
OpenDR
—

Open Deep Learning Toolkit for Robotics

Project Start Date: 01.01.2020
Duration: 48 months
Lead contractor: Aristotle University of Thessaloniki

Deliverable D7.4: Final public version of the
OpenDR toolkit

Date of delivery: 29 Dec 2023

Contributing Partners: AUTH, TAU, AU, TUD, ALU-FR,
CYB, PAL

Version: v4.0

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
871449.

Ref. Ares(2023)8898165 - 29/12/2023

D7.4: Final public version of the OpenDR toolkit 2/66

Title D7.4: Final public version of the OpenDR toolkit
Project OpenDR (ICT-10-2019-2020 RIA)
Nature Open Research Data Pilot
Dissemination Level: PUblic
Authors Niclas Vödisch (ALU-FR), Ahmet Selim Çanakçı (ALU-FR),

Abhinav Valada (ALU-FR), Bas van der Heijden (TUD),
Jelle Luijkx (TUD), Jens Kober (TUD), Robert Babuska
(TUD), Kakaletsis Efstratios (AUTH), Symeonidis Charalampos
(AUTH), Tzelepi Maria (AUTH), Nousi Paraskevi (AUTH), To-
sidis Pavlos-Apostolos (AUTH), Manousis Theodoros (AUTH),
Nikolaidis Nikolaos (AUTH), Tefas Anastasios (AUTH), Babis
Emmanouil (AUTH), Tsampazis Konstantinos (AUTH), Kir-
tas Emmanouil (AUTH), Avramelou Loukia (AUTH), Spanos
Dimitrios (AUTH), Katsikas Dimitrios (AUTH), Moustakidis
Vasileios (AUTH), Nikolaos Passalis (AUTH), Halil Ibrahim
Ugurlu (AU), Amir Ramezani Dooraki (AU), Erdal Kayacan
(AU), Alexandros Iosifidis (AU), Thomas Peyrucain (PAL),
Olivier Michel (CYB), Roel Pieters (TAU), Moncef Gabbouj
(TAU), Anton Muravev (TAU)

Lead Beneficiary PAL (PAL Robotics)
WP 7
Doc ID: OPENDR D7.4.pdf

Document History

Version Date Reason of change
v1.0 18/09/2023 Deliverable structure template ready
v2.0 15/11/2023 Initial content from all partners
v3.0 20/11/2023 Final version for review
v4.0 29/12/2023 Final version to be submitted

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 3/66

Contents
1 Introduction 5

2 Changelog 5

3 Accessing the OpenDR toolkit 9

4 Toolkit Research and Development 9
4.1 Using Part-based Representations for Explainable Deep Reinforcement Learning 9

4.1.1 Introduction and objectives . 9
4.2 Few-Shot Panoptic Segmentation With Foundation Models 10

4.2.1 Introduction and objectives . 10
4.2.2 Description of the work performed . 10
4.2.3 Conclusion . 12

4.3 Collaborative Dynamic 3D Scene Graphs for Automated Driving 12
4.3.1 Introduction and objectives . 12
4.3.2 Description of the work performed . 14
4.3.3 Conclusion . 16

4.4 Learning to estimate incipient slip with tactile sensing to gently grasp objects . 16
4.4.1 Introduction and objectives . 16
4.4.2 Description of the work performed . 16
4.4.3 Conclusion . 19

5 Installing and using the OpenDR toolkit 19
5.1 Installation by cloning the GitHub repository 20

5.1.1 Installation procedure . 20
5.2 Installation using pip . 20

5.2.1 Installation procedure . 20
5.2.2 Installing only a particular tool using pip 21

5.3 Installation using docker . 21
5.3.1 Procedure . 21

5.4 ROS . 22
5.4.1 Environment setup for ROS . 22
5.4.2 ROS2 . 22
5.4.3 Environment setup for ROS2 . 23

5.5 OpenDR on embedded devices . 23
5.6 Using the OpenDR toolkit . 24
5.7 Customization . 24

6 Conclusions 25

7 Appendix 28
7.1 Using Part-based Representations for Explainable Deep Reinforcement Learning 28
7.2 Few-Shot Panoptic Segmentation With Foundation Models 43
7.3 Collaborative Dynamic 3D Scene Graphs for Automated Driving 51
7.4 Learning to estimate incipient slip with tactile sensing to gently grasp objects . 59

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 4/66

Executive Summary
This document aims at supplementing the final version of OpenDR toolkit released in M48. It
provides details about accessing, downloading and using the toolkit for all the provided instal-
lation methods, namely: by cloning the GitHub repository, by installing it using pip or through
the provided docker images. Finally, it also details additional research and development tasks
conducted that are related to the development of the toolkit.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 5/66

1 Introduction
OpenDR aims at developing an open, non-proprietary modular toolkit that can be easily used
by robotics companies and research institutions to efficiently develop, evaluate and deploy AI
and cognition technologies to robotics applications. At a high level, OpenDR contains a selec-
tion of cognition and perception algorithms, along with general-purpose functionalities that are
necessary for common robotics tasks. This technical report (Deliverable D7.4) aims at supple-
menting the final public version of OpenDR toolkit released on M48. It provides details about
accessing, downloading, installing and using the toolkit. Furthermore, it also details additional
research and development tasks conducted that are related to the development of the toolkit.

2 Changelog
Notable changes with the final version of the toolkit are summarized here.

Features:

• #467 - Object Detection 2D Class Filtering: The class filtering feature for 2D ob-
ject detection has been incorporated to enhance selectivity in the output of deployed
object detectors. This addition allows users to filter out undesired object classes and
retain only those pertinent to their specific use case. The implementation comes
in the form of a wrapper, requiring two key parameters: the object detector and a
list of the user’s classes of interest. For optimal functionality, it is imperative that
the provided classes are a subset of the object categories recognizable by the spec-
ified detector. An exemplary demonstration utilizing the YOLOv5 object detector
is provided, illustrating the filtering capability. By default, this demo highlights the
’person’ class detections, effectively excluding all other categories.

• #476 - YOLOv5s Inference Demo with Optimized Weights for Agricultural Use:
This feature in vehicle detection technology is an inference demo that leverages the
optimized weights of a fine-tuned YOLOv5s model. This enhancement is specifi-
cally designed to elevate the model’s performance in identifying tractors, which are
crucial to agricultural operations. The fine-tuning process meticulously calibrates
the model’s weights, resulting in heightened sensitivity and precision in detecting
agricultural trucks, with an emphasis on tractors. By applying these specialized
weights during inference, the model exhibits superior detection capabilities, effec-
tively discerning tractors from a variety of vehicles in diverse farm environments.
Inference demo utilizes two real-world images of tractors as examples, in fields to
illustrate the refined accuracy and efficiency of the model, affirming the potential of
advanced object detection in supporting the agricultural sector’s evolving needs.

• #424 - Continual SLAM: Adds a new visual SLAM tool that can continuously
adapt to new domains.

• #473 - RL-based Learner for Active Face Recognition: Adds an Active Face
Recognition agent. The implementation relies on stable baselines3 and trains on
Webots. A Webots world is provided and the corresponding environment file to train
an agent in the task of Active Face Recognition, in which the goal is to maximize
FR confidence while controlling a Mavic2 drone.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 6/66

• #479 - Adaptive HR Pose Estimation: A new method is added for high-resolution
active perception. The new method uses an adaptive ROI selection in High-Resolution
images. This addition allows users to decide between the ”Primary” or ”Adaptive”
ROI selection method for high-resolution pose estimation. The new ”Adaptive ROI
selection” tool manages to further focus on the target subjects by eliminating the
background information that passes through the model. Similar to the ”Primary”
method, the ”Adaptive” methodology can be fine-tuned appropriately depending on
the users’ preferences for increasing the FPS or the precision by choosing the appro-
priate resizing variables. These resizing variables control the image size that passes
through the pose estimation model on each step.

• #423 - Fall and wave detection ROS nodes: Fall detection ROS1/2 nodes to work
both by subscribing to an image topic and running pose estimation internally (orig-
inal mode) and by subscribing to a pose topic and only running fall detection (new
mode).

• #368 - Full integration of Voxel Pseudo Image Tracking (VPIT): VPIT is a 3D
single object tracking method that works with Lidar point clouds, tracks objects at
high inference speed and is optimized for embedded devices, such as Jetson TX2
and Xavier.

• #451 - Robotti human detection simulation demo: Add Webots simulation per-
forming person detection on a field with the Robotti.

• #402 - Binary High Resolution Learner: This PR adds a binary high resolution
learner to the toolkit.

• #443 - Intent recognition tool: Implements an intent recognition tool that can clas-
sify text data into the following intents: Complain, Praise, Apologise, Thank, Criti-
cize, Agree, Taunt, Flaunt, Joke, Oppose, Comfort, Care, Inform, Advise, Arrange,
Introduce, Leave, Prevent, Greet, Ask for help. This tool is meant to be used together
with the speech transcription tool for speech-to-text conversion and hence the ROS
nodes are expected to subscribe to output of speech transcription ROS node. Simi-
larly, python demo is provided with integration of the speech transcription tool. The
model implements an architecture that is trained in a multimodal manner (audio,
visual, text) with the goal of improving inference on one of the modalities, in our
case, text.

• #436 - Add RGB gesture recognition: Implements RGB-based hands gesture recog-
nition (detection) based on hagrid dataset for 18 hand gestures. We currently provide
one pretrained model. ROS1/ROS2 nodes are included, as well as a webcam demo.
Algorithmically it relies on existing implementation of nanodet.

• #442 - FSeq2-NMS: Implementation of the FSeq2-NMS method (for person detec-
tion only) using SSD as detector.

• #433 Speech Transcription with Whisper and Vosk: Integrates two speech tran-
scription libraries: Whisper by openAI and Vosk. Adds target classes for the output
of each transcription library, integrates the download, load, infer and eval, etc., of the
two libraries into OpenDR learner classes, add a demo for the speech transcription
task, implements ROS node for the speech transcription task with two backbones,
Whisper and Vosk, implements ROS2 node for the speech transcription task, and

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 7/66

add documents for ROS bridge, ROS messages, transcription target, and learner
class.

• #404 - ROS2 node for EfficientLPS: Adds EfficientLPS ROS2 nodes.

Enhancements:

• #456 - Test-tools improvement: CI update to install the toolkit once and then use
this single installation to run all the tool tests in parallel, instead of reinstalling the
whole toolkit in each separate VM for every tool.

• #419 - ROS nodes FPS performance measurements: Adds time performance
measurement of tools’ inference. For each node, the time it takes to run (only)
inference is measured and published in a performance topic. Publishing this mes-
sage is optional, i.e. the relevant topic needs to be set via argparse. This message
can be subscribed to, or echoed to show the current FPS.

• #462 - Adding prompt when transcribe with Whisper: Adds initial prompt to
WhisperLearner.infer. initial prompt is a string that suggests the context of the tran-
scription. For example names of people that will appear in the transcription. Fur-
thermore, the ROS and ROS2 node, documents, and demo are updated accordingly.

• #455 - Refactoring: pythonic joins in test clang format.py/test cppcheck.py:
These slight code adjustments aim to enhance Pythonic quality by incorporating the
str.join function.

• #409 - High Resolution Pose Estimation webcam demo: Provides a high resolu-
tion pose estimation webcam demo.

• #408 - Object detection 2d camera demos: Provides a object detection 2d camera
demos.

• #405 - Facial expression recognition demo update: Updates the facial expression
recognition demos.

• #394 - Wave detection demo based on pose estimation: Adds a wave detection
demo to the existing list of lightweight open pose demos.

• #488 - Real Time Object Detection in Agricultural Applications: Provides ad-
ditional pretrained weights for object detection in the RoboWeedMap dataset for
nanodet-plus-fast. It also, enhances the inference capabilities with dynamic and non-
dynamic inputs for ONNX inference, adds better inference optimizations and faster
post processing. Provides a new Nanodet-based model named nanodet-plus-fast,
designed for fast object detection in embedded devices, such as NVIDIA JETSON
TX2. Finally, some new features were added in the training pipeline for finetuning
and better experiment logging readability.

Bug Fixes:

• #471 - Updated test suite develop.yml based on latest test suite.yml: test suite develop.yml
should be identical with test suite.yml to run scheduled tests on develop as stated
here.

• #466 - Minor fix on yolov5 webcam demo: Getting the error RuntimeError:

cuDNN error: CUDNN STATUS NOT INITIALIZED was fixed by importing torch
which seems to initialize it properly, similar to inference demo which works fine.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 8/66

• #463 - GPU installation fix: This PR fixes GPU detectron2 and torch installation
in install.sh and introduces a temporary fix for various conflicting dependency ver-
sions.

• #465 - Fix ROS1 nodes argparse issue with .launch files: This PR applies the fix
suggested in issue #460 to all ROS1 nodes. The fix was tested and doesn’t interfere
with running the nodes normally.

• #472 -Fix fmpgmapping: Fixed a bug when publishing the full posterior map where
the comparison for the map model was done with the wrong enumerations, leading
to publishing the wrong initial alpha and beta parameters for uninformed priors.

• #390 - Fix package creator and sources: Improved automatic package creation.

• #469 Apply cuDNN init fix to all Object Detectors 2D: The fix applied to yolov5
webcam demo for the cudnn not initialized error (#466), needs to be applied to all
object detectors.

• #454 - Added unzip installation as base ubuntu dependency and tool tests fixes:
Replaced bcolz with bcolz-zipline to fix broken installation, in tests suite.yml fixed
a call for pip install requirements, more strict pillow version, changed ultralytics
requirements, and fixed missing unzip dependencies.

• #438 - Fix tests on master branch: Errors with mobile manipulation test were
probably a consequence of issues with packages installation (solved in #431), re-
enabling tests.

• #430 Bump flask from 1.1.2 to 2.3.2: Bump flask from 1.1.2 to 2.3.2, triggered by
dependabot.

• #426 EfficientLPS panoptic segmentation coloring bug: EfficientLPS panoptic
segmentation tool had a small bug in the panoptic/instance coloring functions.

• #410 - Fix the dependency conflict of geffnet installation: Fixes the dependency
error between EfficientPS and EfficientLPS. EfficientLPS is unable to use efficient-
Net (geffnet) library that can be installed using EfficientPS even though the versions
are the same. The reason is that the original efficientNet library is modified for
EfficientLPS. However, EfficientPS is still compatible with the modified version.

• #421 - Fix link to nanodet documentation: Nanodet MD file name was not correct
in the reference manual index.

• #420 - Fix bug in GEM ROS2 node: Not possible to set qos profile for message
filter subscribers, therefore removing this argument.

• #401 - Yolov5 training bugfix: Introduces a quick fix to using custom trained
models for YOLOv5 as well as an example of converting an OpenDR dataset into
YOLOv5 .yml format for training.

• #397 - Fall Detection - alternative infer input: Fixes #282, by changing the infer
method of the fall detection learner. The infer method now accepts pose lists as
input in addition to OpenDR or OpenCV images.

• #392 - Lightweight OpenPose tool fixes and improvements: Various minor fixes
and improvements for the lightweight open pose tool, learner, demos and docs. Most
are based on the review of #356, where some issues of the new tool were inherited
from this one.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 9/66

• #478 Synchronization and bugfixes: Bumps av versions and fixes download func-
tion in High Resolution Pose Estimation.

• #459 Active face recognition demo and bug fixes on Face Recognition: Changed
Face Recognition inference return. Now class is 0/1 if not found/found. Added
feature extraction method to get access to features from a face image.

3 Accessing the OpenDR toolkit
The toolkit is developed using the well-established GitHub platform, following robust devel-
opment methodologies, including continuous integration and strict code review guidelines, as
described in D2.2, D7.2 and D7.3. The most recent version of the toolkit can be accessed at:

https://github.com/opendr-eu/opendr

The master branch contains the latest stable version of the toolkit and the develop branch
a version that includes the latest additions, refactors and module upgrades. Although CI tests
will maintain stability and high quality in both branches, the develop one is likely to change
often so it is less adapted for daily usage or production.

OpenDR provides an intuitive and easy-to-use Python interface, a C API for selected tools,
a ready-to-use ROS/ROS2 nodes and a wealth of usage examples and supporting tools.
OpenDR is built to support Webots Open Source Robot Simulator, while extensively follow-
ing industry standards, such as ONNX model format and OpenAI Gym Interface. Detailed
installation instructions, documentation can be found in the OpenDR repository and wiki. For
completeness, we also provide the installation and usage instructions in Section 5.

4 Toolkit Research and Development

4.1 Using Part-based Representations for Explainable Deep Reinforce-
ment Learning

4.1.1 Introduction and objectives

Deep Reinforcement Learning (RL) has achieved state-of-the-art performance in various ap-
plications. However, the use of RL agents in critical environments, where safety is highly
prioritized, is hindered due to the limited transparency of the models. Extracting the rationale
of a deep learning (DL) model in a human-interpretable way remains a challenging task, but
doing so would be highly useful for improving both the performance and trustworthiness of
the model, as well as preventing failures. To this end, post-hoc explanation methods have been
extensively studied over the years, providing rationales for the predictions of the model. How-
ever, such approaches cannot always provide a reliable explanation, with pre-hoc methods for
explainable AI gaining increasing attention recently.

Utilizing deep learning models to learn part-based representations holds significant potential
for interpretable-by-design approaches, as these models incorporate latent causes obtained from
feature representations through simple addition. However, training a part-based learning model

OpenDR No. 871449

https://github.com
https://github.com/opendr-eu/opendr
https://cyberbotics.com/
https://onnx.ai/
https://gym.openai.com/

D7.4: Final public version of the OpenDR toolkit 10/66

presents challenges, particularly in enforcing non-negative constraints on the model’s parame-
ters, which can result in training difficulties such as instability and convergence issues. More-
over, applying such approaches in Deep Reinforcement Learning (RL) is even more demanding
due to the inherent instabilities that impact many optimization methods. To this end, OpenDR
examined the possibility of employing a non-negative training approach for actor models in RL,
enabling the extraction of part-based representations that enhance interpretability while adher-
ing to non-negative constraints. We employed a non-negative initialization technique, as well as
a modified sign-preserving training method, which can ensure better gradient flow compared to
existing approaches. We demonstrate the effectiveness of the proposed approach using a simple
benchmark, i.e., Cartpole benchmark, implemented in the Webots simulation.

A paper describing the developed methodology was accepted and presented in ECML PKDD
Workshop Uncertainty meets Explainability:

• M. Kirtas, K. Tsampazis, L. Avramelou, N. Passalis, and A. Tefas, “Using Part-based
Representations for Explainable Deep Reinforcement Learning”, ECML PKDD - Work-
shop: Uncertainty meets Explainability, 2023

The corresponding publications can be found in Appendix 7.1.

4.2 Few-Shot Panoptic Segmentation With Foundation Models
4.2.1 Introduction and objectives

In this work, we present a method for Segmenting Panoptic Information with Nearly 0 labels
(SPINO). We first leverage a frozen DINOv2 [12] backbone to extract visual features. Subse-
quently, we train two task-specific heads for semantic segmentation and boundary estimation
with as few as ten annotated images to perform few-shot panoptic segmentation. To enable
real-time inference and further enhance prediction quality, we generate panoptic pseudo-labels
in an offline manner for a larger bag of raw images, suitable for training any existing panoptic
segmentation model [3, 11]. We conduct extensive evaluations on several public [4, 10] and
in-house datasets, demonstrating that our SPINO approach yields highly competitive results
when compared to fully supervised learning models. The main contributions are summarized
as follows: 1) proposing the first method for few-shot panoptic segmentation based on unsu-
pervised foundation models, 2) introducing a novel pseudo-label generation scheme trainable
with as few as ten annotated images, 3) demonstrating the competitiveness of SPINO against
supervised training with ground truth labels, 4) exploring the impact of various architectural
design choices through extensive evaluations, and 5) providing open access to the code and
trained models at http://spino.cs.uni-freiburg.de. A summary of this work is provided
hereafter. The corresponding paper is referenced below and can be found in Appendix 7.2. At
the time of submission of this deliverable, the work is still under review.

• [9] M. Käppeler, K. Petek, N. Vödisch, W. Burgard, and A. Valada, “Few-Shot Panoptic
Segmentation With Foundation Models”, arXiv preprint arXiv:2309.10726, 2023.

4.2.2 Description of the work performed

In this section, we introduce our proposed method, SPINO, for few-shot panoptic segmenta-
tion. Illustrated in Figure 2, our approach leverages the capabilities of the recent foundation

OpenDR No. 871449

http://spino.cs.uni-freiburg.de

D7.4: Final public version of the OpenDR toolkit 11/66

1) Training with nearly
zero samples

k (≈ 10) images with
annotations

Unsupervised training
of large foundation

model

3) Training of panoptic
segmentation model

SPINO

2) Generation of panoptic
pseudo-labels

Panoptic pseudo-labelsUnlabeled images

Figure 1: SPINO enables few-shot panoptic segmentation by exploiting descriptive image fea-
tures from unsupervised task-agnostic pretraining. We generate panoptic pseudo-labels by
learning from only k ≈ 10 annotated images in an offline manner. We can then leverage these
pseudo-labels to train any panoptic segmentation model enabling online deployment.

model DINOv2 [12] to extract rich image features essential for both semantic segmentation
and boundary estimation. A distinctive aspect of SPINO is the novel pseudo-label generation
scheme, designed to disentangle semantic regions of “thing” classes into individual instances
by predicting object boundaries. This innovative strategy allows SPINO to bootstrap from a
remarkably small number of ground truth annotations, e.g., 10, enabling the generation of high-
quality panoptic pseudo-labels. To enhance real-time inference and further refine the quality of
panoptic predictions, we train a panoptic segmentation model with the generated pseudo-labels.

The panoptic segmentation scheme comprises three main components, as depicted in Fig-
ure 2. These components include learnable modules for semantic segmentation and boundary
estimation, along with a static component responsible for fusing their predictions. The seman-
tic segmentation module is composed of a frozen DINOv2 backend, a bilinear 14x-upsampling
layer, and a final n-class MLP with 4 layers, where n represents the number of semantic classes.
The boundary estimation module follows a similar design, employing 4x-upsampling and bi-
nary classification with n = 2.

A key highlight of SPINO lies in its ability to train the pseudo-label generator with an excep-
tionally low number of ground truth annotations, a critical advantage for scenarios with limited
labeled data. Even with the unsupervised training procedure of DINOv2, SPINO achieves ro-
bust results. The training process of our pseudo-label generator involves employing various
data augmentation techniques on the input RGB image, such as random cropping, horizontal
flipping, and color jitter. Subsequently, the augmented image is fed into the two task-specific
heads, and the respective loss functions are computed.

In summary, SPINO introduces an innovative solution for few-shot panoptic segmentation,
showcasing its ability to achieve high-quality results with minimal ground truth annotations.
The combination of DINOv2 as a foundation model and the proposed pseudo-label generation
scheme demonstrates the potential for robust panoptic segmentation in resource-constrained
scenarios. We provide qualitative visualizations of our pseudo-labels in Figure 3 for both public
datasets as well as our in-house data including outdoor urban and indoor office environments.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 12/66

Semantic segmentation

n-
cl

as
s M

LP

Sc
al

e
fu

si
on

U
ps

am
pl

in
g

2-
cl

as
s M

LP

U
ps

am
pl

in
g

C
C

A

In
st

. f
us

io
n

Su
bt

ra
ct

io
n

Boundary estimation

Semantic map

Unlabeled images

Training of panoptic
segmentation model

Panoptic pseudo-labels

Generation of
pseudo-labelsM

ul
ti-

sc
al

e

Sc
al

e
fu

si
on

CCA

Inst. filter

Boundary map

Panoptic fusion

RGB image

Panoptic map

Frozen DINOv2

Figure 2: Overview of our proposed SPINO approach for few-shot panoptic segmentation.
SPINO consists of two learning-based modules for semantic segmentation and boundary es-
timation that leverage features from the recent foundation model DINOv2 [12]. A panoptic
fusion scheme combines their outputs using connected component analysis (CCA) and multiple
small instance filtering steps. SPINO creates pseudo-labels for a large number of unlabeled
images using only k ≈ 10 images with ground truth annotations. These pseudo-labels can then
be utilized to train any panoptic segmentation model.

Figure 3: Qualitative performance of our pseudo-label generator in four diverse domains from
both public and in-house data sources. From left to right, we show Cityscapes [4], KITTI-
360 [10], in-house automated driving, and an in-house office environment.

4.2.3 Conclusion

In this work, we introduced SPINO for few-shot panoptic segmentation by exploiting descrip-
tive image representations from the unsupervised foundation model DINOv2. We demonstrated
that SPINO can generate high-qualitative pseudo-labels after being trained on as little as ten an-
notated images. These pseudo-labels can then be used to train any existing panoptic segmenta-
tion method yielding results that are highly competitive to fully supervised learning approaches
relying on human annotations. Finally, we extensively evaluated several design choices for
the proposed pseudo-label generator. To facilitate further research, we made our code publicly
available. In future research, we will refine the boundary estimation and employ SPINO in
additional domains.

4.3 Collaborative Dynamic 3D Scene Graphs for Automated Driving
4.3.1 Introduction and objectives

Spatial and semantic understanding is of paramount importance for ensuring the safe and au-
tonomous navigation of mobile robots and self-driving cars. In the realm of automated driv-
ing (AD), recent advancements leverage high definition (HD) map information as potent priors

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 13/66

for various downstream tasks, including perception [15], localization [2], planning [5], and con-
trol [13]. However, the conventional approach to constructing HD maps, typically in a top-down
manner via traffic authorities or labor-intensive labeling efforts, contrasts with the accuracy
achieved by automatic bottom-up AD mapping approaches. These bottom-up methods, while
excelling in tasks like occupancy or semantic mapping, cannot fulfill the requirements outlined
for AD map representations [14], such as completeness, accuracy, scalability, frequent updates,
topological information grounded in rich sensor data, and efficient querying. In response to
these challenges, we propose Collaborative URBan Scene Graphs (CURB-SG) as a solution,
constructing a hierarchical graph structure of the environment, as depicted in Figure 4. CURB-
SG addresses the limitations of conventional SLAM maps by facilitating vision and language
queries and efficiently covering large areas by exploiting multiple agents.

Inter-agent loop closure detection, global map optimization,
lane graph extraction, and scene graph construction.

Environment

Central Server

Keyframe data and observations

Agent NAgent 2Agent 1

3D Urban Scene Graph

Roads &

intersections

Landmarks

Keyframes &

point clouds

Lane graph &

vehicles

Figure 4: For our proposed collaborative urban scene graphs (CURB-SG), multiple agents send
keyframe packages with their local odometry estimates and panoptic LiDAR scans to a central
server that performs global graph optimization. We subsequently partition the environment
based on a lane graph from agent paths and other detected cars. Together with the 3D map, the
lane graph forms the base of the large-scale hierarchical scene graph.

The novelty of CURB-SG lies in its dynamic 3D scene graph representation of urban driv-
ing environments, effectively covering large areas through multi-agent observations. To achieve
this, we introduce an online lane graph for partitioning urban environments, serving as a com-
mon link among multiple scene graph layers. This approach is inspired by an analogy to indoor
environments, where cities (buildings) are divided into intersections and roads (rooms), con-
taining static landmarks such as traffic signs (furniture), and dynamic objects such as vehicles
(humans). Furthermore, our method leverages a centralized collaborative SLAM approach,
combining panoptic LiDAR data and local odometry estimates into a single 3D map while op-
timizing a global pose graph through inter-agent loop closures.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 14/66

Our contributions include the introduction of a novel algorithm for representing urban driv-
ing environments as dynamic 3D scene graphs, efficient partitioning of urban environments
using lane graphs constructed on-the-fly from panoptic LiDAR observations, an efficient col-
laborative graph SLAM method, extensive evaluations using the CARLA simulator [6], and the
public availability of code and sample data at http://curb.cs.uni-freiburg.de. Through
CURB-SG, we aim to pave the way for advanced AD mapping approaches that fulfill the evolv-
ing demands of autonomous systems.

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.3. At the time of submission of this deliverable, this work is
still under review.

• [7] E. Greve, M. Büchner, N. Vödisch, W. Burgard, and A. Valada, “Collaborative Dy-
namic 3D Scene Graphs for Automated Driving”, arXiv preprint arXiv:2309.06635, 2023.

4.3.2 Description of the work performed

In this section, we present Collaborative URBan Scene Graphs (CURB-SG), an innovative ap-
proach designed to address the challenges of constructing efficient hierarchical graph structures
for the representation of large-scale outdoor scenes in the context of automated driving (AD).
Figure 5 illustrates the various components of CURB-SG, highlighting its collaborative LiDAR
SLAM backend and the dynamic scene graph generation mechanism. CURB-SG leverages the
collaborative efforts of multiple agents, each equipped with LiDAR sensors, to provide a robust
and globally consistent 3D map of the environment.

N Agents

Lane Graph Construction

Trajectory
preprocessing

AggregationAlignment

Server

Agent 1

Agent 2

Agent N

....

Map

server

(Inter-agent)
loop closures

Joint map
aggregation

Global graph
optimization

Edge contraction
& node merging

Pose Graph Optimization

Environment
Partitioning

Keyframes

Pre-filtering

Scan matching

Keyframe construction

Dynamic
objects

Panoptic LiDAR point
cloud observations

Static parts

3D Urban Scene Graph

Environment

Roads &
intersections

Landmarks

Keyframes &
point clouds

Lane graph

Vehicles

Layer A

Layer B

Layer C

Layer F

Layer E

Layer D

Figure 5: Overview of CURB-SG: Multiple agents obtain panoptically segmented LiDAR data
and provide an odometry estimate based on the static parts of the point cloud. A centralized
server instance then performs (PGO) including inter-agent loop closure detection and edge con-
traction based on the agents’ inputs. Tightly coupled to the pose graph, we aggregate a lane
graph from panoptic observations of other vehicles as well as the agent’s trajectories. Next,
the lane graph is partitioned to retrieve a topological separation that allows for the hierarchical
abstraction of larger environments.

The collaborative LiDAR SLAM backend is a cornerstone of CURB-SG, building upon the
well-established HDL Graph SLAM [8] and extending it to a multi-agent scenario. Agents
capture sparse 3D point clouds containing panoptic segmentation labels, where keyframes are
generated based on LiDAR odometry and transmitted to a central server. These keyframes carry
estimated poses and static LiDAR point clouds, forming the basis for collaborative SLAM. The
server performs centralized SLAM by detecting intra- and inter-agent loop closures, optimiz-
ing the global pose graph through pose graph optimization, and addressing long-term mapping

OpenDR No. 871449

http://curb.cs.uni-freiburg.de

D7.4: Final public version of the OpenDR toolkit 15/66

challenges through an innovative edge contraction technique. This ensures continuous refine-
ment of the 3D map, distinguishing between static and dynamic elements, and enhancing the
robustness of the representation.

The scene graph generation component in CURB-SG introduces a novel hierarchical repre-
sentation, going beyond traditional indoor scene graph constructions. The hierarchical structure
decomposes a constructed lane graph into intersecting and non-intersecting road areas, facilitat-
ing both spatial and semantic abstraction. This hierarchical environment representation consists
of layers, including global-level information, intersections and roads, static landmarks, dynamic
vehicles, the lane graph, and the semantic map. The dynamic lane graph generation is a pivotal
aspect, incorporating trajectories of ego agents and observed vehicles, providing a robust spatial
partitioning that efficiently serves downstream tasks such as trajectory prediction. The spatial
partitioning is based on the obtained lane graph, allowing for an intuitive division of the city
into intersecting and non-intersecting road areas, addressing the unique challenges posed by
outdoor driving scenarios.

Figure 6: Qualitative visualization of the intersection detection quality. Yellow nodes represent
intersections, whereas blue nodes represent non-intersecting road areas. As shown, these areas
can be predicted with high precision even without a complete lane graph.

Dynamic lane graph generation is a key aspect of the proposed scene graph generation,
contributing to the comprehensive understanding of the spatial layout and semantic content of
urban scenes. The integration of static landmarks, dynamic vehicles, and the semantic map
within this hierarchical framework provides a holistic view of the environment, facilitating ef-
ficient querying for various AD tasks. The spatial partitioning based on the lane graph allows
for an intuitive division of the city into intersecting and non-intersecting road areas, addressing
the unique challenges posed by outdoor driving scenarios. Our adaptive approach to spatial par-
titioning and abstraction aligns with the complex and dynamic nature of urban environments,
making it a valuable contribution to the field of autonomous systems.

In conclusion, CURB-SG offers a comprehensive solution to the representation and un-
derstanding of large-scale outdoor scenes in the context of automated driving. By combining
collaborative LiDAR SLAM with dynamic lane graph generation and a hierarchical scene graph

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 16/66

structure, CURB-SG addresses the challenges of long-term and large-scale mapping, contribut-
ing to the advancement of autonomous systems. One can see the qualitative results in Figure 6.

4.3.3 Conclusion

In this work, we introduced CURB-SG as a novel approach to building large-scale hierarchical
dynamic 3D urban scene graphs from multi-agent observations. We furthermore demonstrated
how our collaborative SLAM approach facilitates frequent map updates and rapid exploration
while scaling to large environments. To foster further research in this direction, we made our
code publicly available. In future work, we will address the reliance on simulated panoptic
labels and known initial poses of the agents. Orthogonal to that, follow-up work could address a
decentralized variant that operates under real-time constraints. Furthermore, we plan to include
pedestrian information as well as additional topological elements such as road boundaries.

4.4 Learning to estimate incipient slip with tactile sensing to gently grasp
objects

4.4.1 Introduction and objectives

To gently grasp objects, robots need to generate enough friction without creating damage by ap-
plying the right amount of force. In practice, implementing this force regulation is challenging
since it requires knowledge of the friction coefficient, which can vary from object to object and
even from grasp to grasp. Fortunately, tactile sensing can provide information about friction no-
tably by detecting the moment when the object slips away from the grasp. These tactile sensors
capture distributed information about the deformation of the artificial skin in the normal and
tangential direction, from which slippage can be detected. However, current approaches only
react to slip, which leads to significant object movement. The movement can in turn induce a
failure of the grasp and damage.

Our goal in this study is to create a tactile-enabled gripper that maintains a squeezing force
on an arbitrary object so that the safety margin remains constant (Fig. 7A). To do so, we de-
signed an impedance control gripper (Fig. 7B) which regulates its grasping force in real-time.
The gripper has two soft tactile sensing fingertips able to capture the 3D deformation of a mem-
brane using an embedded camera (Fig. 7C). The images of the interaction are fed to a CNN to
estimate the frictional safety margin Γ (Fig. 7D,F). Γ is then used to adjust the grasping force
in real-time (Fig. 7E), improving object manipulation and minimizing object slip (Fig. 7G).

A summary of this work is provided hereafter. The corresponding paper is referenced below
and can be found in Appendix 7.4. At the time of submission of this deliverable, this work is
still under review.

• [1] D-J. Boonstra, L. Willemet, J. Luijkx, M. Wiertlewski, “Learning to estimate incipient
slip with tactile sensing to gently grasp objects”, under review, 2023.

4.4.2 Description of the work performed

For this project, we developed and tested a tactile sensing gripper, named FUSE, which inte-
grates Chromatouch tactile sensors and a custom robotic gripper. The Chromatouch mechanism
employs a color-mixing principle, utilizing 3D-printed layers with colored markers and a trans-
parent silicone cast. Tactile images are captured at 100 Hz using a per-finger embedded USB

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 17/66

B C

D

F

Exploded view

camera

ring of leds

...

hidden layers

safety margin

unknown
object

fisheye lens

magenta layer

silicone

blue layer

plastidip

A

x

2 s
0

50

100

 (%)

0

1

2

3

grip
force (N)

0 0.5 1
 real

0

0.5

1

 p
re

di
ct

ed

FLAT
high friction
low friction

0 0.5 1
 real

0

0.5

1

 p
re

di
ct

ed

CURVED
high friction
low friction

G

reaction to slip

0

0.2

0.4

0.6

0.8

1

st
ra

w
be

rr
y

m
an

da
rin

ba
na

na

pr
ob

ab
ili

ty
 o

f s
lip

s

safety margin 40%
0

0.5

1

1.5

2

2.5

3

3.5

m
ea

n
gr

as
pi

ng
 fo

rc
e

[N
]

overgrasping

tactile images

safety margin P
controller

predicted safety margin

grip force
FUSE

gripper

CNN

E left

right

varying
load

Figure 7: A. Typical evolution of the interaction force when manipulating an object. The grip
force is maintained with a safety margin Γ over the minimum required grip force defined by
the friction cone. B. Render of the custom-made parallel FUSE gripper. C. Exploded view of
the tactile sensor ChromaTouch. D. Hidden layers of the convolutional neural network are used
to predict the safety margin. E. Grip force control to maintain a constant safety margin. F.
Deviation of the prediction compared to the real safety margin. G. Mean grasping force and
probability of slips for three control strategies (reaction to slip, constant safety margin of 40%,
and overgrasping strategy with a fixed 3.5 N grasping force).

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 18/66

before weight drop after weight drop

20 40 60 20 40 60
safety margin [%]

gr
ip

 fo
rc

e
[N

]

20 40 60 20 40 60
safety margin [%]

before weight drop after weight drop

0

1

2

3

20 40 60 20 40 60
safety margin [%]

before weight drop after weight drop

20 40 60
0

0.2

0.4

0.6

0.8 strawberry

mandarin

banana

pr
ob

ab
ili

ty
 o

f s
lip

s

A

B C

safety margin [%]
0 5 10 15 20 25

time [s]

0

1

2

3

gr
ip

 fo
rc

e
[N

]

0

20

40

60

80

100

ga
m

m
a

[%
]

0 10 20 30
time [s]

0

1

2

3

gr
ip

 fo
rc

e
[N

]
0

20

40

60

80

100

ga
m

m
a

[%
]

safety margin 40%

safety margin 60%

pouring rice pouring rice

*** *** ***

Figure 8: A. Mean grasping force for 3 different fruits and 3 safety margin commands. The
gray zone represents the period after the weight is dropped. B. Probabilities of slip as a function
of the safety margin for the 3 fruits. C. Grip force and predicted safety margin when the FUSE
gripper is grasping a cup being filled with rice. The safety margin was controlled at 40% and
60% respectively on the left and on the right.

camera. The gripper design is open-source and available on GitHub. In our experimental setup,
the gripper interacts with objects to collect data for training and evaluation. A force sensor
embedded in the object, compensated by DC-motors, measures 3D force interactions at the fin-
gertips. Safety margin Γ is estimated during trials involving a predefined grasping force and a
subsequent ramp-pulling force. The training of our model involves linking tactile images and
safety margin Γ using ShuffleNetV2. Tactile images are resized and concatenated before being
fed into the network. ColorJitter and GaussianBlur augmentations enhance the model’s gener-
alization. The trained CNN outputs a single floating-point value representing predicted Γ. To
control the gripper’s grip force, a simple P controller utilizes the CNN output, adjusting the
force to maintain a target Γ. The minimum and maximum applied grip forces are set to 0.25 N
and 3.2 N, respectively, to avoid damage to the tactile sensor. The working principle of the tac-
tile sensor involves calibrating acquired images towards actual 3D deformation using a filtered
version of the Hertz contact model. This enables precise measurements of sub-millimeter dis-
placements in both normal and tangential planes. In terms of results, the accuracy of the trained
CNN is demonstrated by comparing predicted Γ with ground truth from force measurements.
The Mean Squared Error (MSE) loss over validation datasets indicates a combined average of
0.01821, reflecting a high accuracy of 98.2The validation of the gripper’s controller involves
real-time grasping tasks. The CNN model, combined with a Proportional controller, success-

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 19/66

fully adjusts grip force based on safety margin targets. Experiments on delicate fruits show
increased grip force with higher safety margin targets, leading to a decrease in slip probability
and effective real-time control (Fig. 8).

4.4.3 Conclusion

We proposed a novel method for gripper force control based on the frictional safety margin (Γ),
extracted from tactile sensor images using a convolutional neural network. The predicted Γ

achieved an average accuracy of 98.2% compared to force measurements, showcasing robust-
ness across different friction conditions. However, limitations arise in predicting Γ on surfaces
with minimal friction or high slipperiness. To address this, experiments were confined to a
controlled force range (0.25 to 3.2 N) to ensure accuracy and prevent sensor damage.

The study acknowledges challenges in accurately estimating safety margins on slippery sur-
faces due to sparse training data in lower safety margin ranges. This limitation could pose
challenges in handling fragile and slippery objects, as underestimating safety margins may lead
to excessive grasping force. Despite this, optimal safety margins around 40% are recommended,
and the control approach’s flexibility allows for margin adjustments.

Uncertainties in prediction are highlighted by a large standard deviation of estimated safety
margins, potentially causing grasp force fluctuations, particularly under external perturbations.
Real-life experiments with fragile objects demonstrate the model’s generalization to complex
scenarios, indicating enhanced grasping performance and reduced object damage. The trained
network’s prediction speed at 50 Hz on a desktop CPU enables real-time control, with the
gripper’s reaction time after a weight drop measured at approximately 100 ms, comparable to
human reaction times.

5 Installing and using the OpenDR toolkit
To maximize the visibility and ease-of-use of the toolkit, we provide three different ways for
installing the toolkit:

1. By cloning the GitHub repository

2. Using pip

3. Using docker

The first way provides a fully functional version of the toolkit that can be installed in various
platforms. pip is a straightforward way to install and experiment with the Python API of the
toolkit, while docker images are provided to experiment with toolkit functionalities in a pre-
configured environment with very little effort, as well as for other containerized applications.

The following subsection provides an overview of the installation process. OpenDR is de-
signed to be easy-to-use and install in order to maximize its impact. To this end, installation
scripts have been prepared to ensure that this process will be very easy, even for novice users.
Up-to-date instructions and additional details are available on OpenDR’s GitHub repository.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 20/66

5.1 Installation by cloning the GitHub repository
5.1.1 Installation procedure

To install the toolkit on a Linux system, please first make sure that git is available on the system:

sudo apt install git

Then, the toolkit should be downloaded locally:

git clone --depth 1 --recurse-submodules -j8 \

https://github.com/opendr-eu/opendr

To install the toolkit an installation script is available:

cd opendr

./bin/install.sh

The installation script automatically installs all the required dependencies. Note that we can set
the training/inference device using the OPENDR DEVICE variable. The toolkit defaults to using
CPU. If we want to use GPU, we can set this variable accordingly before running the installation
script:

export OPENDR_DEVICE=gpu

The installation script creates a virtualenv, where the toolkit is installed. OpenDR environment
can be activated similar to any other virtualenv:

source ./bin/activate.sh

All functionality (e.g., ROS, tools, demos, etc.) are then readily available.

5.2 Installation using pip
To increase the visibility of the toolkit, PyPI packages have been prepared for each tool.

5.2.1 Installation procedure

When installing the Python-API of the toolkit, it is necessary to first install the required depen-
dencies:

sudo apt install python3.8-venv libfreetype6-dev git build-essential cmake \

python3-dev wget libopenblas-dev libsndfile1 libboost-dev libeigen3-dev

python3 -m venv venv

source venv/bin/activate

pip install wheel

Then you can install the toolkit with:

pip install opendr-toolkit-engine

pip install opendr-toolkit

If your CPU does not support AVX2, you will need to set export DISABLE_BCOLZ_AVX2=true

prior to installing the toolkit.

OpenDR No. 871449

https://pypi.org/project/opendr-toolkit/

D7.4: Final public version of the OpenDR toolkit 21/66

5.2.2 Installing only a particular tool using pip

The instructions above will install the entire toolkit. It is however possible to only install a
specific OpenDR tool as the package has been split to that effect. If you wish to only perform
pose estimation you can:

pip install opendr-toolkit-engine

pip install opendr-toolkit-pose-estimation

Note that opendr-toolkit-engine must always be installed in the system. The following
packages are distributed:

opendr-toolkit-activity-recognition

opendr-toolkit-speech-recognition

opendr-toolkit-semantic-segmentation

opendr-toolkit-skeleton-based-action-recognition

opendr-toolkit-face-recognition

opendr-toolkit-facial-expression-recognition

opendr-toolkit-panoptic-segmentation

opendr-toolkit-pose-estimation

opendr-toolkit-fall-detection

opendr-toolkit-compressive-learning

opendr-toolkit-hyperparameter-tuner

opendr-toolkit-heart-anomaly-detection

opendr-toolkit-human-model-generation

opendr-toolkit-multimodal-human-centric

opendr-toolkit-object-detection-2d

opendr-toolkit-object-tracking-2d

opendr-toolkit-object-detection-3d

opendr-toolkit-object-tracking-3d

opendr-toolkit-ambiguity-measure

5.3 Installation using docker
5.3.1 Procedure

Appropriate dockerfiles that can run on any Linux system have been prepared and docker images
are publicly available on dockerhub. First, docker needs to be installed in your system. For
Ubuntu you can follow this procedure. When installed, running the OpenDR docker image is
very easy. For example, for the CPU image all you need is to execute:

sudo docker run -p 8888:8888 opendr/opendr-toolkit:cpu_v2.0.0

or for the cuda-enabled one:

sudo docker run --gpus all -p 8888:8888 opendr/opendr-toolkit:cuda_v2.0.0

Both commands will pull the image and launch it, and a Jupyter notebook server is started that
listens on port 8888. This can be accessed by clicking on the link similar to http://127.0.

0.1:8888/?token=TOKEN that appears in the console. Alternatively you can run an interactive
session with:

OpenDR No. 871449

https://hub.docker.com/repository/docker/opendr/opendr-toolkit
https://docs.docker.com/engine/install/ubuntu/
http://127.0.0.1:8888/?token=TOKEN
http://127.0.0.1:8888/?token=TOKEN

D7.4: Final public version of the OpenDR toolkit 22/66

sudo docker run -it opendr/opendr-toolkit:cpu_v2.0.0 /bin/bash

or

sudo docker run --gpus all -it opendr/opendr-toolkit:cuda_v2.0.0 /bin/bash

respectively for a cpu or cuda session. However, if you start an interactive session do not forget
to enable the venv with the command:

source bin/activate.sh

If you want to display GTK-based applications from the Docker container (e.g., visualize results
using OpenCV imshow()), then you should mount the X server socket inside the container:

xhost +local:root

sudo docker run -it -v /tmp/.X11-unix:/tmp/.X11-unix \

-e DISPLAY=unix$DISPLAY opendr/opendr-toolkit:cpu_v2.0.0 /bin/bash

5.4 ROS
With the third version of the toolkit, ROS and ROS2 nodes to interact with the toolkit have been
provided for all included tools.

5.4.1 Environment setup for ROS

The instructions provided here will assume ROS noetic is already installed in your system, that
a webcam is available and that you already installed the OpenDR toolkit (see section 5.1.1).

1. Move to the workspace: cd projects/opendr_ws

2. Install the package for the webcam: sudo apt install ros-noetic-usb-cam

3. Source the ROS installation: source /opt/ros/noetic/setup.bash

4. Build the workspace: catkin_make

5. Source it: source devel/setup.bash

6. Start roscore: roscore &

5.4.2 ROS2

With the third version of the toolkit, ROS2 nodes to interact with the toolkit have been provided
for all included tools.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 23/66

5.4.3 Environment setup for ROS2

The instructions provided here will assume ROS2 foxy is already installed in your system, that
a webcam is available and that you already installed the OpenDR toolkit.

1. Activate the virtualenv at the root of the OpenDR folder: source bin/activate.sh

2. Move to the ROS2 workspace: cd projects/opendr_ws_2

3. Source the ROS2 installation: source /opt/ros/foxy/setup.bash

4. Build the workspace: colcon build

5. Source it: source install/setup.bash

5.5 OpenDR on embedded devices
Two different docker images, that can be deployed on embedded devices, namely Nvidia’s TX2,
NX and AGX. The docker images are publicly available on dockerhub. The embedded devices
should be flashed with Jetpack 4.6. To enable GPU usage on the embedded device within
docker, first edit

/etc/docker/daemon.json

in order to set the default docker runtime:

{

"runtimes": {

"nvidia": {

"path": "nvidia-container-runtime",

"runtimeArgs": []

}

},

"default-runtime": "nvidia"

}

Restart docker afterwards:

sudo systemctl restart docker.service

To run an interactive session :

sudo docker run -it opendr/opendr-toolkit:tx2_v3 /bin/bash

sudo docker run -it opendr/opendr-toolkit:nx_v3 /bin/bash

sudo docker run -it opendr/opendr-toolkit:agx_v3 /bin/bash

This will give you access to a bash terminal within the docker. After that you should enable the
environment variables inside the docker with:

cd opendr

source bin/activate_nvidia.sh

source /opt/ros/noetic/setup.bash

source projects/opendr_ws/devel/setup.bash

OpenDR No. 871449

https://hub.docker.com/repository/docker/opendr/opendr-toolkit

D7.4: Final public version of the OpenDR toolkit 24/66

The embedded devices docker comes preinstalled with the OpenDR toolkit. It supports all
tools under perception package, as well as all corresponding ROS nodes. You can enable a
USB camera, given it is mounted as /dev/video0, by running the container with the following
arguments:

xhost +local:root

sudo docker run -it --privileged -v /dev/video0:/dev/video0 \

opendr/opendr-toolkit:nx_v2 /bin/bash

To use the docker on an embedded device with a monitor and a usb camera attached, as well as
network access through the hosts network settings you can run:

xhost +local:root

sudo docker run -it --privileged --network host \

-v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=unix$DSIPLAY \

-v /dev/video0:/dev/video0 opendr/opendr-toolkit:nx_v2 /bin/bash

5.6 Using the OpenDR toolkit
OpenDR provides extensive documentation for each tool that is part of the toolkit and is avail-
able here, as well as pointing to the available demo. A list of the available ROS nodes is
available here, specific instructions are provided for each of the available nodes. Excerpts from
the documentation are available in the annex.

It is worth noting that the toolkit recorded an impressive 2,000+ unique GitHub clones
(originated from users who wanted to have full access to all of the capabilities provided by the
toolkit) in just one year. Indeed, the total number of clones exceeded 100,000, which includes CI
clones. Furthermore, an estimated 3,000 pulls have been performed for the ready to use docker
images (which mainly targets less experienced developers who want to directly try the toolkit)
and an estimated 10,000 pip downloads (originated from users who use selected parts of the
Python API of the toolkit, e.g., individual tools without installing the whole toolkit). The larger
number of pip downloads indicates that the target group is familiar with Python and prefers
to install only the parts of the toolkit that are relevant to their needs. Note that the statistics
for docker and pip have been adjusted to remove traffic that might have been automatically
generated, e.g. by the CI system. Based on these statistics, OpenDR consortium estimates that
at least 15,000 downloads from developers have been performed in this period, exceeding by
far the corresponding M48 KPI target (a total of 500 downloads for the toolkit).

5.7 Customization
OpenDR can be readily customized to meet the needs of several application areas since the
source code for all the developed tools is provided and the Apache 2.0 license is very permissive.
Several ready-to-use examples, which are expected to cover a wide range of different needs, are
provided. For example, users can readily use the existing ROS nodes by, for instance, including
the required triggers or by combining several nodes into one to build more complex custom
systems. An example of this is for instance the face recognition ROS node. In short, the
user can use these nodes as a template to customize the toolkit to their needs. More in depth
instructions on how to customize the toolkit are available in the dedicated page.

OpenDR No. 871449

https://github.com/opendr-eu/opendr/blob/develop/docs/reference/index.md
https://github.com/opendr-eu/opendr/blob/develop/projects/opendr_ws/README.md
https://github.com/opendr-eu/opendr/blob/develop/docs/reference/customize.md

D7.4: Final public version of the OpenDR toolkit 25/66

6 Conclusions
This document presents the work performed in WP7 about toolkit integration resulting in a final
public version of the OpenDR toolkit. Notable changes includes continual SLAM, RL-based
active perception, class filtering for object detection, model weights for new tasks, adaptive
high resolution pose estimation, fall and wave detection ROS nodes, Voxel Pseudo Image track-
ing, intent recognition, Robotti human interaction simulation, RGB-based gesture recognition,
new methods for non-maximum suppression, as well as speech transcription with Wishper and
Vosk. Furthermore, this deliverable provided details about accessing, downloading and using
the toolkit for all the provided installation methods. Finally, it also detailed additional research
and development tasks conducted that were related to the development of the toolkit.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 26/66

References
[1] D.-J. Boonstra, L. Willemet, J. Luijkx, and M. Wiertlewski. Learning to estimate incipient

slip with tactile sensing to gently grasp objects. under review, 2023.

[2] D. Cattaneo, D. G. Sorrenti, and A. Valada. CMRNet++: Map and camera agnostic
monocular visual localization in LiDAR maps. Int. Conf. on Robotics and Automation
Workshop on Emerging Learning and Alg. Methods for Data Association in Robotics,
2020.

[3] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen. Panoptic-
DeepLab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pages 12472–12482, 2020.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[5] A. Diaz-Diaz, M. Ocaña, A. Llamazares, C. Gómez-Huélamo, P. Revenga, and L. M.
Bergasa. HD maps: Exploiting opendrive potential for path planning and map monitoring.
In IEEE Intelligent Vehicles Symposium, pages 1211–1217, 2022.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In Conf. on Robot Learning, 2017.

[7] E. Greve, M. Büchner, N. Vödisch, W. Burgard, and A. Valada. Collaborative dynamic 3d
scene graphs for automated driving. arXiv preprint arXiv:2309.06635, 2023.

[8] K. Koide, J. Miura, and E. Menegatti. A portable three-dimensional LiDAR-based system
for long-term and wide-area people behavior measurement. Int. Journal of Adv. Robotic
Systems, 16(2), 2019.

[9] M. Käppeler, K. Petek, N. Vödisch, W. Burgard, and A. Valada. Few-shot panoptic seg-
mentation with foundation models. arXiv preprint arXiv:2309.10726, 2023.

[10] Y. Liao, J. Xie, and A. Geiger. KITTI-360: A novel dataset and benchmarks for urban
scene understanding in 2D and 3D. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 45(3):3292–3310, 2023.

[11] R. Mohan and A. Valada. Perceiving the invisible: Proposal-free amodal panoptic seg-
mentation. IEEE Robotics and Automation Letters, 7(4):9302–9309, 2022.

[12] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, et al. DINOv2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[13] R. Trumpp, M. Büchner, A. Valada, and M. Caccamo. Efficient learning of urban driving
policies using bird’s-eye-view state representations. Int. Conf. on Intelligent Transporta-
tion Systems, 2023.

[14] K. Wong, Y. Gu, and S. Kamijo. Mapping for autonomous driving: Opportunities and
challenges. IEEE Intelligent Transportation Systems Magazine, 13(1):91–106, 2020.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 27/66

[15] B. Yang, M. Liang, and R. Urtasun. HDNET: Exploiting HD maps for 3D object detection.
In Conf. on Robot Learning, 2018.

OpenDR No. 871449

D7.4: Final public version of the OpenDR toolkit 28/66

7 Appendix

7.1 Using Part-based Representations for Explainable Deep Reinforce-
ment Learning

The appended papers follow.

OpenDR No. 871449

Using Part-based Representations for Explainable
Deep Reinforcement Learning

Manos Kirtas[0000−0002−8670−0248], Konstantinos Tsampazis, Loukia Avramelou,
Nikolaos Passalis[0000−0003−1177−9139], and Anastasios Tefas[0000−0003−1288−3667]

Computational Intelligence and Deep Learning Research Group
School of Informatics, Aristotle University of Thessaloniki, Greece.
{eakirtas, tsampaka, avramell, passalis, tefas}@csd.auth.gr

Abstract. Utilizing deep learning models to learn part-based represen-
tations holds significant potential for interpretable-by-design approaches,
as these models incorporate latent causes obtained from feature represen-
tations through simple addition. However, training a part-based learning
model presents challenges, particularly in enforcing non-negative con-
straints on the model’s parameters, which can result in training diffi-
culties such as instability and convergence issues. Moreover, applying
such approaches in Deep Reinforcement Learning (RL) is even more de-
manding due to the inherent instabilities that impact many optimization
methods. In this paper, we propose a non-negative training approach for
actor models in RL, enabling the extraction of part-based representations
that enhance interpretability while adhering to non-negative constraints.
To this end, we employ a non-negative initialization technique, as well
as a modified sign-preserving training method, which can ensure bet-
ter gradient flow compared to existing approaches. We demonstrate the
effectiveness of the proposed approach using the well-known Cartpole
benchmark.

Keywords: Part-based Learning · Explainable Reinforcement Learning
· Non-negative Constraints · Proximal Policy Optimization

1 Introduction

Deep Reinforcement Learning (RL) has achieved state-of-the-art performance in
various applications, including robotics [1, 2]. However, the use of RL agents in
critical environments, where safety is highly prioritized, is hindered due to the
limited transparency of the models. Extracting the rationale of a deep learn-
ing (DL) model in a human-interpretable way remains a challenging task, but
doing so would be highly useful for improving both the performance and trust-
worthiness of the model, as well as preventing failures [3]. To this end, post-hoc
explanation methods have been extensively studied over the years, providing ra-
tionales for the predictions of the model [4, 5]. However, such approaches cannot
always provide a reliable explanation [6, 7], with pre-hoc methods for explain-
able AI gaining increasing attention recently [8]. The pre-hoc approaches aim

2 M. Kirtas, K. Tsampazis, et al.

to design inherently explainable models, providing a transparent mechanism to
the decision-making process in such a way that one can calibrate user trust and
predict the system’s capabilities.

To this end, extracting a part-based representation of deep learning mod-
els provides great potential for interpretable-by-design approaches, since they
are based on the simple addition of latent causes acquired from feature rep-
resentations, making models easily interpretable by human actors due to the
elimination of canceling neurons [9, 10]. However, training a part-based learning
model is challenging since it requires non-negative constraints to the model’s
parameters, leading to training difficulties, such as instabilities and convergence
issues [11]. Furthermore, existing approaches for part-based learning are limited,
e.g., applied solely on autoencoders [10, 12], and models that are not usually
used in DL models, such as Pyramid Neural Networks [13, 14], resulting in a
significant performance degradation [11], making them unsuitable for RL.

In this work, we propose a non-negative training approach for actor models in
RL approaches, allowing for extracting part-based representations that can pro-
vide increased interpretability, while also building upon non-negative constraints
that are known to be conceptually tied to human cognition [15, 16]. To this end,
the proposed method employs a non-negative initialization method, along with
an appropriately modified sign-preserving training method. More specifically,
we propose using an exponential distribution-based non-negative initialization
method for the actor model. Then, we introduce a sign-preserving alternative
of Stochastic Gradient Ascent (SGA) that is used to train the actor model in a
non-negative manner. The proposed optimization method allows better gradient
flow, compared to existing clipping-based approaches, reducing the phenomenon
of vanishing gradients and increasing the stability of the training process. As
a result, the proposed pipeline enables more efficient training of inherently ex-
plainable models that are based on the non-negative part-based representation
of the actor. Note that even though the proposed method is presented within
the Proximal Policy Optimization (PPO) [17] algorithm, this is without loss of
generality and could be readily adapted to any other Deep RL approach. We
demonstrate the effectiveness of the proposed method in a traditionally used
benchmark, named Cartpole, in a high-fidelity 3D robotics simulation.

The remainder of this paper is structured as follows. The proposed method is
introduced and described in detail in Section 2, while the experimental evaluation
is provided in Section 3. Finally, conclusions are drawn in Section 4.

2 Proposed Method

In this work, we focus on training non-negative agents using policy gradient-
based approaches, such as the PPO algorithm [17], but without loss of generality,
since the proposed method can also be directly applied to other RL methods as
well, such as Q-learning based approaches. More specifically, PPO utilizes actor-
critic networks, where the actor model decides which action should be taken, with
its parameters denoted as θ. On the other hand, the critic network, equipped

Title Suppressed Due to Excessive Length 3

with parameters θ̃, informs the actor about the quality of its actions and guides
the actor on how to adjust them during training. The PPO method trains the
actor based on the policy gradient approach, while the critic evaluates the actions
by computing the corresponding state/action values. For simplicity, we assume
that both models have the same number of layers.

First, we propose an initialization scheme for the parameters of the actor
model using an exponential distribution to ensure a positive-only initialization.
Then, to train the actor model in a part-based representation manner, we pro-
pose a non-negative optimization approach based on Stochastic Gradient Ascent
(SGA), ensuring that the canceling neurons of the network will be diminished by
constraining parameters to the non-negative space, making them more easily in-
terpretable by humans. Thus, only the actor network is trained in a non-negative
manner, since it is responsible for the actions made by the agent during the de-
ployment and, as a result, it is the one that needs to be explainable during
deployment. Constraining to positive values only the parameters of the actor
model, without similarly restricting the critic model, allows for reducing the risk
of convergence issues that usually arise in non-negative neural networks [11].
At the same time, this does not reduce the interpretability of the actor model
during deployment, since the critic is only used during the training process.

In the case of RL approaches with a policy gradient, the actor model is trained
to learn a policy, π(a|s), by observing the state s and returning the probability
of selecting the action a. The groundbreaking results of the PPO are attributed
to the constraints utilized in the policy parameter steps. More precisely, PPO
employs the action probability ratio between the policy parameterization formu-
lated as:

rt(θ) =
πθ(a|st)

πθold
(a|st)

∈ R, (1)

where πθ(a|st) is the probability that policy π, with actor’s parameters θ, se-
lecting an action a when the agent observes environment state st at time step t
and the previous step parameters are denotes as θold. Using the clipped version
of the ratio rt(θ) around the value of 1 within ϵ, the policy exploration can be
constrained to the close vicinity of the parameter space. The clipped policy ratio
is defined as:

rclipt (θ) = clip(rt(θ), 1− ϵ, 1 + ϵ) ∈ [1− ϵ, 1 + ϵ], (2)

where ϵ is the constraint range of policy update and by default is set to ϵ = 0.2,
while the clip function is defined as:

clip(x,m,M) = max(min(x,M),m) ∈ [m,M]. (3)

The final objective function of the PPO is defined as:

Lactor(st;θ, θ̃) = Et

[
min

(
rclipt (θ)At(θ̃), r

clip
t (θ)At(θ̃)

)]
∈ R, (4)

where At(θ̃) is the advantage. In this work, we use the General Advantage Es-
timation (GAE) [18] approach. The Temporal Difference (TD) residual for each

4 M. Kirtas, K. Tsampazis, et al.

time step t is calculated as:

δt(θ̃) = Rt + γV π
θ̃t
(st+1)− V π

θ̃t
(st) ∈ R, (5)

where Rt is the reward the agent receives at time step t, V π
θ̃t
(st) is the value

estimation predicted by the critic policy π for current state st based on critic
parameter θ̃t, γ is the discount factor and λ is the smoothing parameter. In this
work, we use γ = 0.99 and λ = 0.95. Then, the advantage At is defined as:

At(θ̃) =

n−t∑

i=0

γiλiδt+i(θ̃) ∈ R, (6)

where n is the total number of steps within an episode and t is the time step.
On the other hand, the critic network is typically trained to minimize the

temporal difference between the returns and it is formulated as:

Lcritic = Et[δt(θ̃)
2] ∈ R (7)

Traditionally used initialization schemes, such as Kaiming [19] and Xavier [20],
oriented to ANNs that apply the ReLU activation function, initialize the param-
eters of the k-th layer around zero, drawing values from a Gaussian distribution,
θ ∼ N (0, σk), where θ denotes a parameter from θ and the standard deviation
depends on the number of inputs and neurons. To this end, even by applying
optimization methods that constrain parameters to positive values, it results in a
very low variance of parameters during the first epochs of training that can lead
to convergence difficulties or even halt the training process. To this end, inspired
by [12], we propose to initialize actor parameters θ in the positive domain using
an exponential distribution given by:

θ ∼ Exp(λ) =
ln(U(0, 1))

λ
∈ R+, (8)

where U(0, 1) is a uniform distribution between (0, 1), R+ denotes the set of
positive real values, and λ is the rate parameter of the distribution and it is a
hyperparameter that by default is set to λ = 100. Even though initializing the
actor parameters allows us to obtain a part-based representation before training,
the traditionally used optimization algorithms, such as SGA, do not allow one
to preserve the initial sign of the parameters. Therefore, we propose a sign-
preserving optimization method that is based on the SGA. More specifically,
we propose a sign-preserving alternative of SGA that modifies the update term,
which is attributed to the sign change, ensuring that the trainable parameters
will remain non-negative during the training phase. To this end, the actor’s
parameters are updated as:

θ =

∣∣∣∣θold + ηa
∂Lactor

∂θold

∣∣∣∣ , (9)

where the ηa denotes the learning rate of the actor and | · | the absolute value
operator.

Title Suppressed Due to Excessive Length 5

On the other hand, critic model is trained as usual employing the standard
Stochastic Gradient Descent (SGD) denoted as:

θ̃ = θ̃old − ηc
∂Lcritic

∂θ̃old
, (10)

where the ηc defines the learning rate of the critic model and Lcritic denotes
the loss function of the critic. We call the proposed sign preservation method
Absolute Stochastic Gradient Ascent (ASGA), since it employs the absolute value
operator to preserve the positive sign of parameters during the training process.

The proposed training method is presented algorithmically in Algorithm 1.
More specifically, it receives as input the initialization hyperparameters for the
actor model, which is initialized with the exponential distribution using λ ∈ R,
and for the critic model, which is initialized by a normal distribution using
σ ∈ Rn, where n is the number of layers. The former network is optimized with
the proposed sign-preserving alternative of SGA using learning rate ηa and the
latter using the SGD optimizer with learning rate ηc. The algorithm outputs
both actor’s θ and critic’s θ̃ parameters, ensuring that the actor’s parameters
will be non-negative. Firstly, the proposed method initializes the parameters for
both models (lines 2-3), using an exponential distribution for the actor (line 3),
constraining to positive-only parameters, and a normal distribution for critic pa-
rameters (line 4). In turn, the method iterates over the environment for Tepisodes

episodes (lines 6-12), applying the obtained policy (πθold
) for Tsteps steps (lines

6-8), collecting the states, trajectories and rewards (line 7). Then, the PPO al-
gorithm calculates the GAE (line 8) and the proposed method trains both actor
and critic for Tepochs (line 9-12) using mini-batches (line 10-12). More precisely,
the actor’s parameters are updated using the proposed sign-preserving gradient
ascent (line 11), while the actor is trained as usual by applying the SGD op-
timizer (line 12). This results in non-negative trained parameters for the actor
model, making the part-based representation of the actor feasible.

3 Experimental Evaluation

We experimentally evaluated the proposed method on the typical RL benchmark
Cartpole implemented using the Deepbots framework [21, 22]. More specifically,
the simulated environment is composed of a four-wheeled cart that has a long
pole attached to it by a free hinge. On the top of the pole, there is a sensor to
measure their vertical angle. The pole acts as an inverted pole pendulum and
the goal is to keep it vertical by moving the cart forward and backward.

We applied the PPO algorithm to all evaluated cases, with the actor network
getting the observations of the agent as input, consisting of two hidden layers of
10 neurons each, and outputs the action of the agent. Similarly, the critic network
gets the observations as input, and it outputs the advantage of each state. The
critic network also consists of two hidden layers of 10 neurons. On both networks,
we employed the ReLU activation function in the hidden layers, with the actor

6 M. Kirtas, K. Tsampazis, et al.

Algorithm 1: Non-Negative Actor PPO Training
Input : λ ∈ R: the rate parameter of the exponential distribution,

σ ∈ Rn: a vector containing the standard deviation for the Gaussian
distribution for each layer,

ηa ∈ R and ηc ∈ R: learning rates for actor and critic.
Output: θ : actor’s parameters, and

θ̃: critic’s parameters.
1 begin
2 for k = 1 . . . n do
3 θ(k) ∼ Exp(λ) ; // Initialize Actor’s Parameters
4 θ̃(k) ∼ N (0, σk) ; // Initialize Critic’s Parameters

5 for i = 1 . . . Tepisodes do
6 for j = 1 . . . Titer do
7 Apply policy πθold and collect state, actions and rewards;
8 Aj(θ̃) =

∑n−t
i=0 γiλiδt+i(θ̃) ; // Compute Advantage estimates

9 for j = 1 . . . Tepochs do
10 for every batch do
11 θ =

∣∣∣θ + ηa
∂Lactor

∂θ

∣∣∣ ; // Update Actor’s Parameters

12 θ̃ = θ̃ − ηc
∂Lcritic

∂θ̃
; // Update Critic’s Parameters

13 return θ, θ̃;

model setting an upper bound to ReLU at 2 (ReLU2) for better visualization
of the model. The observations contain the cart position, velocity on the x-axis,
vertical angle of the pole, and pole’s velocity at its tip. The available discrete
actions at each step are either to move forward or backward. For each step, the
agent is rewarded with +1 and each episode ends after Tsteps = 195 steps or
earlier if the pole has fallen ±15◦ off vertical or if the cart has moved more than
±39 centimeters on the x-axis. The networks are optimized for Tepisodes = 104

episodes with learning rates equal to ηa = 0.1 and ηc = 0.003 for actor and critic,
respectively. The PPO iterates for Titer = 5 over batches of 8 collected samples.

We evaluate the proposed method on the aforementioned setup against two
baseline methods using: a) Clipping Stochastic Gradient Ascent (CSGA) with
Kaiming initialization and b) CSGA with Xavier initialization. These are based
on the clipping approach proposed in [12, 11], after appropriate adaptation for
use in PPO. More specifically, the CSGA applies a clipping function to the
typical stochastic gradient ascent and it is formulated as:

θ′ = max

(
0,θ − η

∂J

∂θ

)
, (11)

where the max(·) operator is applied element-wise. In all cases, the evaluated
optimization methods are used on the actor model, ensuring the non-negativity

Title Suppressed Due to Excessive Length 7

0.00 0.25 0.50 0.75 1.00
Episodes ×105

25

50

75

100

R
ew

ar
d

Rewards

0.00 0.25 0.50 0.75 1.00
Episodes ×105

0.5

0.6

0.7

0.8

A
ct

io
n

Pr
ob

ab
ili

ty
(%

)

Action Probabilities

Proposed
Kaiming + CSGA
Xavier + CSGA

Fig. 1. On the left, the figure depicts the obtained reward during training that is
smoothed using a moving average filter with a window of 100. On the right, the action
probabilities for each method are depicted using the same moving average setting.

of its parameters, with the critic model being trained as usual with the SGD
optimizer.

Table 1. Average and variance of rewards both for training and evaluation phase over
5 runs.

Method Training Evaluation
CSGA (Kaiming Init.) 62.83± 39.64 89± 98.59
CSGA (Xavier Init.) 53.67± 35.47 58.2± 78.4
Proposed 89.45± 1.04 140.4± 43.9

We conducted five evaluation runs for each method using different seeds dur-
ing the training phase. In Table 1 the average and variance of the rewards over
5 runs are reported for all the evaluated methods. Both baselines lead to an
unstable training process, resulting in high variance reward values at the end of
the training. In contrast, the proposed method offers significantly more consis-
tent training, resulting in low-variance rewards after training, as well as higher
performance. This behavior is also highlighted in the evaluation performance,
where the proposed method holds the pole for more than 50 steps in the average
case contrary to the other evaluated baselines.

To highlight such different behavior, we report in Figure 1, the average reward
between different runs and the average action probability during training. For
each case, we smooth the reported result using a moving average filter, setting
the window value equal to 100. Similarly to the results reported in Table 1, we
observe that during training, the two baselines are highly unstable, resulting
in a poor local minimum and, as a result, significantly lower rewards. On the
other hand, the proposed method allows for more consistent training, achieving
significantly higher performance than the baselines.

8 M. Kirtas, K. Tsampazis, et al.

Fig. 2. Part-based representation of the actor model. At the top and bottom rows, the
input and responses of each layer are depicted. In the central row, the weights of the
actor model are depicted. The biases are omitted for simplicity.

This instability in training can also be observed in the action probability plot,
where the baselines lead to increases at a high rate during the initial stage of
training, before subsequently gradually decreasing the corresponding probabili-
ties. This indicates that baselines converge quickly to a bad local policy, with the
clipping update term introducing difficulties in the training process. Such diffi-
culties can be attributed to the fact that the clipping method zeros out synapses
when they try to change sign, reducing the learning capacity of the model. This
can also lead to vanishing gradient phenomena, which in turn can lead to bad
local minima or even halt the training process [23]. On the other hand, the
proposed optimization method ensures that the parameters will remain non-
negative without suppressing weights to zero, allowing gradients to flow through
the network since the absolute value operator has a non-zero derivative both for
positive and negative values. In this way, it provides a smooth training process
and consistent results, as well as a more explainable representation for the actor
model, allowing one to extract rationales of the agent due to the non-negative
constraints that diminish canceling neurons and leading to part-based represen-
tations.

To highlight this, in Figure 2 we provide an example of the part-based repre-
sentation acquired using the proposed method. More specifically, two cases are
presented: a) when the pole is dropped from the front of the cart (top row) and
b) when the pole is falling from the rear side of the cart (bottom row). On the
middle row, the weights of the model are depicted, omitting biases for simplicity.
The observations are presented on the first plot from the left and are normalized
between [0, 1], with columns on the plot denoting from 0 to 3: 0) cart position,
1) cart velocity, 2) pole angle and 3) endpoint velocity. The action made by the

Title Suppressed Due to Excessive Length 9

actor is represented on the right plot with the zeroth neuron response denoting
the forward move of the agent (left as depicted in the figure) and the first neuron
the backward move (right as depicted in the figure).

As depicted in Figure 2, applying part-based learning by using the proposed
method allows one to extract visually meaningful representations. More precisely,
when the pole is dropped from the positive side of the x-axis, meaning on the
front side of the cart, and has large values for the pole angle, the agent moves
the cart toward the same direction as the falling pole trying to keep it vertical,
as depicted in the first row of the figure with the lighter heatmaps. On the
other hand, when the pole has lower values on the pole angle (darker colors
in the observations’ heatmap are used to denote this), the agent moves the
cart backward. Lighter heatmaps when multiplied with the final layer’s weights
(weights 3 in the figure) of the actor lead to firing the zeroth neuron of the
layer that is translated on moving the cart forward. We can safely conclude
that the agent has high confidence in its decision by comparing the intermediate
representation of two cases after the second layer, since the two representations
are significantly different. As depicted, in the first case (first row of the figure),
the last layer zeroes out the response of the first neuron, maintaining the large
values on the input of the zeroth neuron. On the contrary, in the second case,
the input of the last layer already has values close to zero, with the first layer
increasing the values of the input to fire the zeroth neuron. We have to mention
that the action heatmap of the figure is after the softmax activation function,
translating the response of the last layer to action probabilities.

We can also extract the rationale for the agent based on other observations.
For example, the second observation (meaning the column denoted by 1 in the
figure) refers to the cart velocity (normalized between range [0, 1]). This means
that if the value of cart velocity is lower than 0.5, then the cart has a direction
to the negative side of the x-axis (backward movement). Accordingly, if the cart
velocity value is greater than 0.5, then the cart is moving forward, towards the
positive side of the x-axis. As depicted in the observations’ heatmap, the agent
moves toward the opposite direction of the direction that the pole is falling.
This is expected since the observations are extracted from an irrational agent,
where the actor parameters have been randomly initialized. However, the trained
agent using the proposed method outputs actions that moves the cart in the same
direction as the falling pole to keep the pole vertical. This can also be observed
in the heatmap of the weights of the first layer, where the third column has
an inverse color with respect to the second column. Indeed, there is an inverse
correlation between the cart position and the pole’s angle.

We extend our analysis to obtain further insight regarding the response of
the actor model, leveraging the advantages provided by the part-based represen-
tation of the model. To this end, we optimized the observation vector keeping
the trained weights frozen in order to minimize the distance between the output
of the model and a given action. The inputs are optimized for 5 epochs us-
ing SGD optimizer with the proposed sign-preserving update function applying
mean squared error loss. We applied the proposed optimization method to ensure

10 M. Kirtas, K. Tsampazis, et al.

Fig. 3. Optimized input of actor model to maximize the action probability of a given
action using three different initialization. In the first column, the observations are
optimized to maximize the forward action probability. In the second column, the ob-
servations are optimized to maximize the backward action probability. A different ini-
tialization of the observation vector is used for each row.

that the values of the observations will remain non-negative according to the ac-
tual normalized observations acquired from the environment. The observations
obtained are presented in Figure 3, where in the left column they are optimized
to maximize the action probability of the forward action, and, respectively, on
the right side they are optimized to maximize the action probability for the
backward action. For each case, we report both the initial vector of observation
and the one after the optimization process.

To evaluate which of the observations is more significant for each action, we
initialize each observation to 0.5 and then optimize them to maximize the respec-
tive action probability, depicted in the (a) row. As expected, for both actions,
the observation that changed significantly is the pole angle (in the third column).

Title Suppressed Due to Excessive Length 11

Indeed, when the observations are optimized in order to obtain a forward action
from the actor model, the pole angle value converges to its maximum, which is
value one. On the other hand, when the observations are optimized in order to
obtain a backward action, the pole angle value converges to a value close to zero.
In both cases, the other observations remain close to the initialized values, and it
seems that they are not significantly affected by the optimization process. This
is an expected behavior since the pole angle is the most significant indicator,
revealing the direction in which the pole is falling, and as a result the one that
significantly contributes to the prediction of the actor model.

We repeat the aforementioned experimental setup by applying different ini-
tializations on the observations vector and reporting the results at the (b) and
(c) rows. More specifically, we randomly draw values from a Gaussian distribu-
tion with 0.5 mean and 0.2 standard deviation. As shown, except for the pole
angle observation, which is significantly changed in most cases, the rest of the
observations are not affected by the optimization process. Regarding the obser-
vation of the pole angle, when it has opposite direction with the given action, the
obtained direction of the pole angle after optimization is inverted, such in case
(b.2). In cases where the initialized observation vector has the same direction of
the pole angle with the given action, as in cases of (b.1), the optimization process
slightly changes the initial vector and the value of the pole angle. Finally, it is
observed that when the initialized pole is vertical, such as in (a) and (c) cases,
the optimization process leads to maximizing or minimizing the pole angle value
according to the given action, resulting in the same direction with the action.

4 Conclusions

In this study, we have introduced a novel training approach that focuses on non-
negativity in deep RL using PPO. The proposed approach enables the extraction
of part-based representations, which offers enhanced interpretability while fol-
lowing non-negative constraints associated with human cognition. To achieve
this objective, the proposed method employs a non-negative initialization tech-
nique, followed by a modified sign-preserving training method. More specifically,
we proposed employing an exponential distribution-based non-negative initial-
ization method for the actor model and then using an appropriately modified
sign-preserving alternative to Stochastic Gradient Ascent (SGA) for training the
actor model in a non-negative manner. By adopting the proposed method, we
can mitigate issues related to the reduction of the learning capacity of models
and the vanishing gradients due to the use of clipping mechanisms involved in
existing approaches. This helps mitigate issues such as vanishing gradients and
enhances training stability. Consequently, the proposed pipeline enables more ef-
ficient training of inherently explainable models based on the non-negative part-
based representation of the actor. To validate the effectiveness of the proposed
method, we conducted experiments on the well-established Cartpole benchmark.
The results demonstrate the effectiveness of the proposed method in achieving su-

12 M. Kirtas, K. Tsampazis, et al.

perior performance and showcasing the advantages of the proposed non-negative
training methodology.

The promising results reported in this paper highlight several interesting fu-
ture research directions. First, the proposed method can also be extended to han-
dle value-based RL approaches, such as DQN [24]. Furthermore, extending the
part-based representation learning to the actor model could also provide further
insight into the training dynamics of the RL process, as well as allow for better
adapting it to the task at hand, potentially leading to more robust algorithms.
Finally, combining the proposed method with distillation approaches that can
transfer knowledge from the intermediate layers of traditional DL models, for
example [25], could potentially allow for better guidance of the optimization
process and learning more accurate policies.

Acknowledgments

This work was supported by the European Union’s Horizon 2020 Research and
Innovation Program (OpenDR) under Grant 871449. This publication reflects
the authors’ views only. The European Commission is not responsible for any
use that may be made of the information it contains.

References

1. J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

2. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yogamani, and
P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926,
2022.

3. B. Hayes and J. A. Shah, “Improving robot controller transparency through
autonomous policy explanation,” in Proceedings of the ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, HRI ’17, (New York, NY, USA),
p. 303–312, Association for Computing Machinery, 2017.

4. M. T. Keane and E. M. Kenny, “How case-based reasoning explains neural net-
works: A theoretical analysis of xai using post-hoc explanation-by-example from a
survey of ann-cbr twin-systems,” in Case-Based Reasoning Research and Develop-
ment (K. Bach and C. Marling, eds.), (Cham), pp. 155–171, Springer International
Publishing, 2019.

5. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.

6. D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling lime and
shap: Adversarial attacks on post hoc explanation methods,” in Proceedings of
the AAAI/ACM Conference on AI, Ethics, and Society, AIES ’20, (New York,
NY, USA), p. 180–186, Association for Computing Machinery, 2020.

7. Y. Zhou, S. Booth, M. T. Ribeiro, and J. Shah, “Do feature attribution methods
correctly attribute features?,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 9623–9633, Jun. 2022.

Title Suppressed Due to Excessive Length 13

8. C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, “Interpretable
machine learning: Fundamental principles and 10 grand challenges,” Statistics Sur-
veys, vol. 16, no. none, pp. 1 – 85, 2022.

9. A. Lemme, R. F. Reinhart, and J. J. Steil, “Online learning and generalization of
parts-based image representations by non-negative sparse autoencoders,” Neural
Networks, vol. 33, pp. 194–203, 2012.

10. E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui, “Deep learning of part-based
representation of data using sparse autoencoders with nonnegativity constraints,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 12,
pp. 2486–2498, 2016.

11. J. Chorowski and J. M. Zurada, “Learning understandable neural networks with
nonnegative weight constraints,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 1, pp. 62–69, 2015.

12. B. O. Ayinde and J. M. Zurada, “Deep learning of constrained autoencoders for
enhanced understanding of data,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 9, pp. 3969–3979, 2018.

13. M. Ferro, B. Fernandes, and C. Bastos-Filho, “Non-negative structured pyramidal
neural network for pattern recognition,” in Proceedings of the International Joint
Conference on Neural Networks, pp. 1–7, 2018.

14. M. S. A. Ferro, B. J. T. Fernandes, and C. J. A. Bastos-Filho, “Non-negative pyra-
midal neural network for parts-based learning,” in Proceedings of the International
Joint Conference on Neural Networks, pp. 1709–1716, 2017.

15. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

16. K. Tanaka, “Columns for Complex Visual Object Features in the Inferotemporal
Cortex: Clustering of Cells with Similar but Slightly Different Stimulus Selectivi-
ties,” Cerebral Cortex, vol. 13, pp. 90–99, 01 2003.

17. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint - 1707.06347, 2017.

18. J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy
optimization,” arXiv preprint - 1502.05477, 2015.

19. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
International Conference on Computer Vision, December 2015.

20. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the International Conference on Artificial Intel-
ligence and Statistics (Y. W. Teh and M. Titterington, eds.), vol. 9 of Proceedings
of Machine Learning Research, (Chia Laguna Resort, Sardinia, Italy), pp. 249–256,
PMLR, 13–15 May 2010.

21. M. Kirtas, K. Tsampazis, N. Passalis, and A. Tefas, “Deepbots: A webots-based
deep reinforcement learning framework for robotics,” in Proceedings of the Interna-
tional Conference on Artificial Intelligence Applications and Innovations, pp. 64–
75, 2020.

22. M. Kirtas, K. Tsampazis, P. Tosidis, N. Passalis, and A. Tefas, “Chapter 21 -
deep learning for robotics examples using opendr,” in Deep Learning for Robot
Perception and Cognition (A. Iosifidis and A. Tefas, eds.), pp. 579–596, Academic
Press, 2022.

23. M. Kirtas, N. Passalis, G. Mourgias-Alexandris, G. Dabos, N. Pleros, and A. Tefas,
“Robust architecture-agnostic and noise resilient training of photonic deep learning
models,” IEEE Transactions on Emerging Topics in Computational Intelligence,
2022.

14 M. Kirtas, K. Tsampazis, et al.

24. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

25. N. Passalis and A. Tefas, “Learning deep representations with probabilistic knowl-
edge transfer,” in Proceedings of the European Conference on Computer Vision,
pp. 268–284, 2018.

D7.4: Final public version of the OpenDR toolkit 43/66

7.2 Few-Shot Panoptic Segmentation With Foundation Models
The appended paper [9] follows.

OpenDR No. 871449

Few-Shot Panoptic Segmentation With Foundation Models

Markus Käppeler1∗, Kürsat Petek1∗, Niclas Vödisch1∗, Wolfram Burgard2, and Abhinav Valada1

Abstract— Current state-of-the-art methods for panoptic
segmentation require an immense amount of annotated training
data that is both arduous and expensive to obtain posing a
significant challenge for their widespread adoption. Concurrently,
recent breakthroughs in visual representation learning have
sparked a paradigm shift leading to the advent of large
foundation models that can be trained with completely unlabeled
images. In this work, we propose to leverage such task-agnostic
image features to enable few-shot panoptic segmentation by
presenting Segmenting Panoptic Information with Nearly 0 labels
(SPINO). In detail, our method combines a DINOv2 backbone
with lightweight network heads for semantic segmentation and
boundary estimation. We show that our approach, albeit being
trained with only ten annotated images, predicts high-quality
pseudo-labels that can be used with any existing panoptic seg-
mentation method. Notably, we demonstrate that SPINO achieves
competitive results compared to fully supervised baselines while
using less than 0.3% of the ground truth labels, paving the
way for learning complex visual recognition tasks leveraging
foundation models. To illustrate its general applicability, we
further deploy SPINO on real-world robotic vision systems
for both outdoor and indoor environments. To foster future
research, we make the code and trained models publicly available
at http://spino.cs.uni-freiburg.de.

I. INTRODUCTION

Panoptic segmentation [1] poses an important contribution
to holistic scene understanding by enabling robots to assign
semantic meaning to their environment while delineating in-
dividual objects. However, most previous methods addressing
panoptic segmentation rely on supervised training [2], [3],
hence requiring a large amount of ground truth labels. This
hinders their widespread adoption as generating panoptic
annotations is both expensive and time-consuming, e.g.,
manually labeling a single high-resolution image of urban
scenarios takes approximately 1.5 h [4]. Therefore, it is
paramount to reduce the number of required labels [5], e.g., by
advancing weakly- and unsupervised methods or by leveraging
task-agnostic pretraining strategies [6].

Facing similar issues, the domain of natural language
processing (NLP) has recently seen a rise of large foundation
models [7]. This paradigm shift in NLP also inspired the
vision community to propose similar methods such as
CLIP [8] or Segment Anything [9]. While both still require
some supervision signal, e.g., from image captions or coarse
object masks, DINO [10] learns visual representation in a
fully unsupervised manner allowing to significantly extend the

∗ Equal contribution.
1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Eng., University of Technology Nuremberg, Germany.
This work was funded by the German Research Foundation (DFG) Emmy
Noether Program grant No 468878300 and the European Union’s Horizon
2020 research and innovation program grant No 871449-OpenDR.

1) Training with nearly
zero samples

k (≈ 10) images with
annotations

Unsupervised training
of large foundation

model

3) Training of panoptic
segmentation model

SPINO

2) Generation of panoptic
pseudo-labels

Panoptic pseudo-labelsUnlabeled images

Fig. 1. SPINO enables few-shot panoptic segmentation by exploiting
descriptive image features from unsupervised task-agnostic pretraining. We
generate panoptic pseudo-labels by learning from only k ≈ 10 annotated
images in an offline manner. We can then leverage these pseudo-labels to
train any panoptic segmentation model enabling online deployment.

amount of usable resources. Prior works have shown that one
can bootstrap such general representations for several tasks
including depth estimation [11], semantic segmentation [11],
[12], and object detection [13]. Based on these findings, we
argue that it is time for a fundamental paradigm switch for
vision tasks that exploit task-agnostic foundation models
to enable few-shot training. In contrast to unsupervised
techniques [12], [14], we show that such an approach can yield
results competitive with fully supervised learning methods.

In this work, we present a method for Segmenting Panoptic
Information with Nearly 0 labels (SPINO). As illustrated in
Fig. 1, we first leverage a frozen DINOv2 [11] backbone to
extract visual features. We subsequently train two task-specific
heads for semantic segmentation and boundary estimation
with as few as ten annotated images to perform few-shot
panoptic segmentation. To enable real-time inference and to
further boost the quality of our predictions, we generate
panoptic pseudo-labels in an offline manner for a larger
bag of raw images that can then be used to train any
existing panoptic segmentation model. We perform extensive
evaluations on several public [4], [15] and in-house datasets
that demonstrate that our SPINO approach yields results that
are highly competitive with fully supervised learning models.
In particular, our extensive evaluations suggest that few-shot
panoptic segmentation provides the means to soon become
on par with supervised state-of-the-art methods.

To summarize, the main contributions are as follows:
1) We propose the first method for few-shot panoptic

segmentation based on unsupervised foundation models.
2) We present a novel pseudo-label generation scheme that

can be trained with as few as ten annotated images.
3) We show that SPINO yields results that are competitive

to supervised training with ground truth labels.
4) In extensive evaluations, we illustrate the effect of

various architectural design choices and apply our
method to real-world robotic vision platforms.

5) We make the code and trained models publicly available
at http://spino.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we present an overview of panoptic segmen-
tation, visual representation learning, and both unsupervised
and weakly-supervised image segmentation techniques.
Panoptic Segmentation: Panoptic segmentation [1] combines
semantic and instance segmentation into a single task with
two categories of scene elements. The static background
comprises the so-called “stuff” classes such as buildings,
whereas dynamic objects such as cars belong to the “thing”
category. While “stuff” classes only receive a semantic label,
“thing” classes are further separated on an instance level.
Since the introduction of this task, several deep learning-based
methods [2], [16]–[19] have been proposed requiring a large
amount of data for training. Recently, the focus has shifted
towards more challenging variants, e.g., open-vocabulary
methods such as from Ding et al. [20] leveraging insights
from foundation models [8]. Removing the need for labels,
CoDEPS [21] addresses unsupervised domain adaptation from
a source to a previously unseen target domain. In this work,
we propose a method for few-shot panoptic segmentation
requiring as few as ten annotated images.
Visual Representation Learning: Breakthroughs in natural
language processing (NLP) [7] have shown that task-agnostic
pretraining can yield feature representations that, fine-tuned
to specific applications, become competitive with prior state-
of-the-art methods [22]. A common approach to obtaining
similar representations in the visual domain is contrastive
learning [23]. However, although not using human annotations,
the choice of the dataset still introduces a significant bias on
the learned representation that can be mitigated by extensive
data augmentation [24]. Masked autoencoders (MAE) [25]
represent another type of self-supervised learners that learn
to reconstruct areas in an image that have been masked. After
pretraining, MAEs can be fine-tuned for various downstream
tasks. More recently, the usage of foundation models in NLP
has also started to influence computer vision. For instance,
CLIP [8] leverages insights from constrastive learning by
exploiting textual supervision to guide the learning of visual
features. However, this text-guided supervision strategy limits
the choice of training data. SAM [9] removes the need
for captions and relies on a self-iterative training scheme
starting from coarse object masks. While showing impressive
zero-shot performance for semantic segmentation on unseen
domains, it lacks the ability to assign class labels to the
segments. Finally, DINO [10] represents a new family of

foundation models that can be trained only from raw images.
In particular, DINO demonstrates that such unsupervised
pretraining can achieve even more explicit features for
semantic segmentation than their supervised counterparts.
Further advances have been shown by DINOv2 [11] that
combines several prior insights with training on a curated
dataset. In this work, we exploit descriptive image features
from a DINOv2 backbone to generate panoptic pseudo-labels.
Unsupervised and Weakly-Supervised Segmentation: Since
pixel-wise annotations for supervised training of image
segmentation tasks are expensive to obtain, research in the
last few years has shifted towards reducing the number of
human annotations. Recent methods build on the observation
that features from unsupervised pretraining are semantically
consistent across images from differing domains [12]. For
instance, LOST [26] uses DINO [10] features for bounding
box extraction to bootstrap supervised training of an object de-
tector. Objects can be assigned to the same class via k-means
clustering in the feature space. Similarly, TokenCut [27]
relies on Normalized Cut (NCut) [28] to group self-similar
image regions based on DINO features. While these previous
methods work well for foreground/background segmentation,
FreeSOLO [29] addresses multi-object detection by enhancing
coarse masks via one-stage self-training in a weakly super-
vised manner. However, requiring in-domain data results in
a lack of generalization. In contrast, CutLER [13] achieves
impressive zero-shot performance leveraging DINO features
to generate coarse masks followed by weakly supervised train-
ing of a separate instance segmentation network. Although
applicable to multi-object scenarios, relying on iterative NCut
requires specifying the number of expected objects.

With respect to semantic segmentation, MaskContrast [30]
and PiCIE [14] are notable methods from before the advent
of large pretraining models. While MaskContrast contrasts
learned features within and across saliency masks, PiCIE
searches for descriptive image features guided by pho-
tometric invariance and geometric equivariance. Recently,
both MaskDistill [31] and STEGO [12] leverage features
from a frozen DINO [10] backbone. To further refine the
pretrained features, STEGO adds a task-specific segmentation
head followed by clustering. Other examples of exploiting
foundation models include CLIP-ES [32], which relies on
contrastive language-image pretraining [8], and SEPL [33]
that combines the class-agnostic masks from SAM [9] with
class activation maps for class assignment. To the best of
our knowledge, our proposed SPINO constitutes the first
attempt to directly exploit fully unsupervised representation
pretraining for panoptic segmentation.

III. TECHNICAL APPROACH

In this section, we present our proposed approach SPINO
for few-shot panoptic segmentation. As illustrated in Fig. 2,
we leverage the recent foundation model DINOv2 [11]
to extract descriptive image features for both semantic
segmentation and boundary estimation. In particular, we
propose a novel pseudo-label generation scheme that separates

Semantic segmentation

n-
cl

as
s M

LP

Sc
al

e
fu

sio
n

U
ps

am
pl

in
g

2-
cl

as
s M

LP

U
ps

am
pl

in
g

CC
A

In
st.

 fu
sio

n

Su
bt

ra
ct

io
n

Boundary estimation

Semantic map

Unlabeled images

Training of panoptic
segmentation model

Panoptic pseudo-labels

Generation of
pseudo-labelsM

ul
ti-

sc
al

e

Sc
al

e
fu

sio
n

CCA

Inst. filter

Boundary map

Panoptic fusion

RGB image

Panoptic map

Frozen DINOv2

Fig. 2. Overview of our proposed SPINO approach for few-shot panoptic segmentation. SPINO consists of two learning-based modules for semantic
segmentation and boundary estimation that leverage features from the recent foundation model DINOv2 [11]. A panoptic fusion scheme combines their
outputs using connected component analysis (CCA) and multiple small instance filtering steps. SPINO creates pseudo-labels for a large number of unlabeled
images using only k ≈ 10 images with ground truth annotations. These pseudo-labels can then be utilized to train any panoptic segmentation model.

Semantic segmentation

RGB image

Semantic mapn-
cl

as
s M

LP

Boundary estimation

2-
cl

as
s M

LP

U
ps

am
pl

in
gA
ug

m
en

ta
tio

n

Boundary map

Frozen DINOv2

U
ps

am
pl

in
g

Fig. 3. Our proposed pseudo-label generator comprises two learnable
modules for semantic segmentation and boundary estimation that exploit
descriptive image features from the recent DINOv2 [11] foundation model,
enabling training with only k ≈ 10 ground truth panoptic annotations.

semantic regions of “thing” classes into individual instances
by predicting object boundaries. With this approach, SPINO
can bootstrap very few ground truth annotations for generating
high-quality panoptic pseudo-labels. To enable real-time
inference and to further boost the quality of our panoptic
predictions, we train a panoptic segmentation model using
the generated pseudo-labels.

A. Few-Shot Pseudo-Label Generation

We propose a novel panoptic segmentation scheme to
generate panoptic pseudo-labels in an offline manner while
requiring very few ground truth annotations for training. Our
label generator consists of three main building blocks shown
in Fig. 2, namely learnable modules for semantic segmentation
and boundary estimation as well as a static component to
fuse their predictions. The semantic segmentation module
is comprised of a frozen DINOv2 [11] backend, a bilinear
14x-upsampling layer, and a final n-class MLP with 4 layers.
Here, n denotes the number of semantic classes as specified
in Sec. IV-A. In detail, we use the DINOv2 weights of the
ViT-B/14 variant provided by the authors. For the boundary
estimation module, we employ a similar design but use
4x-upsampling and set n = 2 for binary classification.
Training the Label Generator: A key idea of SPINO is to
train our proposed pseudo-label generator with only k ground

truth annotations, where k denotes numbers as small as 10.
Notably, the unsupervised training procedure of DINOv2
does not further increase this number even when considering
the pretraining. We illustrate the training of our pseudo-label
generator in Fig. 3. First, to stabilize the training with such few
samples, we employ various data augmentation techniques on
the input RGB image including random cropping, horizontal
flipping, and color jitter. Subsequently, we feed the augmented
image to the two task-specific heads and compute the
respective loss functions.

We supervise the semantic segmentation head with the
bootstrapped cross-entropy loss function LBCE [34] to
account for rare classes.

LBCE = − 1

K

N∑

i=1

1 [pi,yi < tK] · log(pi,yi) , (1)

where pi,yi
denotes the posterior probability of pixel i for its

ground truth class yi ∈ {1, ..., c} with c being the number of
classes. The indicator function 1(·) is 1 if pi,yi

is below a
threshold tK and 0 otherwise. We set tK = 0.2 such that only
those pixels with top-K highest losses contribute to LBCE . In
order to train the boundary estimation module, we generate
ground truth boundary maps as follows: If the instance ID of
a pixel is different from any of its eight neighbors, we assign
1 to this pixel. Otherwise, we set the value of the center pixel
to 0. During training, we compute the binary cross entropy
loss L2CE as the supervision signal.

L2CE = − 1

N

N∑

i=1

yi ·log(pi,yi
)+(1−yi)·log(1−pi,yi

) , (2)

where yi ∈ {0, 1} is the binary boundary label of pixel i and
pi,yi

denotes the posterior probability.
Employing the Label Generator: In the next step, we
leverage the aforementioned trained modules for semantic
segmentation and boundary estimation to generate panoptic
pseudo-labels for a large number of unlabeled images. In the
following, we describe the procedure as depicted in Fig. 2.
Inspired by ensemble learning, we use multi-scale test-time
augmentation for both semantic segmentation and boundary

estimation. For instance, for scale s = 2, we divide the
image into four equally sized regions, upsample each region
to the size of the s = 1 image, and obtain their softmax
features. In the scale fusion block, we downsample these
feature maps to the original size of the region, join the features
of all regions in a single s = 1 map, and compute the mean
across the considered scales. In detail, we use scales {1, 2, 3}
for the semantic head and scales {3, 4, 5} for the boundary
estimation head. Next, we feed the predicted semantic map
and the estimated object boundary map to our panoptic fusion
module. First, for each “thing” class, we perform connected
component analysis (CCA) yielding disconnected blobs. If a
blob consists of fewer pixels than a threshold, we assign the
semantic void class to its pixels. Otherwise, we subtract the
predicted border for this blob from the semantic map followed
by CCA to detect separate instances within a blob. If the
number of pixels of an instance is below another threshold,
we add it to its nearest neighbor which fulfills the minimum
size requirement. If all instances of a blob are below this
threshold, we combine them into a single instance. Finally,
due to the top-down approach, the inferred instance maps
already contain semantic information leading to the desired
pseudo-labels for panoptic segmentation.

B. Training a Panoptic Segmentation Model

After creating pseudo-labels for a large set of unlabeled
images, we train a panoptic segmentation model as illustrated
in Fig. 2. In contrast to the offline label generator, such
a model allows for online panoptic segmentation while
further enhancing the overall performance. Although this
approach is generally applicable to any panoptic segmentation
model, in this work, we follow the spirit of our pseudo-label
generator. In detail, our bottom-up panoptic segmentation
network consists of a frozen DINOv2 [11] backbone with
an adapter module [35] and three task-specific heads [2] for
semantic segmentation, instance center prediction, and pixel
offset regression, respectively. In Fig. 4, we visualize this
architecture. The semantic head predicts a semantic class for
each pixel and is trained with the bootstrapped cross-entropy
loss with hard pixel mining [2].

LBCEH = − 1

K

N∑

i=1

wi · 1 [pi,yi
< tK] · log(pi,yi

) , (3)

which builds upon Eq. (1) but adds weights wi > 1 for pixels
that belong to small instances. For other instances and “stuff”
classes, the pixel weight remains at wi = 1. Addressing
instance segmentation, the center head generates a probability
map with high values for instance centers and the offset head
estimates the 2D offset of a pixel to the nearest instance
center. To train these heads, we utilize the MSE loss LMSE

for the center head and the L1 loss LL1 for the offset head.
Consequently, we compute the total loss as a weighted sum:

LPAN = λsemLBCEH + λcenLMSE + λoffLL1 (4)

To increase the learning speed, we propose to further exploit
the k annotated images, which were used to train the pseudo-
label generator, also when training the panoptic segmentation

Semantic map

Center map

Offset map Panoptic map

Panoptic
fusion

PS Network

A
da

pt
er

Frozen DINOv2

Fig. 4. To enable online predictions and to further boost the performance
compared to the pseudo-label generator, we train a bottom-up panoptic
segmentation model using our generated pseudo-labels. The network consists
of a frozen DINOv2 [11] backbone with an adapter [35] and three task-
specific heads, whose output is merged by a panoptic fusion module [2].

model. In particular, we construct batches that contain both
pseudo-labels and one ground truth sample. Formally, a batch
b of size n is given by

b = {Î1, . . . , În−1, IGT} , (5)

where Îi denote pseudo-labeled images and IGT is from the
set of k images with ground truth labels. We further apply
data augmentation via color jitter and horizontal flipping.

During test-time, a panoptic fusion module [2] predicts
the final panoptic segmentation map from the output of the
individual heads, shown in Fig. 4. In detail, it assigns a
semantic label to the class-agnostic instance predictions using
majority voting over the semantic predictions of all pixels
within an instance.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate that our proposed SPINO
outperforms unsupervised methods for semantic segmentation
and yields competitive results compared to fully supervised
setups for panoptic segmentation that require a huge number
of ground truth annotations. We provide both quantitative and
qualitative results on multiple public and in-house datasets.
Finally, we extensively evaluate several design choices for
our pseudo-label generator.

A. Datasets

We present results on various datasets including the public
Cityscapes [4] and KITTI-360 [15] as well as our in-
house data for automated driving and from an indoor office
environment.
Cityscapes: The Cityscapes dataset [4] contains RGB images
and fine panoptic annotations for automated driving in 50
cities across Germany and bordering regions. We select k
images from the train split to train our label generator and
generate pseudo-labels for the remaining images. In a separate
experiment, we also generate pseudo-labels on the entire
train_extra split. To evaluate the performance, we report
metrics on the val split. When creating the pseudo-labels, we
mask out the hood of the ego car as it remains static and
hence can be inferred from the k annotated images [5]. We
report metrics using 19 classes as per the official Cityscapes
evaluation protocol.

Fig. 5. Qualitative performance of our pseudo-label generator in four diverse domains from both public and in-house data sources. From left to right, we
show Cityscapes [4], KITTI-360 [15], in-house automated driving, and an in-house office environment.

TABLE I
PANOPTIC/SEMANTIC SEGMENTATION ON CITYSCAPES

Method Train. data Acc mIoU PQ SQ RQ

Fully supervised
DINOv2 + Adapt. + PH GT 91.9 77.0 51.4 78.9 63.1

Unsupervised
Modified DC [38] n/a 35.3 6.8 – – –
PiCIE [14] n/a 72.7 13.8 – – –
STEGO [12] n/a 89.1 38.0 – – –

Few-shot supervision
ResNet-50 + PH 10 GT 74.9 32.1 16.8 45.6 20.8
DINOv2 + PH 10 GT 81.6 49.4 20.6 49.9 25.8
DINOv2 + Adapt. + PH 10 GT 82.8 52.5 22.0 60.9 27.0

Pseudo-labels (ours) 10 GT 86.0 61.5 35.9 73.7 45.9
SPINO (ours) PL 86.3 60.6 36.4 73.5 46.7
+ Mixed-batch PL 86.6 61.2 36.5 74.8 46.3

SPINO (ours) PL++ 86.6 61.8 37.2 74.5 47.5

PH refers to the panoptic heads as shown in Fig. 4. GT and PL
indicate training with ground truth annotations and pseudo-labels,
where the “PL++” marks pseudo-labels on the train_extra split. The
architecture of SPINO corresponds to “DINOv2 + Adapt. + PH”.

KITTI-360: The KITTI-360 dataset [15] was recorded in
Karlsruhe, Germany, and provides RGB images and panoptic
annotations for sequential data. Following prior works [36],
[37], we use sequence 10 for evaluation and the remaining
sequences for the pseudo-label generation. We report results
using 14 classes as detailed by Vödisch et al. [21].
In-House: To illustrate the main benefit of SPINO, i.e.,
enabling panoptic segmentation on different vision system
with very few reference annotations, we employ our method
on two in-house data sources. First, following the spirit of
the public datasets, we use an automated driving perception
car navigating in Freiburg, Germany. Second, to demonstrate
general applicability, we record indoor data in our office
environment. For both domains, we prepare annotations for
ten images to train the pseudo-label generator.

B. Panoptic Segmentation

To evaluate the performance of SPINO, we measure the
pixel accuracy (Acc) and the mean IoU (mIoU) for semantic
segmentation as well as the panoptic quality (PQ), the
segmentation quality (SQ), and the recognition quality (RQ)
for panoptic segmentation. Based on the ablation studies in
Sec. IV-C, we train our pseudo-label generator on k = 10
human-selected, labeled images with a batch size b = 1 and
a learning rate lr = 0.001.

Few-Shot Training: First, we illustrate the efficacy of our
pseudo-label generation scheme. As shown by the metrics
in Tab. I, training Panoptic-DeepLab [2] (with a ResNet-50
backbone) on only ten images yields poor results that
can be improved by replacing the backbone with a frozen
DINOv2 [11]. Following the common methodology for dense
prediction tasks, we also add an adapter module [35] to
further increase the performance. However, the results remain
significantly inferior to the quality of our pseudo-labels with
respect to both semantic and panoptic segmentation. Notably,
our pseudo-label generator comprises a much simpler design,
e.g., estimating object boundaries instead of predicting
instance centers and pixel offsets. For the overall SPINO
approach, we adopt the network design of DINOv2 plus
an adapter module. Naive training on the generated pseudo-
labels already yields highly competitive results compared
to training with ground truth labels considering that we use
less than 0.29% of the labels. We further show how the
proposed mixed-batch strategy that closely incorporates the
ten ground truth labels increases all three semantic metrics.

Next, we also generate pseudo-labels for the unlabeled
train_extra split of Cityscapes, increasing the amount of
training data for the panoptic segmentation model. The results
in Tab. I indicate that our approach opens up an avenue
for exploiting unlabeled large-scale data recordings for the
training of existing panoptic segmentation methods.
Comparison with Unsupervised Segmentation: Second, we
compare SPINO to the state-of-the-art for unsupervised
semantic segmentation. As we follow the official Cityscapes
evaluation protocol, we retrain PiCIE [14] and their modified
DeepCluster [14], [38] using the released code on 19 classes.
For STEGO [12], we use the provided network weights but
reevaluate on 19 classes. Note that, for both PiCIE and
STEGO, reducing the number of classes leads to higher
metrics than reported by the authors. As SPINO significantly
outperforms these baselines, we argue that requiring ten
instead of zero annotated images is well justified.
Generalizability: Finally, we extend the evaluation to multiple
datasets. In Tab. II, we report quantitative results on both
Cityscapes [4] and KITTI-360 [15]. In detail, we compare
supervised training with ground truth annotations to our
few-shot approach. Similar to Tab. I, we report results for
three backbones, namely ResNet-50 [39], DINOv2 [11], and

TABLE II
PANOPTIC SEGMENTATION ON CITYSCAPES AND KITTI-360

Train. Cityscapes KITTI-360
Method data Acc mIoU PQ SQ RQ Acc mIoU PQ SQ RQ

Pseudo-labels 10 GT 86.0 61.5 35.9 73.7 45.9 75.8 54.7 32.5 70.7 42.1

ResNet-50 + PH GT 89.4 64.9 44.2 75.3 56.1 83.0 64.1 41.0 76.5 50.5
DINOv2 + PH GT 89.4 71.4 41.0 74.4 51.7 83.5 62.8 39.3 70.5 48.7
DINOv2 + Adapt. + PH GT 91.9 77.0 51.4 78.9 63.1 86.0 65.6 42.5 72.9 51.2

ResNet-50 + PH PL 85.4 57.3 33.0 67.8 42.3 76.2 52.1 32.2 67.6 41.0
DINOv2 + PH PL 84.5 57.1 31.4 70.9 40.3 76.4 54.6 32.7 71.7 42.0
DINOv2 + Adapt. + PH PL 86.3 60.6 36.4 73.5 46.7 76.6 55.5 33.3 71.9 42.8

PH refers to the panoptic heads shown in Fig. 4. GT and PL indicate ground truth annotations
and pseudo-labels. The gray row corresponds to SPINO without mixed-batch training.

TABLE III
ABLATION STUDY: NETWORK ARCHITECTURE

Method A
:

k-
N

N

B
:

L
in

.L
ay

er

C
:

C
N

N

D
:

M
L

P

E
:

U
ps

am
lin

g

Acc mIoU PQ SQ RQ

A ✓ 78.7 51.7 26.1 68.5 35.0
B ✓ 84.3 60.0 32.6 71.3 42.5
B + E ✓ ✓ 84.3 60.0 33.6 71.7 43.8
C + E ✓ ✓ 82.9 55.1 29.7 70.9 38.4
D + E ✓ ✓ 86.0 61.5 35.9 73.7 45.9

Due to the high computational complexity, the k-NN is
evaluated without training data augmentation.

TABLE IV
ABLATION STUDY: DATA AUGMENTATION

Method Acc mIoU PQ SQ RQ

Base 83.2 55.8 29.5 70.8 38.0

Training time
+ Random flip 83.3 56.1 29.5 70.8 38.0
+ Random crop 83.0 57.2 30.0 70.7 39.1
+ Color jitter 83.1 57.3 30.1 70.9 39.1

Test time
+ Multi-scale ensemble 86.0 61.5 35.9 73.7 45.9

TABLE V
ABLATION STUDY: BATCH SIZE

Batch
size Acc mIoU PQ SQ RQ

1 86.0 61.5 35.9 73.7 45.9
2 84.9 59.8 34.0 72.6 43.7
4 85.3 59.4 33.6 72.3 43.3
8 84.5 56.8 31.3 71.4 39.9

TABLE VI
ABLATION STUDY: NUMBER OF LABELS

Label
count Acc mIoU PQ SQ RQ

1 69.8 37.1 19.8 55.4 27.2
3 81.8 49.3 30.3 64.3 38.8
5 82.8 55.0 32.1 65.5 41.3

10 86.0 61.5 35.9 73.7 45.9
25 88.5 66.9 39.6 74.9 50.1
50 89.4 69.1 40.9 74.8 51.6
100 90.3 71.3 42.9 76.3 53.8

DINOv2 with an adapter [35]. Considering that our pseudo-
labels are generated based on only ten images, the few-shot
methods yield impressive results across the board. Note
that ten images correspond to 0.29% and 0.02% of the
utilized ground truth labels for Cityscapes and KITTI-360,
respectively. Finally, we provide qualitative visualizations of
our pseudo-labels in Fig. 5 for both public datasets as well
as our in-house data including outdoor urban and indoor
office environments. Further examples are shown in the
supplementary video on the project website.

C. Ablation Studies of Pseudo-Label Generation

We extensively evaluate the architectural design of our
pseudo-label generator and demonstrate its efficacy in contrast
to several alternatives. In Tabs. III, IV, V and VI, we highlight
the utilized variant in gray.
Network Architecture: In Tab. III, we compare the architectural
design of our pseudo-label generator using MLPs to other
network architectures. Similar to other methods [10], [26], we
use a k-NN classifier on the DINOv2 feature patches with k =
5. Due to the high computational complexity of this approach,
we omit training data augmentation for the k-NN. Next, we
utilize a linear layer with and without prior upsampling.
Compared to the k-NN, these learnable methods yield a
significant improvement but remain inferior to the MLPs.
Finally, we demonstrate that our design also outperforms a
4-layer CNN with 3× 3 convolutions.
Data Augmentation: Next, we gradually activate the data
augmentation techniques and list the results in Tab. IV.
Utilizing data augmentation during the training enhances
mIoU, PQ, and RQ, whereas the accuracy and SQ remain
stable. Additionally, our employed test-time augmentation
based on multi-scale ensemble prediction vastly improves the

metrics across the board.
Batch Size: In Tab. V, provide results for various batch sizes.
Note that we scale the learning rate proportionally to the
batch size and keep the number of epochs constant. Due to
leading to the highest quality of the pseudo-labels, we select
a batch size b = 1.
Number of Ground Truth Labels: Finally, we investigate the
effect of the label count on the quality of the pseudo-labels.
In Tab. VI, we report results for increasing k from one-shot
to k = 100. Note that for up to k = 10, we manually select
the samples used for training. For k > 10, we randomly
add further data. We observe a continuous improvement for
greater k. Notably, for k = 100, our pseudo-label generator
is almost on par with Panoptic-DeepLab while using 2.9%
of the annoations (see ResNet-50 backbone in Tab. II).

V. CONCLUSION

In this work, we introduced SPINO for few-shot panoptic
segmentation by exploiting descriptive image representations
from the unsupervised foundation model DINOv2. We demon-
strated that SPINO can generate high-qualitative pseudo-
labels after being trained on as little as ten annotated images.
These pseudo-labels can then be used to train any existing
panoptic segmentation method yielding results that are highly
competitive to fully supervised learning approaches relying
on human annotations. Finally, we extensively evaluated
several design choices for the proposed pseudo-label generator.
To facilitate further research, we made our code publicly
available. In future research, we will refine the boundary
estimation and employ SPINO in additional domains.

REFERENCES

[1] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic
segmentation,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2019, pp. 9396–9405.

[2] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and
L.-C. Chen, “Panoptic-DeepLab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2020, pp. 12 472–12 482.

[3] R. Mohan and A. Valada, “Perceiving the invisible: Proposal-free
amodal panoptic segmentation,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 9302–9309, 2022.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset for
semantic urban scene understanding,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2016, pp. 3213–3223.

[5] L.-C. Chen, R. G. Lopes, B. Cheng, M. D. Collins, E. D. Cubuk,
B. Zoph, H. Adam, and J. Shlens, “Naive-Student: Leveraging semi-
supervised learning in video sequences for urban scene segmentation,”
in Europ. Conf. on Computer Vision, 2020, pp. 695–714.

[6] C. Lang, A. Braun, L. Schillingmann, K. Haug, and A. Valada, “Self-
supervised representation learning from temporal ordering of automated
driving sequences,” arXiv preprint arXiv:2302.09043, 2023.

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervision,”
in Conf. on Robot Learning, vol. 139, 2021, pp. 8748–8763.

[9] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick,
“Segment anything,” arXiv preprint arXiv:2304.02643, 2023.

[10] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Int. Conf. on Computer Vision, 2021, pp. 9630–9640.

[11] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, et al.,
“DINOv2: Learning robust visual features without supervision,” arXiv
preprint arXiv:2304.07193, 2023.

[12] M. Hamilton, Z. Zhang, B. Hariharan, N. Snavely, and W. T. Freeman,
“Unsupervised semantic segmentation by distilling feature correspon-
dences,” in Int. Conf. on Learning Representations, 2022.

[13] X. Wang, R. Girdhar, S. X. Yu, and I. Misra, “Cut and learn for
unsupervised object detection and instance segmentation,” in IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2023, pp. 3124–
3134.

[14] J. Hyun Cho, U. Mall, K. Bala, and B. Hariharan, “PiCIE: Unsupervised
semantic segmentation using invariance and equivariance in clustering,”
in IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021,
pp. 16 789–16 799.

[15] Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A novel dataset and
benchmarks for urban scene understanding in 2D and 3D,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 45, no. 3,
pp. 3292–3310, 2023.

[16] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun,
“UPSNet: A unified panoptic segmentation network,” in IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2019, pp. 8818–
8826.

[17] L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder, “Seamless scene
segmentation,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2019, pp. 8277–8286.

[18] R. Mohan and A. Valada, “EfficientPS: Efficient panoptic segmentation,”
Int. Journal of Computer Vision, vol. 129, pp. 1551 – 1579, 2020.

[19] H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen,
“Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation,”
in Europ. Conf. on Computer Vision, 2020, pp. 108–126.

[20] Z. T. Zheng Ding, Jieke Wang, “Open-vocabulary universal image
segmentation with maskclip,” in Int. Conf. on Machine Learning, 2023.

[21] N. Vödisch, K. Petek, W. Burgard, and A. Valada, “CoDEPS: Online
continual learning for depth estimation and panoptic segmentation,”
Robotics: Science and Systems, 2023.

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, et al., “Language models are few-shot learners,” in
Advances in neural information processing systems, vol. 33, 2020, pp.
1877–1901.

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2020, pp. 9726–9735.

[24] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. V. Gool,
“Revisiting contrastive methods for unsupervised learning of visual
representations,” in Advances in neural information processing systems,
vol. 34, 2021, pp. 16 238–16 250.

[25] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2022, pp. 15 979–15 988.

[26] O. Siméoni, G. Puy, H. V. Vo, S. Roburin, S. Gidaris, A. Bursuc,
P. Pérez, R. Marlet, and J. Ponce, “Localizing objects with self-
supervised transformers and no labels,” British Mac. Vision Conf.,
2021.

[27] Y. Wang, X. Shen, Y. Yuan, Y. Du, M. Li, S. X. Hu, J. L. Crowley, and
D. Vaufreydaz, “TokenCut: Segmenting objects in images and videos
with self-supervised transformer and normalized cut,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, pp. 1–13, 2023.

[28] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[29] X. Wang, Z. Yu, S. De Mello, J. Kautz, A. Anandkumar, C. Shen,
and J. M. Alvarez, “FreeSOLO: Learning to segment objects without
annotations,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2022, pp. 14 156–14 166.

[30] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool,
“Unsupervised semantic segmentation by contrasting object mask
proposals,” in Int. Conf. on Computer Vision, 2021, pp. 10 032–10 042.

[31] W. V. Gansbeke, S. Vandenhende, and L. V. Gool, “Discovering object
masks with transformers for unsupervised semantic segmentation,”
arXiv preprint arXiv:2206.06363, 2022.

[32] Y. Lin, M. Chen, W. Wang, B. Wu, K. Li, B. Lin, H. Liu, and X. He,
“CLIP is also an efficient segmenter: A text-driven approach for weakly
supervised semantic segmentation,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2023, pp. 15 305–15 314.

[33] T. Chen, Z. Mai, R. Li, and W. lun Chao, “Segment anything
model (sam) enhanced pseudo labels for weakly supervised semantic
segmentation,” arXiv preprint arXiv:2305.05803, 2023.

[34] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution
residual networks for semantic segmentation in street scenes,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2017,
pp. 3309–3318.

[35] Z. Chen, Y. Duan, W. Wang, J. He, T. Lu, J. Dai, and Y. Qiao, “Vision
transformer adapter for dense predictions,” in Int. Conf. on Learning
Representations, 2023.

[36] R. Mohan and A. Valada, “Amodal panoptic segmentation,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022,
pp. 20 991–21 000.

[37] N. Gosala, K. Petek, P. L. Drews-Jr, W. Burgard, and A. Valada,
“SkyEye: Self-supervised bird’s-eye-view semantic mapping using
monocular frontal view images,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2023, pp. 14 901–14 910.

[38] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in Europ. Conf. on Computer
Vision, 2018, pp. 132–149.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

D7.4: Final public version of the OpenDR toolkit 51/66

7.3 Collaborative Dynamic 3D Scene Graphs for Automated Driving
The appended paper [7] follows.

OpenDR No. 871449

Collaborative Dynamic 3D Scene Graphs for Automated Driving

Elias Greve1∗, Martin Büchner1∗, Niclas Vödisch1∗, Wolfram Burgard2, and Abhinav Valada1

Abstract— Maps have played an indispensable role in enabling
safe and automated driving. Although there have been many
advances on different fronts ranging from SLAM to semantics,
building an actionable hierarchical semantic representation
of urban dynamic scenes from multiple agents is still a
challenging problem. In this work, we present Collaborative
URBan Scene Graphs (CURB-SG) that enable higher-order
reasoning and efficient querying for many functions of automated
driving. CURB-SG leverages panoptic LiDAR data from multiple
agents to build large-scale maps using an effective graph-based
collaborative SLAM approach that detects inter-agent loop
closures. To semantically decompose the obtained 3D map,
we build a lane graph from the paths of ego agents and their
panoptic observations of other vehicles. Based on the connectivity
of the lane graph, we segregate the environment into intersecting
and non-intersecting road areas. Subsequently, we construct
a multi-layered scene graph that includes lane information,
the position of static landmarks and their assignment to
certain map sections, other vehicles observed by the ego
agents, and the pose graph from SLAM including 3D panoptic
point clouds. We extensively evaluate CURB-SG in urban
scenarios using a photorealistic simulator. We release our code
at http://curb.cs.uni-freiburg.de.

I. INTRODUCTION

Spatial and semantic understanding of the environment is
crucial for the safe and autonomous navigation of mobile
robots and self-driving cars. Recent autonomy systems
leverage high-definition (HD) map information as effective
priors for several downstream tasks in automated driving (AD)
including perception [1], localization [2], planning [3], and
control [4]. HD maps are often constructed and maintained
in a top-down manner [5], i.e., relying on traffic authorities
or via arduous labeling efforts. In contrast, automatic bottom-
up AD mapping approaches show high accuracy [6], [7]
while being limited to occupancy or semantic mapping
using, e.g., dense voxel grid manifolds. With respect to
AD, map representations should ideally fulfill the following
requirements [8]: 1) completeness and accuracy while scaling
to large areas; 2) frequent updates to capture structural
changes; 3) higher-level topological information grounded in
rich sensor data; 4) efficient access and information querying.
Given these requirements, typical SLAM maps only enable
classical spatial or point-level semantic querying. We envision
that modern AD mapping approaches should provide the
means to process vision and language queries, e.g., from

∗ Equal contribution.
1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Eng., University of Technology Nuremberg, Germany.
The supplementary material can be found at https://arxiv.org/abs/2309.06635.
This work was funded by the European Union’s Horizon 2020 research and
innovation program grant No 871449-OpenDR and the German Research
Foundation (DFG) Emmy Noether Program grant No 468878300.

Inter-agent loop closure detection, global map optimization,

lane graph extraction, and scene graph construction.

Environment

Central Server

Keyframe data and observations

Agent NAgent 2Agent 1

3D Urban Scene Graph

Roads &

intersections

Landmarks

Keyframes &

point clouds

Lane graph &

vehicles

Fig. 1. For our proposed collaborative urban scene graphs (CURB-SG),
multiple agents send keyframe packages with their local odometry estimates
and panoptic LiDAR scans to a central server that performs global graph
optimization. We subsequently partition the environment based on a lane
graph from agent paths and other detected cars. Together with the 3D map,
the lane graph forms the base of the large-scale hierarchical scene graph.

foundation models [9]. Enabling such demands can only
become feasible by abstracting from given maps using sparse
representations.

In this work, we propose Collaborative URBan Scene
Graphs (CURB-SG) that effectively address the aforemen-
tioned requirements by constructing a hierarchical graph
structure of the environment as shown in Fig. 1. 3D scene
graphs enable efficient data storage of large environments
while being queryable and preserving spatial information.
Previous works on 3D scene graphs [10]–[12] focus on indoor
environments, whose taxonomy cannot be directly transferred
to large-scale urban domains. To close this gap, we introduce
the following analogy to indoor variants: Cities (buildings)
can be separated into intersections and roads (rooms), which
contain static landmarks such as traffic signs (furniture) as
well as dynamic objects such as vehicles (humans). We enable
this partitioning by generating an online lane graph that serves
as a common link among multiple graph layers. Addressing
frequent updates and multi-agent cooperation, our method
leverages a centralized collaborative SLAM approach that
combines panoptic LiDAR data and local odometry estimates
into a single 3D map while optimizing a global pose graph that

benefits from inter-agent loop closures. Following the spirit
of previous works on scene graphs [10]–[12], we extensively
evaluate our proposed method on simulated data using the
CARLA simulator [13].

To summarize, the main contributions are as follows:
1) We introduce a novel algorithm for representing urban

driving environments as dynamic 3D scene graphs
that are constructed from multi-agent observations to
efficiently cover large areas.

2) We demonstrate an effective partitioning of urban envi-
ronments using lane graphs constructed on the fly from
panoptic LiDAR observations in a cooperative manner.

3) We present an efficient collaborative graph SLAM
method to continuously update semantic maps while
addressing scalability via edge contraction.

4) We provide extensive evaluations of the building blocks
of our proposed framework.

5) We make our code and sample data publicly available
at http://curb.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we first present a summary of LiDAR-based
odometry and mapping, followed by an overview of multi-
agent SLAM, and scene graphs in automated driving (AD).
LiDAR SLAM: LiDAR-based mapping has been pioneered by
LOAM [14] that estimates robot motion from scan registration
via ICP between subsequent point clouds. To address the
full SLAM problem, HDL Graph SLAM [7] combines
LiDAR odometry with local loop closure detection and
performs joint pose graph optimization. Leveraging semantic
segmentation, SUMA++ [6] masks dynamic classes during the
mapping stage and proposes a semantic-aided variant of ICP.
PADLoC [15] exploits panoptic segmentation during training
to stabilize both loop closure detection and registration. In
this work, we use panoptic point clouds to generate a large-
scale semantic 3D map forming the base layer of our scene
graph.
Collaborative SLAM: To cover large environments and to
increase mapping speed, SLAM research begins to shift
towards multi-agent methods [16]. Generally, collaborative
SLAM can be realized in a centralized or distributed manner.
Initial works such as C2TAM [17] belong to the centralized
category, performing global bundle adjustment on a server and
localization on the clients. A similar paradigm is adopted by
CVI-SLAM [18] and COVINS [19], proposing visual-inertial
(VI) SLAM systems for a fleet of UAVs. While the robots run
local VI odometry, a central server collects this information,
searches for inter-agent loop closures to perform global opti-
mization, and removes redundant data. With respect to LiDAR
SLAM, LAMP 2.0 [20] allows collaboration between different
types of robots to map large-scale underground environments.
A similar use case is addressed by Swarm-SLAM [21], which
supports further sensor modalities. Following a distributed
paradigm, information is directly shared between the agents
using peer-to-peer communication. Kimera-Multi [22] is a
VI SLAM method that includes semantic information in the

generated 3D mesh. For data fusion, it employs distributed
pose graph optimization (PGO). Finally, DisCo-SLAM [23]
proposes a LiDAR-based approach addressing the initially
unknown relative position of the agents. For this, they use
Scan Context [24] descriptors for global loop closure detection
without spatial priors. In this work, we follow the centralized
paradigm since we leverage collaborative SLAM to generate
a single consistent scene graph that can be made available to
other traffic participants to query information.
Scene Graphs for Automated Driving: 3D scene graphs
constitute an effective interface unifying pose graphs from
large-scale mapping and local information [25] such as frame-
wise object detections [26], topological mapping [27]–[29],
or semantic segmentation [30], [31]. Additionally, graphs
enable the structural disassembly of large-scale scenes into
objects and their relationships and facilitate higher-level
reasoning, e.g., in the vision and language domain [32].
This further allows for efficient hierarchical abstraction
in both spatial and semantic regimes [12], [33]. So far,
3D scene graphs for environment representation have only
been applied in indoor domains. The first work in this
field [12] proposes an offline, multi-layered hierarchical
representation based on RGB images. Kim et al. [34] were
the first to generate 3D scene graphs from RGB-D images for
visual question answering [35] and task planning. Using
a learning-based pipeline, Wald et al. [36] construct a
3D scene graph from an instance-segmented point cloud
while predicting node and edge semantics in an offline
manner. Rosinol et al. [33] present an offline framework
capable of generating hierarchical scene graphs from dynamic
indoor scenes that are divided into buildings, rooms, places,
objects, and agents, as well as a metric-semantic mesh.
Different from the aforementioned frameworks, Hydra [11],
SceneGraphFusion [37], and S-Graphs [25] present real time-
capable approaches. While Hydra does not tightly couple
the optimized pose graph with the 3D scene graph, the non-
hierarchical S-Graphs [25] close this gap. The follow-up work
S-Graphs+ [10] also encodes hierarchies. In this work, we
combine collaborative SLAM and 3D scene graphs to build
hierarchical maps for AD. To the best of our knowledge,
our work constitutes the first approach to 3D scene graph
construction of urban driving scenes with a tightly coupled
integration of inter-agent loop closures. Furthermore, we show
how multi-agent cooperation facilitates frequent map updates
and completeness.

III. TECHNICAL APPROACH

In this section, we present our CURB-SG approach for
collaborative urban scene graphs. As illustrated in Fig. 2,
CURB-SG is comprised of several components. In Sec. III-
A, we describe our approach for collaborative SLAM to
effectively combine panoptic information. Here, multiple
agents transmit their onboard LiDAR odometry estimates
along with panoptic point clouds to a central compute unit.
This server combines the data by detecting intra- and inter-
agent loop closures and performs pose graph optimization
(PGO) to generate a globally consistent 3D map. In Sec. III-

N Agents

Lane Graph Construction

Trajectory

preprocessing
AggregationAlignment

Server

Agent 1

Agent 2

Agent N

....

Map

server

(Inter-agent)

loop closures
Joint map

aggregation

Global graph

optimization

Edge contraction

& node merging

Pose Graph Optimization

Environment

Partitioning

Keyframes

Pre-filtering

Scan matching

Keyframe construction

Dynamic

objects
Panoptic LiDAR point

cloud observations

Static parts

3D Urban Scene Graph

Environment

Roads &

intersections

Landmarks

Keyframes &

point clouds

Lane graph

Vehicles

Layer A

Layer B

Layer C

Layer F

Layer E

Layer D

Fig. 2. Overview of CURB-SG: Multiple agents obtain panoptically segmented LiDAR data and provide an odometry estimate based on the static parts of
the point cloud. A centralized server instance then performs pose graph optimization (PGO) including inter-agent loop closure detection and edge contraction
based on the agents’ inputs. Tightly coupled to the pose graph, we aggregate a lane graph from panoptic observations of other vehicles as well as the
agent’s trajectories. Next, the lane graph is partitioned to retrieve a topological separation that allows for the hierarchical abstraction of larger environments.

B, we propose to further aggregate the paths of the agents
and other observed vehicles to extract an online lane graph
allowing for partitioning the city into intersections and roads.
Finally, the server registers dynamic traffic participants on
the lane graph and generates a hierarchical scene graph by
assigning static landmarks to the closest intersection or road.

A. Collaborative SLAM

We leverage collaborative LiDAR SLAM as the backend in
our proposed CURB-SG. Due to its reliable performance and
well-maintained code base, we build on top of HDL Graph
SLAM [7] and extend it to a multi-agent scenario following
a centralized approach as described in Sec. II. In this section,
we describe the steps performed by each agent, followed by
the centralized PGO as depicted in Fig. 2. Finally, we provide
further details on how CURB-SG explicitly addresses both
long-term and large-scale mapping.
Agents: Each agent is equipped with a LiDAR sensor to
capture sparse 3D point clouds, which contain spatial infor-
mation as well as point-wise panoptic segmentation labels.
Initially, a point cloud is separated into its static and dynamic
components following the conventional categorization of
“stuff” and “thing” classes [38]. Similar to SUMA++ [6],
we use only the static points for constructing the map. In
contrast to HDL Graph SLAM [7], we utilize different voxel
grid sizes for the various semantic classes. This approach
retains more dense information where required, e.g., poles
and traffic signs are being processed at a more fine-grained
level than roads or buildings. Next, we perform point cloud
registration via FAST-GICP [39] between subsequent LiDAR
scans to estimate the motion of an agent. Following the
common methodology and to reduce the required bandwidth
between the agents and the server, we generate keyframes
after a specified traveled distance based on LiDAR odometry.
Each keyframe is sent to the server and contains an estimated
pose and the static LiDAR point cloud with semantic labels,
i.e., the “stuff” points. Since car instances contribute to the
online construction of a lane graph (see Sec. III-B), the “thing”
points from all the LiDAR scans are transformed relative to
the pose of the previous keyframe and sent separately.

Server: The centralized server receives keyframes from all
the agents and processes them in the following manner: First,
upon receiving the first keyframe sent by an agent, the server
registers this agent to the global pose graph. Second, the
server searches for loop closure candidates between the added
keyframe and the existing nodes in the pose graph to find both
intra- and inter-agent loop closures. We rely on the original
loop closure detection technique of HDL Graph SLAM [7],
i.e., all nodes within a local search radius are considered to be
candidates. If the fitness score of the ICP algorithm is below
a threshold, a loop closure edge is added to the pose graph.
Due to relying on an initial guess, we utilize the absolute
ground truth value for the registration of a new agent. In
practice, this could either be solved with GNSS measurements
or by conducting an efficient global search for loop closure
candidates leveraging point cloud descriptors [23]. Third,
the server performs PGO using g2o [40] to integrate the
newly added keyframes and detected loop closures. To address
scalability, we employ edge contraction as detailed in the
following paragraph. Finally, we apply the same semantics-
based voxelization to the entire 3D map as performed by the
agents on their local LiDAR scans.
Long-Term and Large-Scale Mapping: If not handled ex-
plicitly, the pose graph would continue to grow while the
mapping progresses. Since every keyframe contains a 3D
point cloud, this not only significantly slows down the PGO
but also increases memory consumption and disk storage. To
address both problems, we remove the nodes and edges from
the graph that carry redundant information. In Fig. 3, two
agents have driven along the same road yielding multiple loop
closures. Using a heuristic-driven approach, the loop closure
edges that carry redundant information are being contracted by
merging nodes. By redirecting the edges of the omitted to the
remaining node, we ensure the legal connectivity of the pose
graph. Notably, this is done after the PGO step. Consequently,
the final pose graph becomes easier to maintain and more
efficient to query when searching for new loop closures. The
point cloud data associated with a removed node is combined
with the data of the persisting node while omitting older
data to guarantee up-to-date map information. In contrast,
the dynamic observations linked to a node are completely

Agent 2 keyframesAgent 1 keyframes Pose graph

Encounter of the agents

Fig. 3. In this example, two agents drive along the same road while passing
each other at the dashed line. The detected loop closures yield additional
edges in the pose graph. After optimization, the edges that carry redundant
information are contracted by merging the older node into the more recently
added node to update the map information.

transferred as they contribute towards the construction of the
lane graph explained in Sec. III-B. For the same reason, each
removed node is turned into a passive observation that stores
the driven path of an ego agent.

B. Scene Graph Generation

The second key component of CURB-SG is a scalable
environment representation of urban outdoor scenes for
AD. Besides the aforementioned 3D semantic map, CURB-
SG constructs a tightly-coupled hierarchical abstraction of
the environment as shown in Fig. 2. By analogy with
the separation of indoor scenes into buildings, rooms, and
places [11], [12], [33], we decompose a constructed lane graph
into intersecting and non-intersecting road areas allowing for
spatial and semantic abstraction.

The root of our CURB-SG representation is given by
Layer A that holds environment/city-level information. This
environment is then spatially divided into intersections
and their connecting roads (Layer B), which serve as the
categorical counterparts to rooms and corridors in indoor
scenes. Since the partitioning of our environment is based
on a lane graph (presented in Layer E), the connectivity
of Layer B is implicitly given by the connectivity of the
lane graph (colored segments, Fig. 2). Next, we map static
landmarks such as traffic signs and poles contained in Layer C
including their bounding box to their corresponding spatial
area defined by Layer B. These landmarks can serve as priors
for localization or object detection. Layer D holds all currently
observed dynamic vehicles. We map dynamic vehicles to their
closest respective lane graph node, as defined in Layer E, to
provide efficient access for downstream tasks, e.g., trajectory
prediction. Central to this approach, Layer E is a directed lane
graph to encode the low-level topology for vehicle navigation
and is inferred from the paths of the ego agents as well as
other perceived vehicles. We provide further details in the
next paragraph. The lane graph defines the connectivity of the
different spatial regions in the urban environment, comparable
to edges among rooms in indoor scene graph variants. Finally,
Layer F contains the pose graph from our SLAM backend
and encodes LiDAR data in the form of semantic point
clouds. As discussed in Sec. III-A, this layer is subject to
continuous optimization and dynamic restructuring, e.g., due
to loop closure detection and edge contraction. Based on the

edges between the keyframes in this layer and spatial areas
(Layer B), 3D map information is easily accessible given a
rough road-level position estimate.
Lane Graph Generation: We generate a lane graph of the
environment leveraging the trajectories of the ego agents as
well as observations of surrounding vehicles. As the LiDAR
point clouds of the agents contain instance IDs, we are able
to differentiate between multiple observed vehicle instances
in the agents’ surroundings. For each observed vehicle, we
extract the centroid of its partial point cloud. The position of
a centroid is stored relative to the most recent keyframe. After
transmitting the data to the server, the position of this dynamic
observation can be retrieved given the link to its corresponding
keyframe. Consequently, the positions of all the dynamic
observations benefit from continuous keyframe updates due
to PGO as depicted in Fig. 2. To evenly sample paths,
we further filter the observations using both hand-crafted
heuristics and DBSCAN [41] based on timestamps, angles,
and relative displacements. This is particularly important for
stationary and occluded objects as well as outliers caused
by odometry noise. Following an iterative yaw-respective
aggregation scheme [27], we convert all trajectories into
directed graphs, apply Laplacian smoothing, and merge
them to build a complete lane graph. Employing the same
processing scheme, we add agent trajectories to this graph.
Since CURB-SG maintains a connection between the lane
graph and the keyframes used in SLAM, we can continuously
propagate refinements from PGO to the lane graph.
Spatial Partitioning: Urban outdoor driving scenes exhibit a
vastly different topology compared to indoor environments
that have been represented using scene graphs so far. We
found that classical methods such as wall dilation for
retrieving disjoint environment graphs [11] are not directly
applicable to urban environments. In our work, we propose
to separate outdoor environments into intersecting and non-
intersecting areas using the obtained lane graph (see above).
Ultimately, this gives rise to the hierarchical environment
abstraction introduced in CURB-SG enabling efficient query-
ing for downstream tasks such as trajectory prediction. In
particular, we detect intersections based on the following
heuristics: First, we cluster high-degree lane graph nodes to
find agglomerations of graph splits and merges. Second, we
detect lane graph edges that intersect. These two approaches
can be applied to various environments to efficiently handle
challenging conditions such as multi-lane roads or non-
trivial intersections. After identifying intersection nodes, the
remaining disconnected sub-graphs fall into non-intersecting
road areas. To assign components from other layers of the
scene graph to the extracted partitions, we extend these areas
beyond the lane node surroundings as illustrated in Fig. 2.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate CURB-SG with respect to the
collaborative SLAM backend, the constructed lane graph, and
the proposed partitioning based on road intersections.

A. Experimental Setup

We evaluate CURB-SG on various urban driving scenarios
using the CARLA simulator [13] due to a lack of real-world
multi-agent datasets providing LiDAR scans. In particular, we
perform experiments on a set of four diverse environments
including town01, town02, town07, and town10. Following
previous works [11], we use the panoptic annotations with
temporally consistent instance IDs provided by the simulator.
Where applicable, we demonstrate the efficacy of CURB-SG
for one, two, and three agents and average results over
ten randomly initialized runs. Due to the semantics-based
voxelization on the server, the total number of map points
of a fully explored town is relatively stable. As the path
planning of the agents is randomized, it can take a long time
until this number is reached. Therefore, we approximate full
exploration by using 85% as the termination criterion.

B. Collaborative SLAM

In this section, we evaluate the collaborative SLAM
backend of our proposed CURB-SG with respect to both
accuracy and cooperative gain in long-term scenarios.
Mapping and Localization: In Tab. I, we present the root
mean squared errors (RMSE) of the agents’ keyframes and the
estimated position of the street signs to represent localization
and mapping accuracy, respectively. We compute the position
of a street sign as the geometric center of the corresponding
bounding box that is inferred from the 3D map. We observe
that both errors are reduced when more agents contribute
towards the collaborative pose graph. Except for the case of
two agents in town07, this holds true for the mean as well
as the standard deviation across all environments. We further
illustrate the robustness of our approach against noisy sensor
data by imposing realistic metric Gaussian noise N (0, 0.02)
on the LiDAR scans [42] of the agents in town01 and town02.
As shown in Tab. I, the noise does not significantly alter the
errors indicating that downstream tasks such as lane graph
estimation do not degrade either.
Long-Term Mapping: We demonstrate the efficacy of our
proposed adaptions of HDL Graph SLAM [7] (see Sec. III-A)
to address long-term mapping of large areas. In the rightmost
column of Tab. I, we report the time required to map a town
when using one, two, or three agents. Generally, the higher
the number of contributing agents, the smaller the time
required to explore the map. Similarly, in Fig. 4, we illustrate
the mapping progress measured by the number of 3D points
versus the simulation steps. While the results confirm the
aforementioned general trend towards faster exploration in
a multi-agent setup, the pure mapping speed will reach an
upper bound above that additional agents will not further
increase the speed. However, even afterward, these agents
will keep sending measurements and vehicle observations
contributing towards frequent map updates and enhancing
the lane graph (see Sec. IV-C). We present further results
for town01 and town10 in the suppl. material Sec. S.3.

Finally, we demonstrate that our proposed edge contraction
successfully limits the number of nodes contained in the

TABLE I
EVALUATION OF LOCALIZATION AND MAPPING PERFORMANCE

Environment Agent RMSE (agents) RMSE (street signs) Exploration time
count [m] [m] [sim. steps]

town01
1 0.735 ± 0.492 0.865 ± 0.485 2502.50
2 0.368 ± 0.343 0.480 ± 0.358 1267.70
3 0.132 ± 0.096 0.169 ± 0.096 1134.40

+ noise 3 0.159 ± 0.093 0.225 ± 0.101 –

town02
1 0.306 ± 0.208 0.297 ± 0.194 2079.00
2 0.249 ± 0.176 0.299 ± 0.238 943.80
3 0.126 ± 0.109 0.164 ± 0.148 597.60

+ noise 3 0.119 ± 0.078 0.140 ± 0.064 –

1 0.564 ± 0.406 – 3632.70
town07 2 0.234 ± 0.182 – 1760.20

3 0.218 ± 0.198 – 910.00

1 0.333 ± 0.185 – 923.70
town10 2 0.310 ± 0.185 – 724.00

3 0.116 ± 0.106 – 391.10

Mean and standard deviation over ten runs of the RMSE of the agents’
keyframes and the estimated position of the street signs representing
localization and mapping accuracy, respectively. Note that the environ-
ments town07 and town10 do not contain street signs. The rightmost
column lists the mean time required to map 85% of the entire town
measured in simulation steps.

0 500 1000 1500 2000 2500
0

50

100

0 1000 2000 3000 4000 5000
0

50

100

0.0 0.2 0.4 0.6 0.8 1.0
Simulation steps

0.0

0.2

0.4

0.6

0.8

1.0

M
ap

ex
p
lo
re
d
[%

]

1 agent 2 agents 3 agents

Fig. 4. The mapping progress in town02 (top) and town07 (bottom) for
one, two, and three agents. Our collaborative SLAM method benefits from
receiving inputs from multiple agents.

pose graph. In Fig. 5, we show the example of three agents
operating in town02 and compare the number of optimizable
graph nodes with the total number of keyframes sent by the
agents. We observe that without edge contraction, the pose
graph continuously grows with the number of keyframes sent,
rendering frequent optimization infeasible.

C. Lane Graph

We evaluate our proposed online lane graph generation
approach from the paths of the ego agents and their obser-
vations of other vehicles (Sec. III-B). We present qualitative
results in Fig. 6 for two scenarios simulated in town02 with
30 additional non-agent vehicles: the left figure visualizes the
lane graph in a single-agent scenario terminated as soon as
the agent starts to repeatedly revisit intersections. Although
the path of the agent, shown in blue, does not cover all the
lanes, including the paths of the observed vehicles allows for a
substantial extension of the lane graph. The right figure depicts
a long-term scenario with three agents demonstrating that
collaboration further boosts performance. Our method yields
an almost complete lane graph even though several lanes
have only been driven by the agents in the opposite direction.

We quantify these findings in Tab. II following previous

0 500 1000 1500 2000 2500
Simulation steps

0

200

400

600

800

1000

Number of nodes of a fully explored map

Number of received keyframes

Number of graph nodes

Fig. 5. Our proposed edge contraction mechanism effectively reduces the
number of nodes in the pose graph to maintain the capability of frequent
graph optimization. This plot shows three agents operating in town02.

TABLE II
LANE GRAPH EVALUATION

Ego Obs. TOPO P / R GEO P / R APLS SDA4.5 SDA9.0 Graph IoU

1-agent scenario
✓ 0.810 / 0.281 0.923 / 0.415 0.658 0.000 0.042 0.386
✓ ✓ 0.678 / 0.562 0.855 / 0.812 0.724 0.278 0.394 0.690

3-agents scenario
✓ 0.715 / 0.583 0.874 / 0.762 0.800 0.188 0.357 0.658
✓ ✓ 0.574 / 0.712 0.751 / 0.925 0.756 0.250 0.452 0.751

Quantitative results obtained in town02. The two left columns indicate
whether only the paths of the ego agents or also the estimated positions of
other observed vehicles have been used. For the TOPO and GEO metrics,
we provide both precision (P) and recall (R).

works on lane graphs: precision and recall of the TOPO and
GEO metrics [29], APLS [43], SDAR [27] with the subscript
denoting the search radius in meters, and the graph IoU [27].
For more details, please refer to the respective reference.
We observe that except for the TOPO/GEO precision and
the APLS in the 3-agent scenario, all the metrics show an
improvement when using not only the paths of the ego agents
but also of the observed vehicles. We attribute the decrease
in precision to the noise in the estimated position of the
other vehicles. Since we approximate the center of a vehicle
by the geometric mean of the respective 3D points, there is
a bias towards the center line of a road for all oncoming
cars. We further observe that increasing the number of agents
does have a positive impact on all the metrics except for
the TOPO/GEO precision and the SDA4.5 demonstrating the
efficacy of our method.

D. Environment Partitioning

We evaluate our approach for environment partitioning
(Sec. III-B) by comparing it against the ground-truth intersec-
tion points of the underlying map. Throughout exploring the
environment, the recall is normalized using the point cloud of
the road surface obtained thus far. Our proposed lane graph-
based method (LG) is compared against a morphological
image skeletonization baseline (SK) that uses medial axes of
the bird’s-eye-view projected point cloud of the road surface.
Kernelized smoothing and dilation followed by thresholding
the obtained bird’s-eye-view image helps in filtering false
positive points and noise. In order to further increase precision,
the SK baseline includes clustering culmination of intersection
points in local areas that originate from artifacts in the
skeleton graph. We report the precision and recall values
across ten exploration runs on town02 in Fig. 7. We observe

1-agent scenario 3-agents scenario

Estimated lane graph True lane graph Driven by ego agent(s)

Fig. 6. Visualization of the constructed lane graph of town02 when using
one or three agents. Lanes marked in blue have been traversed by an ego
agent. Others are reconstructed from observing surrounding vehicles.

0.0 0.2 0.4 0.6 0.8 1.0

Map exploration

0.0

0.2

0.4

0.6

0.8

1.0

In
te
rs
ec
ti
on

d
et
ec
ti
o
n
P
/R

SK P

SK R

LG P

LG R

Road cloud size

Fig. 7. Intersection detection quality of our lane graph-based detection
of intersections (LG) and an image-based skeletonization baseline of the
road surface (SK). Average precision (P) and recall (R) of both approaches
across 10 runs with 3 agents and 40 vehicles on town02 as well as the size
of the investigated road surface point cloud are shown.

that our approach (LG) achieves at least 20% greater precision
while showing comparable or exceeding recall scores. As our
approach relies on observed vehicle trajectories, we attribute
the lower initial recall of the LG method to a small number of
initially seen trajectories while the point cloud-based baseline
already processes a larger extent of the surroundings at this
stage. Nonetheless, we observe that the SK baseline yields
vastly different partitioning solutions throughout exploration
as it is not robust to artifacts such as occlusions due to vehicles
or sparse LiDAR readings of distant road surfaces. We believe
that a conservative, high-precision classifier is beneficial
as over-segmentation increases the number of roads and
intersections unnecessarily. Further explanations are provided
in suppl. material Sec. S.4. Additionally, we observe that
simply extracting intersections from the pose graph produces
low recalls as every path has to be traversed by the agents
instead of relying on more descriptive observations.

V. CONCLUSION

In this work, we introduced CURB-SG as a novel approach
to building large-scale hierarchical dynamic 3D urban scene
graphs from multi-agent observations. We furthermore demon-
strated how our collaborative SLAM approach facilitates
frequent map updates and rapid exploration while scaling to
large environments. To foster further research in this direction,
we made our code publicly available. In future work, we will
address the reliance on simulated panoptic labels and known
initial poses of the agents. Orthogonal to that, follow-up work
could address a decentralized variant that operates under real-
time constraints. Furthermore, we plan to include pedestrian
information as well as additional topological elements such
as road boundaries.

REFERENCES

[1] B. Yang, M. Liang, and R. Urtasun, “HDNET: Exploiting HD maps
for 3D object detection,” in Conf. on Robot Learning, 2018.

[2] D. Cattaneo, D. G. Sorrenti, and A. Valada, “CMRNet++: Map and
camera agnostic monocular visual localization in LiDAR maps,” Int.
Conf. on Robotics and Automation Workshop on Emerging Learning
and Alg. Methods for Data Association in Robotics, 2020.

[3] A. Diaz-Diaz, M. Ocaña, A. Llamazares, C. Gómez-Huélamo, P. Re-
venga, and L. M. Bergasa, “HD maps: Exploiting opendrive potential
for path planning and map monitoring,” in IEEE Intelligent Vehicles
Symposium, 2022, pp. 1211–1217.

[4] R. Trumpp, M. Büchner, A. Valada, and M. Caccamo, “Efficient learn-
ing of urban driving policies using bird’s-eye-view state representations,”
Int. Conf. on Intelligent Transportation Systems, 2023.

[5] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in Int. Conf. on Intelligent Transportation
Systems, 2018.

[6] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and
C. Stachniss, “SuMa++: Efficient LiDAR-based semantic SLAM,” in
Int. Conf. on Intelligent Robots and Systems, 2019, pp. 4530–4537.

[7] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LiDAR-based system for long-term and wide-area people behavior
measurement,” Int. Journal of Adv. Rob. Systems, vol. 16, no. 2, 2019.

[8] K. Wong, Y. Gu, and S. Kamijo, “Mapping for autonomous driving:
Opportunities and challenges,” IEEE Intelligent Transportation Systems
Magazine, vol. 13, no. 1, pp. 91–106, 2020.

[9] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in Int. Conf. on
Machine Learning. PMLR, 2021, pp. 8748–8763.

[10] H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos,
“S-Graphs+: Real-time localization and mapping leveraging hierarchical
representations,” IEEE Robotics and Automation Letters, vol. 8, no. 8,
pp. 4927–4934, 2023.

[11] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial
perception system for 3D scene graph construction and optimization,”
in Robotics: Science and Systems, 2022.

[12] I. Armeni, Z.-Y. He, A. Zamir, J. Gwak, J. Malik, M. Fischer, and
S. Savarese, “3D scene graph: A structure for unified semantics, 3D
space, and camera,” in Int. Conf. on Computer Vision, 2019, pp. 5663–
5672.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conf. on Robot Learning,
2017.

[14] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in
real-time.” in Robotics: Science and Systems, 2014.

[15] J. Arce, N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada,
“PADLoC: LiDAR-based deep loop closure detection and registration
using panoptic attention,” IEEE Robotics and Automation Letters, vol. 8,
no. 3, pp. 1319–1326, 2023.

[16] D. Zou, P. Tan, and W. Yu, “Collaborative visual SLAM for multiple
agents: A brief survey,” Virtual Reality and Intelligent Hardware, vol. 1,
no. 5, pp. 461–482, 2019.

[17] L. Riazuelo, J. Civera, and J. Montiel, “C2TAM: A cloud framework for
cooperative tracking and mapping,” Robotics and Autonomous Systems,
vol. 62, no. 4, pp. 401–413, 2014.

[18] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM — collaborative
visual-inertial SLAM,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 2762–2769, 2018.

[19] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli, “COVINS:
Visual-inertial SLAM for centralized collaboration,” in IEEE Int. Symp.
on Mixed and Augmented Reality Adjunct, 2021, pp. 171–176.

[20] Y. Chang, K. Ebadi, C. E. Denniston, M. F. Ginting, A. Rosinol,
A. Reinke, et al., “LAMP 2.0: A robust multi-robot SLAM system for
operation in challenging large-scale underground environments,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 9175–9182, 2022.

[21] P.-Y. Lajoie and G. Beltrame, “Swarm-SLAM: Sparse decentralized
collaborative simultaneous localization and mapping framework for
multi-robot systems,” arXiv preprint arXiv:2301.06230, 2023.

[22] Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J. P. How, and
L. Carlone, “Kimera-Multi: Robust, distributed, dense metric-semantic
SLAM for multi-robot systems,” IEEE Trans. on Robotics, vol. 38,
no. 4, pp. 2022–2038, 2022.

[23] Y. Huang, T. Shan, F. Chen, and B. Englot, “DiSCo-SLAM: Distributed
scan context-enabled multi-robot LiDAR SLAM with two-stage global-
local graph optimization,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 1150–1157, 2022.

[24] G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor
for place recognition within 3D point cloud map,” in Int. Conf. on
Intelligent Robots and Systems, 2018, pp. 4802–4809.

[25] H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, “Sit-
uational graphs for robot navigation in structured indoor environments,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9107–9114,
2022.

[26] C. Lang, A. Braun, and A. Valada, “Robust object detection using
knowledge graph embeddings,” in DAGM German Conference on
Pattern Recognition, 2022, pp. 445–461.

[27] M. Büchner, J. Zürn, I.-G. Todoran, A. Valada, and W. Burgard,
“Learning and aggregating lane graphs for urban automated driving,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2023,
pp. 13 415–13 424.

[28] Liao, Bencheng and Chen, Shaoyu and Wang, Xinggang and Cheng,
Tianheng, and Zhang, Qian and Liu, Wenyu and Huang, Chang,
“MapTR: Structured modeling and learning for online vectorized HD
map construction,” in Int. Conf. on Learning Representations, 2023.

[29] S. He and H. Balakrishnan, “Lane-level street map extraction from aerial
imagery,” in IEEE Winter Conference on Applications of Computer
Vision, January 2022, pp. 2080–2089.

[30] N. Gosala, K. Petek, P. L. Drews-Jr, W. Burgard, and A. Valada,
“Skyeye: Self-supervised bird’s-eye-view semantic mapping using
monocular frontal view images,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2023, pp. 14 901–14 910.

[31] R. Mohan and A. Valada, “Amodal panoptic segmentation,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022,
pp. 21 023–21 032.

[32] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, et al.,
“Visual genome: Connecting language and vision using crowdsourced
dense image annotations,” Int. Journal of Computer Vision, vol. 123,
pp. 32–73, 2017.

[33] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3D dynamic
scene graphs: Actionable spatial perception with places, objects, and
humans,” Robotics: Science and Systems, 2020.

[34] U.-H. Kim, J.-M. Park, T.-j. Song, and J.-H. Kim, “3-D scene graph:
A sparse and semantic representation of physical environments for
intelligent agents,” IEEE Trans. on Cybernetics, vol. 50, no. 12, pp.
4921–4933, 2020.

[35] J. Johnson, B. Hariharan, L. Van Der Maaten, J. Hoffman, L. Fei-
Fei, C. Lawrence Zitnick, and R. Girshick, “Inferring and executing
programs for visual reasoning,” in Int. Conf. on Computer Vision, 2017,
pp. 2989–2998.

[36] J. Wald, H. Dhamo, N. Navab, and F. Tombari, “Learning 3d semantic
scene graphs from 3d indoor reconstructions,” in IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2020.

[37] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “SceneGraph-
Fusion: Incremental 3D scene graph prediction from RGB-D sequences,”
in IEEE/CVF Conf. on Computer Vision and Pattern Recognition, June
2021, pp. 7515–7525.

[38] K. Sirohi, R. Mohan, D. Büscher, W. Burgard, and A. Valada,
“EfficientLPS: Efficient LiDAR panoptic segmentation,” IEEE Trans.
on Robotics, vol. 38, no. 3, pp. 1894–1914, 2022.

[39] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP
for fast and accurate 3D point cloud registration,” in Int. Conf. on
Robotics and Automation, 2021, pp. 11 054–11 059.

[40] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Int. Conf. on
Robotics and Automation, 2011, pp. 3607–3613.

[41] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in ACM SIGKDD Conf. on Knowledge Discovery and Data Mining,
vol. 96, no. 34, 1996, pp. 226–231.

[42] G. Jozkow, P. Wieczorek, M. Karpina, A. Walicka, and A. Borkowski,
“Performance evaluation of sUAS equipped with Velodyne HDL-32E
LiDAR sensor,” The Int. Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 42, pp. 171–177, 2017.

[43] A. Van, D. Lindenbaum, and T. M. Bacastow, “SpaceNet: A remote
sensing dataset and challenge series,” arXiv preprint arXiv:1807.01232,
2018.

D7.4: Final public version of the OpenDR toolkit 59/66

7.4 Learning to estimate incipient slip with tactile sensing to gently grasp
objects

The appended paper [1] follows.

OpenDR No. 871449

Learning to estimate incipient slip with tactile
sensing to gently grasp objects

Dirk-Jan Boonstra∗
Dept. of Cognitive Robotics

TU Delft
The Netherlands

ORCiD 0000-0002-9827-0636

Laurence Willemet1∗
Dept. of CSAIL

MIT
United States

lwilleme@mit.edu

Jelle Luijkx
Dept. of Cognitive Robotics

TU Delft
The Netherlands

j.d.luijkx@tudelft.nl

Michaël Wiertlewski
Dept. of Cognitive Robotics

TU Delft
The Netherlands

m.wiertlewski@tudelft.nl

Abstract—To gently grasp objects, robots need to generate
enough friction without creating damage by applying the right
amount of force. In practice, implementing this force regulation is
challenging since it requires knowledge of the friction coefficient,
which can vary from object to object and even from grasp to
grasp. Fortunately, tactile sensing can provide information about
friction notably by detecting the moment when the object slips
away from the grasp. These tactile sensors capture distributed
information about the deformation of the artificial skin in the
normal and tangential direction, from which slippage can be
detected. However, current approaches only react to slip, which
leads to significant object movement. The movement can in turn
induce a failure of the grasp and damage. In this study, we
introduce a machine-learning method that anticipates slip by
computing the so-called safety margin of grasp. It represents the
margin of an additional lateral force that the frictional contact
can bear. To find this value, we use a high-density camera-based
tactile sensor to measure the 3D deformation of the surface over
82 points. We trained a Convolutional Neural Network (CNN) to
obtain a frictional safety margin estimate from the tactile images.
The safety margin offers a powerful metric for regulation and
therefore a simple proportional controller was enough to robustly
grasp a wide collection of objects. The results show that this
control method outperforms slip detection methods, by reducing
regrasp reaction times while decreasing the maximum applied
grasping force to the low-value range of 1-3 N.

Index Terms—tactile sensing, grasping, safety margin, robotic
gripper

INTRODUCTION

When grasping and manipulating, the contact between fin-
gers and objects is constantly evolving. Forces are changing
and the pressure and traction distribution evolve with friction
and material properties. Consequently, it can be difficult to
estimate and predict how the object will move within the
grasp and whether or not the grasp will be stable. This
prediction is crucial for grasping since the efforts at the contact
determine if the object can rotate, pivot, slide, or stay in
place. For example, if the information about the frictional
resistance is missing, a simple controller cannot determine the
optimal grasping force to apply. Therefore friction-agnostic
approaches generally overestimate the grip force to avoid a
catastrophic loss of grip [1, 2]. However, such large forces

∗ D. Boonstra and L. Willemet contributed equally to this paper.
1 Corresponding author

prevent possible damage by dropping objects and restraining
manipulation flexibility [3].

Tactile sensing is a promising avenue for capturing the
mechanical interaction at the interface between the environ-
ment and the fingers. Robotic tactile sensors capture the
deformation of an artificial skin from which they can infer
high-order information such as the material properties, such
as compliance, texture, curvature, or the contact state such as
distance to slip or effort. Tactile sensors work by discretizing
the mechanical interaction, often using miniaturized high-
resolution cameras pointed at the membrane [4, 5].

The images of the deformation field can be processed to
estimate contact shape and force [6], or to detect slip from
physics-based models [7]. More complex mechanical interac-
tions can be captured using machine learning approaches [8–
10]. However, when deployed for grasping regulation, the
adjustment is based on slip detection, making them often too
late to react and unable to regain stability after a slip [11–13].

At a mechanical level, the transition from stick to slip for
a soft fingertip occurs gradually. When the tangential force
increases from a fully stuck contact, the outer edge of the
contact area begins slipping while the center remains stuck.
The slip region grows until the entire contact area is in the
slip state and the object fully slips [14,15]. Some hypotheses
postulate that humans use the ratio between the stick and the
slip region inferred from the skin deformation to estimate the
safety margin [16]. This estimation of the distance from the
onset of slip is believed to be ultimately used to regulate their
grip force [17, 18].

In this work, we measured the pattern of deformation
of the artificial fingertip before the onset of slip with an
iterated version of our ChromaTouch tactile sensor [19, 20].
We trained a convolutional neural network (CNN) to estimate
the frictional strength using the safety margin. The model
performance is evaluated against an unseen dataset, which
showed an average prediction accuracy of 98.2% from the
ground truth, when computing the MSE loss over the entire
range of safety margin predictions. This estimation is accurate
enough to use the safety margin as control input for gripper
control. The speed and accuracy of the estimation and control
make it suitable for real-time grasping applications on soft and
complex objects such as fruits and vegetables.

B C

D

F

Exploded view

camera

ring of leds

...

hidden layers

safety margin

unknown
object

fisheye lens

magenta layer

silicone

blue layer

plastidip

A

x

2 s
0

50

100

 (%)

0

1

2

3

grip
force (N)

0 0.5 1
 real

0

0.5

1

 p
re

di
ct

ed

FLAT
high friction
low friction

0 0.5 1
 real

0

0.5

1

 p
re

di
ct

ed

CURVED
high friction
low friction

G

reaction to slip

0

0.2

0.4

0.6

0.8

1

st
ra

w
be

rr
y

m
an

da
rin

ba
na

na

pr
ob

ab
ili

ty
 o

f s
lip

s

safety margin 40%
0

0.5

1

1.5

2

2.5

3

3.5

m
ea

n
gr

as
pi

ng
 fo

rc
e

[N
]

overgrasping

tactile images

safety margin P
controller

predicted safety margin

grip force
FUSE

gripper

CNN

E left

right

varying
load

Fig. 1. A. Typical evolution of the interaction force when manipulating an object. The grip force is maintained with a safety margin Γ over the minimum
required grip force defined by the friction cone. B. Render of the custom-made parallel FUSE gripper. C. Exploded view of the tactile sensor ChromaTouch.
D. Hidden layers of the convolutional neural network are used to predict the safety margin. E. Grip force control to maintain a constant safety margin.
F. Deviation of the prediction compared to the real safety margin. G. Mean grasping force and probability of slips for three control strategies (reaction to
slip [13], constant safety margin of 40%, and overgrasping strategy with a fixed 3.5 N grasping force).

Our goal in this study is to create a tactile-enabled gripper
that maintains a squeezing force on an arbitrary object so that
the safety margin remains constant (Fig. 1A). To do so, we
designed an impedance control gripper (Fig. 1B) which regu-
lates its grasping force in real-time. The gripper has two soft
tactile sensing fingertips able to capture the 3D deformation
of a membrane using an embedded camera (Fig. 1C). The
images of the interaction are fed to a CNN to estimate the
frictional safety margin Γ (Fig. 1D,F). Γ is then used to adjust
the grasping force in real-time (Fig. 1E), improving object
manipulation and minimizing object slip (Fig. 1G).

MATERIALS AND METHODS

Tactile sensing gripper

The FUSE tactile gripper consists of two main components:
a set of Chromatouch tactile sensors and a custom-made
robotic gripper (Fig. 2A). The Chromatouch tactile sensing
mechanism relies on a color-mixing principle. Two layers of
colored-markers are first 3D-printed with a Stratasys J735
PolyJet printer in flexible transparent AgilusClear with a
Shore hardness of 30A. These layers are bonded together
using a 1.2 mm-thick elastic silicone (Smooth-On SortaClear
12A), cast between the two marker layers. Three layers of

white pigmented silicone (PlastiDip) are sprayed over the
outside of the dome, to block light from external sources and
to help diffuse internal light. A per-finger embedded USB
camera (Basler Dart daA1920-160uc with a Basler Evetar
M13B02118W fisheye lens attached) acquires 896 px×896 px
tactile images at 100 Hz with a surface resolution close to
22 px/mm. More information on the design of these tactile
fingertips can be found in our previous work [20].

For this work, we custom-designed a parallel gripper where
the force could be finely tuned and fit the need of delicate robot
grasping. The design consists primarily of 3D-printed parts,
with tactile sensors embedded at the fingertips. The design of
this gripper, called FUSE, is made publicly available1. The
fingers are driven using one servo-motor (Dynamixel XH430-
W210-R), through a set of modified POM gears. The servo-
motor enables our gripper with current control-control, which
is calibrated to grasping force (N) by grasping a regular force
sensor (ATI Nano43), see Fig. 2B. We assume a linear relation
between motor current and grasping force.

load force

grip
force

force sensor

tactile
sensor

A

0 1 2 3 4 5 6 7 8-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

grip force

load force

safety margin

time [s]

D

0

0.5

fo
rc

es
 (N

) 1

drydry
so

ap

evaluation

dry
so

ap
wate

r
dry

so
ap

wate
r

+so
ap

0

0.5

1

1.5

2 training

curved flat curved flat

wate
r

+so
ap

E

50 100 150
motor current [mA]

0

0.5

1

1.5

2

2.5

gr
ip

 fo
rc

e
(N

)

B

75 125

C

0.5 1 1.5 2
grip force [N]

0

0.2

0.4

0.6

0.8

1

μ

μ

Fig. 2. A. Experimental setup for data collection. B. Calibration of the grasping force. C. Influence of the grip force on the friction coefficient. D. Mean and
standard deviation of the friction coefficient estimated on the slipping trials for each dataset (training and evaluation). E. Grip force and load force evolution
along one trial. The gripper first closes its arms on the load-compensated object, the DC-motor applies a pulling force after 2 s. The safety margin is computed
using an approximation of the friction coefficient.

Experimental setup

We designed an experimental setup to impose arbitrary
tangential and normal forces on the tactile sensors (Fig. 2A).
During a trial, the tactile gripper first grasps, with a predefined
grasping force, a stationary suspended object, whose weight
is compensated by DC-motors and a capstan assembly. The
apparent weight was programmed at 0g by constantly pulling
the object against the direction of the gravitational field. A
force sensor (ATI Nano43) is embedded inside this object,
which measures the 3D force interaction at the gripper’s
fingertips. A second-long ramp-pulling force is applied to
the suspended object two seconds after the object has been
grasped, trying to pull it from the fingertips using two DC
motors (Faulhaber, 2642 012 CR). A capstan transmission is
used to deliver the resulting force of the DC motors to the
object. The pulling force produced by the DC motors can be
controlled using a linear servo amplifier (Maxon, LSC 30/2).

The position of the object was measured with an encoder
(Baumer, BTIV 24S 16.24K 1024 G4 5) and the safety
margin Γ was estimated using the force measurement and an
approximation of the friction coefficient (Fig. 2E):

Γ(t) =
f∗
f − ff (t)

f∗
f

, (1)

with ff the current frictional force, and f∗
f the maximum ap-

plicable force to overcome the frictional strength of the grasp,
after which the object will start to slip. This frictional force
was computed using an estimation of the friction coefficient as
the average force ratio when the object is slipping (Fig. 2D).
The influence of the grip force on the friction coefficient has
been neglected (Fig. 2C).

1https://github.com/Dirrkk/fuse-gripper

During data collection, a randomized experimental plan
containing the grasping force and the load force and its rate
was followed. The grasping forces vary from 1.0 to 2.5 N in
0.5 N intervals, the load force was uniformly chosen between
2 and 3 N and the force rate was controlled at 2 levels
(0.5 N/s and 1 N/s). The training dataset consisted of a
flat and a curved object (radius of curvature R = ∞ and
R = 45 mm) at 3 different frictional conditions (high, medium,
low). These friction conditions were obtained by adding water
or soap on the surface of the objects, the corresponding friction
coefficients are reported Fig. 2D (left side). Every condition
has been cycled 16 times using the experimental plan, resulting
in a total of 96 trials, or 177.000 (left+right) images. We used
80% for training and 20% for testing. This procedure has been
repeated 4 days later (the temperature was 6°C lower and
the humidity decreased by 3%), to collect a validation dataset
consisting of the same 2 objects, on 2 frictional conditions
(high and low), resulting in 64 trials and 118.000 images. The
data analysis is performed on this validation dataset.

Model training

The images from the tactile gripper and the above-computed
safety margin, Γ are linked together using a CNN, Shuf-
fleNetV2 [21]. This network is lightweight and mobile, and
showed promising results in related tactile sensing studies [3].
Our application is suited for a lightweight network since
the tactile images represent close-contact information with
a limited pixel size, and do not need to contain complete
environmental scenes. Furthermore, the lightweightness gives
tactile grasping demonstrations in a portable setting.

Inputs of the network are the tactile images from both
fingertips. The raw images are resized to 224 × 224 px,
after which they are concatenated vertically and fed into the
network, ensuring both images have the same timestamp.

ColorJitter and GaussianBlur data augmentation techniques are
used to increase the generalization capabilities of the tactile
model.

The output of the ShuffleNetV2 network is adapted to a
single floating point value, which equals the predicted Γ for
the input image. This reduction in output space is obtained by
combining a set of linear layers with LeakyReLU activation
functions and Batch Normalization (1D) layers, decreasing the
output space from 1024 nodes to 1.

Training was done using PyTorch on an Ubuntu 20.04
machine with an Intel Xeon CPU and using CUDA on a Nvidia
RTX3060Ti GPU with 8GB of video memory. We used 50
epochs with the batch size set to 64. The MSEloss function
was used for backpropagation. For the optimizer, we made
use of the Ranger21 framework [22], which is built around
the AdamW optimizer, while also providing several techniques
to further increase performance and prevent influences from
local minima. We used Ranger21 default parameters and set
the number of iterations to (number of epochs) x (length of
the training dataset).

Controller design

The trained CNN described above, outputs one floating
point value (Γ), based on a set of images from the left and
right fingertips combined. A simple P controller is deployed
on the gripper, which takes the estimated Γ value as input,
and outputs the grip force required to maintain a target value
for Γ. By adapting the target value, the distance to slip can be
varied on a per-object basis. The KP gain is set to 2, and the Γ
difference is in the range 0-100%. The minimum applied grip
force is set to 0.25 N, to keep the object in a force closure
grasp. To prevent damage to the tactile sensor’s soft silicone
layer, the maximum applied grip force was limited to 3.2 N.

Working principle of the tactile sensor

To validate the working principle of the tactile sensor, we
needed to calibrate the acquired images towards actual 3D
deformation using an analytical model. We first acquired im-
ages during a normal indentation and a lateral slide (Fig. 3A).
On Fig. 3B, images of the preload, and image differences of
the initial contact, incipient slip and full slip are shown. We
proceeded to find a robust transformation of the sub-image
around each marker into the normal displacement uz (Fig. 3C).
To find this transformation, we used as ground-truth a filtered
version of the Hertzian contact theory. This model predicts a
parabolic displacement of the surface of the membrane. For
further explanation about the method, refer to our previous
work [20]. The lateral displacements ux, uy are computed
using a marker tracking method (Fig. 3D). The effective 3D
displacements are shown at different time courses during slip,
for a high and a low friction condition in Fig. 3E. The output
displacements have a sub-millimeter precision in the normal
and tangential plane.

0 1 2 3 4 5 6 7 8
time (s)

0

0.5

1

1.5

fo
rc

e
(N

)

0

20

40

60

80

100

120

po
si

tio
n

(m
m

)

0

0.5

1

u
z
(m

m
)

-5

5

0

50 0-5 -5

-5

5

0

50 0-5 -5

Model calibration u
z

Marker tracking u
x
,u
y

B

C D

A

E

incipient slip full slipinitial contact

I0

low friction

u
z
(m

m
)

high friction

0

0.5

1

-6 -4 -2 0 2 4 6
position (mm)

-6 -4 -2 0 2 4 6
position (mm)

-6 -4 -2 0 2 4 6
position (mm)

-6 -4 -2 0 2 4 6
position (mm)

preload

I0-I1 I0-I2 I0-I3

Fig. 3. A. Grasping force and vertical position of an object being gripped. B.
Tactile images obtained during 4 phases. C. Interpolated normal displacement
uz of the grid of markers calibrated using a filtered version of Hertz contact
model. D. Lateral displacement ux and uy obtained with markers centroid
tracking. E. Reconstruction of the 3D displacement of each marker along the
direction of slippage for a high and a low friction condition. The influence of
friction is indicated by the vertical line.

RESULTS

Safety margin estimation

To show the accuracy of the trained CNN, we compare the
model output, which only sees the tactile images, with ground
truth data extracted from the force measurement collected
during the experiments. We estimated the safety margin Γ on a
validation dataset of unseen images when the gripper interacts
with a flat or a curved object and with a high or a low friction
coefficient. The ground-truth safety margin was recorded using
a force sensor embedded into the object (see Materials &
Methods for further details). To compare the predictions of
Γ with the real values, we compute the Mean Squared Error
(MSE) loss over the validation datasets, the trial average can
be found in Table I. Taking the average over the four datasets
yields a combined MSE loss of 0.01821, giving the total model
an accuracy of 98.2% when predicting Γ.

The confusion matrices are shown in Figure 4A with the
safety margin Γ divided in 10% bins to evaluate model
performance on the full 0 to 100% range. The model showed
similar performance on the flat and the curved object (Fig. 1F).
Thus, to show the influence of friction on the safety margin
estimation, the flat and curved object datasets are averaged
in a single confusion matrix. From the diagonal trend in

high friction low friction
real [%]

pr
ed

ic
te

d
[%

]

real [%]
0 10 20 30 40 50 60 70 80 90 10 10 20 30 40 50 60 70 80 90 1

10

20

30

40

50

60

70

80

90

100 grip force [N]

0

0.01

0.02

0.03

0.04

0.05

M
SE

 lo
ss

 [-
]

1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

high friction

low friction

M
SE

 lo
ss

 [-
]

10

20

30

40

50

60

70

80

90

100

A B

Fig. 4. A. Confusion matrix of Γ real versus Γ predicted, with experiments for both flat and curved objects combined. The experiment is done at high and
low friction conditions. A perfectly trained model would result in only predictions on the matrix’s diagonal. B. MSE loss (mean ± std) of the safety margin
prediction for each applied grip force for high and low friction condition.

TABLE I
MEAN SQUARED ERROR (MSE) LOSS (MEAN ± STD) COMPUTED OVER

THE 4 VALIDATION DATASETS: A FLAT AND A CURVED OBJECT
EVALUATED ON BOTH HIGH AND LOW FRICTION CONDITIONS. THE MSE

SHOWN IS THE COMBINED AVERAGE OVER ALL 16 TRIALS PER
CURVATURE/FRICTION CONDITION.

MSE loss [-] Flat Curved
high friction 0.03005 ± 0.04232 0.01357 ± 0.02482
low friction 0.01256 ± 0.02480 0.01665 ± 0.01941

the figure, we can see that the predicted safety margin is
positively correlated with the ground truth safety margin in
both friction conditions. However, friction has a significant
influence on the safety margin prediction accuracy (Anova,
F (1, 63) = 4.27, p= 0.043). We observe similar performance
for both friction conditions when the safety margin is higher
than 40%. However, when the safety margin drops below
10%, the model performs better in the high friction condition.
In the low friction case, we can see that the prediction is
underestimating the ground-truth with errors up to 0.4 when
the real safety margin is equal to 0 (Fig. 1F).

Finally, the grip force applied has no significant influence
on the MSE, although we can see that lower grip force results
in higher errors in the high friction condition (Fig. 4B).

Controller validation

To evaluate the safety margin framework in a real time
grasping task, the CNN model output is used with a Pro-
portional controller to control the grip force of the gripper.
Experiments are performed on a set of delicate soft fruits: a
strawberry, a banana, and a mandarin. A 50 g weight was
attached with a wire from the grasped object to induce a
sudden increase in load force on the object. Fig. 5A shows
the grip force required to hold the objects with a given target
safety margin of 20%, 40%, and 60%. The boxplots represent
the average and standard deviation over 5 trials. We can see
a significant increase in grip force when increasing the safety
margin target for all fruits (p< 0.001 and F (2, 31) = 189.7,
F (2, 33) = 19.6, F (2, 29) = 80.74 for the strawberry, the

mandarin and the banana respectively). To measure the control
reaction time, the attached weight is dropped, causing a sudden
spike in load force. The gray zones from Fig. 5A show that,
on average, this increase in load force resulted in an increased
grip force, especially for the 60% safety margin target, which
allows for higher grasp forces.

The probability of object slip decreases with the increase
in safety margin, as shown in Fig. 5B. We can see that for
the 20% target, the gripper managed to keep the relatively
light strawberry between its fingertips for most cases, while
the heavier banana and mandarin experienced more slips.
Increasing the safety margin target to 40% and 60% caused
fewer slips for the heavier objects. We can even see that for
the 60% case, the strawberry experienced zero cases of full
slip.

We also performed an experiment with slowly increasing
load force, when grasping an empty cup which was slowly
manually filled with rice. The results can be seen in Fig. 5C.
At around 10 seconds, as weight is slowly added, we recorded
an increase in grip force to maintain the set control target.
We can see that over the whole range, a higher grip force
is required to maintain the 60% target, while the 40% target
only increases grip force to around 1 N when maintaining the
grasp.

CONCLUSION AND DISCUSSION

We introduced a new method for controlling the grasping
force of a gripper based on a new metric called the frictional
safety margin. The frictional safety margin Γ was extracted
from tactile sensor images using a convolutional neural net-
work and its prediction shows an average accuracy of 98.2%
compared to the safety margin found with force measurements.
The trained network was evaluated on a validation dataset
recorded on a different day. The robustness of the results
shows the model capabilities in expanding to other friction
conditions, as these vary on a daily basis and are highly
sensitive to environmental conditions like humidity.

before weight drop after weight drop

20 40 60 20 40 60
safety margin [%]

gr
ip

 fo
rc

e
[N

]

20 40 60 20 40 60
safety margin [%]

before weight drop after weight drop

0

1

2

3

20 40 60 20 40 60
safety margin [%]

before weight drop after weight drop

20 40 60
0

0.2

0.4

0.6

0.8 strawberry

mandarin

banana

pr
ob

ab
ili

ty
 o

f s
lip

s

A

B C

safety margin [%]
0 5 10 15 20 25

time [s]

0

1

2

3

gr
ip

 fo
rc

e
[N

]

0

20

40

60

80

100

ga
m

m
a

[%
]

0 10 20 30
time [s]

0

1

2

3

gr
ip

 fo
rc

e
[N

]

0

20

40

60

80

100

ga
m

m
a

[%
]

safety margin 40%

safety margin 60%

pouring rice pouring rice

*** *** ***

Fig. 5. A. Mean grasping force for 3 different fruits and 3 safety margin commands. The gray zone represents the period after the weight is dropped. B.
Probabilities of slip as a function of the safety margin for the 3 fruits. C. Grip force and predicted safety margin when the FUSE gripper is grasping a cup
being filled with rice. The safety margin was controlled at 40% and 60% respectively on the left and on the right.

Despite its excellent performance, the main limitation of the
proposed approach is the prediction of Γ when the frictional
contact is either small or slippery. To overcome the first issue,
we decided to run our experiments within a limited range of
grasping forces, between 0.25 and 3.2 N. Limiting the range
kept results accurate while preventing damage of the tactile
sensors. On slippery surfaces, we noticed that the accuracy
of the estimate decreases for lower safety margins, especially
in low friction conditions. The decrease in accuracy can be
caused by the sparsity of data used for training in the lower
range of safety margin. During data acquisition, the low safety
margin, which corresponds to gross slippage, was not always
reached because of limitations in the experimental setup in
which maximum applicable load force was limited to 3 N. This
low accuracy can result in difficulties in handling fragile and
slippery objects, as an underestimation of the safety margin
will result in a higher grasping force than necessary. However,
the study shows that the optimal target safety margin is around
40% so low values of safety margin will be rarely reached.
Furthermore, in cases where the predictions are less accurate,
the flexibility of this control approach allows for increasing the
safety margin. The error in the estimation is also illustrated
by a large standard deviation of the predicted safety margin.

This uncertainty can result in fluctuations in grasp force.
A second validation has been done by evaluating the grasp-

ing performance of fragile real-life objects. These real-life
experiments show that, although the model has been trained
on two object shapes, it can generalize to more complex
scenarios. The frictional safety margin can also be used to
increase grasping performance while reducing object damage.
The trained network predicts Γ at 50 Hz on a desktop CPU,
making it fast enough for real time control. The reaction time
of the gripper after a weight drop has been measured at ap-
proximately 100 ms, which is in the same order of magnitude
as the human reaction times to an external perturbation [23].

ACKNOWLEDGMENTS

This work was supported by the 4TU Soft Robotics pro-
gram. J.L. acknowledges the EU’s H2020 OpenDR project
(grant No 871449). We would like to thank Jens Kober for
insightful comments, Mostafa Atalla, Marlies Popken and Max
Polak for technical assistance.

REFERENCES

[1] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp. 886–
900, 2012.

[2] L. Zhang and J. C. Trinkle, “The application of particle filtering to
grasping acquisition with visual occlusion and tactile sensing,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 3805–3812.

[3] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer
of tactile control policies for aggressive swing-up manipulation,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5761–5768, 2021.

[4] N. F. Lepora, “Biomimetic active touch with fingertips and whiskers,”
IEEE transactions on haptics, vol. 9, no. 2, pp. 170–183, 2016.

[5] C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of
a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928,
2019.

[6] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[7] P. Griffa, C. Sferrazza, and R. D’Andrea, “Leveraging distributed contact
force measurements for slip detection: a physics-based approach enabled
by a data-driven tactile sensor,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 4826–4832.

[8] F. Visentin, F. Castellini, and R. Muradore, “A soft, sensorized gripper
for delicate harvesting of small fruits,” Computers and Electronics
in Agriculture, vol. 213, p. 108202, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168169923005902

[9] S. Dong, D. Ma, E. Donlon, and A. Rodriguez, “Maintaining grasps
within slipping bounds by monitoring incipient slip,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 3818–3824.

[10] Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb,
G. S. Sukhatme, and S. Schaal, “Force estimation and slip detec-
tion/classification for grip control using a biomimetic tactile sensor,”
in 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids). IEEE, 2015, pp. 297–303.

[11] J. Gao, Z. Huang, Z. Tang, H. Song, and W. Liang, “Visuo-tactile-based
slip detection using a multi-scale temporal convolution network,” 2023.

[12] J. W. James and N. F. Lepora, “Slip detection for grasp stabilization
with a multifingered tactile robot hand,” IEEE Transactions on Robotics,
vol. 37, no. 2, pp. 506–519, 2020.

[13] F. Veiga, B. Edin, and J. Peters, “Grip stabilization through independent
finger tactile feedback control,” Sensors, vol. 20, no. 6, p. 1748, 2020.

[14] B. Delhaye, A. Barrea, B. B. Edin, P. Lefevre, and J.-L. Thonnard,
“Surface strain measurements of fingertip skin under shearing,” Journal
of The Royal Society Interface, vol. 13, no. 115, p. 20150874, 2016.

[15] M. Tada, “How does a fingertip slip?-visualizing partial slippage for
modeling of contact mechanics,” in 2006 Proceedings of Eurohaptics,
2006, pp. 415–420.

[16] L. Willemet, N. Huloux, and M. Wiertlewski, “Efficient tactile encoding
of object slippage,” Scientific Reports, vol. 12, no. 13192, 2022.

[17] F. Schiltz, B. P. Delhaye, J.-L. Thonnard, and P. Lefèvre, “Grip force is
adjusted at a level that maintains an upper bound on partial slip across
friction conditions during object manipulation,” IEEE Transactions on
Haptics, vol. 15, no. 1, pp. 2–7, 2021.

[18] A. M. Hadjiosif and M. A. Smith, “Flexible control of safety margins
for action based on environmental variability,” Journal of Neuroscience,
vol. 35, no. 24, pp. 9106–9121, 2015.

[19] X. Lin and M. Wiertlewski, “Sensing the frictional state of a robotic skin
via subtractive color mixing,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2386–2392, 2019.

[20] R. B. Scharff, D.-J. Boonstra, L. Willemet, X. Lin, and M. Wiertlewski,
“Rapid manufacturing of color-based hemispherical soft tactile finger-
tips,” in 2022 IEEE 5th International Conference on Soft Robotics
(RoboSoft). IEEE, 2022, pp. 896–902.

[21] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.

[22] L. Wright and N. Demeure, “Ranger21: a synergistic deep learning
optimizer,” arXiv preprint arXiv:2106.13731, 2021.

[23] K. J. Cole and J. H. Abbs, “Grip force adjustments evoked by load force
perturbations of a grasped object,” Journal of neurophysiology, vol. 60,
no. 4, pp. 1513–1522, 1988.

	Introduction
	Changelog
	Accessing the OpenDR toolkit
	Toolkit Research and Development
	Using Part-based Representations for Explainable Deep Reinforcement Learning
	Introduction and objectives

	Few-Shot Panoptic Segmentation With Foundation Models
	Introduction and objectives
	Description of the work performed
	Conclusion

	Collaborative Dynamic 3D Scene Graphs for Automated Driving
	Introduction and objectives
	Description of the work performed
	Conclusion

	Learning to estimate incipient slip with tactile sensing to gently grasp objects
	Introduction and objectives
	Description of the work performed
	Conclusion

	Installing and using the OpenDR toolkit
	Installation by cloning the GitHub repository
	Installation procedure

	Installation using pip
	Installation procedure
	Installing only a particular tool using pip

	Installation using docker
	Procedure

	ROS
	Environment setup for ROS
	ROS2
	Environment setup for ROS2

	OpenDR on embedded devices
	Using the OpenDR toolkit
	Customization

	Conclusions
	Appendix
	Using Part-based Representations for Explainable Deep Reinforcement Learning
	Few-Shot Panoptic Segmentation With Foundation Models
	Collaborative Dynamic 3D Scene Graphs for Automated Driving
	Learning to estimate incipient slip with tactile sensing to gently grasp objects

