022.

[27] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in Proc. IEEE
International Symposium on Safety, Security and Rescue Robotics, 2011.

[28] R. Mohan and A. Valada, “Amodal panoptic segmentation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 21 023–21 032.

[29] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” in FLAIRS Conference, 2022.

[30] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[31] S. Yan, J. Zhang, D. Büscher, and W. Burgard, “Efficiency and equity
are both essential: A generalized traffic signal controller with deep
reinforcement learning,” in Int. Conf. on Intelligent Robots and Systems,
2020, pp. 5526–5533.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[34] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning imple-
mentations,” Journal of Machine Learning Research, vol. 22, no. 268,
pp. 1–8, 2021.

[35] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach et al., “igibson 2.0:
Object-centric simulation for robot learning of everyday household tasks,”
in Conference on Robot Learning, vol. 164, 2021, pp. 455–465.

[36] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On eval-
uation of embodied navigation agents,” arXiv preprint arXiv:1807.06757,
2018.

80

Learning Hierarchical Interactive Multi-Object Search
for Mobile Manipulation

- Supplementary Material -

Fabian Schmalstieg∗ Daniel Honerkamp∗ Tim Welschehold Abhinav Valada

Fig. 1. In order to explore unstructured environments, the agent has to
autonomously manipulate the environment which may include opening doors
or looking into articulated objects.

In this supplementary material, we provide additional details
on the environment setup, the sub-policies as well as details on
the training and architecture. Examples of the learned behavior
are included in the video material.

I. ENVIRONMENT DETAILS

Figure 1 depicts an example simulation environment.

Doors: Doors leading out of the apartments are set to a locked
state and cannot be opened by the agent as they lead to a fall
into the abyss.

Cabinet positioning: In the simulation, we first mark feasible
areas along the walls of the apartment in which the cabinets
can be spawned without blocking doorways or narrow corridors.
We then uniformly sample poses from these areas and reject
any poses that would result in a collision with the environment.

Target object sampling: During training, we draw six objects
randomly with replacements. If the same object gets drawn
repeatedly, the resulting object slot is left empty, leading to
a distribution over 1-6 target objects. During the evaluation,

∗These authors contributed equally.
Department of Computer Science, University of Freiburg, Germany.
Project page: http://himos.cs.uni-freiburg.de

the desired number of target objects is drawn uniformly from
all target objects. Three out of the six target objects are set
to always be placed in a drawer if they get selected. Leading
to an average of half the target objects always being placed
within a drawer.

II. INTERACTION AND MANIPULATION MOTIONS

As discussed in the assumptions in Section IV, we assume
the capability to infer the poses of objects of interest. For
doors that can open to either side, this includes knowledge of
the direction that they open to. All manipulation motions start
with the agent navigating to a given offset point in front of
the respective object. The opening motions in the simulation
are then implemented in two variations: ”magic” actions for
fast training and physical execution based on a motion planner
during evaluation.

Magic actions: During training, the object joint positions are
slowly increased to their maximum collision-free value by
the simulator. These magic opening actions can fail with a
probability of 15%, in which case the joint positions are left
unchanged.

Motion planning: For realistic evaluation, at test time in
simulation these motions are replaced with actual execution.
The manipulation motions are implemented based on a BiRRT
motion planner [19]. The motion planner creates a plan for
opening the doors toward a desired direction. It selects a
desired end-effector goal given the position and orientation
of the object and plans a trajectory towards this goal by
sampling collision-free arm joint configurations. Subsequently,
the joints are set according to the plan. In addition, the end-
effector closes to grasp the door knob. Finally, a push or pull
operation manipulates the door by using the desired direction
and computing the joint positions with inverse kinematics.

III. NAVIGATION MOTIONS

As discussed in Section IV, the navigation policy moves the
agent along waypoints computed by an A* planning algorithm.
The algorithm computes the path based on a prior known
traversability map with an inflation radius of 0.2 meters. This
map is used simply to avoid recomputing the navigation graph
at every step. For frontier point selection, the semantic map is
first converted to an occupancy map and then convolved with
a 5x5 kernel for a single iteration.

81

TABLE I
HYPERPARAMETERS USED FOR TRAINING.

Parameter Value Parameter Value

clip param 0.1 γ adaptive
ppo epoch 4 learning rate 0.0005
num mini batch 128 optimizer Adam
entropy coef 0.005

IV. REAL-WORLD ADAPTATIONS

In contrast to the Fetch robot that we train in simulation,
the HSR has an omnidirectional drive. The pre-trained local
exploration policy still executes its commands as pure differ-
ential drive motions (sending forward and angular velocity
commands). The unseen N2M2 mobile manipulation policy
and the ROS navigation module can make use of the robot’s
omnidirectional movement, as the training procedure is agnostic
to their internal workings. To account for differences in the
robot geometry, we use a robot-specific inflation radius for the
navigation policies and adjust the instance navigation module
to select relative navigation goals that are further away from
the object instances.

V. TRAINING DETAILS

Network architectures: The coarse map is encoded into a
256-dimensional feature vector with a ResNet-18 [32]. The

fine-grained map is encoded into a 128-dimensional feature
vector using a simple three-layer CNN with 32, 64, and 64
channels and strides 4, 2, and 1. The local exploration policy
then concatenates the map encodings together with the robot
state and processes these features with fully connected layers,
following the author’s original architecture [3]. The high-level
policy only uses the coarse map encoder architecture (without
weight-sharing). Both the local exploration policy and the high-
level policy then use an actor and a critic parameterized by
a two-layer MLP network with 64 hidden units each and a
Categorical policy.

Hyperparameters: Table I lists the main hyperparameters used
during training. The agents were implemented based on a
public library [34]. Parameters not mentioned were left at their
defaults. The γadaptive parameter is calibrated to result in an
average discount factor of 0.99 for a high-level policy step.
This is done by setting γnadaptive = 0.99 where n is the average
subpolicy duration. We set n to 7 for HIMOS and w/o frontier
and 10 for w/o expl based on a average subpolicy lengths in a
training run. During training we early terminate the episodes
if they exceed 500 steps.

82

D5.4: Final report on deep robot action and decision making 83/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 84/131

F

EAGERx: Graph-Based Framework for Sim2real Robot Learning

Bas van der Heijden∗1, Jelle Luijkx∗1, Laura Ferranti1, Jens Kober1, Robert Babuska1

Abstract— Sim2real, that is, the transfer of learned control
policies from simulation to real world, is an area of growing
interest in robotics due to its potential to efficiently handle
complex tasks. The sim2real approach, however, is hampered
by discrepancies between simulation and reality, inaccuracies
in physical phenomena modeling, and asynchronous control,
among others. To this end, we introduce EAGERx, a framework
with a unified software pipeline for both real and simulated
robot learning. It can support various simulators and aids in
integrating state, action and time-scale abstractions to facilitate
learning. EAGERx’s integrated delay simulation, domain ran-
domization features, and proposed synchronization algorithm
contribute to narrowing the sim2real gap. We demonstrate the
efficacy of EAGERx in accommodating diverse robotic systems
and maintaining consistent simulation behavior. EAGERx is
open source and its code is available at https://eagerx.
readthedocs.io.

Index Terms— Reinforcement Learning, Software-Hardware
Integration for Robot Systems, Machine Learning for Robot
Control, Software Tools for Robot Programming

I. INTRODUCTION

Transferring control policies trained in simulation to the
real-world, known as sim2real, has gained considerable
interest in the field of robotics due to its potential to address
complex tasks with remarkable efficiency [1], [2], [3].
Simulations offer a safe, cost-effective, and controlled envi-
ronment for training and testing robotic algorithms, allowing
roboticists to refine their models and controllers without the
risks and expenses associated with real-world experimen-
tation. The sim2real approach, however, faces challenges
due to the sim2real gap, that is, unaccounted discrepancies
between simulation and reality. These disparities may stem
from inaccurate modeling of physical phenomena (e.g.,
friction, deformations, and collisions), or from the use of
separate software implementations for reality and simulation,
which may lead to unintended mismatches as depicted in
Fig. 1. Another subtle but significant source of discrepancy
is the asynchronous nature of robotic systems [4]. While
robotic systems are typically simulated sequentially [5],
sensing, computation and acting happen concurrently in
reality. Disregarding these differences can be detrimental to
the real-world performance of a policy trained in simulation.

Inaccurate modeling of physical phenomena in simulation
is typically mitigated by domain randomization [3]. However,
this approach can make the simulation more challenging,

∗Equal contribution
1 Dept. of Cognitive Robotics, Delft University of Technology, The

Netherlands. d.s.vanderheijden@tudelft.nl
This work is funded by the EU’s H2020 OpenDR project (grant No

871449) and the Dutch Science Foundation NWO-TTW’s Veni project
HARMONIA (18165).

Fig. 1: Our framework offers a unified software pipeline for both
simulated and real robot learning. It can support various simulators
and aids in integrating state, action and time-scale abstractions.

which may lead to longer training times and suboptimal poli-
cies. Reformulating the task to the right level of abstraction
may be more effective to alleviate the sim2real gap if the
abstraction captures the task and can be extracted accurately
both from simulated and real data [6]. Abstractions can take
various forms, such as action abstraction that simplifies con-
trol issues using high-level actions [7], time-scale abstraction
that uses macro-actions for multi-scale planning and learning
[8], and state abstraction that condenses raw sensor data into
key features [6]. Therefore, existing sim2real frameworks [9],
[10], [11] have exploited the multi-rate graph-based design
of ROS [12] to obtain a unified software pipeline that allows
for the integration of various kinds of abstractions. However,
these frameworks restrict users to the Gazebo simulator [13],
which can be limiting as different tasks may require specific
types of simulators. Additionally, these frameworks fall
short in synchronizing components that operate in parallel
within the simulation. At faster-than-real-time simulation
speeds, this can exacerbate communication and processing
delays, leading to inconsistencies, inaccuracies, and potential
system instability. Such amplified delays can compromise
the proper functioning of the simulated system, rendering
learned policies ineffective when transferred to real-world
environments. Conversely, naive synchronization may also
widen the sim2real gap if it overlooks the concurrent nature
of sensing, computation and acting in reality.

The main contribution of this paper is EAGERx (Engine
Agnostic Graph Environments for Robotics), that is, a robot
learning framework with a unified software pipeline com-
patible with both simulated and real robots that supports
the integration of various abstractions and simulators as
depicted in Fig. 1. EAGERx introduces a novel synchro-
nization protocol that coordinates inter-node communication
based on node rates and anticipated delays. By simulat-
ing delays, our protocol maintains asynchronous robotic

OpenDR No. 871449

system relationships synchronously, preserving the benefits
of modular and synchronous simulation. Contrasting with
sequential simulation, the protocol permits nodes to transmit
messages asynchronously and perform tasks without waiting
for immediate responses, thereby accelerating the simulation
and allowing nodes to progress based on their processing
capabilities and data availability. EAGERx is Python-based
and offers high simulation accuracy without compromising
speed, native support for domain randomization and delay
simulation, and a modular structure for easy manual reset
procedures and prior knowledge integration. Our framework
features a consistent interface, an interactive GUI, unit tests
with code coverage > 95%, and a comprehensive documen-
tation, including interactive tutorials, easing new user adop-
tion. The documentation, tutorials, and our open-source code
can be found at https://eagerx.readthedocs.io.

In summary, we make four key contributions:
C1 EAGERx’s modular design supports various robotic

systems and state, action and time-scale abstractions.
C2 EAGERx’s agnostic design allows compatibility with

multiple engines.
C3 Integrated delay simulation and domain randomization

in EAGERx can narrow the sim2real gap.
C4 The proposed synchronization protocol ensures consis-

tent simulation behavior even beyond real-time speeds.
An extensive experimental evaluation (together with the ad-
ditional documentation) is provided to show the applicability
of EAGERx for robotics tasks.

II. FRAMEWORK

This section provides an overview of EAGERx. Sec. II-A
outlines the framework’s main components. Then, Sec. II-
B discusses the package management system promoting
modularity and versioned compatibility. Finally, Sec. II-C
discusses the framework’s capabilities for domain random-
ization, simulator augmentation, and delay simulation, which
are essential to minimize the sim2real gap.

A. Agnostic Framework

First, we provide a brief overview of the main components,
followed by a code example.

1) Graph: EAGERx processes are represented as nodes
within a graph structure, linked by directed edges from
a node’s output to one or multiple node inputs. Nodes
communicate via edges by exchanging messages. This versa-
tile decentralized architecture, ideal for networked hardware
and off-board computer interactions, is especially useful for
robotics.

2) Node: Nodes, representing individual processes run-
ning at a fixed rate, are central to EAGERx, executing
user-code to compute outputs based on inputs from other
nodes. Robot control systems typically consist of multiple
nodes (e.g., one node extracts camera images, another lo-
calizes using these images, and a final node directs robot
movement based on localization). Nodes can be launched
in various ways. For example, I/O-bound nodes may use
separate threads to reduce communication overhead from

(a) Agnostic graph

(b) ODE subgraph (c) Real-world subgraph

Fig. 2: (a) Displays the engine-agnostic graph of the pendulum
environment from Code-Example 1 as generated by the GUI. The
engine-specific subgraphs for replacing the object (i.e., pendulum)
are depicted for the ODE (b) and real-world (c) engines. The
yellow nodes, split for visualization clarity, symbolize the agent’s
actions and observations. Blue squares represent I/O channels, while
red squares indicate node states and/or parameters that can be
randomized at the start of an episode.

message serialization, while CPU-bound nodes may utilize
subprocesses. Computational loads can be distributed across
machines by launching nodes as external processes.

3) Object: EAGERx objects enable flexible node replace-
ment when transitioning a robotic system from simulation to
reality. For instance, in reality, nodes for extracting sensor
data from a physics-engine become obsolete, requiring re-
placement with nodes interfacing robot hardware EAGERx
objects accommodate this adaptability.

Objects define abstract inputs and outputs, as well as sub-
graphs for each supported physics-engine. Users can add ob-
jects to graphs (Fig. 2a), and establish connections between
nodes and objects. Upon selecting a physics-engine, abstract
objects are replaced by corresponding subgraphs (Fig. 2b,
Fig. 2c), rendering the node and object graph engine-agnostic
(Fig. 2a), as it supports multiple physics-engines. Notice how
the framework treats reality as just another physics-engine.
Practically, objects represent entities interacting directly with
the physical environment. For instance, a robot may have
an abstract input and output for its motors and encoders,
respectively. Depending on the chosen physics-engine, the
robot’s subgraph comprises nodes interfacing real hardware
or nodes communicating with a simulator.

4) Engine: Physics-engines (e.g., PyBullet [14], Gazebo
[13]) are interfaced by a special node called the engine. The
engine initiates the physics-engine, adds 3D meshes, and sets
dynamic parameters (e.g., friction coefficients). It controls
time passage and its rate defines the simulation step size.

5) Backend: Node processes, launched in various ways
(i.e., subprocess, multi-threaded, distributed), communicate
through edges and interact with a collective database called
the parameter server. The backend facilitates low-level node-
to-node communication (i.e., establishing connections and
the serialization of messages) for every edge and controls
the parameter server. EAGERx supports two backends (i.e.,
ROS1, SingleProcess), with an abstract backend API allow-
ing users to implement custom backends. Defined graphs can

85

be initialized as distributed networks of subprocesses or run
in a single process. EAGERx provides an abstraction layer
over ROS, adding key features for robot learning such as
synchronized faster-than-real-time simulation, domain ran-
domization, and delay simulation.

6) BaseEnv: EAGERx favors composition over inheri-
tance as a design principle, because robotic systems are
more naturally constructed from various components than
by finding commonalities and creating a family tree [15].
EAGERx environments consist of an engine, backend, and
graph, which is composed of nodes and objects. This design
promotes code reuse and handles future requirement changes
better than an inheritance-based environment.

1 from .tutorials.pendulum import Pendulum # Make object
2 o = Pendulum.make(name="pendulum")
3 from .tutorials.low_pass import LowPass # Make node
4 n = LowPass.make(name="lowpass", rate=15, cutoff=7)
5
6 from eagerx import Graph # Make `agnostic` graph
7 g = Graph.create([o, n])
8 g.connect(action="volt", target=n.inputs.u)
9 g.connect(source=n.outputs.y, target=o.actuators.volt,

10 delay=0.1) # Simulates actuator delay
11 g.connect(source=n.outputs.y, observation="y",
12 skip=True) # Resolves cyclic dependency
13 g.connect(source=o.sensors.th, observation="th")
14 g.connect(source=o.sensors.thdot, observation="thdot")
15
16 from eagerx_ode.engine import OdeEngine # Select engine
17 e = OdeEngine.make(rate=30,
18 real_time_factor=0, # 0 -> unlimited
19 sync=True) # toggles synchronization
20 from eagerx.backends.single_process import SingleProcess
21 b = SingleProcess.make() # Make backend
22
23 from .tutorials.env import CustomEnv # Make env
24 env = CustomEnv(g, ode, b, name="env_id", rate=30)
25
26 obs, info = env.reset() # Start a new episode
27 a = env.action_space.sample() # Select an action
28 obs, reward, terminated, truncated, info = env.step(a)
29 env.shutdown() # Release resources

Code-Example 1: Environment creation for the swing-up problem.

Code-Example 1 showcases the steps to create an environ-
ment using EAGERx for the pendulum swing-up problem, a
classic problem in both simulated [5] and real-world robotics
scenarios [16]. It begins with the creation of a pendulum
object and a lowpass node to filter the agent’s actions,
thereby reducing wear and tear on the system (lines 1-4).
Subsequently, an agnostic graph is constructed in which the
various components are connected, anticipated delays are
specified for simulation, and cyclical connections are handled
(lines 6-14). The environment is set up with the OdeEngine
physics-engine and a SingleProcess backend (lines 16-21).
Equally, the RealEngine could be used to switch to real-
world scenarios. Following initialization, an interaction is
implemented by sampling an action and applying it to
the environment (lines 23-28), with the environment being
cleanly shut down at the end (line 29).

B. Support

Robotic system design often involves multiple cycles of
design, implementation, evaluation, and refinement. EA-
GERx supports the users as follows:

1) Visualization Tools: EAGERx offers interactive visual-
ization tools that aid in understanding and debugging robotic

systems. Users can visualize the graph of nodes and inspect
parameter specifications of individual nodes with EAGERx’s
interactive GUI. The ability to visualize a complex robotic
system is a powerful tool for debugging and understanding
the system’s behavior. Example visualizations of the GUI are
shown in Figures 2a, 3d, and 4c.

2) Package Management: EAGERx incorporates a pack-
age management system that fosters modularity, versioned
compatibility, and automated unit tests covering 95% of the
code. This system allows users to easily share, import, and
reuse code modules in different projects. By promoting mod-
ular design, EAGERx enables users to build complex robotic
systems by combining smaller, well-tested components.

3) Onboarding Resources: EAGERx provides compre-
hensive onboarding resources, including interactive tutorials,
code samples, and documentation, to help users quickly learn
and adopt the framework.

C. Mitigating the Sim2Real gap

To address the sim2real gap, EAGERx’s modular design
enables manual reset routines, simulator augmentation, and
supports domain randomization and delay simulation. Re-
setting simulations is simple, but real-world resets require
well-devised routines to return the system to its starting
state. Specialized reset nodes can be incorporated into the
graph to ease real-world resets between episodes. These
nodes are solely used during resets and are absent dur-
ing an episode. Simulator augmentation, supported by EA-
GERx’s node structure, increases simulation accuracy and
fidelity. Incorporating nodes into physics-engine subgraphs
seamlessly enhances simulator capabilities, mimicking real-
world phenomena like wind force. Domain randomization
varies the simulation by altering parameters like object
shapes and lighting [3]. In EAGERx, nodes can register
any parameter for randomization. Delay simulation is en-
abled by our synchronization protocol discussed in II-B, and
emulates communication latency and computational delays
encountered in real-world systems, yielding a more accurate
simulation. Delays can be implemented across any graph
edge, encompassing edges between nodes and objects, thus
simulating sensor and actuator delays as demonstrated in
Code-Example 1, line 10.

III. SYNCHRONIZATION

Parallel computation, used in robotic system simulations
via ROS [12] in existing sim2real frameworks [9], [10], [11],
can increase simulation speeds. However, these frameworks,
when run at faster-than-real-time speeds, suffer from unsyn-
chronized parallel components, unintentionally widening the
sim2real gap. Here, the individual computation delays be-
come more pronounced relative to the accelerated simulation
clock. Without suitable synchronization at high speeds, cer-
tain components may struggle to match pace and gradually
fall out of sync, leading to a deviation in the simulation from
its real-world counterpart. Consequently, the learned control
policy’s performance may deteriorate, as it could receive
outdated or mismatched observations, yielding actions based

86

on inaccurate data. This may render the learned policies
ineffective when transferred to the real-world environment.

A. Protocol

We developed a synchronization protocol for each of the
nodes representing the robotic system that enables paral-
lel computation and minimizes additional message-passing
overhead, thereby enhancing system efficiency and accuracy.
This is particularly apt for robotic systems represented as
node-based graphs that benefit from parallel operation of
multiple nodes. Properly constructed communication patterns
and protocols can achieve global synchronization, whereby
each node proceeds with its tasks once necessary input data
or conditions have been satisfied.

Each node runs a local protocol version, depicted in
Alg. 1. The conditions for a node to proceed with the next
callback are based on the expected ordering of events, as
dictated by assumed rates and delays of the system (lines
5-9). Executed with an event loop thread and dedicated
input channel threads, the protocol compares received and
expected message counts for input channels before executing
subsequent callbacks (line 10-13). This comparison informs
whether a node proceeds with the next callback or awaits
more messages. Nodes perform tasks based on the protocol’s
decision and asynchronously transmit output to connected
nodes (line 14). Only upon completion of the previous
callback or receipt of a new input channel message does the
event-driven protocol evaluate conditions for the subsequent
callback (line 17). Consequently, task execution is entirely
independent of any global clock or synchronization mes-
sages, thus minimizing additional message-passing overhead.

The protocol computes expected messages per input chan-
nel with node n executing its callback at rate fn and receiv-
ing messages at rate fi delayed by τi over input channels
i ∈ U as summarized by Alg. 2. Assuming nodes maintain
their rates, callbacks occur every ∆tn = 1

fn
seconds, and

messages are received every ∆ti =
1
fi

seconds. The protocol
expects the kth callback after k∆tn seconds, anticipating
⌊(k∆tn − τi)/∆ti⌋ messages from each input channel i,
where ⌊a/b⌋ denotes the integer division operator. While
this intuition underpins the synchronization protocol, the
implementation in Alg. 2 is more complex. Computations are
recast in rates to improve numerical stability. The protocol
sets every input channel’s initial expected message count to
1, irrespective of τi, simplifying callback implementations.

The protocol also handles the special case of cycli-
cal dependencies-—common in robotics systems interact-
ing with a physic-engine and can cause deadlocks other-
wise—with Alg. 3. In EAGERx, users can designate input
channels as cyclical, postponing dependency to the next
callback. This strategy allows one node to execute first in
a cycle, while others await this node’s output.

B. Limitations

The protocol’s limitations should be considered in the
context of the underlying communication protocol, which
must ensure preservation of message order and be lossless

Algorithm 1: Synchronization protocol executed by each node

Input: node rate fn, input rates fi, input delay τi, input channels
i ∈ U , output channels j ∈ Y

Output: Processed data sent to downstream nodes
1 k ← Initialize callback index to 0
2 Bi ← Initialize empty buffers for every input channel i
3 Start eventLoopThread
4 Start inputChannelThread for every i ∈ U
5 eventLoopThread:
6 foreach i ∈ U do
7 if channel i is cyclical then
8 δi ← Expected message count (Alg. 3)

9 else
10 δi ← Expected message count (Alg. 2)

11 if δi ≤ size(Bi) for every i ∈ U then
12 foreach i ∈ U do
13 ui,k ← Pop last δi messages from Bi

14 yk ← Run callback with inputs ui,k , ∀i ∈ U
15 Send yk to all output channels j ∈ Y
16 k ← Increment callback index to k + 1
17 Trigger event on eventLoopThread

18 WaitForEvent

19 inputChannelThread i:
20 Bi ← Buffer received message
21 Trigger event on eventLoopThread

Algorithm 2: Expected number of messages to receive between
the k − 1th and kth callback

Input: callback index k, node rate fn, input rate fi, input delay τi
Output: Expected number of messages δ to receive between the

k − 1th and kth callback
1 if k = 0 then
2 δ ← 1 // Set initial count to 1

3 else
/* Expected count between k − 1 and k */

4 Nk−1 ← ⌊(fi(k − 1)− fnfiτi)/fn⌋
5 Nk ← ⌊(fi(k)− fnfiτi)/fn⌋
6 ∆← Nk −Nk−1

/* Correct expected count with delay */
7 c← ⌊(fik − fn∆− fnfiτi)/fn⌋
8 δ ← ∆−min(∆,max(0,−c))

(e.g., TCP instead of UDP [17]). The protocol assumes
that the robotic system can be represented by nodes with
fixed rates and at least one input. Although the protocol can
be easily toggled between synchronous and asynchronous
modes, it does not allow for a hybrid mode, where some
nodes are synchronized and others are not. Finally, the
protocol does not account for jitter and assumes deterministic
delay; however, this limitation can be mitigated by varying
the delay across episodes if needed.

IV. EXPERIMENTAL EVALUATION

This section presents experiments to show the capabilities
of our framework and to support the four key contributions
C1-C4 presented in Sec. I.

A. Experimental Setup

EAGERx is validated using a pendulum swing-up and
a vision-based box pushing task. These tasks validate C1-
C2, involving distinct types of systems like pendulum and

87

Algorithm 3: Expected number of messages to receive between
the k − 1th and kth callback to resolve a cyclical dependency

Input: callback index k, node rate fn, input rate fi, input delay
τi, fudge factor ϵ ≈ 10−9

Output: Expected number of messages δ to receive between the
k − 1th and kth callback

1 if k = 0 then
2 δ ← 0 // Set initial count to 0

3 else
/* Calculate count as if k is shifted */

4 if fn > fi then
5 o← ⌊(fn − ϵ)/fi⌋ // Forward
6 else
7 o← −1 // Backward

/* Expected count between k − 1 and k */
8 Nk−1 ← ⌊(fi(k − 1 + o)− fnfiτi)/fn⌋
9 Nk ← ⌊(fi(k + o)− fnfiτi)/fn⌋

10 ∆← Nk −Nk−1

/* Correct expected count with delay */
11 c← ⌊(fik − fn(∆− 1)− fnfiτi)/fn⌋
12 δ ← ∆−min(∆,max(0,−c))

manipulator robots, and different engines. The box-pushing
task supports C1, using state and action abstractions for
safe, efficient learning. The pendulum swing-up task is a
sensitive nonlinear control problem, that validates C3 by
assessing delay simulation for effective sim2real. To validate
C4, we experimentally assess Alg. 1 and employ it in
accelerated, parallelized training for both tasks. In selecting
these control problems, we favored those frequently used as
benchmark tasks in the RL literature [5], [18], [19]. The
experiments involved training agents in simulation using the
soft actor-critic [20] algorithm from Stable Baselines3 [21]
(with hindsight experience replay [22] for box pushing) and
performing zero-shot evaluations on their real counterparts.
Domain randomization and delay simulation values were
kept constant throughout training episodes and selected from
uniform distributions.

Inverted Pendulum The inverted pendulum task ad-
dresses the classic control problem of swinging up and
stabilizing an underactuated pendulum. We used two simula-
tors: the Pendulum environment from OpenAI Gym Classic
Control [5] with modified parameters (Fig. 3a), and a set of
ODEs (Fig. 3b). For a detailed understanding of the dynamics
and parameters, readers are directed to [16]. The parameters
were obtained using grey-box estimation, and fit based on
data derived from a real pendulum system (see Fig. 3c).
This real-world pendulum setup, a mass attached to a disk
actuated by a DC motor, is used for the zero-shot evaluations.

Box Pushing We performed a box pushing experiment
using simple hardware, such as a Viper 300x robotic manip-
ulator (see Fig. 4b) and a consumer-grade webcam (Logitech
C170) for ArUco marker detection to obtain the box’s
position and orientation. The goal here is to push the box to
a fixed goal configuration from varying start configurations.
For evaluation, we selected six unique initial configurations
(three positions approximately 30 cm from the goal for both
a yaw angle of 0 and π

2 rad) and repeated them thrice per
policy. Training was performed in PyBullet (see Fig. 4a).

B. Analysis

C1 To support the claim that the toolkit accommodates
various robotic systems, both tasks involve two distinct robot
systems, namely a pendulum system and manipulator. Ad-
ditional demonstrations that use a quadruped and quadrotor
are made publicly available. EAGERx’s graph-based design,
enabling diverse abstractions, is demonstrated in the vision-
based box pushing task. Rather than end-to-end training on
raw images, an aruco detector is used for state abstraction
as depicted in Fig. 4e, negating the need for photorealistic
rendering. Action abstractions, visible in Fig. 4c, include an
inverse kinematics node for task-space learning and a safety
filter correcting hazardous commands. Nodes set at optimal
rates ensure efficient resource use and learning. Finally, the
pendulum task underlines the toolkit’s modularity using a
angle reset node, visible in Fig. 3d, to position the pendulum
at the initial angle via PID control, before a new episode.

C2 To support the claim that EAGERx is compatible
with a variety of physics-engines and the real-world, we
conducted experiments with four different engines—PyBullet
[14], OpenAI Gym Classic Control [5], real-world, and
simulations with sets of ODEs—showing the ability to switch
between real and simulated counterparts. The box pushing
task demonstrates how a division of the graph into engine-
specific and engine-agnostic subgraphs resulted in a unified
pipeline between PyBullet and reality. The inverse kinematics
and safety filter nodes work with any simulator, as seen in
the agnostic graph (Fig. 4c), while the aruco detector and
webcam nodes are swapped with PyBullet-specific nodes in
Figures 4d and 4e. Likewise, the agnostic graph in Fig. 3d
was used in all pendulum experiments to display sim2real
transfer across physics-engines.

C3 We show that the integrated delay simulation and
domain randomization features can reduce the sim2real gap
by demonstrating that the negative impacts of actuator delay
can be counteracted using the delay simulation feature during
training for two different simulated versions of the pendulum.
In this task we supported C3 by evaluating policies on the
real system with an actuator delay set at the smallest value
that led to a breakdown in baseline performance. When
we progressively increased the actuator delay, it resulted in
baseline policy failure for delays of 0.025,s and 0.035,s for
the Gym and ODE pendulum, respectively. Our experiments
studied the potential of training with domain randomization
and/or delay simulation to mitigate the adverse effects of the
actuator delay. For the Gym pendulum, we applied random-
ization within ±10% of the mean values (0.033,kg for mass
and 0.1,m for length). For the ODE pendulum, randomization
was limited to ±5%, considering the higher accuracy of
this model. Delay simulation involved randomization within
±0.005 s around the set actuator delay. The results shown
in Fig. 3e suggest that delay simulation can mitigate the
adverse effects of actuator delay for zero-shot transfer from
both the Gym and ODE simulator to the real pendulum sys-
tem. In the ODE scenario, adding domain randomization to
delay simulation further improved performance and resulted

88

(a) Gym (b) ODE (c) Real

(d) Agnostic graph

gym gym
DR

gym
DS

gym
DR DS

ode ode
DR

ode
DS

ode
DR DS

0

500

1000

1500

2000

2500

3000

M
ea

n
Ep

is
od

ic
 C

os
t

sim
real
σ
success threshold

(e) Results

Fig. 3: Results (e) for the Pendulum (a)-(c), represented by the ag-
nostic graph (d). The results show mean episodic cost for 5 policies
(10 episodes per policy) and the impacts of domain randomization
(DR) and delay simulation (DS). The success threshold indicates
100% success rate, meaning successful pendulum swing up and
stabilization each episode for all evaluations below this threshold.

in successful transfer with the smallest performance gap
between simulation and reality. The effectiveness of domain
randomization is further highlighted in the box pushing task
(Fig. 4f). We examined its impact through altering the box’s
friction coefficient between 0.1 and 0.4. Fig. 4f shows that,
compared to the baseline, friction randomization reduces the
performance gap between simulation and reality, despite low-
ering overall performance, thereby illustrating that relying
solely on domain randomization can increase task difficulty.
Conversely, the incorporation of the inverse kinematics node
combined with friction randomization enhances performance,
while also reducing the gap between simulation and real-
world execution.

C4 The claim that Alg. 1 ensures consistent simula-
tion behavior when exceeding real-time speeds is supported
by simulating the pendulum system described in Code-
Example 1 and driving it with an identical action sequence
for various real-time factors. The real-time factor is defined
as the ratio between the simulation time and the real-world
time, so a real-time factor of 1 means that the simulation runs
in real-time. If a target real-time factor is set too high, some
components in the simulation may struggle to match pace and
start to lag behind. The effects of this lag in unsynchronized
parallel operation within a simulation is demonstrated in
Figures 5a and 5b. Fig. 5a shows the variation in angle
sin(θ) at t = 2.0 s over 5 runs of a simulated pendulum
as a function of the real-time factor. The pendulum is driven
by an identical feedforward voltage sequence over episodes.

(a) PyBullet (b) Real

(c) Agnostic graph

(d) PyBullet subgraph (e) Real-world subgraph

PyBullet PyBullet
 DR

PyBullet
 IK

PyBullet
 IK DR

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
D

is
ta

nc
e

to
 G

oa
l (

m
)

sim
real
σ

(f) results

Fig. 4: Results (f) for the Box Pushing (a)-(b), represented by the
agnostic graph (c). The engine-specific subgraphs for replacing the
box object are depicted for the Pybullet (d) and real-world (e)
engines. The results show mean distance from the goal at the end
of 16 episodes for 3 policies and evaluate the benefits of an inverse
kinematics (IK) node (c) (facilitating task space control) and domain
randomization (DR) of the friction coefficient.

Commands and angle measurements are sent and received
asynchronously. The figure illustrates the increasing variabil-
ity in angle sin(θ) differences with respect to a synchronized
simulation. In contrast, a simulation synchronized with our
protocol remains fully deterministic regardless of the real-
time factor.

Fig. 5b presents the real-time factor of the simulation.
The realized real-time factor for synchronous simulations
plateaus naturally to maintain synchronization. However, the
unsynchronized simulations exhibit a higher realized real-
time factor, which is misleading. As shown in Fig. 5a, the
increased speed comes at the expense of greater variability.
Consequently, parallel components become increasingly out
of sync, even if they achieve their target real-time factor
individually. These figures collectively demonstrate the detri-

89

20 40 60 80
Real-time factor (target)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

si
n(

θ t
)

sync
unsync

σ
σ

(a) Variation in angle sin(θ)

20 40 60 80
Real-time factor (target)

0

20

40

60

80

Re
al

-t
im

e
fa

ct
or

 (
re

al
iz

ed
) sync (delayed)

sync
unsync

σ
σ
σ

(b) Real-time factor

Fig. 5: A comparison between unsynchronous (unsync) and syn-
chronous (sync) simulations of a pendulum at faster-than-real-time
speeds. Fig. 5a shows the variation in angle sin(θ) at t = 2.0 s
over 5 runs of a simulated pendulum as a function of the real-time
factor. Fig. 5b shows the realized real-time factor of the simulation
for both synchronous and unsynchronous cases.

mental effects of unsynchronized parallel operation within a
simulation when combined with faster-than-real-time speeds.

The protocol, designed for robotic system synchronization,
does not necessitate synchronous communication within the
system. In fact, asynchronous communication permits nodes
to transmit messages and perform tasks without waiting for
immediate responses, thereby accelerating the simulation and
allowing nodes to progress based on their processing capa-
bilities and data availability, as Fig. 5b illustrates. We intro-
duced a simulated delay between the pendulum actuator and
the physics-engine. Consequently, the pendulum’s callback
and physics-engine’s callback can be executed concurrently,
as the physics-engine’s callback relies on the pendulum’s
output from the previous timestep rather than the current one.
Since each node’s protocol operates independently, this par-
allelization occurs naturally, resulting in approximately 50%
increase in the realized real-time factor for the synchronized
simulation compared to the case without delay.

V. DISCUSSION

Comparing EAGERx with ROS [12] might seem natural
due to their modular structures and asynchronous com-
munication. Nonetheless, such a comparison risks being
misleading since EAGERx represents an abstraction based
on the actor model [23] and can operate atop a backend
like ROS. This abstraction layer offers vital functionality for
robot learning, including synchronized faster-than-real-time
simulation, domain randomization, and delay simulation, not
inherently supported by ROS. Recent research [24] presented
a reactive solution to ROS’s asynchronous programming
challenges via an event-driven API, inspiring EAGERx’s
synchronization approach. However, this API didn’t specifi-
cally aim to synchronize simulations using expected rates and
delays, as demonstrated in our work. Importantly, EAGERx’s
protocol extends beyond ROS to other backends as well.

The proposed synchronization protocol can be seen as an
application of the actor model for computation [23]. It is
a powerful and flexible model of concurrent computation
where actors, the primary units, execute tasks concurrently
and communicate by exchanging messages. The actor model

EAGERx [29] [30] [9] [10]
Engine Agnostic ✓ ✗ ✗ ❙ ✗
Specialized Reset Procedures ✓ ✗ ✗ ✗ ✗
Unified Pipeline Sim/Real ✓ ❙ ❙ ❙ ❙

Synchronized Simulation ✓ ✓ ✓ ✗ ✗
Distributed Computing ✓ ✓ ✓ ✓ ✓
GPU Accelerated ✗ ✓ ✗ ✗ ✗
Gradient Information Available ✗ ✗ ✓ ✗ ✗
Domain/Delay Randomization ✓/ ✓ ✓/ ✗ ✓/ ✓ ✗/ ✗ ✗/ ✗
Environment Visualization ✓ ✓ ✓ ❙ ❙

Open Source / License-free ✓/ ✓ ❙/ ❙ ✓/ ✓ ✓/ ✓ ✓/ ✓
Documentation / Tutorials ✓/ ✓ ✓/ ✓ ✓/ ✓ ❙/ ✗ ✗/ ✗
Last commit (age) < 1 week 2 months < 1 week 1 year 4 years

TABLE I: A comparison of various modular sim-to-real robot
learning frameworks, where ❙ indicates partial feature presence.

is well-suited for synchronizing robotic systems represented
as graphs of nodes, where various nodes need to operate
concurrently. Our protocol operates on an event-driven ba-
sis and circumvents dependence on a global/local clock, a
central coordinator [25], or extra synchronization messages
[26]. Instead, it assesses conditions for subsequent callbacks
exclusively after finalizing the preceding one or obtaining
a new input channel message. This can outperform busy-
waiting techniques (or spinlock) [27] that continuously eval-
uate conditions at a fixed time interval.

Ptolemy II [28] constitutes a software framework for
designing, modeling, and simulating heterogeneous systems.
Like EAGERx, it applies the actor model of computation, en-
abling concurrency and asynchronous communication. Both
frameworks offer graphical user interfaces for visualizing
complex systems. Ptolemy II holds an advantage over EA-
GERx in its support for a wider range of computation models
and the ability to combine them within a single system.
Nevertheless, Ptolemy II serves as a general-purpose frame-
work, while EAGERx specifically targets robot learning.
Furthermore, Ptolemy II employs a Java-based structure, in
contrast with EAGERx’s exclusive use of Python.

In comparison to Gym [5] — which offers a flexible API
but lacks a unified sim2real framework — EAGERx ad-
dresses this deficiency. Unlike Gym’s default sequential sim-
ulation, EAGERx supports concurrent, distributed operations
across devices within environments, enhancing its applicabil-
ity to robot learning. Gym environments use object-oriented
classes, frequently constructed via inheritance and extended
with wrapper patterns. However, such object-oriented design
in Gym environments with wrappers is ill-suited for complex
robotic systems, as it can result in an unwieldy proliferation
of classes and wrappers. Additionally, incorporating time-
abstraction within Gym environments is challenging, often
confining it to multiples of the environment’s step size.
Conversely, EAGERx allows each node within the graph
environment to operate at separate frequencies.

Various robot learning frameworks with connections to
EAGERx have been introduced in the field. Among these,
Isaac Orbit [29] and Drake [30] stand out as recent frame-
works with shared design principles. In line with EAGERx,
Orbit and Drake adopt a modular approach to constructing
robot environments, enabling the execution of different nodes
at varying rates to support both lower and higher level control
for effective robot learning. However, these frameworks

90

exhibit three critical differences with EAGERx. Firstly, EA-
GERx is designed to be engine-agnostic, whereas Orbit relies
on the proprietary Isaac Sim [31] simulator, and Drake incor-
porates an integrated multi-body dynamics simulator, hence
restricting them to a single simulation platform. Secondly,
EAGERx features dedicated reset procedures in the form of
reset nodes. These nodes can be added to the graph and are
only activated during environment resets. Thirdly, EAGERx
offers a unified pipeline for both simulation and reality.
Although Orbit and Drake promote component reusabil-
ity in both simulation and reality, EAGERx enforces this
more rigorously through engine-agnostic and engine-specific
graphs. This effectively isolates the engine-agnostic code and
minimizes the risk of discrepancies. Additional frameworks
such as Robo-Gym [9] and Gym-Gazebo(2) [11], [10] aimed
to exploit the node structure of ROS for robot learning and
were primarily centered around the Gazebo simulator without
synchronization. A comparative summary of the discussed
robot learning frameworks is presented in Tab. I.

VI. CONCLUSION

This paper presented EAGERx, a novel framework to
facilitate the transfer of robot learning policies from simula-
tion to the real-world. Our unified framework is compatible
with simulated and real robots, supporting various abstrac-
tions and simulators. The presented synchronization protocol
simulates delays without sacrificing simulation speed or
accuracy, enabling effective policy training in simulation
and subsequent transfer to real robots. We evaluated our
framework on two benchmark robotic tasks, demonstrating
its effectiveness in reducing the sim2real gap.

REFERENCES

[1] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to Walk
in Minutes Using Massively Parallel Deep Reinforcement Learning,”
in Proc. of the Conf. Robot Learning (CoRL), ser. Proceedings of
Machine Learning Research, vol. 164. PMLR, 08–11 Nov 2022,
pp. 91–100. [Online]. Available: https://proceedings.mlr.press/v164/
rudin22a.html

[2] J. Kooi and R. Babuska, “Inclined Quadrotor Landing using Deep
Reinforcement Learning,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 2361–2368.

[3] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint, 2018.

[4] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” Intl. Journal of Robotics Research (IJRR), vol. 40,
no. 4-5, pp. 698–721, 2021.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint, 2016.

[6] S. Höfer et al., “Sim2Real in Robotics and Automation: Applications
and Challenges,” IEEE trans. on Automation Science and Engineering,
vol. 18, no. 2, pp. 398–400, 2021.

[7] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic systems
architectures and programming,” Springer Verlag, pp. 283–306, 2016.

[8] D. Precup, Temporal abstraction in reinforcement learning. Univer-
sity of Massachusetts Amherst, 2000.

[9] M. Lucchi, F. Zindler, S. Mühlbacher-Karrer, and H. Pichler, “robo-
gym – An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[10] N. Lopez, Y. Leire, E. Nuin, E. Moral, L. Usategui, S. Juan, A. Rueda,
M. Vilches, R. Kojcev, and A. Robotics, “gym-gazebo2, a toolkit for
reinforcement learning using ROS 2 and Gazebo,” arXiv preprint, 3
2019. [Online]. Available: https://arxiv.org/abs/1903.06278v2

[11] I. Zamora, N. Lopez, V. Vilches, and A. Cordero, “Extending the
openai gym for robotics: a toolkit for reinforcement learning using
ros and gazebo,” arXiv preprint, 2016.

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), vol. 3. Kobe, Japan, 2009, p. 5.

[13] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), vol. 3, 2004,
pp. 2149–2154 vol.3.

[14] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2016–2021.

[15] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head First Design
Patterns: A Brain-Friendly Guide. ”O’Reilly Media, Inc.”, 2004.

[16] E. Derner, J. Kubalı́k, N. Ancona, and R. Babuska, “Constructing
parsimonious analytic models for dynamic systems via symbolic
regression,” Applied Soft Computing, vol. 94, p. 106432, 2020.

[17] G. Xylomenos and G. Polyzos, “TCP and UDP performance over a
wireless LAN,” in Proc. of the IEEE Conf. on Computer Communi-
cations (INFOCOM), vol. 2. IEEE, 1999, pp. 439–446.

[18] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker,
G. Powell, J. Schneider, J. Tobin, M. Chociej, and P. Welinder, “Multi-
goal reinforcement learning: Challenging robotics environments and
request for research,” arXiv preprint, 2018.

[19] S. James, Z. Ma, D. R. Arrojo, and A. Davison, “RLBench: The Robot
Learning Benchmark & Learning Environment,” IEEE Robotics and
Automation Letters (RA-L), 2020.

[20] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-
Critic Algorithms and Applications,” arXiv preprint, 2019.

[21] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” Journal on Machine Learning Research (JMLR), 2021.

[22] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, OpenAI, and W. Zaremba,
“Hindsight experience replay,” in nips, 2017.

[23] C. Hewitt, P. Bishop, and R. Steiger, “Session 8 formalisms for
artificial intelligence a universal modular actor formalism for artificial
intelligence,” in Advance Papers of the Conference, vol. 3. Stanford
Research Institute Menlo Park, CA, 1973, p. 235.

[24] H. Larsen, G. van der Hoorn, and A. Wa̧sowski, Reactive Pro-
gramming of Robots with RxROS, ser. Studies in Computational
Intelligence. Springer Verlag, 2021, vol. 6, pp. 55–83.

[25] M. Raynal, Concurrent programming: algorithms, principles, and
foundations. Springer Verlag, 2013.

[26] D. G. Messerschmitt, “Synchronization in digital system design,” IEEE
Journal on Selected Areas in Communications, vol. 8, no. 8, pp. 1404–
1419, 1990.

[27] T. Anderson, “The performance of spin lock alternatives for shared-
memory multiprocessors,” IEEE trans. on Parallel and Distributed
Systems, vol. 1, no. 1, pp. 6–16, 1990.

[28] C. Ptolemaeus, System design, modeling, and simulation: using
Ptolemy II. Ptolemy. org Berkeley, 2014, vol. 1.

[29] M. Mittal et al., “Orbit: A Unified Simulation Framework for Interac-
tive Robot Learning Environments,” IEEE Robotics and Automation
Letters (RA-L), pp. 1–8, 2023.

[30] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” https://drake.mit.edu, 2019.

[31] NVIDIA, “NVIDIA Isaac Sim,” 2022. [Online]. Available: \url{https:
//developer.nvidia.com/isaac-sim}

91

D5.4: Final report on deep robot action and decision making 92/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 93/131

G

Prioritizing States with Action Sensitive Return in
Experience Replay

Anonymous Author(s)
Affiliation
Address
email

Abstract

Experience replay for off-policy reinforcement learning has been shown to improve1

sample efficiency and stabilize training. However, typical uniformly sampled2

replay includes many irrelevant samples for the agent to reach good performance.3

We introduce Action Sensitive Experience Replay (ASER), a method to prioritize4

samples in the replay buffer and selectively model parts of the state-space more5

accurately where choosing sub-optimal actions has a larger effect on the return.6

We experimentally show that this can make training more sample efficient and that7

this allows smaller parametric function approximators – like neural networks with8

few neurons – to achieve good performance in environments where they would9

otherwise struggle.10

1 Introduction11

(a)
Replay buffer

data

(b)
Only on-policy

buffer data

(c)
Only decision

point buffer data

Figure 1: Toy maze environment where an agent moves
from start S to termination T. The agent can choose
which adjacent square to move to but can only move
back to the square where it came from if there is no
other valid action. The states sampled from a buffer of
transitions are shown in green. After convergence, with
normal experience replay the buffer will likely be filled
with states from the whole maze. Previous work focused
function approximator expressiveness on relevant states
by prioritizing on-policy data. We introduce a method to
prioritize “decision points” for the agent to further focus
this expressiveness.

Reinforcement learning aims to find a policy12

that maximizes cumulative reward. This is of-13

ten done through learning a compact represen-14

tation of the value of states or state-action pairs15

in an environment by interacting with it. How-16

ever, environment interactions can be costly and17

therefore necessitate efficient data use. Lin’s18

introduction of experience replay in reinforce-19

ment learning [13] promotes efficient use and20

reuse of collected experience. A replay buffer21

stores transition samples from environment in-22

teractions, aiding sample efficiency and stabi-23

lizing training [14, 15]. Typically, learning of24

the value function in off-policy reinforcement25

learning is approached like a supervised learn-26

ing problem where stochastic gradient descent27

is used to train function approximations such as28

neural networks. In supervised learning, data is29

usually sampled uniformly, however, for imbal-30

anced datasets there are techniques to change31

the sampling distribution [7]. With reinforce-32

ment learning, we have a similar issue as not every sample is equally relevant for the performance of33

the agent. Lambert et al. [12] showed that in model-based reinforcement learning, a model that better34

explains the transition data (with higher likelihood) does not necessarily allow a better policy to be35

found on it. There is an objective mismatch when training. This is also the case for a value function36

Submitted to 16th European Workshop on Reinforcement Learning (EWRL 2023). Do not distribute.

OpenDR No. 871449

in off-policy reinforcement learning with function approximators. A lower value function error on the37

contents of a uniformly sampled buffer does not necessarily mean a better policy will result from it.38

When using localized representations for the value network, such as in tabular reinforcement learning,39

replaying these irrelevant samples leads to computational overhead, but it does not impact the accuracy40

in the vital parts of the state-action space. However, many popular off-policy algorithms use global41

parametric function approximators like neural networks instead. Updates in irrelevant parts of the42

state-action space then yield a global effect, as these are often trained with stochastic gradient descent43

and minimize the mean square error across a batch of experiences [25]. Particularly in the case of44

smaller function approximators, such as neural networks with few neurons, the limited expressiveness45

that could have been allocated to model performance-critical areas is spent on inconsequential regions46

of the state-action space.47

Off-policy algorithms may therefore, despite their ability to learn from experiences under different48

policies, still be influenced by the sampling distribution and buffer content when using global function49

approximators. To illustrate this, consider an extreme case: an agent would not see any performance50

improvement if it is trained using a replay buffer that contains states that the agent would never51

come across during rollouts. Other works have limited replay of states and/or actions unlikely under52

the current policy, the “off-policyness”, which will reduce the replay of irrelevant samples and can53

improve performance [17, 23, 24]. However, just increased sampling of on-policy data does not54

prioritize what is really relevant: the importance of modeling these experiences accurately for the55

agent’s performance during evaluation. A toy example that shows how we would ideally focus the56

approximators’ expressiveness is shown in Fig. 1. In this example, an optimal policy could be learned57

with data from only 5 states while it is likely the replay buffer will contain data from all 30 states.58

In this paper, we define a modeling importance criterion that measures sensitivity on return of taking59

a suboptimal action and introduce Action Sensitive Experience Replay (ASER), a method to change60

the replay distribution to match this criterion for off-policy reinforcement learning algorithms that use61

a state-action value function. This allows us to focus the expressiveness of function approximators62

on important parts of the state-space. We argue that while fitting the observation distribution (i.e.63

minimizing the total modeling error of the data collected by the agent along its rollouts) might seem64

logical, it is likely not the best strategy to achieve the maximum return efficiently. Since this leaves65

deprioritized parts of the state-space with lower accuracy, we use n-step returns to bootstrap only to66

states that are adequately modeled. We experimentally show that we find sample efficiency and/or67

final performance gains: (i) in a simple case, such as the maze in Fig. 1 where importance is given,68

this effective reduction of the state-space allows for significant improvements, (ii) when we transfer a69

learned importance criterion from a previously trained policy, (iii) in some cases, when learning the70

importance criterion during training.71

2 Related Work72

There have been several different proposals for non-uniform sampling or reweighting of replay buffers.73

Some, like CER [27], add extra samples to a uniform sampled batch while others change the sampling74

distribution altogether. Most techniques are aimed to satisfy one of the following four objectives.75

Firstly, a common aim is to reduce the off-policyness of the selected samples for replay. This may76

improve learning speed and stability. Previous works estimate the off-policyness using importance77

weights [17] or multiple buffers [23] and then clip gradients or reweight experiences. In [24],78

off-policyness is instead reduced by sampling multiple batches and taking the most similar state79

distribution. Possible drawbacks of selecting mostly on-policy data are reduced robustness to policy80

or environment changes. Our approach does not prioritize on-policyness specifically, however, these81

approaches may work well together by further reducing the amount of modeled states.82

Another objective may be to prioritize samples that are modeled poorly by the value function.83

Previous works [4, 22] propose prioritizing the replay of experiences based on their TD-error, which84

is analogous to how unexpected the transition is to the value function. This may be beneficial to85

integrating new experience faster and, like our approach, will prioritize states where the value function86

is volatile but can potentially focus the limited expressiveness on irrelevant parts of the state-space87

(reducing the final performance and convergence rate).88

2

94

Heuristics can also be used to enforce good coverage of transition dynamics. For example, [20]89

introduce prioritized sampling based on Shannon’s entropy of the state space vector. Other variants90

include selecting on reward [10] and state coverage [9]. Some of these works may do the opposite91

of our approach and the works described before, as, instead of focusing replay, they often enforce a92

broader coverage of the state space. In some cases, this may be preferred to increase robustness to93

environment changes, avoid catastrophic collapse, or for transfer learning.94

Lastly, instead of using rules-based strategies to do prioritization, a learning-based approach to select95

experience from the buffer can be used. In [18, 26], training a replay policy to maximize the increase96

in cumulative reward by selecting transitions to train the agents’ policy on is proposed. An interesting97

observation in these works is that these learning methods prefer replaying recent, likely on-policy,98

data. These methods, however, cannot learn a prioritization similar to our approach as the learning99

methods do not have the information needed as input.100

Next to what the goal of prioritization is previous works differ in how they implement prioritization.101

The approach used by some works discussed here [17, 23] is reweighting errors to, for example, take102

larger update steps for more prioritized data. Instead, the sampling distribution can also be changed103

so more prioritized samples are seen more often [4, 20, 22]. With very large batch sizes and many104

update steps per new sample, these approaches will converge to effectively the same. Since this is105

often not the case we use the latter approach, however, reweighting may work too.106

Most works discussed here prioritize samples from a first-in-first-out buffer. Instead, works such as107

[9] change in what order data is removed from the replay buffer as they often have a limited capacity.108

While this may also benefit our approach, we only change how a fixed-size buffer is sampled, not109

how data is removed.110

Finally, our method makes use of n-step returns for off-policy reinforcement learning algorithms. A111

common way of accounting for the bias towards off-policy data introduced by n-step returns is by112

using importance sampling or tree backup [25]. We do not use these approaches as we argue our113

method naturally limits the impact of this bias (see Sect. 3.3).114

3 Action Sensitive Experience Replay (ASER)115

Q(a)

a

â*

(a) High importance

Q(a)

a

â*

(b) Low importance

Figure 2: Visualization of Q-functions over
actions where â∗ is the estimate of the opti-
mal action according to the policy. A good
importance metric differentiates these, even
though metrics like a second derivative may
locally be similar. The dotted red line shows
an approximation of this function, where a
scaled entropy or variance could be a good
metric, for example.

ASER aims to focus the expressiveness of function ap-116

proximators used in off-policy reinforcement learning by117

changing the sampling distribution of the replay buffer. To118

do this, our method consists of three additions to standard119

algorithms. Firstly, a formal definition of the modeling120

importance criterion based on the Q-function of the algo-121

rithm is given in Sect. 3.1. Then, this criterion is used to122

change the sampling distribution as described in Sect. 3.2.123

Lastly, due to the changed sampling distribution, we need124

to skip over some states when bootstrapping as described125

in Sect. 3.3. In Sect. 3.4 we show the implementation of126

ASER for SAC [8].127

3.1 Modeling Importance Criterion128

The modeling importance could be formalized in many129

ways, depending on reward distribution, action authority,130

etc. What is explored here is a measure to find areas of the131

state-action space where choosing a wrong action greatly132

affects the expected return for continuous state and action133

spaces. We define a function p : Rn → R+ that maps134

the state space s to the modeling importance. A possible135

modeling importance could be the norm of the second136

derivative of the Q-function to the action a at the optimal137

action. A highly negative concavity at the peak of the138

Q-function gives a local proxy for the rate of decrease in139

expected return when choosing a sub-optimal action. For140

3

95

multi-dimensional actions, a matrix norm of the Hessian could be used instead. However, there are141

multiple issues with using this definition as the modeling importance. It is often not trivial to find the142

peak of the Q function in continuous domains. Taking the estimated optimal action in actor-critic143

methods instead, for example, may not exactly coincide with the peak of the Q-function and therefore144

give inaccurate values. Even if the peak of the Q-function could be found, the concavity is a local145

metric. The second-order derivatives may be large while the total value decrease is small.146

Therefore, a less local metric for this value loss is needed. A solution to this is to approximate the147

Q-function over actions for every state with a tractable function where we could use metrics like148

entropy or variance. Fig. 2 shows examples of Q-functions where we would like a high difference149

in importance. The assumption here, however, is that the reinforcement learning algorithm used150

will model the reduction in expected return accurately. From experiments, we found that this is not151

generally the case. For example, we see that with ϵ-greedy exploration, DQN may find what the152

best action is but will likely not accurately model the value of selecting a sub-optimal action. On the153

other hand, maximum entropy reinforcement learning algorithms have a built-in incentive to find the154

sensitivity of their actions and perform more randomly in parts of the state space where the effect on155

the expected return is smaller.156

In Sec. 3.4, we show that the policy of a SAC agent already suits these needs well. However, a similar157

tractable approximation and exploration incentive could be implemented for other algorithms.158

3.2 Sampling Prioritization159

The modeling importance criterion is used to select what priority samples should be selected for160

replay. Similarly to PER [22], the selection is stochastic depending on the criterion and we introduce161

a hyperparameter α that scales the prioritization of samples. The chance of selecting a sample i is:162

P (i) =
pαi∑
k p

α
k

. (1)

Sweeping the entire buffer to select data is too computationally expensive, therefore their prioritization163

will be updated with the current criterion when they are sampled. New experience samples are164

introduced into the buffer with the maximum prioritization that exists inside the buffer. This prioritizes165

integrating new experiences quickly, although this effect is limited.166

Since PER’s prioritization criterion is based on the TD-error, which depends on what next state the167

transition ends up in, a bias will be introduced that needs to be annealed during training. PER does168

this using importance sampling. The modeling importance criterion we introduce only depends on169

the current state, which is independent of any stochasticity in the environment, which means we170

do not need this correction. We change the distribution of states that is replayed compared to the171

distribution of states that is seen by the agent during rollouts, this will introduce a bias in modeling172

errors but not in value convergence.173

3.3 Bootstrapping174

Typically, off-policy reinforcement learning algorithms use TD(0) updates to learn the Q-function.175

Here, the Q-function is bootstrapped to the value of the next state-action pair. The sampling176

prioritization may result in inaccurate modeling of this next state and these inaccuracies will then be177

pulled into the value estimation of states that do need accurate modeling. This is mainly an issue178

when there is a significant difference in modeling importance like in the maze environment from Fig.179

1.180

To account for this, transitions can be unrolled further along the trajectory that they came from to181

areas where the Q-function is modeled accurately using n-step returns. Rewards along this trajectory182

are added up and discounted. The bootstrap target of the initially replayed transition to a transition n183

steps away is as follows:184

Qtarg(s0,a0) = r0 + γr1 + γ2r2 + ...+ γn−1rn−1 + γnQ(sn, π(sn)) (2)

where the subscripts indicate the steps away from the initial transition along the trajectory of the185

transition. A visualization of this bootstrapping can be found in Fig. 3.186

4

96

(a) Standard bootstrap-
ping

(b) Importance n-step
bootstrapping

Figure 3: Bootstrapping visualized with arrows in the toy
maze environment. White states, which are not modeled
accurately due to the prioritized sampling, are skipped
when boostrapping to avoid pulling this badly modeled
data into the well-modeled green states.

The modeling importance criterion is used to187

decide whether the Q-function models a state188

well enough. We determine the criterion for an189

unprioritized batch and take a percentile of this190

batch as a threshold value b for bootstrapping.191

Since at the start of training the accuracy of the192

Q-values is low we increase this value during193

training.194

The k-th percentile target is determined as fol-195

lows:196

k = min(km, tks) (3)
where km is the maximum target percentile, t is197

the amount of training timesteps and ks is the198

target percentile slope. This results in a sim-199

ple bounded linearly increasing threshold. If200

the criterion is lower than this threshold, the Q-201

function is assumed to be inaccurate and the next transition in the trajectory is taken until a transition202

is equal to or higher than the threshold is found. A maximum bootstrap length h is used to bound the203

bootstrap distance when the criterion is low for many transitions in a trajectory.204

It is important to note this n-step bootstrapping will cause the bootstrap target to be dependent on the205

policy that collected it. A different policy may have taken a different trajectory by taking different206

actions and have collected different rewards. This will result in a bias towards older policies that are207

still in the buffer with off-policy reinforcement learning algorithms. There are ways to solve this, for208

example, with importance sampling or tree backup [25]. We argue, however, that this effect is limited209

since the policy dependency is only in areas where actions have a limited effect on the expected210

return. As soon as a state is encountered where a different policy would have a significant effect, it is211

used to bootstrap instead. A different policy would therefore only have a limited effect on the value212

of the bootstrap target.213

3.4 Implementation214

As explained in Sect. 3.1, we would like a tractable function to approximate the Q-function in order to215

find a more global metric for sensitivity. In SAC [8], the policy is modeled by a Gaussian distribution216

where the mean and standard deviation depend on the state. This mean and standard deviation are217

learned to minimize the KL divergence with a normalized exponential of the Q-function. This results218

in a global approximation of the sensitivity of the Q-function described by a Gaussian. Using the219

probability of the mode of this Gaussian works well to estimate the total sensitivity as it gives a220

combined metric when actions are multi-dimensional, but other metrics, like the determinant of the221

covariance matrix, may also work. A high probability of the mode will mean that the distribution is222

narrow, resulting in a fast reduction in value next to the optimal action.223

This results in the following modeling importance:224

p(s) = π(a|s), a = π̄(s) (4)

where π̄ is the “greedy” version of the policy, in this case, the mode of the Gaussian. We, therefore,225

implement our method for SAC to evaluate its effectiveness. One thing to note is that in SAC the226

Q-value target includes an entropy term. When using n-step returns these entropy terms will need to227

be added in a similar way to the rewards in Equation (2) to get consistent results.228

The complete algorithm for ASER is described in Algorithm 1. ASER can be used as a replacement229

for uniform sampling used in other reinforcement learning algorithms if a good importance criterion230

can be found. We use a replay buffer of transition tuples state s, actions a, reward r, next state s′231

and end of episode (or done flag) d with prioritization p. For every gradient step, ASER will modify232

the batch of transitions before they are used in the normal gradient step of the algorithm. The only233

change that needs to be done to the algorithm it is implemented on is that any bootstrapping will need234

to be discounted according to the bootstrap length used by ASER, so with γn instead of simply γ.235

Other than updating the prioritization the buffer contents are not modified.236

5

97

Algorithm 1: ASER
Input: Replay buffer D of samples T = (s,a, r, s′, d) with prioritization p, training timesteps t
Parameters :Maximum horizon h, maximum target percentile km, target percentile slope ks,

discount factor γ
1 for each gradient step do
2 Sample with P (i) = pαi /

∑
j p

α
j a batch of transitions B = {(s,a, r, s′, d)i} from D;

3 b← top k-th percentile of p(s′) for every T ∈ B, where k = min(km, tks);
4 for each T = (s,a, r, s′, d)i ∈ B do
5 n← 1;
6 while p(s′) < b and not d and n < h do
7 (r̂, ŝ′, d̂)← from next transition in trajectory from buffer D;
8 Modify T with: r ← r + γnr̂; s′ ← ŝ′; d← d̂;
9 n← n+ 1;

10 end
11 end
12 Normal gradient step with batch B of modified transitions T with bootstrap discount γn;
13 Update in D prioritization p for every T ∈ B with p(s);
14 end

4 Results237

In the following section, we introduce the setup of our experiments and the Maze environment in238

Sect. 4.1 and then show the effect of ASER on this environment in Sect. 4.2. Results that show239

the dependency on reward function or environment definition and an ablation study of the sampling240

prioritization and n-step bootstrapping are given in Sect. 4.3.241

4.1 Maze environment and experiment setup242

We test ASER within a maze four time larger than that represented in Fig. 1 and 3. In this environment,243

the agent must move from start S to termination T. The agent can move to adjacent squares, but may244

only return to the square it came from if there is no other valid action, i.e., when reaching a dead-end.245

Therefore, in many states, the chosen action will have no effect, as every action leads to the same246

next state, but in some choosing the wrong action will result in the agent eventually reaching a dead247

end. This means that the neural network only needs to model these decision-sensitive areas and can248

ignore the other states. SAC is continuous in state and action space and this environment is discrete.249

Therefore, states are mapped uniformly onto a continuous axis between 0 and 1. For the action space,250

four valid actions [UP, DOWN, LEFT, RIGHT] are defined and mapped to the values [0, 0.25, 0.5,251

0.75]. The agent can opt for an action as a continuous value within the range [0, 1], which is then252

mapped to the nearest valid action. For instance, should the agent choose a value of 0.4 with only253

[UP, RIGHT] as valid options, the outcome will be a RIGHT action. We initially show the maze254

with a reward function where a penalty is applied every time the agent reaches a dead end. Since255

the reward function has a significant effect on ASER, in Sect. 4.3 we also show the effect when the256

reward is given when reaching the end of the maze linearly decreasing with the timesteps spent to get257

to the end.258

To show the effectiveness of only learning action-sensitive parts of the state space, we also compare259

the effect of our method with prior information about the sensitivity of actions. To do this, we create260

an “oracle” that has perfect information about the sensitivity of actions. This oracle is used instead of261

the modeling importance metric p(s) from Equation (4), where a decision point has an importance of262

1 and all other states have an importance of 0. Another way to use prior information is to use the263

importance criterion from a previously trained policy instead of learning it while training.264

We build upon the algorithm implementations of Stable Baselines 3 [19]. To create a fair comparison265

we run hyperparameter optimization for every algorithm on the shown environments. For this, we use266

Optuna [2] and maximize the sum of the average total reward of multiple rollouts in the evaluation267

environment during training to optimize for speed of convergence and final performance. Tables268

with all hyperparameters, both optimized values and SB3 defaults, can be found in Appendix A. We269

6

98

Figure 4: Sample efficiency comparison between SAC
with standard replay, PER, ASER with an online
learned importance criterion, and ASER with an impor-
tance criterion from an “oracle” on the Maze environ-
ment with a small, 24-neuron actor and critic network

Figure 5: Sample efficiency comparison between SAC
with uniform sampling, PER, and ASER with an online
learned importance criterion on the Maze environment
with a two-layer 256-neuron actor and critic network.

present all the sample efficiency graphs according to the recommendations of Agarwal et al. [1],270

using the interquartile mean with a 95% stratified bootstrap confidence interval from 16 training runs.271

4.2 ASER on Maze environment272

In Fig. 4 we show the sample efficiency curves for SAC with standard experience replay, Prioritised273

Experience Replay, ASER with a learned selection criterion, and ASER with the oracle. All of these274

agents use a small, 24-neuron policy and critic network. SAC with standard replay struggles to275

reliably converge in the Maze environment with these small networks, even after hyperparameter276

optimization. It appears that at some point additional training samples no longer improve the agent’s277

performance. A possible reason for this is that too much of the limited expressiveness of the neural278

network is used to model parts of the state-space with no impact on performance, as actions do279

not affect return there. Filling the replay buffer with more data will not be beneficial, as the neural280

network needs to filter out portions of these data to effectively incorporate it. When ASER has access281

to the oracle it only replays and bootstraps to decision points in the maze. With this oracle, we see a282

large increase in sample efficiency.283

Figure 6: Sampling count
relative to uniform with
ASER in the Maze envi-
ronment where blue is less
sampling and red is more
sampling than uniform.

Figure 7: Bootstrap dis-
tance with ASER for the
Maze environment where
darker is a shorter dis-
tance. E.g. in the top row,
bootstrapping distance de-
creases with the distance to
the decision point.

When the modeling importance criterion is not284

given, and therefore learned while training, we285

still see an improvement in performance against286

uniform sampling. ASER more quickly and con-287

sistently converges to the best policy. Since the288

importance now needs to be estimated by inter-289

acting with the environment performance picks290

up later compared to the oracle. PER struggles291

in this environment, with performance slightly292

below uniform sampling. Fig. 5 shows that293

when training a larger network of two layers of294

256 neurons there is still a significant sample ef-295

ficiency, stability, and final performance gain for296

ASER compared to standard experience replay297

and PER, but the effect is smaller than with a298

small network. In general, this increased expres-299

siveness allows for more sample-efficient and300

stable learning compared to the smaller network.301

7

99

Figure 8: Sample efficiency comparison between abla-
tions of SAC ASER on the Maze environment.

In Fig. 6 and 7 we show, respectively, the sam-302

pling prioritization and the variable step boot-303

strapping of ASER with learned importance. In304

the best case, these should reflect Fig. 1c and 3b.305

We see very similar behavior in the sampling,306

where decision points have been learned and are307

prioritized, although with some effect on nearby308

states. The bootstrapping figure is less clear but309

gives a similar picture, especially in the bottom310

and top rows it is clear that it is bootstrapping to311

decision points and termination as the distance312

lowers the closer we get to these points.313

4.3 Ablation and limitations314

(a) Sparse reward (b) Denser reward

Figure 9: Comparison of the value function (top) and
probability of the mode (bottom) between a sparse dis-
counted reward at termination and a denser reward with
a penalty each time the agent encounters a dead end. In
the denser reward scenario figures (right), there is more
immediate feedback resulting in a clearer difference in
next state value at decision points and therefore a more
accurate importance metric.

Sample efficiency curves for ablation of both315

prioritization and n-step bootstrapping with a316

predetermined importance criterion are shown317

in Fig. 8. We see that the most significant318

efficiency improvement comes from variable319

step bootstrapping, with a smaller improvement320

from the prioritization. Both features are needed321

to properly “compress” the environment and322

achieve stable convergence. We also show the323

effect of fixed 10-step returns to make sure the324

performance improvements shown are not only325

caused by this longer return. 10-step returns326

were chosen using parameter optimization as ex-327

plained in Sect. 4.1. Somewhat surprisingly 10-328

step SAC with uniform sampling still performs329

well even though this will introduce bias in the330

value estimation to older policies in the buffer331

without importance sampling or tree backup.332

In order for ASER to learn a good importance,333

there must be a significant change in value be-334

tween actions. This can depend heavily on how335

the reward function is defined. In Fig. 9 we show336

two of the same mazes, where one receives only337

a reward at the end and one receives a penalty338

each time it needs to turn around. In the former, ASER does not improve performance as shown in339

Fig. 10 due to the smaller difference in value, resulting in less clear differences in the importance340

criterion.341

In the Pendulum environment from OpenAI Gym [5], performance differences are smaller, however,342

some increased sample efficiency can still be achieved with pretraining, as shown in Fig. 11. Online343

learned ASER is unable to achieve performance gains, possibly due to being unable to stably learn the344

importance criterion. In classical control environments, such as the shown Pendulum environment,345

the difference in importance between states is less clear than in the Maze environment. In these346

environments, the importance can also depend more on the policy. Especially when pretraining this347

may have a detrimental effect on performance as the newly trained policy may find a different path348

through the state space making different states important to the agent.349

8

100

Figure 10: Sample efficiency comparison between SAC
with uniform sampling, PER, and ASER with an online
learned importance criterion on the Maze environment
with a sparse reward function.

Figure 11: Sample efficiency comparison between SAC
with uniform sampling, PER, ASER with an online
learned importance criterion, and ASER with a pre-
trained importance criterion on the Pendulum environ-
ment with a small, 24-neuron actor and critic network.

5 Conclusion350

In this paper, we have presented Action Sensitive Experience Replay (ASER) which changes the351

experience replay distribution to prioritize states where the return is especially sensitive to non-optimal352

actions. This strategic reallocation of modeling resources enables parametric function approximators353

– such as neural networks – to focus their limited expressiveness on regions of the state-space that are354

most relevant for the agent’s performance.355

Our findings show improvements in sample efficiency, stability, and final performance, particularly356

when the action’s sensitivity is either known in advance. When learning the sensitivity during training357

or carrying the sensitivity over from a previously trained policy we still observed some improvements.358

The improvements are more pronounced when the number of parameters in the function approximator359

is constrained. In order to achieve these performance improvements, our method does require360

environments to have rewards shaped in a way that results in clear changes in the value in some states361

By making reinforcement learning agents model just the important parts of the state-space it could362

be possible for them to learn good policies in larger state-spaces without increasing the size of363

the function approximators used in the learning algorithm. Allowing smaller neural networks to364

achieve good performance may help with multi-task reinforcement learning. For example, in policy365

distillation [21] the policy of a large network is extracted to train a smaller, more efficient network, a366

step that may be omitted with a method similar to ours. Another possible application of our method367

is in transfer learning and specifically sim-to-real transfer. It is possible that transferring a pretrained368

importance criterion is more robust to environmental changes than the learned policy which can be369

prone to overfitting to the simulator dynamics [6, 11, 16].370

We realize that the evaluation of our method is limited to a small number of environments in this371

paper. A larger study may give a better overview of the implications and possible limitations of our372

method. As shown, environments with clear differences in importance benefit most from our method.373

Therefore, we expect that some environments in the Atari 2600 benchmark suite [3] would work well374

with our method. This, along with an implementation on a discrete action-space algorithm like DQN,375

would be an interesting direction for future development.376

9

101

References377

[1] Rishabh Agarwal et al. “Deep Reinforcement Learning at the Edge of the Statistical Precipice”.378

In: Advances in Neural Information Processing Systems (2021).379

[2] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimization Framework”.380

In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery381

and Data Mining. 2019.382

[3] Marc G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for383

General Agents”. In: CoRR abs/1207.4708 (2012). arXiv: 1207.4708. URL: http://arxiv.384

org/abs/1207.4708.385

[4] Marc Brittain et al. “Prioritized Sequence Experience Replay”. In: CoRR abs/1905.12726386

(2019). arXiv: 1905.12726. URL: http://arxiv.org/abs/1905.12726.387

[5] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.388

[6] Rodney A Brooks. “Artificial life and real robots”. In: Proceedings of the First European389

Conference on artificial life. 1992, pp. 3–10.390

[7] Mikel Galar et al. “A Review on Ensembles for the Class Imbalance Problem: Bagging-,391

Boosting-, and Hybrid-Based Approaches”. In: IEEE Transactions on Systems, Man, and392

Cybernetics, Part C (Applications and Reviews) 42.4 (2012), pp. 463–484.393

[8] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement394

learning with a stochastic actor”. In: International conference on machine learning. PMLR.395

2018, pp. 1861–1870.396

[9] David Isele and Akansel Cosgun. “Selective experience replay for lifelong learning”. In:397

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.398

[10] Max Jaderberg et al. “Reinforcement Learning with Unsupervised Auxiliary Tasks”. In: Inter-399

national Conference on Learning Representations. 2017.400

[11] Nick Jakobi, Phil Husbands, and Inman Harvey. “Noise and the reality gap: The use of simula-401

tion in evolutionary robotics”. In: Advances in Artificial Life: Third European Conference on402

Artificial Life Granada, Spain, June 4–6, 1995 Proceedings 3. Springer. 1995, pp. 704–720.403

[12] Nathan Lambert et al. “Objective Mismatch in Model-based Reinforcement Learning”. In:404

Learning for Dynamics and Control. PMLR. 2020, pp. 761–770.405

[13] Long-Ji Lin. “Self-Improving Reactive Agents Based On Reinforcement Learning, Planning406

and Teaching”. In: Machine learning 8 (1992), pp. 293–321.407

[14] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature408

518 (2015).409

[15] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR410

abs/1312.5602 (2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.5602.411

[16] Stefano Nolfi and Dario Floreano. Evolutionary robotics: The biology, intelligence, and412

technology of self-organizing machines. MIT press, 2000.413

[17] Guido Novati and Petros Koumoutsakos. “Remember and forget for experience replay”. In:414

International Conference on Machine Learning. PMLR. 2019, pp. 4851–4860.415

[18] Youngmin Oh et al. “Learning to Sample with Local and Global Contexts in Experience Replay416

Buffer”. In: CoRR abs/2007.07358 (2020). arXiv: 2007.07358. URL: https://arxiv.org/417

abs/2007.07358.418

[19] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”.419

In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8.420

[20] Mirza Ramicic and Andrea Bonarini. “Entropy-based prioritized sampling in deep Q-learning”.421

In: 2017 2nd international conference on image, vision and computing (ICIVC). IEEE. 2017,422

pp. 1068–1072.423

[21] Andrei A Rusu et al. “Policy distillation”. In: arXiv preprint arXiv:1511.06295 (2015).424

[22] Tom Schaul et al. “Prioritized Experience Replay”. In: International Conference on Learning425

Representations (ICLR). 2016.426

[23] Samarth Sinha et al. “Experience replay with likelihood-free importance weights”. In: Learning427

for Dynamics and Control Conference. PMLR. 2022, pp. 110–123.428

[24] Peiquan Sun, Wengang Zhou, and Houqiang Li. “Attentive experience replay”. In: Proceedings429

of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5900–5907.430

10

102

[25] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,431

2018.432

[26] Daochen Zha et al. “Experience replay optimization”. In: Proceedings of the 28th International433

Joint Conference on Artificial Intelligence. 2019, pp. 4243–4249.434

[27] Shangtong Zhang and Richard S. Sutton. “A Deeper Look at Experience Replay”. In: CoRR435

abs/1712.01275 (2017). arXiv: 1712.01275. URL: http://arxiv.org/abs/1712.01275.436

A Hyperparameters437

Table 1: Optimized Hyperparameters Values Maze Small Network

Standard PER ASER Oracle ASER

λ Learning Rate 2.480e−2 5.192e−2 1.594e−2 3.215e−2

γ Discount Factor 9.770e−1 9.549e−1 9.358e−1 9.5267e−1

τ Target Smoothing Coefficient 1.914e−3 9.203e−2 1.965e−2 7.399e−2

α Sample Prioritization - 3.414e−1 1.409e−1 1.032

h Max Bootstrap Length - - 6 8
km Bootstrap Target Percentile Maximum - - 73.54% 85.06%
ks Bootstrap Target Percentile Slope - - 5.457e−1 4.457e−1

Table 2: Optimized Hyperparameters Values Maze Large Network

Standard PER ASER Oracle ASER

λ Learning Rate 1.439e−2 1.350e−2 3.904e−3 1.725e−2

γ Discount Factor 9.696e−1 9.097e−1 9.827e−1 9.226e−1

τ Target Smoothing Coefficient 1.013e−2 3.151e−2 7.655e−2 5.741e−2

α Sample Prioritization - 9.473e−2 3.593e−1 5.384e−1

h Max Bootstrap Length - - 8 11
km Bootstrap Target Percentile Maximum - - 71.87% 39.73%
ks Bootstrap Target Percentile Slope - - 1.739e−2 9.736e−1

Table 3: Optimized Hyperparameters Values Maze Reward at Termination

Standard PER ASER

λ Learning Rate 1.246e−2 3.106e−2 1.935e−3

γ Discount Factor 9.599e−1 9.821e−1 9.720e−1

τ Target Smoothing Coefficient 1.536e−2 8.151e−2 6.833e−2

α Sample Prioritization - 3.908e−1 1.501e−1

h Max Bootstrap Length - - 17
km Bootstrap Target Percentile Maximum - - 43.31%
ks Bootstrap Target Percentile Slope - - 6.508e−4

11

103

Table 4: Optimized Hyperparameters Values Pendulum

Standard PER ASER Pretrained ASER

λ Learning Rate 3.281e−2 1.200e−2 2.196e−2 5.365e−2

γ Discount Factor 9.357e−1 9.447e−1 9.244e−1 9.273e−1

τ Target Smoothing Coefficient 7.518e−2 2.538e−3 6.764e−2 4.648e−2

α Sample Prioritization - 2.538e−1 1.829e−1 1.961e−1

h Max Bootstrap Length - - 2 1
km Bootstrap Target Percentile Maximum - - 77.05% 69.57%
ks Bootstrap Target Percentile Slope - - 1.444e−3 1.064e−4

Table 5: Stable Baselines 3 Defaults

Replay Buffer Size 1e6

Env. Steps Before Learning Starts 100
Batch Size 256
Gradient Steps Per Env. Step 1
Entropy Coefficient Learned
Target Entropy -1

12

104

D5.4: Final report on deep robot action and decision making 105/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 106/131

H EValueAction: a proposal for policy evaluation in simula-
tion to support interactive imitation learning

EValueAction: a proposal for policy evaluation in
simulation to support interactive imitation learning

Fiorella Sibona∗, Jelle Luijkx†, Bas van der Heijden†, Laura Ferranti†, Marina Indri∗
∗ Dipartimento di Elettronica e Telecomunicazioni (DET) - Politecnico di Torino, Italy

{fiorella.sibona, marina.indri}@polito.it
† Cognitive Robotics department (CoR) - Delft University of Technology, The Netherlands

{j.d.luijkx, d.s.vanderheijden, l.ferranti}@tudelft.nl

Abstract—The up-and-coming concept of Industry 5.0 fore-
sees human-centric flexible production lines, where collaborative
robots support human workforce. In order to allow a seamless
collaboration between intelligent robots and human workers,
designing solutions for non-expert users is crucial. Learning from
demonstration emerged as the enabling approach to address such
a problem. However, more focus should be put on finding safe
solutions which optimize the cost associated with the demonstra-
tions collection process. This paper introduces a preliminary out-
line of a system, namely EValueAction (EVA), designed to assist
the human in the process of collecting interactive demonstrations
taking advantage of simulation to safely avoid failures. A policy
is pre-trained with human-demonstrations and, where needed,
new informative data are interactively gathered and aggregated
to iteratively improve the initial policy. A trial case study further
reinforces the relevance of the work by demonstrating the crucial
role of informative demonstrations for generalization.

Index Terms—Human-centered manufacturing, Learning from
Demonstration, Interactive imitation learning, Simulation

I. INTRODUCTION AND STATE OF THE ART

In recent years, the Industry 4.0 paradigm introduced some
impactful technologies for the industrial workflow. Among
these, Artificial Intelligence (AI) at large laid the foundations
for implementing intelligent autonomous agents. Indeed, ma-
chine and deep learning algorithms coupled with smart sensors
led to advanced human-robot perception, enabling new ways
to attain safe and effective collaboration [1]. Also, simulation
and virtual representations of physical systems are becoming a
valuable tool to get insights on assets behaviour and to enable
powerful industrial digital twins [2], [3].

Moreover, collaborative robots can help humans streamline
the manufacturing process. However, human complex and
creative reasoning is yet to be achieved by machines. Thereby,
current and fore-coming research is investigating a human-
centric vision of production lines, the so-called Industry 5.0,
where more sustainable and value-driven production processes
are created giving greater relevance to human skills [4].
When considering human-robot collaborative applications, the
cognitive mismatch between a collaborative robot (cobot) and
a human worker can be narrowed using AI, enabling the robot
to interpret and adapt to the worker’s behaviour. Nevertheless,
the user is typically required to have the expertise necessary to
understand and change the robot’s behaviour. This limitation
can be overcome by exploiting Learning from Demonstration

The authors would like to thank Anna Mészáros and Giovanni Franzese,
both with the CoR department at Delft University of Technology, for the
invaluable support provided during algorithm adaptation to the case study.
This work was supported by the European Union’s H2020 project Open Deep
Learning Toolkit for Robotics (OpenDR) under grant agreement #87144.

(LfD), or imitation learning (IL), where a human teacher
demonstrates to the robot how the task should be executed.

Among the issues affecting LfD we have: (i) dataset bias,
linked to the teacher-specific behaviour or the lack of variety
of demonstrated situations and, (ii) overfitting, caused by too
fine-tuned models or data scarcity in terms of the number of
provided demonstrations. These issues hamper the generaliza-
tion, or extrapolation, capability of LfD algorithms, resulting
in undesired behaviour whenever new situations are met. To
avoid such problems, the human would be required to (i)
know how to offer informative and unbiased demonstrations,
provided in heterogeneous set of situations, and (ii) identify
and provide a sufficient number of demonstrations. This results
in additional mental and physical effort on the human teacher
side. The time that the human spends on performing demon-
strations can be foreseen to be included in the future non-
value adding activities, i.e., activities hindering the transition
towards lean manufacturing paradigms [5]. Also, the authors
of [6] point out that robot learning metrics should focus on
time efficiency, to better reflect the true cost for humans.

Therefore, achieving generalization with few informative
demonstrations is one of the main drivers of research in the
field of LfD. What emerged from the analysed literature is that,
independently of the inherent generalization capability of the
proposed methods, the quantity and quality of demonstrations
greatly impact the achievable extrapolation. It is then possible
to derive two main objectives to reduce the cost of generaliza-
tion (from the human point of view): reduce the number and
improve the quality of demonstrations.

The following works aim at improving generalization while
keeping a low number of demonstrations. Some works try to
achieve adaptability by incorporating into the model a set of
task variables describing the context under which demonstra-
tions were performed [7], or conditioning the learning pro-
cess on different information sources conveying the task [8].
Other works exploit dataset augmentation to achieve policy
improvements for learning task-parameterized skills without
increasing the number of demonstrations, such as [9], in which
noise is added on recorded paths, and [10] where generated
synthetic data are added to the dataset. Several other works,
as [11] and [12], take advantage of reinforcement learning
(RL) to explore and adapt the model to new situations, after
a first phase learning from few demonstrations. In [13], goal
proximity is used as a dense reward for the agent training.

Moreover, human demonstrations quality can affect the
ability to achieve good extrapolation [14]. In fact, obtaining
high-quality demonstrations and providing a definition for

20
23

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 In

du
st

ria
l I

nf
or

m
at

ic
s (

IN
D

IN
) |

 9
78

-1
-6

65
4-

93
13

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

D
IN

51
40

0.
20

23
.1

02
18

25
1

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

OpenDR No. 871449

such quality appear among the most critical challenges when
learning from offline human data [15], [16]. Nevertheless,
some works try to exploit all available demonstrations, inde-
pendently of their quality, to exploit a larger number of data. In
[17], the proposed framework learns a well-performing policy
also including confidence-reweighted non-optimal demonstra-
tions. The method proposed in [18] computes a generalized
trajectory from all demonstrations, while the authors of [19]
fully exploit the demonstrations dataset to build a composi-
tional task latent representation space.

The similarity-aware framework presented in [20], evaluates
different representations based on a defined similarity, and then
provides the user with the most similar reproduction of the
demonstrated skill for unseen conditions. Also, the authors
of [21] aim at extending the extrapolation capabilities of IL
methods by means of virtual demonstrations, generated with
the invariants method, to represent a better consistency and
quality alternative to human demonstrations.

The quality and quantity of demonstration goals for good
generalizing policies can be attained by a system seeking to
guide the user’s demonstrations interactively. In Interactive
Imitation Learning (IIL) human demonstrations are periodi-
cally provided during robot execution. Compared to standard
IL training, IIL can be more sample-efficient since demonstra-
tions, in this context known as feedbacks, corrections, or inter-
ventions, are also collected while executing the novice policy,
rather than the teacher’s policy alone [22]. The method in [23]
exploits the epistemic and aleatoric uncertainty information
to detect ambiguities in the feedbacks to support the process
of finding the best learning samples. The algorithm in [24]
exploits topological persistence to detect ambiguity in a trained
policy, in order to query user demonstrations only if needed,
avoiding to gather demonstrations for known situations. A
family of robot-gated IIL methods, stemming from DAgger
[25], allows the agent to query a teacher intervention accord-
ing to estimations of quantities related to task performance
and uncertainty [26], [27]. In particular, ThriftyDAgger [28],
considers the state novelty and the state risk of task failure to
trigger corrections, given a budget of human interventions.

The EValueAction (EVA) framework, whose concept idea
is introduced in this paper, has been designed to represent
a support for the interactive learning process by guiding the
user towards the most informative demonstrations. A state risk
of failure is inferred by computing in simulation an estimate
of its value function, given the executed policy. This way,
new demonstrations are queried where needed, and failures
are foreseen and prevented before acting in the real world,
improving safety. Also, the case study thoroughly analysed
in this paper provides a clear display of the dependence of
generalization on the teacher expertise and resulting demon-
strations’ execution. The remainder of this paper is organized
as follows: Section II describes the case study that brought to
the research idea. Then Section III outlines the concept EVA
system, followed by a possible solution for policy evaluation
in simulation. Finally, Section IV draws some conclusions and
sketches future research directions.

II. PRELIMINARIES

Before outlining the proposed EVA system, it is worth
describing the case study that brought to the concept idea.

Given the following problem contextualization, the assump-
tions and trials outcomes are reported. In the context of flexible
manufacturing, the collaborative assembly task represents a
manufacturing operation of high practical relevance: the robot
is typically allocated repetitive or power demanding tasks,
while the human performs highly dexterous operations [29].
In such tasks, being able to adapt to new situations is crucial,
as the workspace configuration and the positions and shapes
of assembly parts often vary. Following the assembly task
subdivision introduced in [30], we consider an approaching
phase and an assembling phase. The authors perform such
division in order to prevent the potential under-fitting caused
by the variability of the demonstration data between the two
assembly stages. In particular, the approaching phase is the one
most affected by environment constraints and configuration of
parts. As such, this stage would take the most advantage from
an IL algorithm with good generalization capabilities learning
from few demonstrations. Therefore, we consider a human
teaching a cobot how to perform a desired approaching phase.
For example, we can imagine a peg-in-hole collaborative
assembly task, where the approaching phase can be reduced
to a pick-and-place or hovering task.

As extensively reported, improving generalization is widely
tackled by researchers, as poor generalization capabilities is
a common issue in IL. The case study described hereafter
provides a clear idea of how generalization capabilities of IL
methods can be greatly affected by the way demonstrations
are performed.

1) A simplified learning scenario: For the execution of the
trials, we have taken advantage of the algorithm presented
in [31]. Specifically, we exploited the Interactive Learning
of Stiffness and Attractors (ILoSA) framework to learn at-
tractors only from kinesthetic demonstration, without taking
advantage of the interactive part. In ILoSA, the confidence
level provided by the use of Gaussian Processes (GPs) allows
to detect when the cobot lands on an unknown state, and
is exploited to implement a stabilizing attractive field to
lead the robot towards minimum variance regions. As ILoSA
recorded demonstrations within a global frame, generalization
was limited around the visited states. Hence, we borrowed the
general idea of using local reference frames, as hinted in [32],
to be able to test over different final positions.

In summary, we exploited ILoSA to learn from human
demonstrations the attractor distance for the robot impedance
control, learned with respect to the final position reference
frame. The focus of the trials was on reaching as many new
goals as possible with one single informative demonstration.

2) Demonstrations setup: The demonstrations and trials
have been performed on a 7 DOF Franka-Emika Panda with an
impedance controller and a ROS communication network. The
demonstration consisted in moving the robot from a reference
home position to a final position of interest. For our approach-
ing phase scenario, we assume that an assembly part is picked
from some location and brought to the reference home position
at each assembly task iteration. Then the final desired position
(before assembly stage) is reached exploiting the learned
policy. As expected, the employed IL algorithm was able to
generalize in the neighbourhood of a demonstrated trajectory
task. Therefore, to check the generalization behaviour over

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

107

(a) Points of interest in rviz. (b) Real setup.

Fig. 1: Four goals of interest on the working plane have been chosen
for the generalization check trials.

(a) (b)

(c) (d)

Fig. 2: Medium expertise demonstration on D.

destination points relatively far from the demonstrated one,
we have chosen four goals of interest (Figure 1).

a) Automatic demonstration recording: The ILoSA
Jupyter interactive Python code has been modified so as to
interactively input a final goal point to accordingly name saved
data and trained GPs models files/structures, while automat-
ically generating a .txt file to keep track of the tests and
relative outcomes. Also, after recording, the produced code
lets iteratively test the learned policy over the set of interest
points. This procedure allowed for faster data collection and
consultation.

3) Trials outcomes: The execution of several trials allowed
to identify three relevant cases that we describe hereafter.
Assumption: after trials, demonstrations with points A and B
as final destination turned out to be the least generalizing thus
are not considered as demonstration points.

a) Medium expertise demonstration: Destination hover-
ing point is one among A, B, C, and D (refer to Figure 2). A
human teacher performed a demonstration with the position
above point D as the final position to be reached (Figure 2a).
Note that the height recorded during the single demonstration

(a) (b)

(c) (d)

Fig. 3: Expert demonstration on T.

was kept as a hovering height for all worktable points set
as desired goals. After the policy training, the motion was
learned in the local reference frame leading to areas with high
confidence for each final goal, as shown in Figure 2b. When
the policy was tested on all the points of interest, it generalized
well on A and B, since the IL algorithm attracted the robot
towards the high confidence areas thanks to its stabilization
prior (Figure 2c). Then, when A was the input for policy
testing, the cobot was able to reach it (Figure 2d).

b) Expert knowledge demonstration: Destination hov-
ering point is not among the points of interest (Figure 3).
An expert human teacher, well aware of the IL algorithm
behind the training process, demonstrated a motion to reach
the position above an empirically chosen test point T (Figure
3a), which intuitively would have allowed the trained policy to
generalize on all points of interest. Indeed, after GPs training,
the policy generalized on A, B, C and D (Figure 3b–3d). Note
that, in this case, the generalization capability is influenced by
the specific motion shape and the stabilization fields, since,
depending on both, the robot may or may not be attracted to
the locally learned motion.

c) Little knowledge demonstration: We then let a human
teacher kept unaware of the underlying IL algorithm demon-
strate a motion towards D. As the human teacher did not
have any information on the influence the motion shape would
have had on the generalization capability, the resulting policy
surprisingly didn’t generalize on the other points of interest,
learning the motion to hover on D only. Note that the human
teacher had expertise in robotics but no information on the
learning process.

4) Main takeaways: The performed trials then brought out
that with an expert teacher, able to infer the most informa-
tive demonstrations with the aim of generalization, a single
demonstration could be sufficient to generalize over four points

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

108

of interest and their neighbourhoods (plus the testing point
for demonstration and relative neighbourhoods). Conversely,
if the user is non-expert, with one demonstration only one
task would be learned. Independently of the used LfD method
and the simplicity of the learning scenario, this gave some
intuitions on how robots can help to improve demonstration
quality and reduce demonstration quantity. Namely, as the ma-
chine is well aware of the policy, it can give some suggestions
on where new demonstrations would be most informative and
potentially perform virtual demonstrations, thereby reducing
the number of demonstrations demanded to the human. This
led to the idea of exploiting simulation for policy evaluation,
which in turn would also improve safety during collaboration.

III. THE EVALUEACTION (EVA) SYSTEM

The proposed system, EVA, seeks to provide a framework
to guide the human teacher during the interactive demon-
strations to improve the generalization over new states of a
learned policy. The main elements of the system would be:
(i) the LfD method of choice, (ii) automatic recording of
demonstrations to populate a dataset, (iii) a policy evaluation
algorithm exploiting a digital twin, (iv) human-robot interface
for bidirectional information exchange.

The overall goal is to let the robot successfully perform a
task by taking actions a ∈ A, given observations o ∈ O,
where A and O are the robot’s action and observation spaces,
respectively. These actions could, for example, be reference
end-effector configurations, while observations could comprise
joint angle measurements and camera images. These observa-
tions result from states s ∈ S, i.e., o = O(s) where S is
the state space and O the observation mapping O : S → O.
We make this distinction between states and observations,
since full state information is often not available in real world
scenarios. Since actions follow from observations, the aim is
to find a policy π (which is a mapping from observations to
actions, i.e., π : O → A) such that a task is performed success-
fully. Furthermore, we would like this policy to be successful
starting from a set of initial states s0 ∈ S0 ⊂ S. That is to
say, the robot policy does not have to be successful starting
from all possible states, but should be performing well for
the actual distribution over initial states it encounters, which
we denote by p(s0). Furthermore, successful completion of a
task can be determined by defining a goal state set Sg ⊂ S .
Note that goals could be dynamic and part of the state s. We
can quantify the optimality of a policy by defining a reward
function R(s). Given the reward function, we can define the
value of a state [33]:

Vπ(s) = Eπ

[∞∑

k=0

γkR(st+k+1)

∣∣∣∣∣st = s

]
, (1)

where Eπ[·] is the expected value given that policy π is
executed, t is any time step and γ is the discount rate with
0 ≤ γ ≤ 1. Intuitively, the value of a state says how well the
policy performs on average starting from that state following
policy π. We define the optimal policy π∗ as the one that
has the highest expected value given our distribution of initial
states:

π∗ = argmax
π∈Π

Es0∼p(s0)[Vπ(s0)], (2)

where Π is the policy space and Es0∼p(s0)[·] denotes the
expectation given that s0 is drawn from distribution p(s0).
However, in practice it is often not trivial to come up with
an appropriate reward function R(s). This would particularly
be the case if we were to solve this problem with RL.
In that case, the reward function should ideally guide the
robot towards successful behaviour [34], which would require
reward shaping [35]. This can be a time consuming process
that could also lead to suboptimal behaviour. Robotic RL also
results in challenges related to data efficiency and safety [34],
[36]. Therefore, we choose to find π∗ by LfD. In this setting,
it is not required that R(s) guides the agent and we can only
reward success:

R(s) =

{
1 if s ∈ Sg
0 else

. (3)

Worth noting is that with this reward function and γ = 1, the
optimal policy π∗ will simply be the policy with the highest
success rate. By setting 0 < γ < 1, not only success will be
rewarded, but the robot learner will also be stimulated to solve
the task in minimum-time. This is desirable in our scenario,
as time is related to cost in most industrial applications.

Our method falls within the realm of IIL, hence demonstra-
tions are also interactively gathered while executing the learner
policy. This results in demonstrations for states that the robot
learner actually encounters, rather than only demonstrations
for states the teacher encounters. We can collect a dataset
with N demonstration trajectories D = {τ0, τ1, . . . , τN} and
try to imitate the expert policy. We consider demonstrations
that consist of observation vectors, i.e., τ = [o0,o1, . . . ,oT]
where T is the last time step of demonstration τ . An estimate
of the optimal policy can be obtained by minimizing a loss
between the demonstrated trajectories and trajectories resulting
from the policy:

π̂∗ = argmin
π∈Π

L(π,D). (4)

A popular choice for L is the Kullback–Leibler divergence
[37] between the distribution of observations induced by the
learner policy and teacher policy [38]. We should however take
into consideration that demonstrations are costly, since they
can be time consuming for the human and ideally we would
like the system to have a high level of autonomy to maximize
efficiency. Therefore, we wish to optimize task success while
minimizing the number of demonstrations:

max
D

Es0∼p(s0)[Vπ̂∗(s0)]− λ|D|
s.t. π̂∗ = argmin

π∈Π
L(π,D), (5)

where |D| is the cardinality of D (the number of demonstrated
trajectories) and λ a regularization parameter. In this way, we
have arrived at an expression for the optimal set of demon-
strations. The maximization of the expectation of the state
values in (5) ensures that we maximize task success, while the
regularization term penalizes the number of demonstrations in
our dataset. We choose to penalize the number of trajectories τ
rather than their length, since a longer demonstration is
preferred over multiple short ones, both by the human and
considering the potential cost per demonstration for preparing
and processing it.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

109

Finding the optimal solution to the optimization problem in
(5) is difficult, because the problem does not have an analytical
solution or gradient, and it can quickly become intractable,
because it may take a large number of evaluations to find
a good solution. In the context of the optimization problem
in (5), evaluating the performance of a candidate solution
(i.e., a dataset of demonstrations) requires collecting human
demonstrations and physical experimentation to evaluate the
performance, which can be time-consuming and expensive.
Then, it is important to design an optimization algorithm that
balances exploration and exploitation and is efficient in terms
of the number of evaluations required to find a good solution.

Simulation is a cost-effective means of evaluating candidate
solutions without the risks and expenses associated with real-
world experimentation. Recent advancements in parallelized
physics simulation on accelerated platforms have enabled fast
simulations [39], [40]. However, the dissimilarities between
the simulator and real-world environments can hinder the
transferability of policies learned in simulation to real-world
settings. As learning methods tend to exploit these differences
to maximize simulated rewards, simulators’ conventional use
results in overestimation of real-world performance. This may
lead to safety hazards and unexpected failures.

To address this issue, we propose to swap the real-world
and simulator’s roles to synthesize policies using human
demonstrations and evaluate them using accelerated physics
simulation. By doing so, discrepancies between simulation and
reality lead to an underestimation of real-world performance.
Failures in simulation may be attributed to either a sub-optimal
policy or discrepancies. In case of success, the policy was
robust enough to achieve the goal despite the discrepancies.
The proposed solution does not rely on gradient information
and instead uses a simulation based search strategy to find a
good solution for the problem in (5). The system comprises
two phases: pre-training and lifelong learning. During the
pre-training phase, real-world demonstrations are continuously
provided by the human operator, until a certain success rate
is achieved in simulation or a maximum number of iterations
is reached (see Algorithm 1). After the pre-training phase,
the robot enters the lifelong learning phase, where it executes
the policy independently. However, it will halt and request a
human-demonstration if it encounters a state that resulted in
a low success rate in simulation (see Algorithm 2).

Algorithms 1 and 2 provide the workflow of these two
phases, while the involved functions are detailed below.
evaluate: this function estimates the policy’s perfor-

mance by computing the value function Vπ , as defined in
(1), which reflects the policy’s performance over the induced
state distribution, given a reward function R and the initial
state distribution p(s0). Computing Vπ may be impractical
due to the large number of real-world evaluations required
and limited access to the full state s. Monte Carlo sampling
and an accelerated physics simulator can overcome such
challenges (e.g., [39], [40]), as both are suitable for parallel
implementation, to estimate an approximate value function
V̂π(o) that is a function of the observations o, serving as
a proxy for the real value function. If there are significant
differences between the real-world and simulator, a policy
trained with real-world demonstrations may, in some cases,

Algorithm 1: Pre-training phase.
Input: Reward function: R(s) // See Eq. (3)

LfD method: L(π,D) // See Eq. (4)
Initial states: s0 ∼ p(s0)
Initial policy: π0
Success threshold: α

Output: Pre-trained policy: π
Dataset: D

1 D ← ∅ // Initialize empty dataset
2 π ← π0 // Initialize policy
3 V̂π ← evaluate(R, p(s0), π) // In simulation
4 do
5 sstart ← suggest(V̂π) // Start state of demo
6 τ ← demonstrate(sstart) // In real-world
7 D ← D ∪ {τ} // Aggregate data
8 π ← optimize (L,D) // Update policy
9 V̂π ← evaluate(R, p(s0), π) // In simulation

10 until Es0∼p(s0)[V̂π(O(s0))] > α // Success rate

Algorithm 2: Lifelong learning phase.
Input: Reward function: R(s) // See Eq. (3)

LfD method: L(π,D) // See Eq. (4)
Initial states: s0 ∼ p(s0)
Pre-trained policy: π // See Alg. 1
Dataset: D // See Alg. 1

1 V̂π ← evaluate(R,Sstart, π) // In simulation
2 s← reset (p(s0)) // In Real-world
3 while running do
4 o← O(s) // Read sensor observations
5 if V̂π(o) > α then run
6 a← π(o) // Get action
7 s← act(a) // In real-world

8 else request demonstration
9 sstart ← s // Demo from current state

10 τ ← demonstrate(sstart) // In real-world
11 D ← D ∪ {τ} // Aggregate data
12 π ← optimize (L,D) // Update policy
13 V̂π ← evaluate(R, p(s0), π) // In simulation

14 if done then
15 s← reset (p(s0)) // In real-world

always fail to solve the task in simulation. In this case, we
propose to use on-policy RL algorithms such as [41].
suggest: This function proposes a new starting state sstart

for the next demonstration based on the policy’s simulated
performance, which is reflected by the estimated value func-
tion V̂π(o). Note that the starting state does not necessarily
have to lie in the set of initial states S0. Proper selection of
starting states can significantly reduce the number of demon-
strations needed to achieve adequate performance, a task that
is typically performed by an expert user with knowledge of the
chosen LfD method. Alternatively, meta learning, a technique
for learning to learn and adapt to new tasks, can be employed
[42]. In this case, a meta learning model would be trained to
suggest the next starting state for a demonstration expected to
improve the current value function V̂π(o) the most.
demonstrate: This function requests the human to pro-

vide a human-demonstration from a given starting state sstart.
Depending on the task, this could occur via, for example,
kinesthetic teaching or teleoperation [22]. Then, optimize
estimates a policy π̂∗, as defined in (4), by minimizing the loss
function determined by the selected method. Finally, reset
resets the real-world system to an initial state , and act applies
the action proposed by the robot’s policy π to the system.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

110

IV. CONCLUSIONS

This paper conceptually introduced EVA, a system con-
ceived to make the IIL demonstrations process less costly and
more safe for humans, while optimizing the exploration and
exploitation balance for good generalization.

Motivations for the potential relevance of EVA as a support
to IIL applications have been laid down, by analysing state-of-
the-art works in the field. The provided core algorithms bring
forward the system working flow. Future works shall fully
implement EVA, and investigate its actual functionality by
assessing its performance with respect to other IIL methods.

REFERENCES

[1] A. Bonci, P. D. Cen Cheng, M. Indri, G. Nabissi, and F. Sibona,
“Human-robot perception in industrial environments: A survey,” Sensors,
vol. 21, no. 5, p. 1571, 2021.

[2] G. Castañé, A. Dolgui, N. Kousi, B. Meyers, S. Thevenin, E. Vyhmeister,
and P.-O. Östberg, “The ASSISTANT project: AI for high level decisions
in manufacturing,” International Journal of Production Research, pp. 1–
19, 2022.

[3] “NVIDIA Omniverse,” Available online: https://developer.nvidia.com/
nvidia-omniverse.

[4] P. K. R. Maddikunta, Q.-V. Pham, B. Prabadevi, N. Deepa, K. Dev,
T. R. Gadekallu, R. Ruby, and M. Liyanage, “Industry 5.0: A survey on
enabling technologies and potential applications,” Journal of Industrial
Information Integration, vol. 26, p. 100257, 2022.

[5] D. Ramesh Kumar, S. Devadasan, and D. Elangovan, “Mapping of non-
value adding activities occurring in classical manufacturing companies
with lean strategies,” Proceedings of the Institution of Mechanical
Engineers, Part E: Journal of Process Mechanical Engineering, vol.
236, no. 3, pp. 894–906, 2022.

[6] E. Johns, “Back to reality for imitation learning,” in Conference on Robot
Learning. PMLR, 2022, pp. 1764–1768.

[7] M. Arduengo, A. Colomé, J. Borràs, L. Sentis, and C. Torras, “Task-
adaptive robot learning from demonstration with gaussian process mod-
els under replication,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 966–973, 2021.

[8] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with robotic
imitation learning,” in Conference on Robot Learning. PMLR, 2022,
pp. 991–1002.

[9] Y. Wang, Y. Hu, S. El Zaatari, W. Li, and Y. Zhou, “Optimised learning
from demonstrations for collaborative robots,” Robotics and Computer-
Integrated Manufacturing, vol. 71, p. 102169, 2021.

[10] J. Zhu, M. Gienger, and J. Kober, “Learning task-parameterized skills
from few demonstrations,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4063–4070, 2022.

[11] M. Akbulut, E. Oztop, M. Y. Seker, X. Hh, A. Tekden, and E. Ugur,
“Acnmp: Skill transfer and task extrapolation through learning from
demonstration and reinforcement learning via representation sharing,”
in Conference on Robot Learning. PMLR, 2021, pp. 1896–1907.

[12] Y. Wang, C. C. Beltran-Hernandez, W. Wan, and K. Harada, “An
adaptive imitation learning framework for robotic complex contact-rich
insertion tasks,” Frontiers in Robotics and AI, p. 414, 2022.

[13] Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim, “Generalizable imitation
learning from observation via inferring goal proximity,” Advances in
neural information processing systems, vol. 34, pp. 16 118–16 130, 2021.

[14] T. Xue, H. Girgin, T. S. Lembono, and S. Calinon, “Guided optimal con-
trol for long-term non-prehensile planar manipulation,” arXiv preprint
arXiv:2212.12814, 2022.

[15] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipulation,”
arXiv preprint arXiv:2108.03298, 2021.

[16] M. Sakr, Z. J. Li, H. M. Van der Loos, D. Kulić, and E. A. Croft,
“Quantifying demonstration quality for robot learning and generaliza-
tion,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9659–
9666, 2022.

[17] S. Zhang, Z. Cao, D. Sadigh, and Y. Sui, “Confidence-aware imitation
learning from demonstrations with varying optimality,” Advances in
Neural Information Processing Systems, vol. 34, pp. 12 340–12 350,
2021.

[18] L. Panchetti, J. Zheng, M. Bouri, and M. Mielle, “Team: a parameter-
free algorithm to teach collaborative robots motions from user demon-
strations,” arXiv preprint arXiv:2209.06940, 2022.

[19] X. Bian, O. Mendez, and S. Hadfield, “Generalizing to new tasks
via one-shot compositional subgoals,” arXiv preprint arXiv:2205.07716,
2022.

[20] B. Hertel and S. R. Ahmadzadeh, “Similarity-aware skill reproduction
based on multi-representational learning from demonstration,” in 2021
20th International Conference on Advanced Robotics (ICAR). IEEE,
2021, pp. 652–657.

[21] R. Burlizzi, M. Vochten, J. De Schutter, and E. Aertbeliën, “Extending
extrapolation capabilities of probabilistic motion models learned from
human demonstrations using shape-preserving virtual demonstrations,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 10 772–10 779.

[22] C. Celemin, R. Pérez-Dattari, E. Chisari, G. Franzese, L. de Souza Rosa,
R. Prakash, Z. Ajanović, M. Ferraz, A. Valada, J. Kober et al., “Interac-
tive imitation learning in robotics: A survey,” Foundations and Trends®
in Robotics, vol. 10, no. 1-2, pp. 1–197, 2022.

[23] C. Celemin and J. Kober, “Knowledge-and ambiguity-aware robot
learning from corrective and evaluative feedback,” Neural Computing
and Applications, pp. 1–19, 2023.

[24] J. Luijkx, Z. Ajanovic, L. Ferranti, and J. Kober, “Partnr: Pick and place
ambiguity resolving by trustworthy interactive learning,” arXiv preprint
arXiv:2211.08304, 2022.

[25] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[26] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end
autonomous driving,” arXiv preprint arXiv:1605.06450, 2016.

[27] R. Hoque, A. Balakrishna, C. Putterman, M. Luo, D. S. Brown, D. Seita,
B. Thananjeyan, E. Novoseller, and K. Goldberg, “Lazydagger: Reduc-
ing context switching in interactive imitation learning,” in 2021 IEEE
17th International Conference on Automation Science and Engineering
(CASE). IEEE, 2021, pp. 502–509.

[28] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and
K. Goldberg, “Thriftydagger: Budget-aware novelty and risk gating for
interactive imitation learning,” arXiv preprint arXiv:2109.08273, 2021.

[29] D. K. Jha, S. Jain, D. Romeres, W. Yerazunis, and D. Nikovski, “Gen-
eralizable human-robot collaborative assembly using imitation learning
and force control,” arXiv preprint arXiv:2212.01434, 2022.

[30] H. Hu, X. Yang, and Y. Lou, “A robot learning from demonstration
framework for skillful small parts assembly,” The International Journal
of Advanced Manufacturing Technology, vol. 119, no. 9-10, pp. 6775–
6787, 2022.

[31] G. Franzese, A. Mészáros, L. Peternel, and J. Kober, “Ilosa: Interactive
learning of stiffness and attractors,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
7778–7785.

[32] A. Mészáros, G. Franzese, and J. Kober, “Learning to pick at non-zero-
velocity from interactive demonstrations,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 3, pp. 6052–6059, 2022.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[34] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[35] A. D. Laud, Theory and application of reward shaping in reinforcement
learning. University of Illinois at Urbana-Champaign, 2004.

[36] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons we
have learned,” The International Journal of Robotics Research, vol. 40,
no. 4-5, pp. 698–721, 2021.

[37] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[38] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[39] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High
performance gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021.

[40] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, “Brax–a differentiable physics engine for large scale rigid
body simulation,” arXiv preprint arXiv:2106.13281, 2021.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[42] F. Alet, T. Lozano-Pérez, and L. P. Kaelbling, “Modular meta-learning,”
in Conference on robot learning, 2018, pp. 856–868.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2023 at 09:16:45 UTC from IEEE Xplore. Restrictions apply.

111

D5.4: Final report on deep robot action and decision making 112/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 113/131

I

Sensor-based Human-Robot Collaboration for Industrial Tasks
Alexandre Anglerauda, Akif Ekreklia, Kulunu Samarawickramaa, Gaurang Sharmaa and
Roel Pietersa,∗

aUnit of Automation Technology and Mechanical Engineering, Tampere University, Korkeakoulunkatu 6, Tampere, Finland

A R T I C L E I N F O
Keywords:
Human-robot collaboration
Visual perception
Deep learning

A B S T R A C T
Collaboration between human and robot requires interaction modalities that suit the context of the
shared tasks and the environment in which it takes place. While an industrial environment can be
tailored to favor certain conditions (e.g., lighting), some limitations cannot so easily be addressed
(e.g., noise, dirt). In addition, operators are typically continuously active and cannot spare long time
instances away from their tasks engaging with physical user interfaces. Sensor-based approaches that
recognize humans and their actions to interact with a robot have therefor great potential. This work
demonstrates how human-robot collaboration can be supported by visual perception models, for the
detection of objects, targets, humans and their actions. For each model we present details with respect
to the required data, the training of a model and its inference on real images. Moreover, we provide
all developments for the integration of the models to an industrially relevant use case, in terms of
software for training data generation and human-robot collaboration experiments. These are available
open-source in the OpenDR toolkit at https://github.com/opendr-eu/opendr. Results are discussed in
terms of performance and robustness of the models, and their limitations. Although the results are
promising, learning-based models are not trivial to apply to new situations or tasks. Therefore, we
discuss the challenges identified, when integrating them into an industrially relevant environment.

1. Introduction
Collaborative robots (co-bots) can improve the safety,

work efficiency and productivity of industrial processes by
acting as flexible and reconfigurable tool to human op-
erators. Within Industry 4.0, co-bots have a core role to
contribute to the transition from traditional manufacturing
to digital manufacturing [3, 13]. Co-bots can be easily pro-
grammed and reconfigured, and are safe for interaction, due
to their small form-factor and incorporated sensor systems
that can detect collisions [57]. Co-bots are also to be found
in high-payload form, where protective covering can be com-
plemented by sensor-based safety features. Human-robot
collaboration (HRC) is typically possible in two ways [62]:
1. Off-line programming of robot tasks by demonstration
(also known as hand-guiding or kinesthetic teaching), and
2. On-line interaction between human and robot, enabled
by external sensor systems. While off-line programming is
an established method of collaboration, on-line interaction
still typically requires great efforts in development and its
success depends highly on the sensor system. That is, if the
external sensor system is not robust or has high latency, this
reflects negatively on the performance of the collaboration.

Nevertheless, the role of humans and industrial robots
in smart factories is often emphasized [13] and future
roadmaps state clear benefits on utilizing collaboration
between humans and robots [57]. The practical requirements
and tools needed, however, are often underestimated or
given little attention, resulting in great interest from industry
and SMEs, but not many practical implementations [62].
To be realistic, successful integration of perception tools
in human-robot collaboration requires considerable effort

∗Corresponding author
roel.pieters@tuni.fi (R. Pieters)

towards the selection of suitable detection tools, the prepa-
ration of suitable data for training and the actual training
of a detection model, followed by its implementation in the
robotic system. In this work we address these issues, and
present the following contributions:

1. Identification of challenges for deep learning-based
visual perception in HRC

2. Practical integration details for three deep learning-
based visual perception tools in HRC

3. Open-source software templates for sensor-based HRC
4. Validation of the sensor-based HRC framework with

an industrial use case
The problems we aim to address in this work are the cur-

rent limitations in perception models and situational aware-
ness for industrial human-robot collaboration. Perception
and situational awareness of robot systems can be enhanced,
such that fluent and responsive collaboration between human
and robot is possible. We believe that perception models,
based on deep learning, are ideal for this, as they can be
accurate, reliable and fast to execute. These can then provide
the required sensory input for interaction, such as the human
body and its pose, human actions or gestures, and the pose of
objects and targets in the scene. Developing and integrating
such models for robotics in industry are hard tasks, often re-
quiring expertise from many different areas [49]. Therefore,
we additionally provide a general HRC software framework,
based on ROS [40], which can be utilized to replicate our
developments. The framework is build around OpenDR [38],
a deep learning toolkit for robotics, and has the perception
tools integrated for a practical and industrially relevant use
case in agile production. The visual perception tools are
human skeleton detection, human action recognition and the

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 1 of 13

OpenDR No. 871449

Sensor-based Human-Robot Collaboration

detection and pose estimation of objects and targets in the
scene.

In the following section, the current challenges of per-
ception for HRC are identified, when considering deploy-
ment in industrial environments.
1.1. Challenges for sensor-based HRC

The first two identified challenges relate to typical and
well-known issues of learning-based perception [29], i.e.,
perception model selection and training data collection. The
last two identified challenges relate to the applicaton and
integration of such models to an industrial environment.
1. Model selection and training - The choice of perception

model depends mostly on what needs to be detected.
Many well-performing models exist, e.g. for common
objects households objects [26] or humans [34, 56].
However, simply selecting the model with the highest
accuracy is usually not the best approach. For example,
a model that detects humans in an automotive scenario
would not perform well in industrial scenario. All rel-
evant context and properties of the model needs to be
considered, as it will affect the performance with respect
to the intended use case. Moreover, properties such as
model size and inference time are of practical importance
for human-robot collaboration where delay and respon-
siveness of the interaction matter greatly.

2. Data collection - The performance of a detection model
is directly influenced by the quality and quantity of the
data used for training. Data and its annotation need to
include enough variability that could occur in the real use
case, without enlarging the dataset unnecessarily. While
in certain areas large datasets exist (e.g., household ob-
jects [23]), in other cases the dataset needs to be collected
or generated from scratch. Collecting real data is usually
preferred, as it captures the realistic content of the target
object as well as the sensor, however, synthetic data has
also shown suitable performance in many cases [36]. One
additional problem for data collection is the annotation
of the data with the ground truth, for example, object
classes or 6D object poses. For real data, annotation is
difficult and time-consuming, and in some cases near
impossible (e.g., object poses). In this case simulation
and the generation of synthetic data has the benefit of
knowing exactly where an object is rendered in the virtual
world [50].

3. Reliability and safety - Deep neural networks (DNN)
are known as black-box models, implying that their inner
workings cannot (easily) be understood [5]. Explainable
AI aims to provide explanations to models, even though
there is no general consensus of what is meant by explain-
able and/or interpretable [20]. In case of safety-critical
applications (e.g. autonomous driving or human-robot
collaboration), DNN cannot provide required reliability
and safety levels [18]. Moreover, model performance,
failure probability and their uncertainty are difficult to de-
termine and can drift during long-term operation. While

continual learning might prove useful in this regard,
developments are still in early stages [31].

4. Integration - Deploying DNNs to a real environment re-
quires integration efforts that depend on the model and its
intended outcome. Clear differences can be identified be-
tween models that provide input for on-line decision mak-
ing and models that provide diagnostics for off-line moni-
toring [54]. For example, in manufacturing environments,
the detection of obstacles and humans needs to provide
timely input to machinery for halting processes. As such,
the operating equipment needs to be shut down and tested
extensively to ensure reliable working of the developed
tools [45]. Predictive maintenance, on the other hand,
only provides recommendations and does not interfere
with running processes. Data collection and installation
of models can, therefore, often be done while machinery
is in operation or without rigorous testing protocols [59].
One additional challenge is the availability of state-of-
the-art DNN tools. While most developments are open-
source available and can even be commercialized, there
is no guarantee for code-quality and its maintenance [21].
Support for the software is typically not offered by the
tool developers, and tools quickly become obsolete due
to, for example, general software updates. As industrial
systems are operational for extended time periods (years),
investment in upgrading is not a regular occurrence.
These identified challenges are broad research topics,

and cannot be tackled by individual research efforts, but
require community effort to push boundaries forward. We
therefore do not claim in this work that we provide a solution
to these challenges but offer directions in the specific area of
human-robot collaboration how the challenges can be taken
into account. The remainder of this paper is organized as
follows. In Section 2 we provide an overview of related work
in human-robot collaboration and relevant perception tools.
As a result of this overview, several perception tools are
selected for implementation and explained in further detail
in Section 3. Section 4 describes the industrial assembly use
case, the software framework as well as integration details
needed to replicate the research developments. The results
of the perception modules and the human-robot collabora-
tion experiments are presented and discussed in Section 5.
Finally, Section 6 concludes the work.

2. Related work
2.1. Human-robot collaboration

Collaboration between human and robot has been an
ongoing trend since the advent of smart manufacturing [13]
and Industry 4.0 [57]. Formal definitions of collaboration,
working zones and operating modes are common [53] and
standards provide requirements and design guidelines to
ensure safety for operators. [55] provides an overview of
symbiotic human-robot collaborative assembly and high-
lights future research directions. Methods presented include
voice processing, gesture recognition, haptic interaction, and

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 2 of 13

114

Sensor-based Human-Robot Collaboration

even brainwave perception. In most cases deep learning is
used for classification, recognition and context awareness
identification. Computer vision-based approaches are the
most popular, as presented in [14]. This reports a systematic
review of computer vision-based holistic scene understand-
ing in HRC scenarios, which mainly takes into account the
cognition of object, human, and environment. Subsequently,
visual reasoning can be used to gather and compile visual
information into semantic knowledge for robot decision-
making and proactive collaboration. Other overviews of
human-robot collaboration approaches can be easily found,
for example, towards the topics of robotic vision [43] and
machine learning [45], indicating the popularity of the top-
ics, either individually, or combined. Proactive collabora-
tion between human and robot is highlighted in [22], with
emphasis on cognitive, predictable and self-organizing per-
spectives. Current challenges are found, which call for future
research direction that address real-world applications.
2.2. Human detection

The detection of humans, individual body parts and their
actions based on visual information has been a long-standing
problem in computer vision [34].

Human presence detection - Detecting the presence of
a person in the robot work space has been an active area
of research, mainly to ensure safety of the human [63].
Different visual modalities can be used to detect humans
[24]. In [35], a depth sensor is utilized, producing data
in the form of a point cloud. From this, a convex hull of
the human point cloud is created and background removal
detects any moving objects/subjects in the scene. Similar is
the work in [15], where a depth map is utilized to detect
a person’s presence, but also to allow interaction with a
projected graphical user interface. A dynamically updated
workspace model is, therefore, required. Depth cameras are
also used in [28] for the detection of a person in the work
space and to compute their distance to the robot. In addition,
laser scanners at leg-level are included to detect an operator’s
presence. It is noted that both sensing systems work in par-
allel and do not fuse information together, allowing a redun-
dancy for safety. 3D LiDAR-based detection of humans is
presented in [61], which utilizes a learning-based approach
for human classification. The work, however, targets large
indoor public spaces and a mobile service robot. In [24] a
comparison is made between the performance of state-of-
the-art person detectors for 2D range data, 3D LiDAR, and
RGB-D data, as well as selected combinations thereof, in
a challenging industrial use case. Multi-modal approaches
have also gained interest [39], however, most works only
consider larger environments for mobile robots (or cars)
[19], making their suitability for small and dense industrial
environments questionable. Human pose estimation goes
beyond human detection by estimating 3D poses of humans
and their individual skeleton joints. Well-known approaches
are OpenPose [6] and VoxelPose [51], which can utilize
single as well as multiple cameras.

Gesture detection - Detection and recognition of human
gestures has also been of interest to robotics. In [25], a
comprehensive review is given of different gesture recog-
nition approaches for human-robot collaboration. Besides
visual perception, the review also includes non-image based
approaches, such as wearables. [33] demonstrates real-time
human-robot interaction with robust background invariant
hand gesture detection. The approach presents a method to
collect a training dataset for static hand gestures, taken from
letters and numbers from American sign language.

Human action recognition - As an extension to the de-
tection of humans and their gestures, the methods of human
action recognition consider the behavior of a person, i.e.,
their actions or motions, to be detected [56, 48]. This implies
an image sequence to be used for recognition, as compared
to single images in e.g., human detection. Recent progress
has been achieved by deep learning approaches that take as
input an image sequence in RGB-D format, extracts the 2D
or 3D skeleton pose and performs action classification [60].
In relation to human-robot collaboration, research on action
recognition has also focused on industrial activities [10, 8]
and pose forecasting [44], including actions such as picking,
placing, assembling, polishing, etc.
2.3. Object detection and pose estimation

State of the art deep neural networks have shown impres-
sive performance for generic object categories [26]. Real-
time object detection is an active research problem to allow
adoption to robotics applications, and many works can be
found that have utilized detectors for tasks such as robot
grasping [11]. Popular approaches are for example, Faster
R-CNN [42], Yolo [41] and SSD [27]. Pose estimation of
objects considers to estimate the 6D pose of an object.
Similar to object detection, different approaches exist, such
as correspondence-based methods 3DMatch [64], template-
based methods such as PoseCNN [7] and voting based meth-
ods such as DenseFusion [55]. For both object detection and
pose estimation, datasets can be found, for example, Pascal
VOC [12] and COCO [23] for 2D object detection, and,
more recently, Objectron [1] and T-LESS [16] for 3D objects
and 6D pose estimation. It is important to mention a crucial
difference between these methods of object detection and
pose estimation, as compared to human detection and pose
estimation. In general, most human perception approaches
are successful with a large variety in humans. That means
existing dataset are sufficient to be used in new areas with
new humans. In contrast, most object perception approaches
do not scale well to novel objects and additional data should
be generated to train a model and achieve successful detec-
tion. In this work, results were achieved in a similar manner.
2.4. Other interaction modalities

Speech - Utilizing speech as interaction modality has
the benefit of not requiring physical actions for the human,
allowing work-related tasks to be uninterrupted [32]. As a
research field, the maturity has increased significantly re-
cently, due to advancements of speech recognition technolo-
gies, with respect to recognition performance and robustness

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 3 of 13

115

Sensor-based Human-Robot Collaboration

against noise [52]. However, despite the maturity in speech
recognition performance, the connection of speech com-
mands to robot actions and/or higher-level goals requires
internal representations that need to be developed as well
[30]. For tasks that are low in complexity (e.g., pick-and-
place, hand-overs) such knowledge representation is man-
ageable [4], but with increasing conversational capabilities
in natural language perception, knowledge representation
requires careful and extensive modelling.

Graphical user interface - The most common modality
for programming industrial robots is a graphical user inter-
face (GUI) [53]. Robot tasks and motions can be achieved by
either robot hand-guiding and a teaching pendant, or by low-
level programming with suitable programming language and
software toolbox. In both cases a GUI is utilized to assist in
the programming and/or teaching of robot tasks. GUIs are
typically developed with ease-of-use in mind and, recently,
user perceptions such as user experience, user effort and
understanding are actively taken into account as well [9].
As a graphical tool, GUIs offer great capabilities, such
as visualization and simulation, integrated as part of the
robot programming stage. Limitations, however, have been
identified as well, such as a higher cognitive burden needed
for end-users [2]. While GUIs are beneficial for the pro-
gramming of robots, they are not well suited for interaction
during task execution. Human-robot collaboration requires
responsiveness of the robot to human cues, which is difficult
to achieve with a GUI alone.
2.5. Comparison to our approach

From this brief overview of related work, a few observa-
tions can be made. Most perception tools are developed and
presented without robotics in mind, aiming for general target
groups (see Section 2.2-2.3). This implies that specific char-
acteristics relevant for human-robot collaboration in indus-
trial environments are not included or tested, making their
suitability for this questionable. For example, manufacturing
environments can be dirty and noisy, and specific conditions,
such as lighting, can be difficult to adjust, in contrast to
laboratory and domestic environments. In addition, while the
adoption of perception tools is often possible by open-source
software, details on integration are usually limited to just the
tool itself [33] and not to a robotics framework [35] (e.g.,
ROS). This is also found in other works, where different
perception tools are reviewed to detail the state of the art, e.g.
in terms of robotic vision [43] and machine learning [45].
What these works do not cover is the challenges and issues
faced with respect to data collection and the practical inte-
gration of the tools to a robot. While [14] and [22] do include
challenges, these are not related to technical integration.
Our work aims to fill this gap, by detailing three different
visual perception tools for human-robot collaboration. For
all three, we provide details on how to replicate our work,
from dataset generation and training tools, to code examples
(Python, ROS) and integration with a collaborative robot.
All developments are open-source in the OpenDR toolkit1.

1https://github.com/opendr-eu/opendr

3. Visual recognition modules
All three integrated visual recognition modules utilize

color images for perception. Depth perception was intention-
ally excluded such that models can run at high update rate,
ideally in real-time (i.e., 20 FPS or higher). Especially for
the detection of a person and their gestures this is needed to
have a responsive system with short delay time.
3.1. Human skeleton detection

Method - Detection of a human in the scene is done with
OpenPose [6], a real-time multi-person human pose detec-
tor. OpenPose is capable of detecting up to a total of 135
human body, foot, hand, and facial key points, from a single
or multiple image/camera sources. The lightweight version
of OpenPose is selected [37], as it achieves detections in
realtime. For a successful detected human pose the method
returns a list 18 2D image key points of the human skeleton
with associated key point abbreviation.

Data generation and model training - The method
in this work utilizes the pretrained MobileNet model as
explained in [37], which was trained and evaluated with the
COCO 2017 dataset [23] under default training parameters.
3.2. Human action recognition

Method - Recognition of human actions is done with ST-
GCN [60], a real-time skeleton-based human action recog-
nition framework, as it can utilize the lightweight OpenPose
model [37]. The method takes the location of the human
joints in every image, and generates a sequence of detected
human skeleton graphs, connected both spatially and tem-
porally. Depending on the dataset the method can detect a
large number of different human actions, ranging from daily
activities to complex actions with interactions.

Data generation and model training - The smallest
training dataset is selected (NTU-RGB+D [46]), as it con-
tains the most relevant human action classes (60 classes in
56,000 human action clips). For each image human skeleton
joints are annotated in 3D, with respect to the camera coordi-
nate system. The pretrained model from the original authors,
with default training parameters, is used for inference.
3.3. Assembly object and target detection

Method - Mask R-CNN from Detectron2 [58] was se-
lected for object and target detection in the scene, as per-
formance was preferred over inference time. Mask R-CNN
combines a Region Proposal Network (RPN) with the CNN
model, to simultaneously predict object bounds and object-
ness scores at each position. After detection, orientations are
estimated in each bounding box by the second order moment
from a segmented object or target.

Data generation and model training - As the assembly
objects and targets are novel with respect to existing datasets,
a custom dataset needed to be generated. For this, 200
images of eight object and target classes were annotated with
segmentation polygons, as depicted in Fig. 1. The object
classes included rocker arms, bolts and pushrods, and the
target classes included the Diesel engine, small and big

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 4 of 13

116

Sensor-based Human-Robot Collaboration

(a) (b) (c) (d)
Figure 1: Image annotations for assembly objects, including bolts (red), pushrods (grey) and rocker arms (light blue); (a), (b)
and (c), and targets objects, including Diesel engine (grey), small (yellow) and big (orange) pushrod holes, bolt holes (green) and
rocker arm locations (dark blue); (d). Annotations are done with segmentation polygons in different colors, for different object
classes. A total of 200 images with eight object and target classes were utilized for augmentation and dataset generation.

pushrod holes, bolt holes and rocker arm locations. This data
was augmented to include a broad variation in noise and
lighting conditions, to form the custom dataset of around
280,000 images [47]. The methods for data generation and
annotation are available in the OpenDR toolkit1.

4. Industrial assembly use case
4.1. Diesel engine assembly

The manufacturing of Diesel engines involves assembly
steps that are hard to automate, such as contact placement
and manipulation of parts with various degrees of freedom.
For example, rocker arm placement, push rod insertion and
bolt fastening all have different constraints with respect to
the final manipulation of the part to the engine. Rocker arms
can be moved freely in 3D task space before placements,
push rod insertion requires vertical motion into a pushrod
hole and bolt fastening requires rotational motion and com-
pliance orthogonal to vertical motion. In addition, parts to
assemble are complex in shape, metallic and require lubri-
cant for assembly and for operation. This means traditional
robotic operations for picking and placing are not suitable
for assembly and manual actions are the standard approach
for manufacturing. A promising alternative, however, is to
utilize the robot as assistant and assign tasks to it that support
the assembly procedure and the ergonomy of the human
operator. These are easy, but repetitive tasks, such as pick
and placement, and actions for operator assistance such as
hand-overs of parts and tools.

The scenario for human-robot collaboration is depicted
in Fig. 2 and includes the Diesel engine, a table with parts
and tools, the human operator and a collaborative robot. To
demonstrate and validate our developments, we constructed
a use case in which the robot picks and places parts from
the table to the engine (push rods) and hands-over parts
from the table to the operator (rocker arms and bolts). Visual
perception is used as input to robot actions (object and target
detection) and for human task coordination (human skeleton
detection and human action recognition).

Figure 2: Experimental setup with a collaborative robot
(Franka Emika), Diesel engine and parts for assembly tasks.

4.2. Integration
All developments are integrated in the OpenDR1 toolkit

[38] with ROS/ROS22 nodes of the perception tools and
ROS moveit23 scripts for the human-robot collaboration
scenarios. A description of the use case, and the individual
perception modules, has been documented4, enabling to eas-
ily replicate (and extend) our work. For robot and perception
hardware, we utilize the Franka Emika collaborative robot5
and two Intel Realsense D435 cameras, one on the end-
effector of the robot and one front-facing to the person for
human perception. Computations are done on a Ubuntu PC
with Nvidia GTX 1080 Ti GPU, running ROS Noetic.

A Python script example of a visual recognition module
is shown in Listing 1, demonstrating its usage. Here, a
pretrained model for Detectron2 is loaded and the model

2https://www.ros.org/
3https://moveit.picknik.ai/
4https://trinityrobotics.eu/use-cases/

sensor-based-human-robot-collaboration/
5https://franka.de/

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 5 of 13

117

Sensor-based Human-Robot Collaboration

inference is run on an input image. The prediction results
of the model are drawn as boxes on the image as well. It
should be noted that other tools of the OpenDR toolkit, i.e.,
human skeleton detection, human action recognition, as well
as other perception tools, datasets and trained models, can be
utilized in a similar manner [38]. For example, in the case of
object and target detection, a custom dataset was generated,
as explained briefly in Section 3.3. This included image
annotation and augmentation, with the open-source tools
Label Studio6 and Albumentations7, respectively. These are
also integrated into the OpenDR perception tools, in form of
Python scripts and Jupyter notebooks8.
Listing 1: Object and target detections script in OpenDR1

from opendr.engine.data import Image

from opendr.perception.object_detection_2d import

↪ Detectron2Learner

load model and run inference on image

detectron2 = Detectron2Learner(device="cpu")

detectron2.download(".", mode="pretrained")

detectron2.load("./detectron2_default")

img = Image.open("input_image.jpg")

predictions = detectron2.infer(img)

draw bounding boxes of predictions on image

boxes = BoundingBoxList([box for kp,box in predictions])

draw_bounding_boxes(img.opencv(), boxes, class_names=

↪ detectron2.classes, show=True)

A python script example of robot actions is shown in
Listing 2, demonstrating how to define a pick and place task
with several concatenated actions. These low-level actions
are based on Moveit23 and therefore robot-agnostic. In the
example, motions are defined in task space as 2D planar
motion parallel to the table (2D_action) and 1D motion
vertical to the table (1D_action), to perform grasping. Addi-
tional actions include end-effector rotations (rotate_EE) and
gripper actions (move_gripper) and can take input from visual
modules, as shown by the inclusion of object and place.

Listing 2: Robot actions script in OpenDR1

def Pick_and_Place(object,place):

Move and align robot above object

2D_action(pose=[object.x, object.y], slow=False)

rotate_EE(angle=object.angle)

Move robot down and grasp object

1D_action(z_pose=0.35, slow=True)

move_gripper(speed=20.0, width=0.02)

Move robot to place and release object

1D_action(z_pose=0.2, slow=True)

2D_action(pose=[place.x, place.y], slow=False)

1D_action(z_pose=0.35, slow=True)

move_gripper(speed=20.0, width=0.08)

6https://labelstud.io/
7https://albumentations.ai/
8https://jupyter.org/

A python script example for human-robot collaboration
is shown in Listing 3, demonstrating how to combine the
visual recognition modules and the robot actions. In the
example, whenever a visual recognition module publishes
a message, i.e., when a successful detection is made, a
callback function is called with successive robot actions.
This can therefore be used for human coordination of the
assembly process, by triggering, halting and/or resuming
robot actions.

Listing 3: Human-robot collaboration script in OpenDR1

def AR_callback(AR_data):

if AR_data.id == 37 and AR_data.score > 0.80:

Stop robot motion when 'salute' is detected

stopAction()

elif AR_data.id == 39 and AR_data.score > 0.80:

Continue when 'cross hands in front' is detected

continueAction()

def OD_callback(OD_detections):

Get bolt and bolt_hole pose

bolt_id = detections.find_object("bolt")

bolt_pose = detections.get_pose(bolt_id)

bolt_hole_id = detections.find_object("bolt_hole")

bolt_hole_pose = detections.get_pose(bolt_hole_id)

Call pick and place action

Pick_and_Place(bolt_pose,bolt_hole_pose)

if __name__ == '__main__':

subscribe to action_recognition topic

rospy.Subscriber("/opendr/action_recognition",

↪ ObjectHypothesis, AR_callback)

subscribe to object_detection topic

rospy.Subscriber("/opendr/object_detection",

↪ ObjectHypothesisWithPose, OD_callback)

rospy.spin()

5. Results and Discussion
Results are described for each individual visual recogni-

tion module and for the utilization of the modules in human-
robot collaboration experiments. Integration, limitations and
future work are described in the discussion as well.
5.1. Visual recognition performance

Table 1 and 2 provides details of the different perception
modules, their corresponding datasets for training and infer-
ence, and their prediction accuracy results. In the case of hu-
man skeleton detection and human action recognition, pre-
generated datasets were utilized, as these provided sufficient
performance for detection. A disadvantage, however, is that
the datasets cannot be easily extended by adding additional
data and/or classes. We explain this and other practical
limitations in more detail for each recognition module.

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 6 of 13

118

Sensor-based Human-Robot Collaboration

Table 1
Perception models and datasets utilized to enable human-robot collaboration. Performance is reported in terms of frames per
second (FPS) and prediction accuracy on custom test data, recorded for evaluation.

Training Inference (GTX 1080 Ti)

Perception module Method Dataset Dataset
size

Model
size

Image
size FPS Prediction

accuracy (%)

Human skeleton
detection

Lightweight
OpenPose [37] COCO 2017 [23] 25 GB 1.2 GB

1920x1080
1280x720
960x540

30
30
60

91

Human action
recognition ST-GCN [60] NTU-RGB+D [46] 1.3 TB 47 MB

1920x1080
1280x720
960x540

20
30
31

87

Object and
target detection Detectron2 [58] Custom [47] 65 GB 0.5 GB

1920x1080
1280x720
960x540

2.6
4.5
6.0

93

Table 2
Confusion matrix of the object and target detection tool, evaluated on 2340 images with 39530 instances of the 8 classes. Actual
classes are shown as column heads and predicted classes as row heads. The prediction accuracy is shown as last column.

Classes Rockerarm
target

Bolt
hole

Big
pushrod

hole

Small
pushrod

hole

Engine Bolt Pushrod Rockerarm
object

Background Prediction
accuracy

Rockerarm target 4802 0 0 0 0 0 0 0 13 99.7
Bolt hole 0 12398 0 1 0 0 0 0 157 98.7
Big pushrod hole 0 0 2234 47 0 0 0 0 193 90.3
Small pushrod hole 0 11 28 2453 0 0 0 0 196 91.3
Engine 0 0 0 0 995 0 0 0 0 100
Bolt 0 0 0 2 0 6451 24 63 504 91.6
Pushrod 0 0 0 1 0 269 2579 47 517 75.6
Rockerarm object 0 0 0 0 0 0 0 3817 25 99.3

Human skeleton detection
The human skeleton detection method (LightWeight

OpenPose [37]) with pretrained model [23] is evaluated on
a custom test dataset of 1950 images, in which a person
performs different actions in the field of view. Human
actions included are similar to actions to be recognized in
the human action recognition tool. The prediction accuracy
of a human skeleton detected correctly, such that it performs
human action recognition, was found to be 91%. Fig. 3
depicts the skeleton detection and draws it over the person
in the scene. In terms of computational performance, the
module achieves 30 frames per second, for high resolution
camera image input (1920×1080) and even higher for lower
resolution images (see Table 1).

The industrial environment and the scenario of engine
assembly leaves practical limitations on how the human
skeleton detection tool can be utilized. For example, the
camera cannot capture the human in full, but only the upper
body. For human-robot collaborative tasks the detection of a
person’s left and right wrist was therefore chosen for the in-
teraction, as these could be detected reliably, while allowing
free motion in the entire camera view. The detection of both
wrists in predefined areas in the image can then be utilized to
trigger robot actions, and to halt and resume them. Requiring
both detections simultaneously in both areas increased the
robustness to false positive detection with a single wrist,

when the person was doing assembly actions on the engine.
A sequence of screenshots of human skeleton and wrist
detection can be seen in Fig. 3 and Fig. 5.
Human action recognition

The human action recognition method (ST-GCN [60])
with pretrained model [46] is evaluated on a custom test
dataset of 1950 images, in which a person performs different
actions in the field of view, i.e., ’salute’ (ID:37), ’put the
palms together’ (ID:38) and ’cross hands in front’ (ID:39).
Each action was performed for 30 seconds, leading to >600
images per action. Recognition results were evaluated man-
ually afterwards. Results indicate that a reasonably high
prediction accuracy can be achieved (89%, 81% and 91% for
the three actions, respectively).

Fig. 3c and 3d depict actions recognized and their con-
fidence score printed on the image. As the action recogni-
tion tool utilizes skeleton detection, this is drawn over the
image as well. In terms of computational performance, the
module achieves 20 frames per second, for high resolution
camera image input (1920×1080) and even higher for lower
resolution images (see Table 1). Similar to human skeleton
detection, the industrial scenario imposed limitations as
datasets for human action recognition mostly cover daily
actions [46], not relevant for industrial tasks.

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 7 of 13

119

Sensor-based Human-Robot Collaboration

(a) (b) (c) (d)
Figure 3: Human visual recognition modules. (a) and (b) depict results of human skeleton detection with the skeleton-based
tracker Lightweight OpenPose [37]. (b) demonstrates that skeleton detection can be used for human-robot collaboration by
detecting human wrists (handLeft and handRight) in certain image areas. (c) and (d) depict results of human action recognition
with the real-time skeleton-based human action recognition framework ST-GCN [60]. Recognized actions are ’salute’ (c) and
’cross hands in front’ (d), with their corresponding confidence score.

Object and target detection
The object and target detection method (Detectron2

[58]) with custom trained model achieves satisfactory per-
formance, for non-overlapping objects. Fig. 4 depicts the
objects detected on the table (a) and the targets detected
on the engine (b). To create the dataset [47], 200 images
of the eight objects and targets, in various configurations,
were recorded and all objects and targets in the images were
annotated with segmentation polygons in their correct class.
Distractor objects, such as Diesel fuel lines, common rails
and other tools, were included, as would be expected in a
real scene. This data was then expanded with augmentations
to a full datatset of around 280,000 images. Training of
the model was done until convergence of the loss function
(sum of losses due to classification and bounding box
regression), which took around 20,000 epochs. With this
method, the trained model achieved detection confidences
for real camera images of more than 90%. While more data
could be added and more training could be done, results
are sufficient to perform reliable experiments for picking
and placing, and human-robot collaboration. In terms of
computational performance, the module cannot run in real-
time, but achieves 2.6 frames per second for high resolution
camera input (1920 × 1080). As the objects and targets are
static in the scene, real-time performance is not required. The
implemented object and target detection tool enables both
continuous detection (images are processed consecutively)
and detection requests from a single image, with a function
call. In the human-robot collaboration scenario a detection
request is utilized to save computational performance of the
GPU machine. It is expected, though, that both approaches
would work equally well in terms of object pick and place-
ment performance.
5.2. Human-robot collaboration

The visual perception modules were utilized to enable
human-robot collaboration, in several different ways, with
the detection modules utilized as interaction tool. Certain

tools are more suited to specific tasks, due to their detec-
tion or computational performance. For example, human
skeleton detection is very reliable and fast, while human
action recognition is less reliable and slower. This time
performance difference is due to the fact that human action
recognition relies on the human skeleton detection as input
and requires a considerable number of detected frames (300)
for successful recognition. In practise this means that human
action recognition has more false detections as well. The
following experiments were tested in detail.
Human task coordination

The shared assembly task can easily be coordinated by
the human with visual perception. Human skeleton detection
(i.e., wrists in certain location) or human actions can be used
for starting and/or stopping robot actions, thereby setting
the pace for the assembly task and performing corrective
actions, in case a robot has misplaced a part. Human visual
perception is not required to have high performance for this,
as the detection tools can be run at a high rate (i.e., >30
FPS). This implies that few false negative detections have
no significant negative impact in the collaboration. For the
object and target detection tool, real-time performance is
not required either, as pick and place actions are called on
request. These coordination experiments, by human wrist
detection, are depicted in Fig. 5 and in the recorded video9.
Robot actions are the assembly (pick and placement) of
pushrods and bolts (six in total) to the Diesel engine and
human actions are the placement of rocker arms, after their
hand-over from the robot.
Robot-human hand-overs

As explained in Section 4, certain tasks for assembling
a Diesel engine are too difficult for a robot to execute.
However, as assistive tool, the robot can hand-over parts
located on a table to the person executing complex assembly
tasks. This is demonstrated in Fig. 6a and Fig. 6b, as well

9https://youtu.be/3z3yiLdznrY

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 8 of 13

120

Sensor-based Human-Robot Collaboration

(a) (b)
Figure 4: Results of visual perception for object and target detection utilizes Detectron2 [58]. (a) depicts detection of objects
(three classes): rocker arms, bolts and pushrods, and (b) depicts detection of targets (five classes): engine, bolt holes, pushrod
holes and rocker arm location. Each detection is labeled with the detected class and their corresponding confidence score.

(a) (b)
Figure 5: Results of human-robot collaboration experiments. (a) and (b) depict human task coordination by visual detection of
the left wrist (handLeft), for halting the robot and performing manual assembly actions (a), followed by right wrist detection
(handRight) for resuming robot actions (b).

as in the recorded video9, for the assembly tasks of rocker
arm placement. The objects are detected with the same
detection model and all detected parts are handed over in
sequence to a hand-over point, close to the human. By human
gestures (visual perception tools) the person can request for
the initiation of the hand-over task (i.e., pick an object and
move to the hand-over location) and trigger the actual hand-
over action. After the rocker arm is handed over, the human
can continue the assembly action, while the robot fetches
another part.

In theory, human-robot collaboration by human coor-
dination can improve the fluency of collaboration fluency
measures [17]. This implies the reduction of idle time for
both human and robot, as well as the robot’s functional delay,
leading to higher task efficiency. While this work serves
to demonstrate the functionality of the visual perception
modules, a thorough analysis and evaluation for fluency
measures has not been carried out.

Assembly progress tracking
Besides enabling human-robot collaboration, the visual

perception tools can also be used to track the progress
of the Diesel engine assembly task. This means to track
how many objects are placed in the correct location or
whether some objects are missing. While there are many
ways how this could be implemented, a simple but effective
implementation was done as follows. As the entire engine
block is detected as well, it can be easily checked whether
certain assembly objects (rocker arms, pushrods and bolts)
are detected inside the detected engine bounding box. For
this, the image dataset included the images of assembly
objects assembled on the engine. Output of the assembly
progress tracking tool then returns the number of objects
assembled and/or whether the task is completed or not. Fig.
6c depicts the detection of different objects (rocker arms,
bolts) inside the detected Diesel engine bounding box. In
this time instance, six of the eight rocker arms are placed,
however, only five are detected (class 7), while two rocker

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 9 of 13

121

Sensor-based Human-Robot Collaboration

(a) (b) (c)
Figure 6: Results of robot-human hand-over and assembly tracking experiments. (a) depicts the hand-over of a rocker arm from
robot to human. (b) depicts the human assembly action of the rocker arm by the human, while the robot fetches another rocker
arm. (c) depicts the assembly tracking results, with several objects (rocker arms, class 7; bolts, class 5) and their locations (rocker
arm location, class 0; bolt holes, class 1) detected inside the detected Diesel engine bounding box (class 4). Each detection is
labeled with the detected class and their corresponding confidence score.

arm locations are detected (class 0) and thus one is not
detected. In addition, four bolts are placed and detected
(class 5), while sixteen bolts holes are detected (class 1)
and thus empty. In total, 22 bolts should be assembled to
the engine block, meaning two bolt holes or bolts are not
detected.
5.3. Discussion

Limitations - The first limitation of the explored per-
ception modules relates to the relevance of the (training)
data for industrial context. As most tools are developed for
humans and objects in domestic or outdoor environments,
success in other areas is not guaranteed. In certain cases
this is not a major issues (e.g., humans look similar in a
broad context), but in some cases it can be a problem, as
classes are unsuitable (e.g., multi-human actions in a single
human use case) or simply do not exist (e.g., novel objects
or human actions to detect). One obvious solution to this
would be to extend an existing dataset or create a new dataset
from scratch, however, this is not a trivial task [29], [49].
Collecting data is complex, and expensive in resources and
equipment, even when synthetic data generation approaches
exist [36] [50]. In this work, the data generation tools for
object and target detection are open-source available through
the OpenDR toolkit.

Utilizing perception tools for human safety, in particular
by DNN-based visual perception models, is not recom-
mended. The reaction time of a safety system, in order to
stop robot motion, should be small, which cannot always
be guaranteed. Some models used in this work can be
executed in real-time (see Table 1), and even faster (60 FPS),
meaning that it takes at least 17𝑚𝑠 for a detection, assuming
a prediction is accurately made. Other models are simply
not suited for fast detection or recognition, as they require
a set of images, instead of single images (e.g., 300 in the
case of [60]) and/or rely on another detection tool as input
(e.g., skeleton detection in the case of [60]). In addition,
as reported in [18], quantifying the reliability of machine
learning and DNN-based perception tools is still a challenge

and performance might drift over time. The time-delay of
perception and its performance uncertainty should then be
taken into account when calculating the minimum separation
distance between human and robot [53, 63].

Hardware limitations concern the computation hardware
and the visual sensors utilized. Naturally, a GPU similar to
the ours (Nvidia GTX 1080 Ti) needs to used to achieve
the same performance as reported in Table 1. However, the
toolkit is compatible for both GPU and CPU systems to train
and run all models, limiting only the run-time performance.
Placement of the visual sensors is challenging to accom-
modate due to the different moving parts in the scene, i.e.,
robot and human. In our case, the visual sensors were placed
on the robot end-effector and behind the robot facing to the
person. This led to situations were objects are either not in
the camera’s field of view or humans are occluded by the
robot, limiting the time that suitable perception can occur.
While different solutions can be developed that would better
distribute cameras or avoid occlusion [43, 62], our camera
setup did not cause limitations in performance or drawbacks
in fluency of collaboration, as demonstrated in the recorded
video9.

Integration effort - The resources and effort needed to
develop, train and deploy perception models for industrial
use, is considerable. Even when robust and reliable pre-
trained models are to be integrated, still effort is needed
to comply tools to existing software frameworks with its
own datatypes and formatting. While ROS2 has taken first
steps to enable this for robotics, computer vision tools are
typically disconnected from this. OpenDR [38] has made
efforts to integrate a variety of perception models into ROS,
and examples to specific use cases are presented in this
work. In the case when pretrained models are not sufficient,
additional effort is needed for data collection and training.
As it is difficult to estimate how much effort is needed
for different models, we report the effort for our custom
dataset for object and target detection [47]. A collection of

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 10 of 13

122

Sensor-based Human-Robot Collaboration

200 RGB images where taken as base for the dataset and
annotations were needed for eight object and target classes.
This annotation took considerable time (2-3 days) for the
relatively small set of images. Generation of the complete
dataset and training a model is time-consuming as well (2
hours for a single training cycle on a Nvidia GTX 1080 Ti
GPU), and optimizing to good results requires expertise.
Naturally, better performance can be obtained with more
powerful computational hardware (e.g., computing cluster or
cloud computing), however, these are not always available,
and come with additional cost.

Future work - The results of our work demonstrate that
deep learning-based perception models can be easily trained
and deployed to robotic environments and achieve reliable
detection and recognition results. Results also demonstrated
that multiple perception models can be utilized simultane-
ously, enabling the fusion of different sensors or utilizing
different detection modules in parallel. As such, this work
has established a baseline for future directions. These in-
clude the fusion of different sensor information, from similar
or dissimilar modalities. This sensor fusion would enable a
higher robustness then single sensor models and introduces a
redundancy of sensing, for example, in case one sensor fails
or is occluded. Exploration of these topics will be done as
future work.

6. Conclusions
Visual perception is a common tool for enabling human-

robot collaboration, by detection or recognition of relevant
objects, features and actions in the scene. The performance
and maturity of such tools are usually evaluated by scenarios
not related to robotics or manufacturing, limiting their direct
utilization in industrial environments. Moreover, in some
cases visual perception tools need to be tailored to suit
the context of the human-robot collaboration scenario. This
means collecting, annotating and augmenting visual data and
the training of a perception model.

In this work we have identified these common issues
and provide the practical integration details for three differ-
ent deep learning-based visual perception tools. These are
human skeleton detection, human action recognition, and
object and target detection in context of the industrial use
case of Diesel engine assembly. The tools are integrated
open-source in the OpenDR toolkit, with ROS as software
platform, providing templates for perception, robot actions
and human-robot collaboration, thereby enabling to easily
replicate and extend our work.

Declaration of competing interest
There is no known conflict of interest.

Acknowledgements
Project funding was received from European Union’s

Horizon 2020 research and innovation programme, grant no.
871449 (OpenDR) and no. 825196 (TRINITY).

References
[1] Ahmadyan, A., Zhang, L., Ablavatski, A., Wei, J., Grundmann, M.,

2021. Objectron: A large scale dataset of object-centric videos in
the wild with pose annotations, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7822–7831.

[2] Ajaykumar, G., Steele, M., Huang, C.M., 2022. A survey on end-user
robot programming. ACM Computing Surveys 54, 1–36. doi:10.1145/
3466819.

[3] Alćer, V., Cruz-Machado, V., 2019. Scanning the industry 4.0: A
literature review on technologies for manufacturing systems. Engi-
neering Science and Technology, an International Journal 22, 899–
919. doi:10.1016/j.jestch.2019.01.006.

[4] Angleraud, A., Sefat, A.M., Netzev, M., Pieters, R., 2021. Coor-
dinating shared tasks in human-robot collaboration by commands.
Frontiers in Robotics and AI 8. doi:10.3389/frobt.2021.734548.

[5] Arrieta, A.B., Díaz-Rodríguez, N., Ser, J.D., Bennetot, A., Tabik, S.,
Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R.,
Chatila, R., Herrera, F., 2020. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion 58, 82–115. doi:10.1016/j.
inffus.2019.12.012.

[6] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.,
2019. OpenPose: Realtime multi-person 2D pose estimation using
part affinity fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence .

[7] Capellen, C., Schwarz, M., Behnke, S., 2019. ConvPoseCNN:
Dense convolutional 6D object pose estimation. arXiv preprint
arXiv:1912.07333 .

[8] Chen, C., Wang, T., Li, D., Hong, J., 2020. Repetitive assembly action
recognition based on object detection and pose estimation. Journal of
Manufacturing Systems 55, 325–333. doi:10.1016/j.jmsy.2020.04.
018.

[9] Chowdhury, A., Ahtinen, A., Pieters, R., Vaananen, K., 2020. User
experience goals for designing industrial human-cobot collaboration,
in: Proceedings of the 11th Nordic Conference on Human-Computer
Interaction: Shaping Experiences, Shaping Society, ACM. pp. 1–13.
doi:10.1145/3419249.3420161.

[10] Dallel, M., Havard, V., Baudry, D., Savatier, X., 2020. Inhard -
industrial human action recognition dataset in the context of industrial
collaborative robotics, in: IEEE International Conference on Human-
Machine Systems (ICHMS), pp. 1–6. doi:10.1109/ICHMS49158.2020.
9209531.

[11] Du, G., Wang, K., Lian, S., Zhao, K., 2021. Vision-based robotic
grasping from object localization, object pose estimation to grasp
estimation for parallel grippers: a review. Artificial Intelligence
Review 54, 1677–1734. doi:10.1007/s10462-020-09888-5.

[12] Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman,
A., 2010. The Pascal visual object classes (VOC) challenge. In-
ternational Journal of Computer Vision 88, 303–338. doi:10.1007/
s11263-009-0275-4.

[13] Evjemo, L.D., Gjerstad, T., Grøtli, E.I., Sziebig, G., 2020. Trends
in smart manufacturing: Role of humans and industrial robots in
smart factories. Current Robotics Reports 1, 35–41. doi:10.1007/
s43154-020-00006-5.

[14] Fan, J., Zheng, P., Li, S., 2022. Vision-based holistic scene under-
standing towards proactive human–robot collaboration. Robotics and
Computer-Integrated Manufacturing 75, 102304. doi:10.1016/j.rcim.
2021.102304.

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 11 of 13

123

Sensor-based Human-Robot Collaboration

[15] Hietanen, A., Changizi, A., Lanz, M., Kamarainen, J., Ganguly, P.,
Pieters, R., Latokartano, J., 2019. Proof of concept of a projection-
based safety system for human-robot collaborative engine assembly,
in: IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pp. 1–7. doi:10.1109/RO-MAN46459.2019.
8956446.

[16] Hodan, T., Haluza, P., Obdrzalek, S., Matas, J., Lourakis, M., Zabulis,
X., 2017. T-LESS: An RGB-D dataset for 6D pose estimation of
texture-less objects, in: IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 880–888. doi:10.1109/WACV.2017.103.

[17] Hoffman, G., 2019. Evaluating fluency in human–robot collaboration.
IEEE Transactions on Human-Machine Systems 49, 209–218.

[18] Jourdan, N., Sen, S., Husom, E.J., Garcia-Ceja, E., Biegel, T., Metter-
nich, J., 2021. On the reliability of machine learning applications in
manufacturing environments. arXiv preprint arXiv:2112.06986 .

[19] Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L., 2018. Joint
3D proposal generation and object detection from view aggregation,
in: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1–8. doi:10.1109/IROS.2018.8594049.

[20] Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt,
E., Sesing, A., Baum, K., 2021. What do we want from explainable
artificial intelligence (XAI)? – a stakeholder perspective on XAI and
a conceptual model guiding interdisciplinary XAI research. Artificial
Intelligence 296, 103473. doi:10.1016/j.artint.2021.103473.

[21] Lavin, A., Gilligan-Lee, C.M., Visnjic, A., Ganju, S., Newman, D.,
Ganguly, S., Lange, D., Baydin, A.G., Sharma, A., Gibson, A., Zheng,
S., Xing, E.P., Mattmann, C., Parr, J., Gal, Y., 2022. Technology readi-
ness levels for machine learning systems. Nature Communications 13,
6039. doi:10.1038/s41467-022-33128-9.

[22] Li, S., Zheng, P., Liu, S., Wang, Z., Wang, X.V., Zheng, L., Wang, L.,
2023. Proactive human–robot collaboration: Mutual-cognitive, pre-
dictable, and self-organising perspectives. Robotics and Computer-
Integrated Manufacturing 81, 102510. doi:10.1016/j.rcim.2022.
102510.

[23] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: Common objects
in context, in: European conference on computer vision (ECCV), pp.
740–755.

[24] Linder, T., Vaskevicius, N., Schirmer, R., Arras, K.O., 2021. Cross-
modal analysis of human detection for robotics: An industrial case
study, in: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 971–978. doi:10.1109/IROS51168.2021.
9636158.

[25] Liu, H., Wang, L., 2018. Gesture recognition for human-robot collab-
oration: A review. International Journal of Industrial Ergonomics 68,
355–367. doi:10.1016/j.ergon.2017.02.004.

[26] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X.,
Pietikäinen, M., 2020. Deep learning for generic object detection:
A survey. International Journal of Computer Vision 128, 261–318.
doi:10.1007/s11263-019-01247-4.

[27] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y.,
Berg, A.C., 2016. SSD: Single shot multibox detector, in: European
conference on computer vision, pp. 21–37.

[28] Magrini, E., Ferraguti, F., Ronga, A.J., Pini, F., Luca, A.D., Leali,
F., 2020. Human-robot coexistence and interaction in open industrial
cells. Robotics and Computer-Integrated Manufacturing 61, 101846.
doi:10.1016/j.rcim.2019.101846.

[29] Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631 .

[30] Marge, M., Espy-Wilson, C., Ward, N.G., Alwan, A., Artzi, Y.,
Bansal, M., Blankenship, G., Chai, J., Daumé, H., Dey, D., Harper,
M., Howard, T., Kennington, C., Kruijff-Korbayová, I., Manocha, D.,
Matuszek, C., Mead, R., Mooney, R., Moore, R.K., Ostendorf, M.,
Pon-Barry, H., Rudnicky, A.I., Scheutz, M., Amant, R.S., Sun, T.,
Tellex, S., Traum, D., Yu, Z., 2022. Spoken language interaction with
robots: Recommendations for future research. Computer Speech &
Language 71, 101255. doi:10.1016/j.csl.2021.101255.

[31] Maschler, B., Pham, T.T.H., Weyrich, M., 2021. Regularization-based
continual learning for anomaly detection in discrete manufacturing.
Procedia CIRP 104, 452–457. doi:10.1016/j.procir.2021.11.076.

[32] Mavridis, N., 2015. A review of verbal and non-verbal human–robot
interactive communication. Robotics and Autonomous Systems 63,
22–35. doi:10.1016/j.robot.2014.09.031.

[33] Mazhar, O., Navarro, B., Ramdani, S., Passama, R., Cherubini, A.,
2019. A real-time human-robot interaction framework with robust
background invariant hand gesture detection. Robotics and Computer-
Integrated Manufacturing 60, 34–48. doi:10.1016/j.rcim.2019.05.
008.

[34] Nguyen, D.T., Li, W., Ogunbona, P.O., 2016. Human detection from
images and videos: A survey. Pattern Recognition 51, 148–175.
doi:10.1016/j.patcog.2015.08.027.

[35] Nikolakis, N., Maratos, V., Makris, S., 2019. A cyber physical
system (𝑐𝑝𝑠) approach for safe human-robot collaboration in a shared
workplace. Robotics and Computer-Integrated Manufacturing 56,
233–243. doi:10.1016/j.rcim.2018.10.003.

[36] Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganiere,
R., Rebut, J., 2019. How much real data do we actually need:
Analyzing object detection performance using synthetic and real data.
arXiv preprint arXiv:1907.07061 .

[37] Osokin, D., 2018. Real-time 2D multi-person pose estimation on cpu:
Lightweight openpose. doi:10.48550/ARXIV.1811.12004.

[38] Passalis, N., Pedrazzi, S., Babuska, R., Burgard, W., Dias, D., Ferro,
F., Gabbouj, M., Green, O., Iosifidis, A., Kayacan, E., Kober, J.,
Michel, O., Nikolaidis, N., Nousi, P., Pieters, R., Tzelepi, M., Valada,
A., Tefas, A., 2022. OpenDR: An open toolkit for enabling high
performance, low footprint deep learning for robotics, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 12479–12484. doi:10.1109/IROS47612.2022.9981703.

[39] Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J., 2018. Frustum
pointnets for 3D object detection from RGB-D data, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[40] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A.Y., et al., 2009. ROS: an open-source robot
operating system, in: ICRA workshop on open source software, Kobe,
Japan. p. 5.

[41] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only
look once: Unified, real-time object detection, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[42] Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards
real-time object detection with region proposal networks, in: Inter-
national Conference on Neural Information Processing Systems, p.
91–99.

[43] Robinson, N., Tidd, B., Campbell, D., Kulić, D., Corke, P., 2022.
Robotic vision for human-robot interaction and collaboration: A sur-
vey and systematic review. ACM Journal of Human-Robot Interaction
12, 1–66. doi:10.1145/3570731.

[44] Sampieri, A., D’Amely, G., Avogaro, A., Cunico, F., Skenderi, G.,
Setti, F., Cristani, M., Galasso, F., 2022. Pose forecasting in industrial
human-robot collaboration. arXiv preprint arXiv:2208.07308 .

[45] Semeraro, F., Griffiths, A., Cangelosi, A., 2023. Human–robot
collaboration and machine learning: A systematic review of recent
research. Robotics and Computer-Integrated Manufacturing 79,
102432. doi:10.1016/j.rcim.2022.102432.

[46] Shahroudy, A., Liu, J., Ng, T.T., Wang, G., 2016. NTU RGB+D: A
large scale dataset for 3D human activity analysis, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
1010–1019.

[47] Sharma, G., Pieters, R., Angleraud, A., 2023. Engine assembly
dataset. doi:10.5281/zenodo.7669593.

[48] Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., Liu,
J., 2022. Human action recognition from various data modalities:
A review. IEEE Transactions on Pattern Analysis and Machine
Intelligence , 1–20doi:10.1109/TPAMI.2022.3183112.

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 12 of 13

124

Sensor-based Human-Robot Collaboration

[49] Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner,
J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., Corke, P.,
2018. The limits and potentials of deep learning for robotics. The
International Journal of Robotics Research 37, 405–420. doi:10.1177/
0278364918770733.

[50] Thalhammer, S., Patten, T., Vincze, M., 2019. SyDPose: Object
detection and pose estimation in cluttered real-world depth images
trained using only synthetic data, in: International Conference on 3D
Vision (3DV), IEEE. pp. 106–115. doi:10.1109/3DV.2019.00021.

[51] Tu, H., Wang, C., Zeng, W., 2020. Voxelpose: Towards multi-
camera 3D human pose estimation in wild environment, in: European
Conference on Computer Vision (ECCV), pp. 197–212.

[52] Vargas, A.M., Cominelli, L., Dell’Orletta, F., Scilingo, E.P., 2021.
Verbal communication in robotics: A study on salient terms, research
fields and trends in the last decades based on a computational linguis-
tic analysis. Frontiers in Computer Science 2. doi:10.3389/fcomp.
2020.591164.

[53] Villani, V., Pini, F., Leali, F., Secchi, C., 2018. Survey on hu-
man–robot collaboration in industrial settings: Safety, intuitive inter-
faces and applications. Mechatronics 55, 248–266. doi:10.1016/j.
mechatronics.2018.02.009.

[54] Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D., 2018a. Deep
learning for smart manufacturing: Methods and applications. Journal
of Manufacturing Systems 48, 144–156. doi:10.1016/j.jmsy.2018.01.
003.

[55] Wang, L., Gao, R., Váncza, J., Krüger, J., Wang, X., Makris, S., Chrys-
solouris, G., 2019. Symbiotic human-robot collaborative assembly.
CIRP Annals 68, 701–726. doi:10.1016/j.cirp.2019.05.002.

[56] Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S., 2018b. RGB-
D-based human motion recognition with deep learning: A survey.
Computer Vision and Image Understanding 171, 118–139. doi:10.
1016/j.cviu.2018.04.007.

[57] Weiss, A., Wortmeier, A.K., Kubicek, B., 2021. Cobots in Industry
4.0: A roadmap for future practice studies on human–robot collabo-
ration. IEEE Transactions on Human-Machine Systems 51, 335–345.
doi:10.1109/THMS.2021.3092684.

[58] Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R., 2019. Detec-
tron2. https://github.com/facebookresearch/detectron2.

[59] Wuest, T., Weimer, D., Irgens, C., Thoben, K.D., 2016. Machine
learning in manufacturing: advantages, challenges, and applications.
Production & Manufacturing Research 4, 23–45. doi:10.1080/
21693277.2016.1192517.

[60] Yan, S., Xiong, Y., Lin, D., 2018. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition, in: Thirty-
second AAAI conference on artificial intelligence.

[61] Yan, Z., Duckett, T., Bellotto, N., 2020. Online learning for
3D LiDAR-based human detection: experimental analysis of point
cloud clustering and classification methods. Autonomous Robots 44,
147–164. doi:10.1007/s10514-019-09883-y.

[62] Yang, C., Zhu, Y., Chen, Y., 2022. A review of human–machine
cooperation in the robotics domain. IEEE Transactions on Human-
Machine Systems 52, 12–25. doi:10.1109/THMS.2021.3131684.

[63] Zacharaki, A., Kostavelis, I., Gasteratos, A., Dokas, I., 2020. Safety
bounds in human robot interaction: A survey. Safety Science 127,
104667. doi:10.1016/j.ssci.2020.104667.

[64] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.,
2017. 3DMatch: Learning local geometric descriptors from RGB-D
reconstructions, in: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1802–1811.

Angleraud, Ekrekli, Samarawickrama, Sharma, Pieters: Preprint submitted to Elsevier Page 13 of 13

125

D5.4: Final report on deep robot action and decision making 126/131

OpenDR No. 871449

D5.4: Final report on deep robot action and decision making 127/131

J

Co-speech Gestures for Human-Robot Collaboration

Akif Ekrekli1, Alexandre Angleraud1, Gaurang Sharma1 and Roel Pieters1

Abstract— Collaboration between human and robot requires
effective modes of communication to assign robot tasks and
coordinate activities. As communication can utilize different
modalities, a multi-modal approach can be more expressive
than single modal models alone. In this work we propose a co-
speech gesture model that can assign robot tasks for human-
robot collaboration. Human gestures and speech, detected by
computer vision and speech recognition, can thus refer to
objects in the scene and apply robot actions to them. We present
an experimental evaluation of the multi-modal co-speech model
with a real-world industrial use case. Results demonstrate that
multi-modal communication is easy to achieve and can provide
benefits for collaboration with respect to single modal tools.

I. INTRODUCTION

Fluent interaction between human and robot requires reli-
able perception to capture the commands of a person. While
recent approaches in deep learning [1] have established
impressive tools to detect e.g., human pose, gestures and
speech, single tools alone can not always convey easily the
commands intended [2]. Reasons for this are the limited
expressions available for different modes of communication
and the limitations in perception performance. Human hand
gestures, for example, contain much less information content
than speech. On the other hand, gesture detection can be
done much quicker than speech recognition, leading to a
faster response time. These conflicting properties motivate
to combine multiple perception tools into a single multi-
modal detection model that utilizes communication from
human to robot for assigning tasks and coordinating the
collaboration. In this work we compare different perception
tools and analyse them with respect to their suitability for
human-robot collaboration. A co-speech gesture model is
then developed that combines speech, human hand gestures
and object detection to achieve effective communication of
desired robot tasks, such as picking human-specified objects
and robot to human hand-overs (see Fig. 1). The develop-
ments are intended for industrial human-robot collaboration
where a collaborative robot shares its tasks, and works in
close collaboration with, a human operator. Our contributions
are:

• Human speech and hand gesture perception methods to
command robot actions

• Co-speech gesture model that combines human natural
speech and hand gestures to command robot actions

• Experimental evaluation of the co-speech gesture model
in an industrial human-robot collaborative use case

1Cognitive Robotics group, Unit of Automation Technology and Me-
chanical Engineering, Tampere University, 33720, Tampere, Finland;
firstname.surname@tuni.fi

Fig. 1: Co-speech gesture model that combines a speech
phrase, human gesture detection and object perception to
command robot actions.

II. RELATED WORK

A. Human-Robot Collaboration

Collaboration between human and robot is often targeted
for industrial manufacturing [3], as both robot and human
have unique skills that complement each other. Different
interfaces that enable the collaboration have been analyzed,
providing clear directions on how the collaboration benefits
the tasks [4]. Approaches include voice processing, gesture
recognition, haptic interaction, and even brainwave percep-
tion. Often machine [5] and deep [6] learning are used as
enabling perception tool [1] to classify and recognize the
person and objects in the environment [7].

B. Human Perception

Visual detection of a person in the scene has been an active
area of research [8]. Different visual modalities have been
utilized [9], such as RGB and depth information [10]. Multi-
modal approaches that utilize RGB-D data are popular as
well [11]. Human pose estimation goes a step further than
human detection by estimating the 3D pose of a human and
their individual skeleton joints [12], which can be used as
input for gesture detection. Utilizing speech for commanding
robots has been demonstrated with short verbal commands
for task coordination [13] and task programming [14]. As
extension to short speech commands, natural language as
instructions to robots has been used for planning [15] and
allocation [16] of tasks to be performed by the robot.

Multi-modal human-robot collaboration using gestures and
speech simultaneously has been demonstrated for a human
interacting with the humanoid robot NAO in [17], where
short phrases and gestures are utilized to indicate human
actions. Collaboration between a robot arm and a human

OpenDR No. 871449

Fig. 2: Co-speech gesture model that takes input from speech commands, gesture recognition and object detection to generate
robot actions for human-robot collaboration. Sensor fusion enables the human to refer to specific objects (<rod, rocker,
arm, this, that>) and apply actions to them (<pick, place, give me>).

worker is also demonstrated in [18], where a set of gestures
and speech commands are perceived individually to produce
the same input for robot actions. As comparison, our work
considers an industrial scenario with a collaborative robot
where speech phrases and gestures are combined to assign
tasks to the robot.

III. METHODS AND TOOLS

A. Perception Tools

The perception tools utilized in this work are integrated in
a common framework for isolated and human-robot collab-
orative tasks. For human perception, Lightweight OpenPose,
a human skeleton detection tool [12] is used, which takes
images (RGB) as input and returns skeleton node points as
output. For interaction, the wrist node of the skeleton is
taken and, when presented in a certain image area, serves
as trigger for robot actions (e.g., stop, continue) or refers
to certain objects in the scene (i.e., detected objects pointed
to). In the latter case, the detected object that is closest to
the wrist node is selected for robot action execution. Speech
recognition is enabled by Vosk [19] for the detection of pre-
defined input commands and phrases. This set of words and
sentences relate to available actions of the robot and locations
in the scene, as described in Table I. The model is configured
by filtering out unnecessary words that are unsuitable for
robot instructions. Objects in the scene are detected by a
neural network model (Detectron2 [20]) trained on a custom
dataset collected for the use case [21].

B. Multi-modal Perception Methods

The perception tools can be used in different ways to allow
for sensor redundancy, sensor multi-modality and sensor
information fusion, as follows.

• Sensor redundancy - multiple sensors are used to
command the same robot actions, e.g., speech or hand
gesture to stop robot motion

• Sensor multi-modality - different sensor modalities
are used to command individual robot actions, e.g.,

speech provides the robot actions, vision provides object
locations in the scene and detects human gestures

• Sensor-fusion - different sensor modalities are com-
bined to command a single robot action, e.g., speech
provides robot action, vision provides specific object
location as pointed to by the human

While sensor redundancy and multi-modality is supported
and demonstrated in Section IV, we emphasize our contri-
butions to the fusion of multiple sensor outputs into a single
robot command, as explained in the following section.

C. Co-speech Gesture Model

The single-modal visual and speech perception models are
fused into a multi-modal perception model by combining
speech commands, pointing gestures and object detection
(see Fig. 2). Several examples of these co-speech gestures
are described in Table I. The human can refer to individual
objects in the scene by speech (e.g., <rod>, <rocker
arm>) and pointing to them, and apply specific robot actions
by speech commands (e.g., picking with <pick>, placing
with <place>, robot to human hand-over with <give>).

Depending on the object, different robot actions are pos-
sible, as specified beforehand. For example, objects can be
picked up from the table, placed in specified locations and
handed over to the person. Object detection returns a list
of objects in the scene, which can be verbally referred to
by their class. Pointing gesture detection allows to refer
to specific objects in the scene by relating the pointing
gesture location to detected object locations. Robot actions
are therefore commanded by specific action verbs and object
classes, complimented by gestures to provide fine-grained
object references (see Fig. 2).

IV. EXPERIMENTAL RESULTS

A. Industrial Use Case

The considered use case replicates an industrial assembly
task that in current situation is done manually by human
operators. The solution we propose introduces a collaborative
robot as assistive tool to the assembly station, under control

128

TABLE I: Perception methods’ input and output

Method Input Output
Wrist
detection

RGB image of the scene (human front-facing)
Human gesture by moving wrist to certain image location Robot stop/continue actions

Speech
recognition

Robot action commands: <pick, place, give, go, stop, pause, continue>
Workspace commands: <rod, home, arm, me>
Human speech requests: <place rod>, <go home>, <give me another rocker
arm>, <pick up the last rod>

Robot motion
Gripper actions
Robot to human hand-over
Robot stop/continue actions

Object
detection RGB image of the scene (top-down) Detected objects in the scene

Valid target location for robot

Co-speech
gesture

<pick rod> + pointing gesture + object detection
<give me this rod> + pointing gesture + object detection
<give me that rocker arm> + pointing gesture + object detection

Robot motion
Gripper actions
Robot to human hand-over

of the person. This means that the assembly work is coordi-
nated by the human, with the robot assisting in tasks that the
human decides. Available robot actions are to move to certain
locations in the work space, pick objects that are detected on
the table, place objects to specified locations or hand them
over to the human. In addition, coordinated actions include
the stopping and continuing of robot actions during execu-
tion, for human visual inspection of the objects placed by
the robot. Human commands can be communicated by hand
gestures and/or speech, with different levels of functionality
as described in Table I. The setup for experiments is depicted
in Fig. 3 and includes two cameras (Intel Realsense D435)
for visual perception (one front-facing for wrist detection;
Fig. 3(b) and one top-down for object detection; Fig. 3(c))
and a microphone for speech recognition. Computation is
performed on a standard Desktop PC running Ubuntu Linux
with Nvidia GTX 1080 Ti GPU, and all robot (Franka
Emika) communication and control utilizes ROS. All tools
are open-source available to utilize or replicate: https:
//github.com/opendr-eu/opendr.

B. Human Gesture Detection

Results for the visual wrist detection tool are depicted
in Fig. 3(b), which highlights both detected human wrists.
When one of the wrists is detected inside one of the squares,
this is taken as trigger for referring to certain robot actions
or objects in the scene. For example, to stop robot motion,
the left wrist should be detected in the top left square and
to continue robot motion, the right wrist should be detected
in the top right square. Pointing gestures are interpreted in a
similar manner. When the human points to a certain object,
first the left or right wrist needs to be detected in either of
the lower two squares in the image, after which the location
to the closest detected object is determined. Performance of
the skeleton detection tool has been reported in the original
paper [12]. In our use case the detection accuracy of the
wrists inside a square is consistent around 90%, as assessed
from 20-second interval tests for different squares. This is
satisfactory for effective collaboration.

C. Object Detection

Results of visual object detection are depicted in Fig. 3(c),
which has the different detected objects annotated by colored
bounding boxes (yellow for the rocker arms and blue for
the rods). As objects are detected in image space, careful

calibration of both cameras ensures the detected objects can
be picked from the table and that pointing gestures can refer
to the same object in both camera frames. In our use case
the detection accuracy of all classes is over 90%.

D. Speech Recognition

Results of speech recognition were found satisfactory, as
in most cases the spoken commands are recognized correctly.
Performance, as reported in the original paper [19], depends
on the language skills of the person giving commands, as
in certain cases non-native English speakers had to speak
more clear to achieve correct speech recognition. Besides
the speech recognition itself, the speech tool was improved
by including a voice activity detector and a time-delay filter
(0.5 seconds) to consider the natural pause in human speech.
This resulted in a delay of ≈ 1.9 seconds between a verbal
command and the recognized speech (average of 50 trials
with different commands).

E. Co-speech Gesture Model Performance

The co-speech gesture model has all three perception
models running in parallel, decreasing slightly the running
performance of the skeleton detection tool (i.e., 24 fps with
image size of 1920×1080). Object detection achieves a frame
rate of 4.5 fps with image size of 1280×720. Extended
experiments were performed to test the co-speech tool in a
collaborative assembly scenario. This included a human and
robot performing assembly steps to an engine, with parts
that are either mounted by the person or by the robot. Parts
assembled by the person are picked by the robot from the
table and handed over to the human, and parts assembled
by the robot are picked by the robot from the table and
directly mounted to the engine. Coordination of the tasks
and requesting robot actions is done by the person via the
co-speech gesture model. In addition, the human can halt and
continue robot tasks at any time, by both gesture (i.e., raise
left/right wrist) and speech commands (<stop>, <pause>,
<continue>).

Single commands - Fig. 4(a) and (b) depict the human
commanding a stop gesture and a continue gesture, respec-
tively. Fig. 4(c) shows the human commanding the robot to
move to its ’home’ configuration by the phrase <ok, go
home>. For this, the home location is preprogrammed in
the software scripts.

129

(a) (b) (c)

Fig. 3: Experimental setup with a human pointing at an object for robot picking (a). One camera is human front-facing to
capture human hand gestures (b), one camera is mounted on the robot (eye-in-hand) for object detection on the table (c).

Speech phrases - Fig. 5 depicts how human speech
alone can be utilized to command robot actions, by the
phrase <give me another rocker arm>. From the
recognized speech, the tool extracts relevant words and
connects these to robot actions and objects in the scene.
In this case <give me> refers to a robot to human hand-
over, <rocker arm> refers to the rocker arm class in the
object detection model, and <another> implies any of
the detected rocker arms, meaning the first in the returned
detection list. As a result, the command phrase initiates all
required robot actions and starts executing them one-by-one,
as shown in Fig. 5(a)-(c).

Co-speech commands - Fig. 6 depicts examples of the co-
speech gesture model that utilizes a human speech phrase
and pointing gesture to achieve robot actions applied to
specified objects in the scene. In this case, as a pointing
gesture is detected by the wrist detection tool, the closest
specified object to the human wrist is selected for the
robot actions. A video1 of the co-speech gesture model
demonstrates all commands from Fig. 4-6. This shows the
collaborative tasks, where the human coordinates the actions
of the robot with four pick and place actions and four robot
to human hand-overs. Human visual inspection is done after
object placement by stopping robot motion with a speech
command. In total, the experiment includes over 20 speech
commands and seven co-speech gestures to coordinate the
shared task.

V. DISCUSSION AND LIMITATIONS

Sensor redundancy enables different modalities to com-
mand the same robot action. This was demonstrated for stop-
ping and continuing robot motion and actions by hand ges-
tures (see Fig. 4) and by speech commands. Few differences
were observed resulting from the experimental evaluations.
While hand gestures can be detected at relatively high rate
(>24 FPS), it can takes several image frames before a correct
prediction occurs. On the other hand, speech commands can

1https://youtu.be/b_ISrhOlcC8

have considerable delay even when a first verbal command
is correctly recognized. Regardless, the benefit of utilizing
both modalities, even with such delay, is evident in situations
when an operator is doing manual actions.

While in most cases the co-speech gesture model achieves
the intended robot commands and collaboration, some limi-
tations are identified. First, detection of the human wrist in a
specific image location requires careful human hand motion.
As alternative, human actions [22] or hand gestures could be
recognized directly from a dedicated model [23]. In our case,
inference time and detection accuracy were the main reasons
for utilizing a skeleton detection model instead. Second, the
relation between human pointing and objects in the scene
needs precise camera calibration, such that the same object
is referred to in both images. This can be circumvented by
using a single camera for both visual perception tools, with
RGB and depth perception functionalities.

VI. CONCLUSIONS

This work investigated how multiple perception tools
can be utilized and combined for effective human-robot
collaboration. Human hand gestures and speech, as well
as object detection, provide the input for robot actions, as
coordinated by a human operator. Single modal perception
serves to command basic robot actions (stop, continue) by
gesture or speech. A co-speech gesture model is developed
that combines human speech phrases, pointing gestures and
object detection to command robot actions (pick and place,
robot to human hand-overs) to specified objects in the scene.
Experimental results demonstrate that co-speech gestures can
be easily utilized for coordinating a shared collaborative task
between human and robot.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no. 871449 (OpenDR).

130

(a) (b) (c)

Fig. 4: Single command gestures stop (a), continue (b) and speech (c).

(a) (b) (c)

Fig. 5: Speech phrase to achieve robot to human hand-over.

(a) (b) (c)

Fig. 6: Co-speech gestures to achieve specified robot actions to objects.

REFERENCES

[1] N. Robinson et al., “Robotic vision for human-robot interaction and
collaboration: A survey and systematic review,” ACM Trans. Hum.
-Robot Interact., vol. 12, no. 1, pp. 1–66, 2023.

[2] S. Gross and B. Krenn, “A communicative perspective on human–
robot collaboration in industry: Mapping communicative modes on
collaborative scenarios,” Int. J. of Social Robotics, pp. 1–18, 2023.

[3] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, 11 2018.

[4] L. Wang et al., “Symbiotic human-robot collaborative assembly,” CIRP
Annals, vol. 68, pp. 701–726, 2019.

[5] F. Semeraro, A. Griffiths, and A. Cangelosi, “Human–robot collabo-
ration and machine learning: A systematic review of recent research,”
Robot. Comput. Integr. Manuf., vol. 79, p. 102432, 2023.

[6] N. Sünderhauf et al., “The limits and potentials of deep learning for
robotics,” Int. J. Rob. Res., vol. 37, pp. 405–420, 4 2018.

[7] J. Fan, P. Zheng, and S. Li, “Vision-based holistic scene understanding
towards proactive human–robot collaboration,” Robot. Comput. Integr.
Manuf., vol. 75, p. 102304, 6 2022.

[8] A. Zacharaki, I. Kostavelis, A. Gasteratos, and I. Dokas, “Safety
bounds in human robot interaction: A survey,” Safety Science, vol.
127, p. 104667, 7 2020.

[9] T. Linder, N. Vaskevicius, R. Schirmer, and K. O. Arras, “Cross-modal
analysis of human detection for robotics: An industrial case study,” in
IEEE Int. Conf. Intell. Robots Syst., 9 2021, pp. 971–978.

[10] E. Magrini et al., “Human-robot coexistence and interaction in open
industrial cells,” Robot. Comput. Integr. Manuf., vol. 61, p. 101846, 2
2020.

[11] C. R. Qi et al., “Frustum pointnets for 3D object detection from RGB-
D data,” in IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[12] D. Osokin, “Real-time 2D multi-person pose estimation on CPU:
Lightweight OpenPose,” arXiv preprint arXiv:1811.12004, 2018.

[13] A. Angleraud et al., “Coordinating shared tasks in human-robot
collaboration by commands,” Front. Robot. AI., vol. 8, 10 2021.

[14] T. B. Ionescu and S. Schlund, “Programming cobots by voice: A
human-centered, web-based approach,” Procedia CIRP, vol. 97, pp.
123–129, 2021.

[15] A. Boteanu et al., “A model for verifiable grounding and execution
of complex natural language instructions,” in IEEE Int. Conf. Intell.
Robots Syst., 2016, pp. 2649–2654.

[16] J. K. Behrens et al., “Specifying dual-arm robot planning problems
through natural language and demonstration,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2622–2629, 2019.

[17] P. Bremner and U. Leonards, “Efficiency of speech and iconic gesture
integration for robotic and human communicators-a direct compari-
son,” in IEEE Int. Conf. Robot. Autom., 2015, pp. 1999–2006.

[18] H. Chen, M. C. Leu, and Z. Yin, “Real-time multi-modal human–
robot collaboration using gestures and speech,” J. Manuf. Sci. Eng.,
vol. 144, no. 10, p. 101007, 2022.

[19] Alpha Cephei, “Vosk Speech Recognition Toolkit,” https://github.com/
alphacep/vosk-api, 2023.

[20] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[21] G. Sharma, R. Pieters, and A. Angleraud, “Engine assembly dataset,”
http://dx.doi.org/10.5281/zenodo.7669593, Feb. 2023.

[22] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in AAAI Conf. on
Artificial Intelligence, 2018.

[23] O. Mazhar et al., “A real-time human-robot interaction framework with
robust background invariant hand gesture detection,” Robot. Comput.
Integr. Manuf., vol. 60, pp. 34–48, 12 2019.

131

	Introduction
	Deep Planning (T5.1)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Deep Navigation (T5.2)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Deep Action and Control (T5.3)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Human Robot Interaction (T5.4)
	Objectives
	Innovations and achieved results
	Ongoing and future work

	Connection to Project Objectives

	Deep Planning
	Lyapunov-inspired deep reinforcement learning for obstacle avoidance
	Introduction and objectives
	Description of work performed so far
	Future work

	Curiosity-Driven Reinforcement Learning based Low-Level Flight Control
	Introduction and objectives
	Description of work performed so far
	Future work

	Deep Navigation
	Learning Hierarchical Interactive Multi-Object Search for Mobile Manipulation
	Introduction and objectives
	Description of work performed so far
	Future work

	Deep Reinforcement Learning with Action Masking for Diffential-drive Robot Navigation using Low-Cost Sensors
	Introduction and objectives
	Description of work performed so far
	Future Work

	Improving Inertial-based UAV Localization using Data-efficient Deep Reinforcement Learning
	Introduction and work performed so far
	Future Work

	Deep action and control
	EAGERx: Graph-Based Framework for Sim2real Robot Learning
	Introduction and objectives
	Description of work performed so far
	Future work

	Prioritizing States with Action Sensitive Return in Experience Replay
	Introduction and objectives
	Description of work performed so far
	Future work

	Human robot interaction
	EValueAction: a proposal for policy evaluation in simulation to support interactive imitation learning
	Introduction and objectives
	Description of work performed so far
	Future work

	Sensor-based Human-Robot Collaboration for Industrial Tasks
	Introduction and objectives
	Description of work performed so far
	Future work

	Co-speech Gestures for Human-Robot Collaboration
	Introduction and objectives
	Description of work performed so far
	Future work

	Conclusions
	Lyapunov-inspired deep reinforcement learning for robot navigation in obstacle environments
	Curiosity-Driven Reinforcement Learning based Low-Level Flight Control
	Deep Reinforcement Learning with Action Masking for Differential-drive Robot Navigation using Low-Cost Sensors
	Data efficient Deep Reinforcement Learning for Robust Inertial-based UAV Localization
	Learning Hierarchical Interactive Multi-Object Search for Mobile Manipulation
	EAGERx: Graph-Based Framework for Sim2real Robot Learning
	Prioritizing States with Action Sensitive Return in Experience Replay
	EValueAction: a proposal for policy evaluation in simulation to support interactive imitation learning
	Sensor-Based Human-Robot Collaboration for Industrial Tasks
	Co-speech Gestures for Human-Robot Collaboration

