
 OpenDR
 —

 Open Deep Learning Toolkit for Robotics

 Project Start Date: 01.01.2020
 Duration: 48 months
 Lead contractor: Aristotle University of Thessaloniki

 Deliverable D7.5: Integration and experimental
 demonstration of the OpenDR toolkit in the specific use
 cases

 Date of delivery: 29 Dec 2023

 Contributing Partners: AUTH, TAU, AU, TUD, ALU-FR, CYB,
 PAL, AGI

 This project has received funding from the European Union’s Horizon
 2020 research and innovation programme under grant agreement No
 871449.

Ref. Ares(2023)8898178 - 29/12/2023

 Title D7.5: Integration and experimental demonstration of the
 OpenDR toolkit in the specific use cases

 Project OpenDR (ICT-10-2019-2020 RIA)
 Nature Demonstrator
 Dissemination
 Level:

 PU blic

 Authors Niclas Vödisch (ALU-FR), Abhinav Valada (ALU-FR), Akif
 Ekrekli (TAU), Mikael Petäjä (TAU), Roel Pieters (TAU), Anton
 Muravev (TAU), Moncef Gabbouj (TAU), Kakaletsis Efstratios
 (AUTH), Symeonidis Charalampos (AUTH), Tzelepi Maria
 (AUTH), Nousi Paraskevi (AUTH), Manousis Theodoros
 (AUTH), Nikolaidis Nikolaos (AUTH), Tefas Anastasios
 (AUTH), Babis Emmanouil (AUTH), Tsampazis Konstantinos
 (AUTH), Kirtas Emmanouil (AUTH), Avramelou Loukia
 (AUTH), Spanos Dimitrios (AUTH), Katsikas Dimitrios
 (AUTH), Moustakidis Vasileios (AUTH), Nikolaos Passalis
 (AUTH), Alea Scovill (AGI), Nicolai Knudsen (AGI), Halil
 Ibrahim Ugurlu (AU), Amir Ramezani Dooraki (AU), Erdal
 Kayacan (AU), Alexandros Iosifidis (AU), Thomas Peyrucain
 (PAL), Gizem Bozdemir (PAL), Bas van der Heijden (TUD),
 Jelle Luijkx (TUD), Jens Kober (TUD), Robert Babuska (TUD),
 Olivier Michel (CYB)

 Lead Beneficiary PAL (PAL Robotics)
 WP 7
 Doc ID: OPENDR D7.5.pdf

 Document History

 Version Date Reason of change

 v1.0 09/10/2023 Deliverable structure template
 ready

 v2.0 25/11/2023 Initial Draft ready

 v3.0 27/11/2023 First version for review

 v4.0 29/12/2023 Final version to be submitted

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 2

 Executive Summary 3
 1 Introduction 4
 2 Integration and experimental evaluation for Agricultural Robotics Scenario 4

 2.1 Detection of crop plants in rows in field 4
 2.2 Increase safety through object detection and tracking of humans in the field 6

 2.2.1 Refining object detection for agriculture-related vehicles 6
 2.3 Scene understanding for agriculture fields 9
 2.4 Plant row guidance system 11
 2.5 Development efficiency by getting more realistic simulations 12
 2.6 Simulation of path planning methods to avoid obstacles using ground robot and drone 13

 3 Integration and experimental evaluation for Healthcare Robotics Scenario 14
 3.1 (Task 1) Person finding 14
 3.2 (Task 2) Manipulating and delivering an object 16
 3.3 (Task 3) Detection of fallen persons 19
 3.4 (Task 4) Emotional reactions 20
 3.5 (Task 5) Multi-modal human-robot interaction (HRI) 20

 4 Integration and experimental evaluation for Agile Produc- tion Robotics Scenario 26
 4.1 Human detection and tracking 26
 4.2 Object detection and pose estimation 28
 4.3 Recognition of targets 29
 4.4 Object grasping 30
 4.5 Object manipulation 30
 4.6 Task policy generation and sim2real 31
 4.7 Speech recognition 32
 4.8 Multi-modal HRI 33
 4.9 Interactive Imitation Learning 37

 5 Conclusions 38

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 3

 Executive Summary
 Deliverable D7.5 marks a significant achievement within the OpenDR project, focusing on the
 successful integration and experimental validation of the OpenDR toolkit across three distinct
 domains: Agriculture, Healthcare, and Agile Production. This executive summary provides an
 overview of the integrated OpenDR tools and the compelling evidence, including photos, that
 illustrate the tangible benefits derived from these integrations. The tools required for all use
 cases have been successfully integrated in the OpenDR toolkit. Each use case has integrated and
 evaluated the OpenDR toolkit based on the use case specifications from D2.3, with the objective
 of evaluating the usefulness and efficiency of the toolkit. In addition integration results and
 feedback are provided.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 4

 1 Introduction

 OpenDR aims at developing an open, non-proprietary modular toolkit that can be easily used by
 robotics companies and research institutions to efficiently develop, evaluate and deploy AI and
 cognition technologies to robotics applications. As industries evolve, the demand for intelligent
 and versatile robotic solutions becomes increasingly apparent. The OpenDR toolkit serves as a
 testament to the project's commitment to addressing these evolving needs.

 This deliverable report signifies a momentous stride in the successful integration and experimental
 validation of the OpenDR toolkit within three distinct domains: Agriculture, Healthcare, and Agile
 Production. The introduction of the OpenDR toolkit into these specific domains not only
 exemplifies the adaptability of robotics but also signifies a crucial step towards realizing the
 practical applications of advanced technologies in real-world scenarios. This introduction sets the
 stage for an exploration of the integrated tools, the rigorous evaluation processes undertaken, and
 the tangible benefits observed across the diverse landscapes of these three domains.

 This deliverable (D7.5) reflects the effort of the integration and experimental evaluations of the
 OpenDR toolkits to robot architectures for the 3 specific use cases; Healthcare, Agriculture and
 Agile Production.

 2 Integration and experimental evaluation for Agricultural
 Robotics Scenario

 The tools integrated in the agriculture use case have focused on the agriculture tasks, detection of
 crop plants, increasing the safety, scene understanding, plant row guidance system, realistic
 simulations and simulation of path planning methods to avoid obstacles using ground robot and
 drone. The tools have been integrated on a Nvidia Xavier or a Nvidia TX2. All demonstration links
 have been recorded in a field in either real conditions or close to real conditions.

 2.1 Detection of crop plants in rows in field
 The integration of the Crop & Weed tool has been integrated in two systems - edge and cloud.

 The edge-based system acquires, then analyzes the image on the robot’s Nvidia Xavier GPU. The
 metadata is sent to the cloud where it is stored, waiting for retrieval. Some images are also
 uploaded so the user and AGI can verify that the tool is working properly.

 The cloud-based system acquires the image on the robot, sends the images in a rosbag to the cloud
 where it is extracted and stored. The images are automatically put in queue to be analyzed by the
 Crop & Weed tool. After the images are analyzed, the metadata is stored, waiting for retrieval.

 For both systems, after the metadata is stored, the user can view the heat maps through the Robotti
 portal, see Figure 2.1.1. The locations of where images were acquired are overlaid onto Google
 maps, where the user can click and view the images, allowing them to learn more about their field.
 The images can be enhanced by the tool. The heat maps allow the user to spatially see the count or
 coverage of a weed or crop. The navigation to the heat maps and UI was improved in winter 2023.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 5

 Figure 2.1.1 : Example of the Crop&Weed tool being used by a farmer.

 The figure is a screenshot of the Robotti portal. The top layer shows the image processed by the
 Crop & Weed tool. The layer under the image shows a heat map of the thistle count for the chosen
 field. Part of the demonstration video (first link below).

 Currently, the cloud-based system is available on commercial Robottis that have the CropEye
 system (1-4 downward facing cameras with Xavier GPU). The cloud-based system has the
 advantage that AGI receives more images that can be incorporated into the tool and AGI can easily
 verify that the tool is performing satisfactorily. The disadvantage is the data requirements are
 considerable and the robots often work in areas where the bandwidth of the mobile connection is
 low. However, we don’t explicitly trust the tool and the cloud-based system allows us to monitor
 and update the tool centrally.

 Ultimately, the plan is for AGI to transition over to offering the edge-based system to farmers
 instead of the cloud-based system. The advantage of the edge-based system is the data
 requirements are significantly lower, reducing the running costs of the robot (both mobile data use
 and AWS cloud costs). The disadvantage is that there will be fewer images collected to update and
 verify the tool’s performance. If there is a problem (e.g. cannot find maize because it is stressed
 and looks different than the model’s dataset), then if only 5 or 10 images are recorded per ha, it
 may not be enough to correct the issue.

 The Crop&Weed tool (custom YOLOv5) has been integrated into the OpenDR platform. Part of
 the Crop&Weed tool’s dataset has been published and a smaller version has been integrated into
 the OpenDR platform, available for everyone to use. Because the completed dataset and tool is
 proprietary, the full model has been kept confidential. This is a demonstration of the full
 Crop&Weed model integrated into OpenDR:

 https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlk
 ey=kdhr58aww3v0ar33ad9w8el5h&dl=0

 Demonstration of the Crop&Weed tool on AgroIntelli infrastructure:

 Agrointelli Educational - Doing Virtual Field Walk via Mobile Phone while Robotti nurse berry
 bushes - YouTube

 https://youtu.be/TnCB3aTEvCg?si=jg6YnTkNNzAxmIhW

https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlkey=kdhr58aww3v0ar33ad9w8el5h&dl=0
https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlkey=kdhr58aww3v0ar33ad9w8el5h&dl=0
https://www.youtube.com/watch?v=6DsvMgCisYo
https://www.youtube.com/watch?v=6DsvMgCisYo
https://youtu.be/TnCB3aTEvCg?si=jg6YnTkNNzAxmIhW

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 6

 2.2 Increase safety through object detection and tracking of
 humans in the field

 SSD, single shot detection, object detection tool and YOLOv5 object detection tool (humans and
 tractors) have been integrated into Robotti using the Docker image. YOLOv5 (humans and
 tractors) has been integrated into Robotti’s infrastructure, using Robotti’s front and rear cameras
 and Nvidia Jetson GPU.

 AGI will continue the integration and integrate the analyzed images into Robotti’s remote
 supervision page on the Robotti portal, so they can be shown automatically to users when viewing
 the live streaming. In addition, the tools will trigger notifications to farmers and increase Robotti’s
 autonomy by reducing the number of events requiring the user to go to the field to restart the robot.
 This is expected to be completed by winter 2024.

 All integration issues with the Docker image have been resolved with the help of the OpenDR
 consortium.

 Demonstrations can be viewed here:

 SSD object detection tool:
 https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl
 =0

 https://www.dropbox.com/s/7uy4pk4b9rw5w3f/Opendr_test_3.mp4?dl=0

 YOLOv5:
 https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153
 _Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0

 https://www.dropbox.com/s/rmrfzbilysary5u/Opendr_yolov5s_test_1.mp4?dl=0

 (The black ‘loading’ circle is because the treeline beside the road reduces the bandwidth of the
 mobile signal. The delay is not due to tool performance.)

 2.2.1 Refining object detection for agriculture-related vehicles

 To enhance safety via object detection in agricultural fields, we fine tuned a pre-trained YOLOv5
 model specifically for vehicles that often appear in agricultural fields. To this end, we considered
 several different options, as outlined below, including introducing a new class, “tractor”', and
 subsequently trained YOLOv5 on an appropriately constructed dataset. This additional training
 aims to enable the detection of tractors, which are vital in the agricultural domain. A detailed
 analysis of this procedure is provided below.

 The used dataset was sourced from Kaggle 1 and comprises both truck and tractor images, along
 with their corresponding annotations. Specifically, it contains 132 images of tractors and 194
 images of trucks. For evaluation, we partitioned the data into approximately 80% for training and
 20% for testing.

 1 https://www.kaggle.com/datasets/dataclusterlabs/construction-vehicle-images

https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl=0
https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl=0
https://www.dropbox.com/s/7uy4pk4b9rw5w3f/Opendr_test_3.mp4?dl=0
https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153_Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0
https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153_Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0
https://www.dropbox.com/s/rmrfzbilysary5u/Opendr_yolov5s_test_1.mp4?dl=0

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 7

 To enhance the performance of YOLOv5 for the aforementioned tasks, we first froze the backbone
 model responsible for extracting high-level features that emphasize the most prominent
 characteristics and patterns in the input data and trained only the head model, which interprets the
 feature maps generated by the backbone to make final predictions or decisions.

 Table 2.2.1 : Training and validation curves for a model exclusively trained on truck images.

 Model mAP @ 50
 in trucks/tractors

 mAP @ 50 - 95
 in

 trucks/tractors

 mAP @ 50
 in COCO

 mAP @ 50
 - 95

 in COCO

 Default 0.342 0.248 0.713 0.475

 Finetuned (trucks) 0.769 0.582 0.156 0.095

 Finetuned
 (trucks+COCO)

 0.740 0.559 0.398 0.288

 The first option that we evaluated was to train the model exclusively on truck images that could
 appear in agricultural settings, while also treating tractor images as trucks, assuming they share
 similar feature representations. This approach provides us with 260 training samples and 66
 evaluation samples. We train the YOLOv5s model over 200 epochs, using mAP50 and mAP50-95
 as evaluation metrics. In Figure 2.2.1, we provide training and validation curves, while in Table
 2.2.1 we report the performance of the models. The default model represents YOLOv5s before any
 training. The aforementioned finetuning process is abbreviated as “Finetuned (trucks)'' in Table
 2.2.1. Based on these results, it's evident that the model has significantly improved in detecting
 trucks and tractors. However, when tested on the COCO128 dataset, our model appears to struggle
 with recognizing other classes, a phenomenon commonly known as catastrophic forgetting.

 Figure 2.2.1 : Training and validation curves for a model exclusively trained on truck images and tested on trucks.

 To address the issue of catastrophic forgetting we choose to augment the YOLOv5s with images
 that include not only the new domain, but also the original one (as provided by the COCO dataset),

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 8

 in order to mitigate these issues and provide potentially more robust models. To this end, we also
 sample training images from the COCO dataset. The training/validation curves are shown in Figure
 2.2.2. The mAP is also reported in Table 2.2.1, with the proposed method abbreviated as
 ̀ `Finetuned (trucks+COCO)''. The new model achieves almost the same performance as the
 previous one in the agricultural domain, while performing better in the original COCO domain.
 Please note that the aim of this experiment is not to retain the original COCO knowledge, since
 most part of this is probably irrelevant to the task at hand, but rather to examine if we can retain
 part of this knowledge without harming the detection performance for the task at hand.

 Figure 2.2.2 : Training and validation curves for a model trained-tested both on truck images and COCO images.

 Finally, we also finetuned a model in which tractors are added as a new class. We follow the same
 approach as before and we also include an equal number of COCO images in the training to
 mitigate forgetting issues. However, as shown in Figure 2.2.3, this approach works worse
 compared to the previous one. However, such an approach might be useful in cases where we need
 to know the exact type of detected vehicle. In Figure 2.2.4, we provide some examples of tractors
 along with the corresponding model predictions.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 9

 Figure 2.2.3 : Training and validation curves for a model trained-tested both on truck images and COCO

 images (a separate tractor class is added).

 Figure 2.2.4 : Examples of annotation and model predictions for indicative tractor images,

 as provided by the original dataset.

 2.3 Scene understanding for agriculture fields
 For scene understanding of agriculture fields, we perform dense semantic segmentation from the

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 10

 onboard cameras of the employed robot. Since a vast majority of traditional semantic segmentation
 approaches require a large set of precisely annotated images, we leverage few-shot training
 techniques to reduce the cost of initial image labelling. In particular, we utilize SPINO, recently
 proposed by ALU-FR. At the time of submission, this work is still under review at a major robotics
 conference. In the following, we provide a brief introduction to SPINO. Note that for this
 particular use case, we only employed the semantic segmentation capabilities without performing
 panoptic segmentation.

 Markus Käppeler, Kürsat Petek, Niclas Vödisch, Wolfram Burgard, and Abhinav Valada.
 “Few-Shot Panoptic Segmentation With Foundation Models”, arXiv. Preprint: arXiv:2309.10726 ,
 2023.

 Most contemporary panoptic segmentation techniques rely on supervised learning, necessitating
 the availability of extensively annotated panoptic maps, a process that is both costly and
 time-consuming. To address this challenge, an alternative approach relies on utilizing
 pseudo-annotated data for supervised training of larger models.

 Our proposed SPINO aims to produce highly accurate pseudo-labeled data for state-of-the-art
 panoptic segmentation models, requiring only a limited quantity of actual annotated data. This is
 achieved through the application of transfer learning on foundational models, such as DINOv2,
 which enables the extraction of rich semantic information from any input image. Moreover, the
 acquired semantic information can be leveraged to generate task-specific outputs, such as semantic
 maps and boundary maps, with minimal training on top of the pre-trained foundation model. This
 training strategy significantly mitigates the need for extensive human annotation.

 Figure 2.3.1 : SPINO architecture.

 SPINO applies the aforementioned strategy to derive boundary and semantic maps from an RGB
 image. Subsequently, through the process of panoptic fusion, it generates pseudo-label panoptic
 outputs. However, it is essential to note that rather than utilizing these pseudo-labeled data solely
 for prediction, it is advisable to employ them for training a state-of-the-art panoptic segmentation
 model. This approach is preferred due to concerns regarding the inefficiency in inference time
 associated with the direct use of pseudo-labeled data as predictions. The visual overview of the
 method can be seen in Figure 2.3.1..

 Below (Figure 2.3.2), we show qualitative results of the predictions by SPINO for scene

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 11

 understanding of fields.

 Figure 2.3.2 : Results of SPINO in the agriculture use case analyzing images taken in real farming conditions.

 2.4 Plant row guidance system
 The plant row guidance system has been integrated into Robotti’s infrastructure, see Figure 2.4.1..
 The plant row guidance system acquires an image, analyzes it while finding the plant stem
 emergence zones and the crop. The crop row is found by counting the pixels along the x axis for all
 of the plant stem emergence zones that are found for the crop and the pixel column that has the
 highest count is the crop row. The cross track error is calculated (see D4.4 for calculation details)
 and published to the robot’s ‘nudge’ topic, see figure 2.4.1. The nudge allows the robot to change
 position to the left or right of the planned line. The robot is then nudged based on the actual
 position of the crop and then the robot moves into the corrected position. The RTK GPS position
 data is sent and recorded to the cloud. A map is created so that the robot can follow in sequential
 operations. When turning, the robot uses the RTK GPS, as there are no visual clues as to where it
 should drive. The user can use the recorded path in future operations.

 Figure 2.4.1 : Infrastructure of the row guidance system

 The demonstration can be viewed here:

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 12

 open_dr_row_guidance_tmp_3_time_14_13.mp4

 Explanation of the video: First the Robotti drives in automatic mode, then it slows (0:20 - 0:28).
 This is when the row guidance system is being activated, the lights are turned on at 0:20. In the top
 left, the crop images are shown when they are being recorded (starts at 0:28). In the top center, this
 is the video from the person recording the demonstration. In the top right, this is the video of the
 rear camera, also showing the person recording. Just below the videos, the path and location of
 where the robot drove is shown. In the bottom, the graph shows the cross track error (XTE) plus
 the vision estimation (row guidance) of the robot, see Figure 2.4.3x (the orange line in the graph
 below is the same as the red line in the video). The moving dotted line shows where in the time
 progression the video is on the graph. The red line in the graph is the nudge calculated from the
 row guidance system. The blue line is robot cross track error plus the row guidance estimation of
 the cross track error.

 Figure 2.4.3: The blue line shows the robot cross track error plus the vision estimation (row guidance). The orange line
 shows the vision estimation (row guidance), also called the nudg e.

 2.5 Development efficiency by getting more realistic
 simulations

 The simulation has been used to evaluate safety events. The simulation models were refined to
 provide more realistic results. In particular, the Robotti model and embedded sensors were
 improved, based on their corresponding datasheets. The Robotti camera, Robotti module and
 Robotti module wheels were implemented as separate PROTO files in Webots. In addition, an
 agricultural warehouse PROTO model was implemented to allow for more realistic scenarios. We
 also reused a number of farm environment PROTO files developed previously, such as Tractor,
 Silo, Ditch, Barn, various farm animals, etc. Finally, a special simulation world file was designed
 and implemented with a realistic scenario where a Robotti robot is detecting humans in a field
 environment.

 The demonstration can be viewed here:

 https://webots.cloud/AcNlzA6

https://agrointellicom-my.sharepoint.com/:v:/g/personal/nhk_agrointelli_com/ETK8vAEkewxFjpLqlSw9c-YBjGvGtqJUXD8OH24maxTqDQ?e=A6SQxZ&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZyIsInJlZmVycmFsQXBwUGxhdGZvcm0iOiJXZWIiLCJyZWZlcnJhbE1vZGUiOiJ2aWV3In19
https://webots.cloud/AcNlzA6

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 13

 2.6 Simulation of path planning methods to avoid obstacles
 using ground robot and drone

 In addition to the previously reported showcase of end-to-end planning UAV guiding agricultural
 UGV, an autonomous dataset generation approach for an agricultural environment is simulated in
 the Webots simulator. The simulated agricultural environment includes two active vehicles. The
 first is an unmanned ground vehicle (UGV) called Robotti, and the second one is an unmanned
 aerial vehicle (UAV) called Mavicpro. The dataset generation tool and a sample collected dataset
 are integrated with the toolkit.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 14

 3 Integration and experimental evaluation for Healthcare
 Robotics Scenario

 The general setup for experiments in the healthcare scenario includes one TIAGo robot that is
 equipped with a RGBD for visual perception and a microphone for speech recognition.
 Computation is performed on different platform to run all the nodes at the same time: Jetson NX,
 Linux laptop (NVIDIA GeForce GTX 1650 + 2 * 8GB DDR4 RAM 3200 MHz), PC (NVIDIA
 GeForce RTX 3080 Ti + 4 * 8 GB DDR4 RAM 2400 MHz) and all robot (TIAGo robot)
 communication and control utilizes ROS and PAL software.

 The updated scenario is provided below to highlight the different tools used in the healthcare
 use-case:

 3.1 (Task 1) Person finding
 The integration of face detection and face recognition tools is integrated at different levels of the
 scenario.

 Figure 3.1.1. Detection and recognition of a person

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 15

 Upon initiating interaction, the robot recognises the person as in Figure 3.1.1 (if the person is not
 found in the database the robot will ask for the patient’s name in order to add to the database
 Figure 3.1.2) for subsequent use within the use case. For instance, upon reaching the doctor, the
 robot states the patient's name to facilitate the doctor's awareness of the prescribed medicine.
 Additionally, upon entering the doctor's office, the robot endeavors to identify the doctor.

 Figure 3.1.2. Adding a new person to the database using speech recognition and PAL chatbot

 Utilizing PAL's sophisticated autonomous navigation system, TIAGo navigates to various points of
 interest (poi1, poi2, poi3) and surveys the environment (Figure 3.1.3); the different blue arrows are
 the points of interest that can easily be moved (poi1, poi2, poi3, patient_poi, doctor_poi) and the
 orange arrow is the localization of the TIAGo robot on the map. Upon receiving a patient's request,
 the system records the location of the patient, poi on the map for the doctor's reference.

 Figure 3.1.3. Updated map with the localization of the patient on the map (most bottom arrow)

 Furthermore, in order to better recognize persons whose appearance may vary due to

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 16

 environmental conditions, e.g. lightning conditions, or changes that occur to facial features through
 time, an active approach on top of the existing face recognition module is implemented in
 OpenDR. Based on the approach, the facial features extracted by a backbone deep neural network
 that exists in the known-persons database are gradually and dynamically updated with new facial
 information. When the system correctly recognizes a person, but with low confidence, facial
 features are saved in a buffer, which then updates the facial information of that person in the
 database, making the system more confident in recognizing this person in future occurrences. This
 method proved to be more robust and more accurate in identifying persons in different
 environmental conditions and through changes that occur in facial features through time.
 Additionally, when the algorithm fails to recognize a person, a module to add this person to the
 database was developed. In the Healthcare use case, the Tiago Robot asks for the person not
 recognized to state its name, and the corresponding entry in the database is created.

 3.2 (Task 2) Manipulating and delivering an object
 For this task PAL integrated OpenDR inside the advanced grasping pipeline packages created for
 the TIAGo robot.

 The Advanced Grasping (AG) (Figure 3.2.1) software package provides a framework to use the
 mobile manipulation capabilities of TIAGo and TIAGo++. It can be used with the PAL gripper, the
 Robotiq 2f-85 and the Robotiq 2f-140. The package combines behaviour trees and MoveIt! to
 allow the robot to perform complex grasping tasks in a broad range of environments. Furthermore,
 the behaviour tree structure provides an infrastructure to adapt to the needs of the application
 easily.

 Figure 3.2.1 : TIAGo grasping an object using the Advanced Grasping package

 The internal architecture of the AG package is based on the server-client structure, in other words,
 a client sends a goal with specific features to the server and it performs the action without blocking
 the normal behaviour of the robot. Once the server finishes its task, it returns the result to the
 client. These servers are implemented using ROS Actions. The three available servers are:

 - Perception server.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 17

 - Grasp server.
 - Place server.

 The perception server was adapted to the OpenDR Yolov5 object detector. It is now taking the
 bounding box message provided by the OpenDR tool and filtering the point cloud provided by the
 RGBD camera to output a 3D bounding box (cylindrical or rectangular) that fits the detected
 object, as shown in Figure 3.2.2.

 Figure 3.2.2 : rviz detection of 3 objects + octomap

 The Advanced Grasping detection outputs an ordered list detailing the object positions.
 Subsequently, the robot observes the doctor, who indicates the preferred bottle for grasping. The
 selection is determined based on the right wrist position as shown in Figure 3.2.3, with
 initialization involving pointing first to the left bottle and then to the right bottle before making the
 final choice of the bottle to be grasped.

 Figure 3.2.3 : skeleton detection: pointing at bottle

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 18

 A new dataset was created to focus on the detection of medicine cups. 25 images were taken and
 annotated. This dataset was extended by modifying the brightness of the image in order to adapt to
 different lighting conditions. It was then trained to perform the detection of the medicine cup as
 seen below in Figure 3.2.3.

 Figure 3.2.3 : Yolov5 detection of medicine cups.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 19

 3.3 (Task 3) Detection of fallen persons
 This task is focused on adapting the fallen person tool that is known to have false detection of
 sitting persons.

 Until now the detection of a fallen person is done by taking the 2d detection of every person in the
 field of view and outputting a 3d pose of the mean of the point cloud included in this bounding box
 as shown in Figure 3.3.1. A threshold is then set to differentiate standing persons from fallen
 persons.

 Figure 3.3.1 :: Person detection + pointcloud

 This operation requires computing power and can be costly if several persons are detected in the
 frame.

 The package was adapted to take the output of the fallen person OpenDR tool instead of every
 person detected in the frame, Figure 3.3.2 highlights this change, if a person had been detected
 standing next to the person it would not have been processed since it would not have been detected
 as fallen.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 20

 Figure 3.3.2 Fallen person detection + pointcloud +red dot of the mean of the point cloud where the person has been
 detected

 3.4 (Task 4) Emotional reactions
 The emotional state of the person is recognized at the end of the interaction to understand the
 appreciation of the medicine delivery to the patient.

 If the patient is happy the robot is saying a joyful phrase: “I am glad that your day is going great.”

 If the person is sad as in Figure 3.4.1, the robot says: “I can play some music to cheer you up! If
 you want me to stop you can do a silent sign.” And plays a piece of cheerful music until the person
 performs a “silence” sign

 If the person looks surprised: “Sorry to have frightened you.”

 If the person is angry: “Please don't be angry. Everything will be fine!"

 Figure 3.4.1 : Emotion detection from TIAGo camera

 3.5 (Task 5) Multi-modal human-robot interaction (HRI)
 The main focus of this task was to integrate different tools and modalities to interact with the robot.

 Before the pipeline is triggered the robot needs to understand with confidence that a patient wants
 to interact. For this purpose, the natural speech recognizer is combined with the wave detector
 (Figure 3.5.1) or the gesture recognizer (Figure 3.5.2). A specific keyword is used to trigger the
 process and then the robot looks at the person, if a wave or a “stop” sign is detected the chatbot
 will be triggered and the use case can proceed, otherwise the robot will continue roaming the
 environment.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 21

 Figure 3.5.1: Person waving at robot

 Figure 3.5.2 : Person with hand gesture recognition to stop robot

 Once the interaction has been successfully detected the chatbot is activated. The natural speech
 tool was integrated with the PAL chatbot (the architecture can be found in Figure 3.5.3). The left
 part of Figure 3.5.3 shows from the top left to bottom left the process of the chatbot, first, the
 reSpeaker microphone adapts environment sounds to a ROS message that is used by the OpenDR
 natural speech recognizer. Then the OpenDR tool outputs a standard ROS4HRI message
 hri_msgs/LiveSpeech, this allows the tool to be easily integrated with pipelines that use the
 ROS4HRI architecture as a standard. Then the recognized text is provided first to the
 soft_wakeup_word package to trigger the chatbot. Finally, once the chatbot has been triggered it
 takes the phrases and processes them with RASA to output a specific intent that can contain

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 22

 specific information about the phrase. RASA is a framework that is open source and designed for
 constructing applications that operate through text and voice. It employs a modular collection of
 fundamentals for tasks such as natural language understanding and dialogue management. This
 approach enables the creation and expansion of advanced conversational AI solutions. In parallel it
 is sending a response to the text-to-speech of the TIAGo robot to be able to communicate with the
 user. This integration is able to recognize the intent of the person and reply in a seamless manner.

 Figure 3.5.3 : Speech pipeline with OpenDR tool

 The RASA rules are set by different packages that will be explained more in depth below, the
 structure of those packages is shown on the right of Figure 3.5.3 where pal_default_chatbot
 provides the chitchat protocol to be able to handle simple everyday phrases like what time is it? or
 How are you doing ? and other parts customized to fit OpenDR needs. It is then used to reply with
 a specific phrase or can trigger an application inside the application controller developed for the
 OpenDR healthcare use case. This approach is modular and can be adapted to different use cases.

 The different intents that can be recognized are listed below:

 intents :

 - chitchat

 - get_weather

 - nlu_fallback

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 23

 - greet

 - goodbye

 - get_time

 - out_of_scope

 - ask_doctor

 - stop

 - thanks_medicine
 The greet intent is, for example, outputting one of those phrases that are then pronounced by the
 robot using text to speech Acapela application:

 utter_greet:

 - text : Hi! What can I do for you ?

 - text : Hello, what can I do for you ?
 The ask_doctor can be triggered by any phrase that is listed below and an extension of those thanks
 to RASA:

 - intent : ask_doctor

 examples : |

 - Call a [doctor](symptoms) for me please.

 - I'm [not feeling well](symptoms), can I get some medicine?

 - Could I speak with a [healthcare](symptoms) professional?

 - I'm [sick](symptoms) and need medicine.

 - I'm [feeling sick](symptoms) and need medicine.

 - I'm [not feeling good](symptoms). Can I see a doctor?

 - I think I have a [cold](symptoms)

 - I'm feeling [nauseous](symptoms)

 - I've got a [cough](symptoms). Is there a medicine that could help?

 - I have a [stomachache](symptoms)

 - I have an [headache](symptoms)

 - I think I have [fever](symptoms)?

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 24

 - Is there a medicine I can take for my [insomnia](symptoms)?

 - synonym : feeling sick

 examples : |

 - not feeling good

 - not feeling well

 - healthcare

 - sick

 - doctor

 - synonym : having a cold

 examples : |

 - cold

 - synonym : having a cough

 examples : |

 - cough

 - synonym : having a stomachache

 examples : |

 - stomachache

 - synonym : having an headache

 examples : |

 - headache

 - synonym : having a fever

 examples : |

 - fever

 - synonym : having insomnia

 examples : |

 - insomnia

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 25

 It is also handling symptoms, for example, if the person says:

 I have a stomachache and need medicine.

 Synonyms can also be provided in order to understand the same symptoms with different ways of
 specifying them.
 The robot will extract one of the possible symptoms listed above, here it will be the stomachache
 then the code will return “having a stomachache” for the robot to include it in the phrase to say to
 the doctor.

 The ask_doctor triggers the task to navigate to the doctor's office and save the position on the map,
 the name and the symptom of the patient.

 In different parts of the use case, hand gesture recognition is also used to confirm or stop actions of
 the robot:

 - To release the object after handing it to the patient to be sure to not make it fall (Figure
 3.5.4)

 Figure 3.5.4 : Thumbs up gesture to release object

 - to stop the music after helping the patient and resume the roaming activity (Figure 3.5.5)

 Figure 3.5.5 : Mute gesture to stop music and resume roaming

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 26

 4 Integration and experimental evaluation for Agile Produc-
 tion Robotics Scenario

 The general setup for experiments in the agile production scenario is depicted in Figure 4.1.1 and
 includes two cameras (Intel Realsense D435) for visual perception (one front-facing and one on the
 robot end-effector) and a microphone for speech recognition. Computation is performed on a
 standard Desktop PC running Ubuntu Linux with Nvidia GTX 1080 Ti GPU, and all robot (Franka
 Emika) communication and control utilizes ROS.

 Figure 4.1.1: General setup for the agile production scenario includes a collaborative robot, Diesel engine and its
 different parts to be assembled and the human operator. Sensors included are one camera on the end-effector and one

 front-facing towards the person.

 4.1 Human detection and tracking

 Detection of a human in the agile production scene is done with OpenPose tool, a real-time
 multi-person human pose detector. For a successfully detected human pose, the method returns a
 list of 18 2D image key points of the human skeleton with associated key point abbreviations. The
 method in this work utilizes the pre-trained MobileNet model, which was trained and evaluated
 with the COCO 2017 dataset under default training parameters. Examples of human detections can
 be seen in Figure 4.2.1.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 27

 Figure 4.2.1: Human skeleton detection skeleton-based tracker Lightweight OpenPose. Recognized action is ’cross
 hands in front, with its corresponding confidence score.

 Recognition of human actions is done with a real-time skeleton-based human action recognition
 tool (ST-GCN), as it utilizes the lightweight OpenPose model. The method takes the location of the
 human joints in every image, and generates a sequence of detected human skeleton graphs,
 connected both spatially and temporally. Depending on the dataset the method can detect a large
 number of different human actions, ranging from daily activities to complex actions with
 interactions. For the use case, the smallest training dataset is selected (NTU-RGB+D), as it
 contains the most relevant human action classes (60 classes). Two examples of human actions
 recognized are depicted in Figure 4.2.1, with their corresponding confidence scores.

 As additional functionality for human-robot interaction, the recognition of wrist gestures was
 extracted from the skeleton detection tool. Wrist detection takes the wrist node of a detected
 skeleton and, when presented in a certain image area, can serve as trigger for robot actions (e.g.,
 stop, continue) or refer to certain objects in the scene. Figure 4.2.2 depicts the detection of the
 wrist in specific image areas.

 Figure 4.2.2: Wrist detections are obtained with the skeleton-based tracker Lightweight OpenPose, from the detected
 wrist nodes.

 Integrated experiments of the human detection functionalities can be seen in Figure 4.2.3 and the
 following video: https://youtu.be/b_ISrhOlcC8 . This describes the collaborative scenario with a
 human and a robot sharing the task of assembling different parts of the Diesel engine to the engine

https://youtu.be/b_ISrhOlcC8

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 28

 block. The specific scenario is described as well in the following sections, as other tools were
 required for integrated experiments.

 Figure 4.2.3 : Results of human-robot collaboration experiments. Both images depict human task coordination by
 visual detection of

 the left wrist (handLeft), for halting the robot and performing manual assembly actions, followed by right wrist
 detection

 (handRight) for resuming robot actions.

 4.2 Object detection and pose estimation

 Object detection and pose estimation serve to detect objects in the Diesel engine assembly scenario
 and utilize the information for further robot actions, such as grasping, pick and placement and
 robot to human hand-overs. Mask R-CNN from Detectron2 was selected for object and target
 detection in the scene, as performance was preferred over inference time. Mask R-CNN combines
 a Region Proposal Network (RPN) with the CNN model, to simultaneously predict object bounds
 and objectness scores at each position. After detection, orientations are estimated in each bounding
 box by the second order moment from a segmented object or target.

 As the assembly objects and targets are novel with respect to existing datasets, a custom dataset
 needed to be generated. For this, 200 images of eight object and target classes were annotated with
 segmentation polygons, as depicted in Figure 4.3.1. The object classes included rocker arms, bolts
 and pushrods, and the target classes included the Diesel engine, small and big pushrod holes, bolt
 holes and rocker arm locations. This data was augmented to include a broad variation in noise and
 lighting conditions, to form the custom dataset of around 280,000 images. The dataset is available
 at Zenodo: https://zenodo.org/records/7669593

 Figure 4.3.1 : Image annotations for objects, including bolts (red), pushrods (grey) and rocker arms (light blue) and
 targets, including Diesel engine (grey), small (yellow) and big (orange) pushrod holes, bolt holes (green) and rocker

 arm locations (dark blue) .

 Results of the detection model are depicted in Figure 4.3.2 and a video can be seen here:
 https://youtu.be/A3uqe8AYh0M

https://zenodo.org/records/7669593
https://youtu.be/A3uqe8AYh0M

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 29

 Figure 4.3.2: Results of visual perception for object and target detection utilizes Detectron2. The images depict
 detection of objects (three classes): bolts (class 5), pushrods (class 6) and rocker arms (class 7), labeled with the

 detected class and their corresponding confidence score.

 4.3 Recognition of targets
 Target recognition was achieved with the same dataset and trained model as in Section 4.2. Results
 of the model for targets can be seen in Figure 4.4.1 and a video can be seen here:

 https://youtu.be/A3uqe8AYh0M .

 Figure 4.4.1: The image depicts detection of targets (five classes): rocker arm location (class 0), bolt holes (class 1),
 big and small pushrod holes (class 2 and 3) and engine (class 4). Each detection is labeled with the detected class and

 their corresponding confidence score.

https://youtu.be/A3uqe8AYh0M

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 30

 4.4 Object grasping

 Figure 4.5.1: Results of the robot grasping tool.

 The grasping of objects utilizes the object detection tool with custom generated datasets, to detect
 object positions and orientation from a camera mounted on the robot end-effector. Besides
 perception, the tool also includes different robot functionalities, such as robot motion planning and
 gripper actions, in the form of a Python library. Developments for this have been made in such a
 way that any of the perception tools can be utilized to execute robot grasping actions. Results of
 one of the grasp detection models can be seen in Figure 4.5.1 and in the video:
 https://youtu.be/-B_5nLEtiec . In addition, other results of the grasping actions can be seen in the
 videos from the other Sections, as the tool was integrated in different use case tasks.

 4.5 Object manipulation

 The manufacturing of Diesel engines involves assembly steps that are hard to automate, such as
 contact placement and manipulation of parts with various degrees of freedom. For example, rocker
 arm placement, push rod insertion and bolt fastening all have different constraints with respect to
 the final manipulation of the part to the engine. Rocker arms can be moved freely in 3D task space
 before placements, push rod insertion requires vertical motion into a pushrod hole and bolt
 fastening requires rotational motion and compliance orthogonal to vertical motion. In addition,
 parts to assemble are complex in shape, metallic and require lubricant for assembly and for
 operation. This means traditional robotic operations for picking and placing are not suitable for
 assembly and manual actions are the standard approach for manufacturing. A promising
 alternative, however, is to utilize the robot as an assistant and assign tasks to it that support the
 assembly procedure and the ergonomy of the human operator. These are easy, but repetitive tasks,
 such as pick and placement, and actions for operator assistance such as hand-overs of parts and
 tools. Where possible, other tools are utilized to provide perception input, i.e., object perception for
 object detection and pose estimation (Section 4.2 and 4.3), person and speech perception for task
 coordination and HRI (Section 4.1, 4.7 and 4.8) and grasping actions (Section 4.4).

https://youtu.be/-B_5nLEtiec

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 31

 Figure 4.6.1: Results of robot-human hand-over and assembly tracking experiments depict the hand-over of a rocker
 arm from robot to human and the human assembly action of the rocker arm, while the robot fetches another rocker

 arm.

 Results for object manipulation can be seen in Figure 4.6.1 and a video of the integrated
 experiments can be seen here: https://youtu.be/3z3yiLdznrY .

 4.6 Task policy generation and sim2real
 A unified software pipeline is facilitated by the EAGERx tool, enabling seamless transition from
 simulation to real-world deployment and supporting rapid prototyping. OpenDR tools, such as
 speech recognition and PARTNR, have been integrated within the engine-agnostic graph structure
 of EAGERx. This integration allows for effortless interchange between various simulators and
 real-world applications. Both the camera (Realsense d435) and manipulator (Franka Emika) are
 encapsulated as abstract objects in EAGERx, with distinct implementations for simulation and
 real-world contexts. Consequently, tools can be initially integrated and validated in a simulated
 environment, thereafter requiring no additional modification for real-world experiments. The
 simulated and real-world version of the use-case are depicted in Figure 4.7.1, while the graph that
 is used in the use-case is depicted in Figure 4.7.2. The task policy is interactively learned using the
 PARTNR tool of OpenDR. See Section 4.10 for more details.

https://youtu.be/3z3yiLdznrY

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 32

 Figure 4.7.1: Transitioning from PyBullet to a physical setup that uses 3D-printed engine components and EAGERx.

 Figure 4.7.2: The agnostic graph, as visualized by the GUI of the EAGERx tool, depicts the unified pipeline that is
 used for both simulated and real world deployment that enables rapid prototyping.

 4.7 Speech recognition

 Speech recognition is utilized to provide different ways for the human to engage and collaborate
 with the robot, ranging from action-target pairs to command robot actions, to short sentences for
 coordinating robot actions and the completion of a shared assembly task, and high-level language
 phrases to command specific robot tasks. The Vosk speech tool is used for all speech recognition
 and in all cases relies on predefined input commands and word phrases. This set of words and
 sentences relate to available actions of the robot and locations in the scene, as well as full
 sentences, as follows.

 < action,target > pairs for commanding robot actions.
 Examples: < give,tool >, < pick,tool >, < come,here >, < kit,bolts >, < place,box >, < take,bolt >

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 33

 https://youtu.be/SzIuLHzLYpA

 Short sentences for coordinating robot actions (see Section 4.6).
 Examples: < Give me that rocker arm >, < Pick up the last rod >, < Go home >, < Place the rod >,
 < Continue >
 https://youtu.be/b_ISrhOlcC8

 High-level commands for commanding to execute the CLIPort model (see Section 4.9).
 Examples: < put rocker arm in red box> , < put all long screws in brown box >, < put all push rods in
 brown box >
 https://youtu.be/hVkqQD9ASm8

 4.8 Multi-modal HRI

 The considered use case to demonstrate multi-modal HRI replicates an industrial assembly task
 that in current situations is done manually by human operators. Our solution proposes to introduce
 a collaborative robot as an assistive tool to the assembly station, under control of the person. This
 means that the assembly work is coordinated by the human, with the robot assisting in tasks that
 the human decides. Available robot actions are to move to certain locations in the workspace, pick
 objects that are detected on the table, place objects in specified locations or hand them over to the
 human. In addition, coordinated actions include the stopping and continuing of robot actions
 during execution (see Figure 4.9.1), for human visual inspection of the objects placed by the robot.
 Human commands can be communicated by hand gestures (see Section 4.1) and/or speech (see
 Section 4.8), with different levels of functionality as described in Table I (see also Figure 4.9.1 and
 4.9.2).

 The single-modal visual and speech perception models are also fused into a multi-modal
 perception model by combining speech commands, pointing gestures and object detection (see
 Figure 4.9.3). Several examples of these co-speech gestures are described in Table 4.9.1. The
 human can refer to individual objects in the scene by speech (e.g., <rod>, <rocker arm>) and
 pointing to them, and apply specific robot actions by speech commands (e.g., picking with <pick>,
 placing with <place>, robot to human hand-over with <give>). Depending on the object, different
 robot actions are possible, as specified beforehand. For example, objects can be picked up from the
 table, placed in specific locations and handed over to the person. Object detection returns a list of
 objects in the scene, which can be verbally referred to by their class. Pointing gesture detection
 allows referring to specific objects in the scene by relating the pointing gesture location to detected
 object locations. Robot actions are therefore commanded by specific action verbs and object
 classes, complemented by gestures to provide fine-grained object references.

 Table 4.9.1: Perception models input and output to achieve single-modal and multi-modal human-robot interaction

 Method Input Output

 Wrist
 detection

 RGB image of the scene (human front-facing)
 Human gesture by moving wrist to certain image location

 Robot stop/continue
 actions

 Speech
 recognitio
 n

 Robot action commands: < pick, place, give, go, stop, pause,
 continue >
 Workspace commands: < rod, home, arm, me >

 Robot motion
 Gripper actions
 Robot to human hand-over

https://youtu.be/SzIuLHzLYpA
https://youtu.be/b_ISrhOlcC8
https://youtu.be/hVkqQD9ASm8

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 34

 Human speech requests: < place rod >, < go home >, < give me
 another rocker arm >, < pick up the last rod >

 Robot stop/continue
 actions

 Object
 detection

 RGB image of the scene (top-down) Detected objects in the
 scene
 Valid target location for
 robot

 Co-speec
 h gestures

 < pick rod > + pointing gesture + object detection
 < give me this rod > + pointing gesture + object detection
 < give me that rocker arm > + pointing gesture + object
 detection

 Robot motion
 Gripper actions
 Robot to human hand-over

 Results of the different human-robot interaction functionalities are depicted in Figures 4.9.1, 4.9.2
 and 4.9.3.

 Figure 4.9.1 : Single command gestures STOP (a) and CONTINUE(b) and speech commands (c).

 Figure 4.9.2: Speech phrase to achieve robot to human hand-over.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 35

 Figure 4.9.3: Co-speech gestures to achieve specified robot actions to objects.

 A video of the integrated experiments can be seen here: https://youtu.be/b_ISrhOlcC8

 In addition, multi-modal HRI for the agile production use case was also investigated with recent
 developments in large language models and, in particular, CLIPort. CLIPort utilizes the combined
 power of visual-language models by Contrastive Language-Image Pre-training (CLIP), with
 millions of image-caption pairs. After pre-training, new captions can be used to describe other raw
 images, paving the way for zero-shot transfer learning of the model to different tasks. The
 architecture has the capability to understand semantic and spatial representations for robotic
 vision-based and language-conditioned manipulation tasks, in an end-to-end network. A large
 variety of tasks are demonstrated, including folding cloth, manipulating unseen objects, all without
 the need to learn objects' poses, structure or instance segmentations. To be relevant for the agile
 production use case, the CLIPort model was expanded with custom collected data (see Table
 4.9.2), including images of relevant scenes and objects, as well as language phrases.

 Demonstrations Demonstrated
 tasks

 Pick-and-place-targets

 Traini
 ng

 Validati
 on

 To
 tal

 Single
 -
 object
 tasks

 Mult
 i-
 objec
 t
 tasks

 Known
 objects

 Unkno
 wn
 objects

 Goal
 s

 Train
 ing
 time
 [h]

 Single
 -
 task
 model

 88 22 11
 0

 60 50 9 bolts
 4 pushrods
 3 rocker
 arms

 6 brow
 n/
 red
 box

 89

 Multi-
 task
 model

 39 8 13
 2

 0 47 2 bolts
 2 pushrods

 0 brow
 n
 box

 26

https://youtu.be/b_ISrhOlcC8

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 36

 Table 4.9.2: Details of the datasets that were added to the CLIPort model. The single-task model only executes one
 task, while the multi-task model executes multiple tasks sequentially, depending on the language input.

 Results of the trained CLIPort model can be seen in Figure 4.9.4, which depicts the input and
 output of the model with certain examples.

 Language phrase: < Put pushrod in brown box > Language phrase: < Put pushrod in red box >
 Figure. 4.9.4: CLIPort takes as input RGB-D images and a language phrase and generates as output picking (green

 dot) and placing (blue dot) locations extracted from the confidence maps.

 Results are also shown in Figure 4.9.5 which depicts snapshots of the executed experiments within
 the agile production scenario. As a general outcome, it was concluded that, while interesting, the
 CLIPort model and its functionalities require extensive data collection and fine-tuning for the
 limited functionalities that it achieves.

 Figure 4.9.5: The original CLIPort model was adapted to include data relevant for the agile production use case. The
 images depict the tested scenarios with respective input speech commands.

 A video of the integrated CLIPort model can be seen here: https://youtu.be/hVkqQD9ASm8

https://youtu.be/hVkqQD9ASm8

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 37

 4.9 Interactive Imitation Learning
 In our use case, a robot must discern the appropriate actions for a pick-and-place task based on
 RGB-D imagery and verbal commands from the operator. Traditional approaches necessitate a
 prolonged offline pre-training period with extensive operator demonstrations before achieving
 satisfactory task execution. To circumvent this, we employ the PARTNR tool from OpenDR, which
 facilitates interactive policy training. PARTNR employs an adaptive, sensitivity-based, gating
 function that decides if additional operator demonstrations are required. User demonstrations are
 aggregated to the dataset and used for subsequent training. In this way, the policy can adapt
 promptly and it can minimize the number of required demonstrations for a well-trained policy. The
 adaptive threshold enables us to achieve the user-acceptable level of ambiguity to execute the
 policy autonomously and in turn, increase the trustworthiness of our system. Initially, the policy’s
 uncertainty prompts frequent operator interventions. However, as the policy becomes more certain
 through additional demonstrations, the robot’s autonomy increases, minimizing disruptions to the
 operator. Fig 4.10.1 illustrates this interactive training loop. Within the context of this use-case,
 Figure 4.10.2 illustrates the PARTNR tool's initial input, prompting a user demonstration, followed
 by an interactive training phase, resulting in the system's autonomous determination of the correct
 pick-and-place actions.

 Figure 4.10.1: PARTNR framework on an example task

 Figure 4.10.2: PARTNR Tool Demonstration for Robotic Pick-and-Place Task. Left: Input image to PARTNR
 depicting initial task setup. Middle: Operator demonstration of the desired action. Right: Automated pick-and-place

 action proposed by PARTNR after interactive training phase. This sequence illustrates the progressive autonomy of the
 robotic system using PARTNR, which reduces the need for extensive pre-training by employing operator

 demonstrations to rapidly refine the policy, thus enhancing trustworthiness and minimizing operator disruptions.

 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases 38

 5 Conclusions

 D7.5 presents the work of integration and experimental validation of the OpenDR toolkit across
 Agriculture, Healthcare, and Agile Production domains in WP7. The evidence presented within
 this document, supported by visual documentation, attests to the efficacy and versatility of the
 OpenDR toolkit.

 As industries continue to embrace automation and robotics, the achievements outlined in this
 report pave the way for a future where intelligent robotic solutions play a central role in enhancing
 efficiency, safety, and overall operational excellence. Integrating OpenDR toolkits into practical
 use cases sets a precedent for the continued evolution of robotics, with far-reaching implications
 for industries seeking to embrace the transformative power of automation.

