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 Executive Summary 
 Deliverable  D7.5  marks  a  significant  achievement  within  the  OpenDR  project,  focusing  on  the 
 successful  integration  and  experimental  validation  of  the  OpenDR  toolkit  across  three  distinct 
 domains:  Agriculture,  Healthcare,  and  Agile  Production.  This  executive  summary  provides  an 
 overview  of  the  integrated  OpenDR  tools  and  the  compelling  evidence,  including  photos,  that 
 illustrate  the  tangible  benefits  derived  from  these  integrations.  The  tools  required  for  all  use 
 cases  have  been  successfully  integrated  in  the  OpenDR  toolkit.  Each  use  case  has  integrated  and 
 evaluated  the  OpenDR  toolkit  based  on  the  use  case  specifications  from  D2.3,  with  the  objective 
 of  evaluating  the  usefulness  and  efficiency  of  the  toolkit.  In  addition  integration  results  and 
 feedback are provided. 
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 1  Introduction 

 OpenDR  aims  at  developing  an  open,  non-proprietary  modular  toolkit  that  can  be  easily  used  by 
 robotics  companies  and  research  institutions  to  efficiently  develop,  evaluate  and  deploy  AI  and 
 cognition  technologies  to  robotics  applications.  As  industries  evolve,  the  demand  for  intelligent 
 and  versatile  robotic  solutions  becomes  increasingly  apparent.  The  OpenDR  toolkit  serves  as  a 
 testament to the project's commitment to addressing these evolving needs. 

 This  deliverable  report  signifies  a  momentous  stride  in  the  successful  integration  and  experimental 
 validation  of  the  OpenDR  toolkit  within  three  distinct  domains:  Agriculture,  Healthcare,  and  Agile 
 Production.  The  introduction  of  the  OpenDR  toolkit  into  these  specific  domains  not  only 
 exemplifies  the  adaptability  of  robotics  but  also  signifies  a  crucial  step  towards  realizing  the 
 practical  applications  of  advanced  technologies  in  real-world  scenarios.  This  introduction  sets  the 
 stage  for  an  exploration  of  the  integrated  tools,  the  rigorous  evaluation  processes  undertaken,  and 
 the tangible benefits observed across the diverse landscapes of these three domains. 

 This  deliverable  (D7.5)  reflects  the  effort  of  the  integration  and  experimental  evaluations  of  the 
 OpenDR  toolkits  to  robot  architectures  for  the  3  specific  use  cases;  Healthcare,  Agriculture  and 
 Agile Production. 

 2  Integration and experimental evaluation for Agricultural 
 Robotics Scenario 

 The  tools  integrated  in  the  agriculture  use  case  have  focused  on  the  agriculture  tasks,  detection  of 
 crop  plants,  increasing  the  safety,  scene  understanding,  plant  row  guidance  system,  realistic 
 simulations  and  simulation  of  path  planning  methods  to  avoid  obstacles  using  ground  robot  and 
 drone.  The  tools  have  been  integrated  on  a  Nvidia  Xavier  or  a  Nvidia  TX2.  All  demonstration  links 
 have been recorded in a field in either real conditions or close to real conditions. 

 2.1  Detection of crop plants in rows in field 
 The integration of the Crop & Weed tool has been integrated in two systems - edge and cloud. 

 The  edge-based  system  acquires,  then  analyzes  the  image  on  the  robot’s  Nvidia  Xavier  GPU.  The 
 metadata  is  sent  to  the  cloud  where  it  is  stored,  waiting  for  retrieval.  Some  images  are  also 
 uploaded so the user and AGI can verify that the tool is working properly. 

 The  cloud-based  system  acquires  the  image  on  the  robot,  sends  the  images  in  a  rosbag  to  the  cloud 
 where  it  is  extracted  and  stored.  The  images  are  automatically  put  in  queue  to  be  analyzed  by  the 
 Crop & Weed tool. After the images are analyzed, the metadata is stored, waiting for retrieval. 

 For  both  systems,  after  the  metadata  is  stored,  the  user  can  view  the  heat  maps  through  the  Robotti 
 portal,  see  Figure  2.1.1.  The  locations  of  where  images  were  acquired  are  overlaid  onto  Google 
 maps,  where  the  user  can  click  and  view  the  images,  allowing  them  to  learn  more  about  their  field. 
 The  images  can  be  enhanced  by  the  tool.  The  heat  maps  allow  the  user  to  spatially  see  the  count  or 
 coverage of a weed or crop. The navigation to the heat maps and UI was improved in winter 2023. 
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 Figure 2.1.1  : Example of the Crop&Weed tool being used by a farmer. 

 The  figure  is  a  screenshot  of  the  Robotti  portal.  The  top  layer  shows  the  image  processed  by  the 
 Crop  &  Weed  tool.  The  layer  under  the  image  shows  a  heat  map  of  the  thistle  count  for  the  chosen 
 field. Part of the demonstration video (first link below). 

 Currently,  the  cloud-based  system  is  available  on  commercial  Robottis  that  have  the  CropEye 
 system  (1-4  downward  facing  cameras  with  Xavier  GPU).  The  cloud-based  system  has  the 
 advantage  that  AGI  receives  more  images  that  can  be  incorporated  into  the  tool  and  AGI  can  easily 
 verify  that  the  tool  is  performing  satisfactorily.  The  disadvantage  is  the  data  requirements  are 
 considerable  and  the  robots  often  work  in  areas  where  the  bandwidth  of  the  mobile  connection  is 
 low.  However,  we  don’t  explicitly  trust  the  tool  and  the  cloud-based  system  allows  us  to  monitor 
 and update the tool centrally. 

 Ultimately,  the  plan  is  for  AGI  to  transition  over  to  offering  the  edge-based  system  to  farmers 
 instead  of  the  cloud-based  system.  The  advantage  of  the  edge-based  system  is  the  data 
 requirements  are  significantly  lower,  reducing  the  running  costs  of  the  robot  (both  mobile  data  use 
 and  AWS  cloud  costs).  The  disadvantage  is  that  there  will  be  fewer  images  collected  to  update  and 
 verify  the  tool’s  performance.  If  there  is  a  problem  (e.g.  cannot  find  maize  because  it  is  stressed 
 and  looks  different  than  the  model’s  dataset),  then  if  only  5  or  10  images  are  recorded  per  ha,  it 
 may not be enough to correct the issue. 

 The  Crop&Weed  tool  (custom  YOLOv5)  has  been  integrated  into  the  OpenDR  platform.  Part  of 
 the  Crop&Weed  tool’s  dataset  has  been  published  and  a  smaller  version  has  been  integrated  into 
 the  OpenDR  platform,  available  for  everyone  to  use.  Because  the  completed  dataset  and  tool  is 
 proprietary,  the  full  model  has  been  kept  confidential.  This  is  a  demonstration  of  the  full 
 Crop&Weed model integrated into OpenDR: 

 https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlk 
 ey=kdhr58aww3v0ar33ad9w8el5h&dl=0 

 Demonstration of the Crop&Weed tool on AgroIntelli infrastructure: 

 Agrointelli  Educational  -  Doing  Virtual  Field  Walk  via  Mobile  Phone  while  Robotti  nurse  berry 
 bushes - YouTube 

 https://youtu.be/TnCB3aTEvCg?si=jg6YnTkNNzAxmIhW 

https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlkey=kdhr58aww3v0ar33ad9w8el5h&dl=0
https://www.dropbox.com/scl/fi/w4wa7btbzzd2nbfwhukc7/Opendr_custom_model_works.mp4?rlkey=kdhr58aww3v0ar33ad9w8el5h&dl=0
https://www.youtube.com/watch?v=6DsvMgCisYo
https://www.youtube.com/watch?v=6DsvMgCisYo
https://youtu.be/TnCB3aTEvCg?si=jg6YnTkNNzAxmIhW
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 2.2  Increase safety through object detection and tracking of 
 humans in the field 

 SSD,  single  shot  detection,  object  detection  tool  and  YOLOv5  object  detection  tool  (humans  and 
 tractors)  have  been  integrated  into  Robotti  using  the  Docker  image.  YOLOv5  (humans  and 
 tractors)  has  been  integrated  into  Robotti’s  infrastructure,  using  Robotti’s  front  and  rear  cameras 
 and Nvidia Jetson GPU. 

 AGI  will  continue  the  integration  and  integrate  the  analyzed  images  into  Robotti’s  remote 
 supervision  page  on  the  Robotti  portal,  so  they  can  be  shown  automatically  to  users  when  viewing 
 the  live  streaming.  In  addition,  the  tools  will  trigger  notifications  to  farmers  and  increase  Robotti’s 
 autonomy  by  reducing  the  number  of  events  requiring  the  user  to  go  to  the  field  to  restart  the  robot. 
 This is expected to be completed by winter 2024. 

 All  integration  issues  with  the  Docker  image  have  been  resolved  with  the  help  of  the  OpenDR 
 consortium. 

 Demonstrations can be viewed here: 

 SSD object detection tool: 
 https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl 
 =0 

 https://www.dropbox.com/s/7uy4pk4b9rw5w3f/Opendr_test_3.mp4?dl=0 

 YOLOv5: 
 https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153 
 _Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0 

 https://www.dropbox.com/s/rmrfzbilysary5u/Opendr_yolov5s_test_1.mp4?dl=0 

 (The  black  ‘loading’  circle  is  because  the  treeline  beside  the  road  reduces  the  bandwidth  of  the 
 mobile signal. The delay is not due to tool performance.) 

 2.2.1 Refining object detection for agriculture-related vehicles 

 To  enhance  safety  via  object  detection  in  agricultural  fields,  we  fine  tuned  a  pre-trained  YOLOv5 
 model  specifically  for  vehicles  that  often  appear  in  agricultural  fields.  To  this  end,  we  considered 
 several  different  options,  as  outlined  below,  including  introducing  a  new  class,  “tractor”',  and 
 subsequently  trained  YOLOv5  on  an  appropriately  constructed  dataset.  This  additional  training 
 aims  to  enable  the  detection  of  tractors,  which  are  vital  in  the  agricultural  domain.  A  detailed 
 analysis of this procedure is provided below. 

 The  used  dataset  was  sourced  from  Kaggle  1  and  comprises  both  truck  and  tractor  images,  along 
 with  their  corresponding  annotations.  Specifically,  it  contains  132  images  of  tractors  and  194 
 images  of  trucks.  For  evaluation,  we  partitioned  the  data  into  approximately  80%  for  training  and 
 20% for testing. 

 1  https://www.kaggle.com/datasets/dataclusterlabs/construction-vehicle-images 

https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl=0
https://www.dropbox.com/s/9cf0yd0yhppwzbf/opendr%20demo%20human%20detection1.mp4?dl=0
https://www.dropbox.com/s/7uy4pk4b9rw5w3f/Opendr_test_3.mp4?dl=0
https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153_Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0
https://www.dropbox.com/scl/fi/w1m0urhabr99sn3d785aw/Screen_Recording_20230223_142153_Chrome.mp4?rlkey=ut7ql5ej9k9fuazfoh5p8jx6p&dl=0
https://www.dropbox.com/s/rmrfzbilysary5u/Opendr_yolov5s_test_1.mp4?dl=0
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 To  enhance  the  performance  of  YOLOv5  for  the  aforementioned  tasks,  we  first  froze  the  backbone 
 model  responsible  for  extracting  high-level  features  that  emphasize  the  most  prominent 
 characteristics  and  patterns  in  the  input  data  and  trained  only  the  head  model,  which  interprets  the 
 feature maps generated by the backbone to make final predictions or decisions. 

 Table 2.2.1  : Training and validation curves for a model exclusively trained on truck images. 

 Model  mAP @ 50 
 in trucks/tractors 

 mAP @ 50 - 95 
 in 

 trucks/tractors 

 mAP @ 50 
 in COCO 

 mAP @ 50 
 - 95 

 in COCO 

 Default  0.342  0.248  0.713  0.475 

 Finetuned (trucks)  0.769  0.582  0.156  0.095 

 Finetuned 
 (trucks+COCO) 

 0.740  0.559  0.398  0.288 

 The  first  option  that  we  evaluated  was  to  train  the  model  exclusively  on  truck  images  that  could 
 appear  in  agricultural  settings,  while  also  treating  tractor  images  as  trucks,  assuming  they  share 
 similar  feature  representations.  This  approach  provides  us  with  260  training  samples  and  66 
 evaluation  samples.  We  train  the  YOLOv5s  model  over  200  epochs,  using  mAP50  and  mAP50-95 
 as  evaluation  metrics.  In  Figure  2.2.1,  we  provide  training  and  validation  curves,  while  in  Table 
 2.2.1  we  report  the  performance  of  the  models.  The  default  model  represents  YOLOv5s  before  any 
 training.  The  aforementioned  finetuning  process  is  abbreviated  as  “Finetuned  (trucks)''  in  Table 
 2.2.1.  Based  on  these  results,  it's  evident  that  the  model  has  significantly  improved  in  detecting 
 trucks  and  tractors.  However,  when  tested  on  the  COCO128  dataset,  our  model  appears  to  struggle 
 with recognizing other classes, a phenomenon commonly known as catastrophic forgetting. 

 Figure 2.2.1  : Training and validation curves for a model exclusively trained on truck images and tested on trucks. 

 To  address  the  issue  of  catastrophic  forgetting  we  choose  to  augment  the  YOLOv5s  with  images 
 that  include  not  only  the  new  domain,  but  also  the  original  one  (as  provided  by  the  COCO  dataset), 
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 in  order  to  mitigate  these  issues  and  provide  potentially  more  robust  models.  To  this  end,  we  also 
 sample  training  images  from  the  COCO  dataset.  The  training/validation  curves  are  shown  in  Figure 
 2.2.2.  The  mAP  is  also  reported  in  Table  2.2.1,  with  the  proposed  method  abbreviated  as 
 ̀ `Finetuned  (trucks+COCO)''.  The  new  model  achieves  almost  the  same  performance  as  the 
 previous  one  in  the  agricultural  domain,  while  performing  better  in  the  original  COCO  domain. 
 Please  note  that  the  aim  of  this  experiment  is  not  to  retain  the  original  COCO  knowledge,  since 
 most  part  of  this  is  probably  irrelevant  to  the  task  at  hand,  but  rather  to  examine  if  we  can  retain 
 part of this knowledge without harming the detection performance for the task at hand. 

 Figure 2.2.2  : Training and validation curves for a model trained-tested both on truck images and COCO images. 

 Finally,  we  also  finetuned  a  model  in  which  tractors  are  added  as  a  new  class.  We  follow  the  same 
 approach  as  before  and  we  also  include  an  equal  number  of  COCO  images  in  the  training  to 
 mitigate  forgetting  issues.  However,  as  shown  in  Figure  2.2.3,  this  approach  works  worse 
 compared  to  the  previous  one.  However,  such  an  approach  might  be  useful  in  cases  where  we  need 
 to  know  the  exact  type  of  detected  vehicle.  In  Figure  2.2.4,  we  provide  some  examples  of  tractors 
 along with the corresponding model predictions. 



 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases  9 

 Figure 2.2.3  : Training and validation curves for a model trained-tested both on truck images and COCO 

 images (a separate tractor class is added). 

 Figure 2.2.4  : Examples of annotation and model predictions for indicative tractor images, 

 as provided by the original dataset. 

 2.3  Scene understanding for agriculture fields 
 For  scene  understanding  of  agriculture  fields,  we  perform  dense  semantic  segmentation  from  the 
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 onboard  cameras  of  the  employed  robot.  Since  a  vast  majority  of  traditional  semantic  segmentation 
 approaches  require  a  large  set  of  precisely  annotated  images,  we  leverage  few-shot  training 
 techniques  to  reduce  the  cost  of  initial  image  labelling.  In  particular,  we  utilize  SPINO,  recently 
 proposed  by  ALU-FR.  At  the  time  of  submission,  this  work  is  still  under  review  at  a  major  robotics 
 conference.  In  the  following,  we  provide  a  brief  introduction  to  SPINO.  Note  that  for  this 
 particular  use  case,  we  only  employed  the  semantic  segmentation  capabilities  without  performing 
 panoptic segmentation. 

 Markus  Käppeler,  Kürsat  Petek,  Niclas  Vödisch,  Wolfram  Burgard,  and  Abhinav  Valada. 
 “Few-Shot  Panoptic  Segmentation  With  Foundation  Models”,  arXiv.  Preprint:  arXiv:2309.10726  , 
 2023. 

 Most  contemporary  panoptic  segmentation  techniques  rely  on  supervised  learning,  necessitating 
 the  availability  of  extensively  annotated  panoptic  maps,  a  process  that  is  both  costly  and 
 time-consuming.  To  address  this  challenge,  an  alternative  approach  relies  on  utilizing 
 pseudo-annotated data for supervised training of larger models. 

 Our  proposed  SPINO  aims  to  produce  highly  accurate  pseudo-labeled  data  for  state-of-the-art 
 panoptic  segmentation  models,  requiring  only  a  limited  quantity  of  actual  annotated  data.  This  is 
 achieved  through  the  application  of  transfer  learning  on  foundational  models,  such  as  DINOv2, 
 which  enables  the  extraction  of  rich  semantic  information  from  any  input  image.  Moreover,  the 
 acquired  semantic  information  can  be  leveraged  to  generate  task-specific  outputs,  such  as  semantic 
 maps  and  boundary  maps,  with  minimal  training  on  top  of  the  pre-trained  foundation  model.  This 
 training strategy significantly mitigates the need for extensive human annotation. 

 Figure 2.3.1  : SPINO architecture. 

 SPINO  applies  the  aforementioned  strategy  to  derive  boundary  and  semantic  maps  from  an  RGB 
 image.  Subsequently,  through  the  process  of  panoptic  fusion,  it  generates  pseudo-label  panoptic 
 outputs.  However,  it  is  essential  to  note  that  rather  than  utilizing  these  pseudo-labeled  data  solely 
 for  prediction,  it  is  advisable  to  employ  them  for  training  a  state-of-the-art  panoptic  segmentation 
 model.  This  approach  is  preferred  due  to  concerns  regarding  the  inefficiency  in  inference  time 
 associated  with  the  direct  use  of  pseudo-labeled  data  as  predictions.  The  visual  overview  of  the 
 method can be seen in Figure 2.3.1.. 

 Below  (Figure  2.3.2),  we  show  qualitative  results  of  the  predictions  by  SPINO  for  scene 



 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases  11 

 understanding of fields. 

 Figure 2.3.2  : Results of SPINO in the agriculture use case analyzing images taken in real farming conditions. 

 2.4  Plant row guidance system 
 The  plant  row  guidance  system  has  been  integrated  into  Robotti’s  infrastructure,  see  Figure  2.4.1.. 
 The  plant  row  guidance  system  acquires  an  image,  analyzes  it  while  finding  the  plant  stem 
 emergence  zones  and  the  crop.  The  crop  row  is  found  by  counting  the  pixels  along  the  x  axis  for  all 
 of  the  plant  stem  emergence  zones  that  are  found  for  the  crop  and  the  pixel  column  that  has  the 
 highest  count  is  the  crop  row.  The  cross  track  error  is  calculated  (see  D4.4  for  calculation  details) 
 and  published  to  the  robot’s  ‘nudge’  topic,  see  figure  2.4.1.  The  nudge  allows  the  robot  to  change 
 position  to  the  left  or  right  of  the  planned  line.  The  robot  is  then  nudged  based  on  the  actual 
 position  of  the  crop  and  then  the  robot  moves  into  the  corrected  position.  The  RTK  GPS  position 
 data  is  sent  and  recorded  to  the  cloud.  A  map  is  created  so  that  the  robot  can  follow  in  sequential 
 operations.  When  turning,  the  robot  uses  the  RTK  GPS,  as  there  are  no  visual  clues  as  to  where  it 
 should drive. The user can use the recorded path in future operations. 

 Figure 2.4.1  : Infrastructure of the row guidance system 

 The demonstration can be viewed here: 
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 open_dr_row_guidance_tmp_3_time_14_13.mp4 

 Explanation  of  the  video:  First  the  Robotti  drives  in  automatic  mode,  then  it  slows  (0:20  -  0:28). 
 This  is  when  the  row  guidance  system  is  being  activated,  the  lights  are  turned  on  at  0:20.  In  the  top 
 left,  the  crop  images  are  shown  when  they  are  being  recorded  (starts  at  0:28).  In  the  top  center,  this 
 is  the  video  from  the  person  recording  the  demonstration.  In  the  top  right,  this  is  the  video  of  the 
 rear  camera,  also  showing  the  person  recording.  Just  below  the  videos,  the  path  and  location  of 
 where  the  robot  drove  is  shown.  In  the  bottom,  the  graph  shows  the  cross  track  error  (XTE)  plus 
 the  vision  estimation  (row  guidance)  of  the  robot,  see  Figure  2.4.3x  (the  orange  line  in  the  graph 
 below  is  the  same  as  the  red  line  in  the  video).  The  moving  dotted  line  shows  where  in  the  time 
 progression  the  video  is  on  the  graph.  The  red  line  in  the  graph  is  the  nudge  calculated  from  the 
 row  guidance  system.  The  blue  line  is  robot  cross  track  error  plus  the  row  guidance  estimation  of 
 the cross track error. 

 Figure 2.4.3:  The blue line shows the robot cross track error plus the vision estimation (row guidance). The orange line 
 shows the vision estimation (row guidance), also called the nudg  e. 

 2.5  Development efficiency by getting more realistic 
 simulations 

 The  simulation  has  been  used  to  evaluate  safety  events.  The  simulation  models  were  refined  to 
 provide  more  realistic  results.  In  particular,  the  Robotti  model  and  embedded  sensors  were 
 improved,  based  on  their  corresponding  datasheets.  The  Robotti  camera,  Robotti  module  and 
 Robotti  module  wheels  were  implemented  as  separate  PROTO  files  in  Webots.  In  addition,  an 
 agricultural  warehouse  PROTO  model  was  implemented  to  allow  for  more  realistic  scenarios.  We 
 also  reused  a  number  of  farm  environment  PROTO  files  developed  previously,  such  as  Tractor, 
 Silo,  Ditch,  Barn,  various  farm  animals,  etc.  Finally,  a  special  simulation  world  file  was  designed 
 and  implemented  with  a  realistic  scenario  where  a  Robotti  robot  is  detecting  humans  in  a  field 
 environment. 

 The demonstration can be viewed here: 

 https://webots.cloud/AcNlzA6 

https://agrointellicom-my.sharepoint.com/:v:/g/personal/nhk_agrointelli_com/ETK8vAEkewxFjpLqlSw9c-YBjGvGtqJUXD8OH24maxTqDQ?e=A6SQxZ&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZyIsInJlZmVycmFsQXBwUGxhdGZvcm0iOiJXZWIiLCJyZWZlcnJhbE1vZGUiOiJ2aWV3In19
https://webots.cloud/AcNlzA6
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 2.6  Simulation of path planning methods to avoid obstacles 
 using ground robot and drone 

 In  addition  to  the  previously  reported  showcase  of  end-to-end  planning  UAV  guiding  agricultural 
 UGV,  an  autonomous  dataset  generation  approach  for  an  agricultural  environment  is  simulated  in 
 the  Webots  simulator.  The  simulated  agricultural  environment  includes  two  active  vehicles.  The 
 first  is  an  unmanned  ground  vehicle  (UGV)  called  Robotti,  and  the  second  one  is  an  unmanned 
 aerial  vehicle  (UAV)  called  Mavicpro.  The  dataset  generation  tool  and  a  sample  collected  dataset 
 are integrated with the toolkit. 
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 3  Integration and experimental evaluation for Healthcare 
 Robotics Scenario 

 The  general  setup  for  experiments  in  the  healthcare  scenario  includes  one  TIAGo  robot  that  is 
 equipped  with  a  RGBD  for  visual  perception  and  a  microphone  for  speech  recognition. 
 Computation  is  performed  on  different  platform  to  run  all  the  nodes  at  the  same  time:  Jetson  NX, 
 Linux  laptop  (NVIDIA  GeForce  GTX  1650  +  2  *  8GB  DDR4  RAM  3200  MHz),  PC  (NVIDIA 
 GeForce  RTX  3080  Ti  +  4  *  8  GB  DDR4  RAM  2400  MHz)  and  all  robot  (TIAGo  robot) 
 communication and control utilizes ROS and PAL software. 

 The  updated  scenario  is  provided  below  to  highlight  the  different  tools  used  in  the  healthcare 
 use-case: 

 3.1  (Task 1) Person finding 
 The  integration  of  face  detection  and  face  recognition  tools  is  integrated  at  different  levels  of  the 
 scenario. 

 Figure 3.1.1.  Detection and recognition of a person 
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 Upon  initiating  interaction,  the  robot  recognises  the  person  as  in  Figure  3.1.1  (if  the  person  is  not 
 found  in  the  database  the  robot  will  ask  for  the  patient’s  name  in  order  to  add  to  the  database 
 Figure  3.1.2  )  for  subsequent  use  within  the  use  case.  For  instance,  upon  reaching  the  doctor,  the 
 robot  states  the  patient's  name  to  facilitate  the  doctor's  awareness  of  the  prescribed  medicine. 
 Additionally, upon entering the doctor's office, the robot endeavors to identify the doctor. 

 Figure 3.1.2.  Adding a new person to the database using speech recognition and PAL chatbot 

 Utilizing  PAL's  sophisticated  autonomous  navigation  system,  TIAGo  navigates  to  various  points  of 
 interest  (poi1,  poi2,  poi3)  and  surveys  the  environment  (Figure  3.1.3);  the  different  blue  arrows  are 
 the  points  of  interest  that  can  easily  be  moved  (poi1,  poi2,  poi3,  patient_poi,  doctor_poi)  and  the 
 orange  arrow  is  the  localization  of  the  TIAGo  robot  on  the  map.  Upon  receiving  a  patient's  request, 
 the system records the location of the patient, poi on the map for the doctor's reference. 

 Figure 3.1.3.  Updated map with the localization of the patient on the map (most bottom arrow) 

 Furthermore,  in  order  to  better  recognize  persons  whose  appearance  may  vary  due  to 



 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases  16 

 environmental  conditions,  e.g.  lightning  conditions,  or  changes  that  occur  to  facial  features  through 
 time,  an  active  approach  on  top  of  the  existing  face  recognition  module  is  implemented  in 
 OpenDR.  Based  on  the  approach,  the  facial  features  extracted  by  a  backbone  deep  neural  network 
 that  exists  in  the  known-persons  database  are  gradually  and  dynamically  updated  with  new  facial 
 information.  When  the  system  correctly  recognizes  a  person,  but  with  low  confidence,  facial 
 features  are  saved  in  a  buffer,  which  then  updates  the  facial  information  of  that  person  in  the 
 database,  making  the  system  more  confident  in  recognizing  this  person  in  future  occurrences.  This 
 method  proved  to  be  more  robust  and  more  accurate  in  identifying  persons  in  different 
 environmental  conditions  and  through  changes  that  occur  in  facial  features  through  time. 
 Additionally,  when  the  algorithm  fails  to  recognize  a  person,  a  module  to  add  this  person  to  the 
 database  was  developed.  In  the  Healthcare  use  case,  the  Tiago  Robot  asks  for  the  person  not 
 recognized to state its name, and the corresponding entry in the database is created. 

 3.2  (Task 2) Manipulating and delivering an object 
 For  this  task  PAL  integrated  OpenDR  inside  the  advanced  grasping  pipeline  packages  created  for 
 the TIAGo robot. 

 The  Advanced  Grasping  (AG)  (Figure  3.2.1)  software  package  provides  a  framework  to  use  the 
 mobile  manipulation  capabilities  of  TIAGo  and  TIAGo++.  It  can  be  used  with  the  PAL  gripper,  the 
 Robotiq  2f-85  and  the  Robotiq  2f-140.  The  package  combines  behaviour  trees  and  MoveIt!  to 
 allow  the  robot  to  perform  complex  grasping  tasks  in  a  broad  range  of  environments.  Furthermore, 
 the  behaviour  tree  structure  provides  an  infrastructure  to  adapt  to  the  needs  of  the  application 
 easily. 

 Figure 3.2.1  : TIAGo grasping an object using the Advanced Grasping package 

 The  internal  architecture  of  the  AG  package  is  based  on  the  server-client  structure,  in  other  words, 
 a  client  sends  a  goal  with  specific  features  to  the  server  and  it  performs  the  action  without  blocking 
 the  normal  behaviour  of  the  robot.  Once  the  server  finishes  its  task,  it  returns  the  result  to  the 
 client. These servers are implemented using ROS Actions. The three available servers are: 

 -  Perception server. 



 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases  17 

 -  Grasp server. 
 -  Place server. 

 The  perception  server  was  adapted  to  the  OpenDR  Yolov5  object  detector.  It  is  now  taking  the 
 bounding  box  message  provided  by  the  OpenDR  tool  and  filtering  the  point  cloud  provided  by  the 
 RGBD  camera  to  output  a  3D  bounding  box  (cylindrical  or  rectangular)  that  fits  the  detected 
 object, as shown in Figure 3.2.2. 

 Figure 3.2.2  : rviz detection of 3 objects + octomap 

 The  Advanced  Grasping  detection  outputs  an  ordered  list  detailing  the  object  positions. 
 Subsequently,  the  robot  observes  the  doctor,  who  indicates  the  preferred  bottle  for  grasping.  The 
 selection  is  determined  based  on  the  right  wrist  position  as  shown  in  Figure  3.2.3,  with 
 initialization  involving  pointing  first  to  the  left  bottle  and  then  to  the  right  bottle  before  making  the 
 final choice of the bottle to be grasped. 

 Figure 3.2.3  : skeleton detection: pointing at bottle 
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 A  new  dataset  was  created  to  focus  on  the  detection  of  medicine  cups.  25  images  were  taken  and 
 annotated.  This  dataset  was  extended  by  modifying  the  brightness  of  the  image  in  order  to  adapt  to 
 different  lighting  conditions.  It  was  then  trained  to  perform  the  detection  of  the  medicine  cup  as 
 seen below in Figure 3.2.3. 

 Figure 3.2.3  : Yolov5 detection of medicine cups. 
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 3.3  (Task 3) Detection of fallen persons 
 This  task  is  focused  on  adapting  the  fallen  person  tool  that  is  known  to  have  false  detection  of 
 sitting persons. 

 Until  now  the  detection  of  a  fallen  person  is  done  by  taking  the  2d  detection  of  every  person  in  the 
 field  of  view  and  outputting  a  3d  pose  of  the  mean  of  the  point  cloud  included  in  this  bounding  box 
 as  shown  in  Figure  3.3.1.  A  threshold  is  then  set  to  differentiate  standing  persons  from  fallen 
 persons. 

 Figure 3.3.1  :: Person detection + pointcloud 

 This  operation  requires  computing  power  and  can  be  costly  if  several  persons  are  detected  in  the 
 frame. 

 The  package  was  adapted  to  take  the  output  of  the  fallen  person  OpenDR  tool  instead  of  every 
 person  detected  in  the  frame,  Figure  3.3.2  highlights  this  change,  if  a  person  had  been  detected 
 standing  next  to  the  person  it  would  not  have  been  processed  since  it  would  not  have  been  detected 
 as fallen. 
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 Figure 3.3.2  Fallen person detection + pointcloud +red dot of the mean of the point cloud where the person has been 
 detected 

 3.4  (Task 4) Emotional reactions 
 The  emotional  state  of  the  person  is  recognized  at  the  end  of  the  interaction  to  understand  the 
 appreciation of the medicine delivery to the patient. 

 If the patient is happy the robot is saying a joyful phrase: “I am glad that your day is going great.” 

 If  the  person  is  sad  as  in  Figure  3.4.1,  the  robot  says:  “I  can  play  some  music  to  cheer  you  up!  If 
 you  want  me  to  stop  you  can  do  a  silent  sign.”  And  plays  a  piece  of  cheerful  music  until  the  person 
 performs a “silence” sign 

 If the person looks surprised: “Sorry to have frightened you.” 

 If the person is angry: “Please don't be angry. Everything will be fine!" 

 Figure 3.4.1  : Emotion detection from TIAGo camera 

 3.5  (Task 5) Multi-modal human-robot interaction (HRI) 
 The main focus of this task was to integrate different tools and modalities to interact with the robot. 

 Before  the  pipeline  is  triggered  the  robot  needs  to  understand  with  confidence  that  a  patient  wants 
 to  interact.  For  this  purpose,  the  natural  speech  recognizer  is  combined  with  the  wave  detector 
 (Figure  3.5.1)  or  the  gesture  recognizer  (Figure  3.5.2).  A  specific  keyword  is  used  to  trigger  the 
 process  and  then  the  robot  looks  at  the  person,  if  a  wave  or  a  “stop”  sign  is  detected  the  chatbot 
 will  be  triggered  and  the  use  case  can  proceed,  otherwise  the  robot  will  continue  roaming  the 
 environment. 
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 Figure 3.5.1:  Person waving at robot 

 Figure 3.5.2 :  Person with hand gesture recognition to stop robot 

 Once  the  interaction  has  been  successfully  detected  the  chatbot  is  activated.  The  natural  speech 
 tool  was  integrated  with  the  PAL  chatbot  (the  architecture  can  be  found  in  Figure  3.5.3).  The  left 
 part  of  Figure  3.5.3  shows  from  the  top  left  to  bottom  left  the  process  of  the  chatbot,  first,  the 
 reSpeaker  microphone  adapts  environment  sounds  to  a  ROS  message  that  is  used  by  the  OpenDR 
 natural  speech  recognizer.  Then  the  OpenDR  tool  outputs  a  standard  ROS4HRI  message 
 hri_msgs/LiveSpeech,  this  allows  the  tool  to  be  easily  integrated  with  pipelines  that  use  the 
 ROS4HRI  architecture  as  a  standard.  Then  the  recognized  text  is  provided  first  to  the 
 soft_wakeup_word  package  to  trigger  the  chatbot.  Finally,  once  the  chatbot  has  been  triggered  it 
 takes  the  phrases  and  processes  them  with  RASA  to  output  a  specific  intent  that  can  contain 
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 specific  information  about  the  phrase.  RASA  is  a  framework  that  is  open  source  and  designed  for 
 constructing  applications  that  operate  through  text  and  voice.  It  employs  a  modular  collection  of 
 fundamentals  for  tasks  such  as  natural  language  understanding  and  dialogue  management.  This 
 approach  enables  the  creation  and  expansion  of  advanced  conversational  AI  solutions.  In  parallel  it 
 is  sending  a  response  to  the  text-to-speech  of  the  TIAGo  robot  to  be  able  to  communicate  with  the 
 user. This integration is able to recognize the intent of the person and reply in a seamless manner. 

 Figure 3.5.3  : Speech pipeline with OpenDR tool 

 The  RASA  rules  are  set  by  different  packages  that  will  be  explained  more  in  depth  below,  the 
 structure  of  those  packages  is  shown  on  the  right  of  Figure  3.5.3  where  pal_default_chatbot 
 provides  the  chitchat  protocol  to  be  able  to  handle  simple  everyday  phrases  like  what  time  is  it?  or 
 How  are  you  doing  ?  and  other  parts  customized  to  fit  OpenDR  needs.  It  is  then  used  to  reply  with 
 a  specific  phrase  or  can  trigger  an  application  inside  the  application  controller  developed  for  the 
 OpenDR healthcare use case. This approach is modular and can be adapted to different use cases. 

 The different intents that can be recognized are listed below: 

 intents  : 

 -  chitchat 

 -  get_weather 

 -  nlu_fallback 



 D7.5: Integration and experimental demonstration of the OpenDR toolkit in the specific use cases  23 

 -  greet 

 -  goodbye 

 -  get_time 

 -  out_of_scope 

 -  ask_doctor 

 -  stop 

 -  thanks_medicine 
 The greet intent is, for example, outputting one of those phrases that are then pronounced by the 
 robot using text to speech Acapela application: 

 utter_greet: 

 -  text  :  Hi! What can I do for you ? 

 -  text  :  Hello, what can I do for you ? 
 The ask_doctor can be triggered by any phrase that is listed below and an extension of those thanks 
 to RASA: 

 -  intent  :  ask_doctor 

 examples  :  | 

 - Call a [doctor](symptoms) for me please. 

 - I'm [not feeling well](symptoms), can I get some medicine? 

 - Could I speak with a [healthcare](symptoms) professional? 

 - I'm [sick](symptoms) and need medicine. 

 - I'm [feeling sick](symptoms) and need medicine. 

 - I'm [not feeling good](symptoms). Can I see a doctor? 

 - I think I have a [cold](symptoms) 

 - I'm feeling [nauseous](symptoms) 

 - I've got a [cough](symptoms). Is there a medicine that could help? 

 - I have a [stomachache](symptoms) 

 - I have an [headache](symptoms) 

 - I think I have [fever](symptoms)? 
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 - Is there a medicine I can take for my [insomnia](symptoms)? 

 -  synonym  :  feeling sick 

 examples  :  | 

 - not feeling good 

 - not feeling well 

 - healthcare 

 - sick 

 - doctor 

 -  synonym  :  having a cold 

 examples  :  | 

 - cold 

 -  synonym  :  having a cough 

 examples  :  | 

 - cough 

 -  synonym  :  having a stomachache 

 examples  :  | 

 - stomachache 

 -  synonym  :  having an headache 

 examples  :  | 

 - headache 

 -  synonym  :  having a fever 

 examples  :  | 

 - fever 

 -  synonym  :  having insomnia 

 examples  :  | 

 - insomnia 
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 It is also handling symptoms, for example, if the person says: 

 I have a stomachache and need medicine. 

 Synonyms can also be provided in order to understand the same symptoms with different ways of 
 specifying them. 
 The robot will extract one of the possible symptoms listed above, here it will be the stomachache 
 then the code will return “having a stomachache” for the robot to include it in the phrase to say to 
 the doctor. 

 The ask_doctor triggers the task to navigate to the doctor's office and save the position on the map, 
 the name and the symptom of the patient. 

 In different parts of the use case, hand gesture recognition is also used to confirm or stop actions of 
 the robot: 

 -  To release the object after handing it to the patient to be sure to not make it fall (Figure 
 3.5.4) 

 Figure 3.5.4  :  Thumbs up gesture to release object 

 -  to stop the music after helping the patient and resume the roaming activity (Figure 3.5.5) 

 Figure 3.5.5  :  Mute gesture to stop music and resume roaming 
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 4  Integration and experimental evaluation for Agile Produc- 
 tion Robotics Scenario 

 The  general  setup  for  experiments  in  the  agile  production  scenario  is  depicted  in  Figure  4.1.1  and 
 includes  two  cameras  (Intel  Realsense  D435)  for  visual  perception  (one  front-facing  and  one  on  the 
 robot  end-effector)  and  a  microphone  for  speech  recognition.  Computation  is  performed  on  a 
 standard  Desktop  PC  running  Ubuntu  Linux  with  Nvidia  GTX  1080  Ti  GPU,  and  all  robot  (Franka 
 Emika) communication and control utilizes ROS. 

 Figure 4.1.1:  General setup for the agile production scenario includes a collaborative robot, Diesel engine and its 
 different parts to be assembled and the human operator. Sensors included are one camera on the end-effector and one 

 front-facing towards the person. 

 4.1  Human detection and tracking 

 Detection  of  a  human  in  the  agile  production  scene  is  done  with  OpenPose  tool,  a  real-time 
 multi-person  human  pose  detector.  For  a  successfully  detected  human  pose,  the  method  returns  a 
 list  of  18  2D  image  key  points  of  the  human  skeleton  with  associated  key  point  abbreviations.  The 
 method  in  this  work  utilizes  the  pre-trained  MobileNet  model,  which  was  trained  and  evaluated 
 with  the  COCO  2017  dataset  under  default  training  parameters.  Examples  of  human  detections  can 
 be seen in Figure 4.2.1. 
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 Figure 4.2.1:  Human skeleton detection skeleton-based tracker Lightweight OpenPose. Recognized action is ’cross 
 hands in front, with its corresponding confidence score. 

 Recognition  of  human  actions  is  done  with  a  real-time  skeleton-based  human  action  recognition 
 tool  (ST-GCN),  as  it  utilizes  the  lightweight  OpenPose  model.  The  method  takes  the  location  of  the 
 human  joints  in  every  image,  and  generates  a  sequence  of  detected  human  skeleton  graphs, 
 connected  both  spatially  and  temporally.  Depending  on  the  dataset  the  method  can  detect  a  large 
 number  of  different  human  actions,  ranging  from  daily  activities  to  complex  actions  with 
 interactions.  For  the  use  case,  the  smallest  training  dataset  is  selected  (NTU-RGB+D),  as  it 
 contains  the  most  relevant  human  action  classes  (60  classes).  Two  examples  of  human  actions 
 recognized are depicted in Figure 4.2.1, with their corresponding confidence scores. 

 As  additional  functionality  for  human-robot  interaction,  the  recognition  of  wrist  gestures  was 
 extracted  from  the  skeleton  detection  tool.  Wrist  detection  takes  the  wrist  node  of  a  detected 
 skeleton  and,  when  presented  in  a  certain  image  area,  can  serve  as  trigger  for  robot  actions  (e.g., 
 stop,  continue)  or  refer  to  certain  objects  in  the  scene.  Figure  4.2.2  depicts  the  detection  of  the 
 wrist in specific image areas. 

 Figure 4.2.2:  Wrist detections are obtained with the skeleton-based tracker Lightweight OpenPose, from the detected 
 wrist nodes. 

 Integrated  experiments  of  the  human  detection  functionalities  can  be  seen  in  Figure  4.2.3  and  the 
 following  video:  https://youtu.be/b_ISrhOlcC8  .  This  describes  the  collaborative  scenario  with  a 
 human  and  a  robot  sharing  the  task  of  assembling  different  parts  of  the  Diesel  engine  to  the  engine 

https://youtu.be/b_ISrhOlcC8
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 block.  The  specific  scenario  is  described  as  well  in  the  following  sections,  as  other  tools  were 
 required for integrated experiments. 

 Figure 4.2.3  : Results of human-robot collaboration experiments. Both images depict human task coordination by 
 visual detection of 

 the left wrist (handLeft), for halting the robot and performing manual assembly actions, followed by right wrist 
 detection 

 (handRight) for resuming robot actions. 

 4.2  Object detection and pose estimation 

 Object  detection  and  pose  estimation  serve  to  detect  objects  in  the  Diesel  engine  assembly  scenario 
 and  utilize  the  information  for  further  robot  actions,  such  as  grasping,  pick  and  placement  and 
 robot  to  human  hand-overs.  Mask  R-CNN  from  Detectron2  was  selected  for  object  and  target 
 detection  in  the  scene,  as  performance  was  preferred  over  inference  time.  Mask  R-CNN  combines 
 a  Region  Proposal  Network  (RPN)  with  the  CNN  model,  to  simultaneously  predict  object  bounds 
 and  objectness  scores  at  each  position.  After  detection,  orientations  are  estimated  in  each  bounding 
 box by the second order moment from a segmented object or target. 

 As  the  assembly  objects  and  targets  are  novel  with  respect  to  existing  datasets,  a  custom  dataset 
 needed  to  be  generated.  For  this,  200  images  of  eight  object  and  target  classes  were  annotated  with 
 segmentation  polygons,  as  depicted  in  Figure  4.3.1.  The  object  classes  included  rocker  arms,  bolts 
 and  pushrods,  and  the  target  classes  included  the  Diesel  engine,  small  and  big  pushrod  holes,  bolt 
 holes  and  rocker  arm  locations.  This  data  was  augmented  to  include  a  broad  variation  in  noise  and 
 lighting  conditions,  to  form  the  custom  dataset  of  around  280,000  images.  The  dataset  is  available 
 at Zenodo:  https://zenodo.org/records/7669593 

 Figure 4.3.1 :  Image annotations for objects, including bolts (red), pushrods (grey) and rocker arms (light blue) and 
 targets, including Diesel engine (grey), small (yellow) and big (orange) pushrod holes, bolt holes (green) and rocker 

 arm locations (dark blue)  . 

 Results  of  the  detection  model  are  depicted  in  Figure  4.3.2  and  a  video  can  be  seen  here: 
 https://youtu.be/A3uqe8AYh0M 

https://zenodo.org/records/7669593
https://youtu.be/A3uqe8AYh0M
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 Figure 4.3.2:  Results of visual perception for object and target detection utilizes Detectron2. The images depict 
 detection of objects (three classes): bolts (class 5), pushrods (class 6) and rocker arms (class 7), labeled with the 

 detected class and their corresponding confidence score. 

 4.3  Recognition of targets 
 Target  recognition  was  achieved  with  the  same  dataset  and  trained  model  as  in  Section  4.2.  Results 
 of the model for targets can be seen in Figure 4.4.1 and a video can be seen here: 

 https://youtu.be/A3uqe8AYh0M  . 

 Figure 4.4.1:  The image depicts detection of targets (five classes): rocker arm location (class 0), bolt holes (class 1), 
 big and small pushrod holes (class 2 and 3) and engine (class 4). Each detection is labeled with the detected class and 

 their corresponding confidence score. 

https://youtu.be/A3uqe8AYh0M
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 4.4  Object grasping 

 Figure 4.5.1:  Results of the robot grasping tool. 

 The  grasping  of  objects  utilizes  the  object  detection  tool  with  custom  generated  datasets,  to  detect 
 object  positions  and  orientation  from  a  camera  mounted  on  the  robot  end-effector.  Besides 
 perception,  the  tool  also  includes  different  robot  functionalities,  such  as  robot  motion  planning  and 
 gripper  actions,  in  the  form  of  a  Python  library.  Developments  for  this  have  been  made  in  such  a 
 way  that  any  of  the  perception  tools  can  be  utilized  to  execute  robot  grasping  actions.  Results  of 
 one  of  the  grasp  detection  models  can  be  seen  in  Figure  4.5.1  and  in  the  video: 
 https://youtu.be/-B_5nLEtiec  .  In  addition,  other  results  of  the  grasping  actions  can  be  seen  in  the 
 videos from the other Sections, as the tool was integrated in different use case tasks. 

 4.5  Object manipulation 

 The  manufacturing  of  Diesel  engines  involves  assembly  steps  that  are  hard  to  automate,  such  as 
 contact  placement  and  manipulation  of  parts  with  various  degrees  of  freedom.  For  example,  rocker 
 arm  placement,  push  rod  insertion  and  bolt  fastening  all  have  different  constraints  with  respect  to 
 the  final  manipulation  of  the  part  to  the  engine.  Rocker  arms  can  be  moved  freely  in  3D  task  space 
 before  placements,  push  rod  insertion  requires  vertical  motion  into  a  pushrod  hole  and  bolt 
 fastening  requires  rotational  motion  and  compliance  orthogonal  to  vertical  motion.  In  addition, 
 parts  to  assemble  are  complex  in  shape,  metallic  and  require  lubricant  for  assembly  and  for 
 operation.  This  means  traditional  robotic  operations  for  picking  and  placing  are  not  suitable  for 
 assembly  and  manual  actions  are  the  standard  approach  for  manufacturing.  A  promising 
 alternative,  however,  is  to  utilize  the  robot  as  an  assistant  and  assign  tasks  to  it  that  support  the 
 assembly  procedure  and  the  ergonomy  of  the  human  operator.  These  are  easy,  but  repetitive  tasks, 
 such  as  pick  and  placement,  and  actions  for  operator  assistance  such  as  hand-overs  of  parts  and 
 tools.  Where  possible,  other  tools  are  utilized  to  provide  perception  input,  i.e.,  object  perception  for 
 object  detection  and  pose  estimation  (Section  4.2  and  4.3),  person  and  speech  perception  for  task 
 coordination and HRI (Section 4.1, 4.7 and 4.8) and grasping actions (Section 4.4). 

https://youtu.be/-B_5nLEtiec
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 Figure 4.6.1:  Results of robot-human hand-over and assembly tracking experiments depict the hand-over of a rocker 
 arm from robot to human and the human assembly action of the rocker arm, while the robot fetches another rocker 

 arm. 

 Results for object manipulation can be seen in Figure 4.6.1 and a video of the integrated 
 experiments can be seen here:  https://youtu.be/3z3yiLdznrY  . 

 4.6  Task policy generation and sim2real 
 A  unified  software  pipeline  is  facilitated  by  the  EAGERx  tool,  enabling  seamless  transition  from 
 simulation  to  real-world  deployment  and  supporting  rapid  prototyping.  OpenDR  tools,  such  as 
 speech  recognition  and  PARTNR,  have  been  integrated  within  the  engine-agnostic  graph  structure 
 of  EAGERx.  This  integration  allows  for  effortless  interchange  between  various  simulators  and 
 real-world  applications.  Both  the  camera  (Realsense  d435)  and  manipulator  (Franka  Emika)  are 
 encapsulated  as  abstract  objects  in  EAGERx,  with  distinct  implementations  for  simulation  and 
 real-world  contexts.  Consequently,  tools  can  be  initially  integrated  and  validated  in  a  simulated 
 environment,  thereafter  requiring  no  additional  modification  for  real-world  experiments.  The 
 simulated  and  real-world  version  of  the  use-case  are  depicted  in  Figure  4.7.1,  while  the  graph  that 
 is  used  in  the  use-case  is  depicted  in  Figure  4.7.2.  The  task  policy  is  interactively  learned  using  the 
 PARTNR tool of OpenDR. See Section 4.10 for more details. 

https://youtu.be/3z3yiLdznrY
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 Figure 4.7.1:  Transitioning from PyBullet to a physical setup that uses 3D-printed engine components and EAGERx. 

 Figure 4.7.2:  The agnostic graph, as visualized by the GUI of the EAGERx tool, depicts the unified pipeline that is 
 used for both simulated and real world deployment that enables rapid prototyping. 

 4.7  Speech recognition 

 Speech  recognition  is  utilized  to  provide  different  ways  for  the  human  to  engage  and  collaborate 
 with  the  robot,  ranging  from  action-target  pairs  to  command  robot  actions,  to  short  sentences  for 
 coordinating  robot  actions  and  the  completion  of  a  shared  assembly  task,  and  high-level  language 
 phrases  to  command  specific  robot  tasks.  The  Vosk  speech  tool  is  used  for  all  speech  recognition 
 and  in  all  cases  relies  on  predefined  input  commands  and  word  phrases.  This  set  of  words  and 
 sentences  relate  to  available  actions  of  the  robot  and  locations  in  the  scene,  as  well  as  full 
 sentences, as follows. 

 <  action,target  > pairs for commanding robot actions. 
 Examples: <  give,tool  >, <  pick,tool  >, <  come,here  >, <  kit,bolts  >, <  place,box  >, <  take,bolt  > 
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 https://youtu.be/SzIuLHzLYpA 

 Short sentences for coordinating robot actions (see Section 4.6). 
 Examples: <  Give me that rocker arm  >, <  Pick up the last rod  >, <  Go home  >, <  Place the rod  >, 
 <  Continue  > 
 https://youtu.be/b_ISrhOlcC8 

 High-level commands for commanding to execute the CLIPort model (see Section 4.9). 
 Examples: <  put rocker arm in red box>  , <  put all long screws in brown box  >, <  put all push rods in 
 brown box  > 
 https://youtu.be/hVkqQD9ASm8 

 4.8  Multi-modal HRI 

 The  considered  use  case  to  demonstrate  multi-modal  HRI  replicates  an  industrial  assembly  task 
 that  in  current  situations  is  done  manually  by  human  operators.  Our  solution  proposes  to  introduce 
 a  collaborative  robot  as  an  assistive  tool  to  the  assembly  station,  under  control  of  the  person.  This 
 means  that  the  assembly  work  is  coordinated  by  the  human,  with  the  robot  assisting  in  tasks  that 
 the  human  decides.  Available  robot  actions  are  to  move  to  certain  locations  in  the  workspace,  pick 
 objects  that  are  detected  on  the  table,  place  objects  in  specified  locations  or  hand  them  over  to  the 
 human.  In  addition,  coordinated  actions  include  the  stopping  and  continuing  of  robot  actions 
 during  execution  (see  Figure  4.9.1),  for  human  visual  inspection  of  the  objects  placed  by  the  robot. 
 Human  commands  can  be  communicated  by  hand  gestures  (see  Section  4.1)  and/or  speech  (see 
 Section  4.8),  with  different  levels  of  functionality  as  described  in  Table  I  (see  also  Figure  4.9.1  and 
 4.9.2). 

 The  single-modal  visual  and  speech  perception  models  are  also  fused  into  a  multi-modal 
 perception  model  by  combining  speech  commands,  pointing  gestures  and  object  detection  (see 
 Figure  4.9.3).  Several  examples  of  these  co-speech  gestures  are  described  in  Table  4.9.1.  The 
 human  can  refer  to  individual  objects  in  the  scene  by  speech  (e.g.,  <rod>,  <rocker  arm>)  and 
 pointing  to  them,  and  apply  specific  robot  actions  by  speech  commands  (e.g.,  picking  with  <pick>, 
 placing  with  <place>,  robot  to  human  hand-over  with  <give>).  Depending  on  the  object,  different 
 robot  actions  are  possible,  as  specified  beforehand.  For  example,  objects  can  be  picked  up  from  the 
 table,  placed  in  specific  locations  and  handed  over  to  the  person.  Object  detection  returns  a  list  of 
 objects  in  the  scene,  which  can  be  verbally  referred  to  by  their  class.  Pointing  gesture  detection 
 allows  referring  to  specific  objects  in  the  scene  by  relating  the  pointing  gesture  location  to  detected 
 object  locations.  Robot  actions  are  therefore  commanded  by  specific  action  verbs  and  object 
 classes, complemented by gestures to provide fine-grained object references. 

 Table 4.9.1:  Perception models input and output to achieve single-modal and multi-modal human-robot interaction 

 Method  Input  Output 

 Wrist 
 detection 

 RGB image of the scene (human front-facing) 
 Human gesture by moving wrist to certain image location 

 Robot stop/continue 
 actions 

 Speech 
 recognitio 
 n 

 Robot action commands: <  pick, place, give, go, stop, pause, 
 continue  > 
 Workspace commands: <  rod, home, arm, me  > 

 Robot motion 
 Gripper actions 
 Robot to human hand-over 

https://youtu.be/SzIuLHzLYpA
https://youtu.be/b_ISrhOlcC8
https://youtu.be/hVkqQD9ASm8
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 Human speech requests: <  place rod  >, <  go home  >, <  give me 
 another rocker arm  >, <  pick up the last rod  > 

 Robot stop/continue 
 actions 

 Object 
 detection 

 RGB image of the scene (top-down)  Detected objects in the 
 scene 
 Valid target location for 
 robot 

 Co-speec 
 h gestures 

 <  pick rod  > + pointing gesture + object detection 
 <  give me this rod  > + pointing gesture + object detection 
 <  give me that rocker arm  > + pointing gesture + object 
 detection 

 Robot motion 
 Gripper actions 
 Robot to human hand-over 

 Results of the different human-robot interaction functionalities are depicted in Figures 4.9.1, 4.9.2 
 and 4.9.3. 

 Figure 4.9.1  : Single command gestures STOP (a) and CONTINUE(b) and speech commands (c). 

 Figure 4.9.2:  Speech phrase to achieve robot to human hand-over. 
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 Figure 4.9.3:  Co-speech gestures to achieve specified robot actions to objects. 

 A video of the integrated experiments can be seen here:  https://youtu.be/b_ISrhOlcC8 

 In  addition,  multi-modal  HRI  for  the  agile  production  use  case  was  also  investigated  with  recent 
 developments  in  large  language  models  and,  in  particular,  CLIPort.  CLIPort  utilizes  the  combined 
 power  of  visual-language  models  by  Contrastive  Language-Image  Pre-training  (CLIP),  with 
 millions  of  image-caption  pairs.  After  pre-training,  new  captions  can  be  used  to  describe  other  raw 
 images,  paving  the  way  for  zero-shot  transfer  learning  of  the  model  to  different  tasks.  The 
 architecture  has  the  capability  to  understand  semantic  and  spatial  representations  for  robotic 
 vision-based  and  language-conditioned  manipulation  tasks,  in  an  end-to-end  network.  A  large 
 variety  of  tasks  are  demonstrated,  including  folding  cloth,  manipulating  unseen  objects,  all  without 
 the  need  to  learn  objects'  poses,  structure  or  instance  segmentations.  To  be  relevant  for  the  agile 
 production  use  case,  the  CLIPort  model  was  expanded  with  custom  collected  data  (see  Table 
 4.9.2), including images of relevant scenes and objects, as well as language phrases. 

 Demonstrations  Demonstrated 
 tasks 

 Pick-and-place-targets 

 Traini 
 ng 

 Validati 
 on 

 To 
 tal 

 Single 
 - 
 object 
 tasks 

 Mult 
 i- 
 objec 
 t 
 tasks 

 Known 
 objects 

 Unkno 
 wn 
 objects 

 Goal 
 s 

 Train 
 ing 
 time 
 [h] 

 Single 
 - 
 task 
 model 

 88  22  11 
 0 

 60  50  9 bolts 
 4 pushrods 
 3 rocker 
 arms 

 6  brow 
 n/ 
 red 
 box 

 89 

 Multi- 
 task 
 model 

 39  8  13 
 2 

 0  47  2 bolts 
 2 pushrods 

 0  brow 
 n 
 box 

 26 

https://youtu.be/b_ISrhOlcC8
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 Table 4.9.2:  Details of the datasets that were added to the CLIPort model. The single-task model only executes one 
 task, while the multi-task model executes multiple tasks sequentially, depending on the language input. 

 Results of the trained CLIPort model can be seen in Figure 4.9.4, which depicts the input and 
 output of the model with certain examples. 

 Language phrase: <  Put pushrod in brown box  >                     Language phrase: <  Put pushrod in red box  > 
 Figure. 4.9.4:  CLIPort takes as input RGB-D images and a language phrase and generates as output picking (green 

 dot) and placing (blue dot) locations extracted from the confidence maps. 

 Results  are  also  shown  in  Figure  4.9.5  which  depicts  snapshots  of  the  executed  experiments  within 
 the  agile  production  scenario.  As  a  general  outcome,  it  was  concluded  that,  while  interesting,  the 
 CLIPort  model  and  its  functionalities  require  extensive  data  collection  and  fine-tuning  for  the 
 limited functionalities that it achieves. 

 Figure 4.9.5:  The original CLIPort model was adapted to include data relevant for the agile production use case. The 
 images depict the tested scenarios with respective input speech commands. 

 A video of the integrated CLIPort model can be seen here:  https://youtu.be/hVkqQD9ASm8 

https://youtu.be/hVkqQD9ASm8
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 4.9  Interactive Imitation Learning 
 In  our  use  case,  a  robot  must  discern  the  appropriate  actions  for  a  pick-and-place  task  based  on 
 RGB-D  imagery  and  verbal  commands  from  the  operator.  Traditional  approaches  necessitate  a 
 prolonged  offline  pre-training  period  with  extensive  operator  demonstrations  before  achieving 
 satisfactory  task  execution.  To  circumvent  this,  we  employ  the  PARTNR  tool  from  OpenDR,  which 
 facilitates  interactive  policy  training.  PARTNR  employs  an  adaptive,  sensitivity-based,  gating 
 function  that  decides  if  additional  operator  demonstrations  are  required.  User  demonstrations  are 
 aggregated  to  the  dataset  and  used  for  subsequent  training.  In  this  way,  the  policy  can  adapt 
 promptly  and  it  can  minimize  the  number  of  required  demonstrations  for  a  well-trained  policy.  The 
 adaptive  threshold  enables  us  to  achieve  the  user-acceptable  level  of  ambiguity  to  execute  the 
 policy  autonomously  and  in  turn,  increase  the  trustworthiness  of  our  system.  Initially,  the  policy’s 
 uncertainty  prompts  frequent  operator  interventions.  However,  as  the  policy  becomes  more  certain 
 through  additional  demonstrations,  the  robot’s  autonomy  increases,  minimizing  disruptions  to  the 
 operator.  Fig  4.10.1  illustrates  this  interactive  training  loop.  Within  the  context  of  this  use-case, 
 Figure  4.10.2  illustrates  the  PARTNR  tool's  initial  input,  prompting  a  user  demonstration,  followed 
 by  an  interactive  training  phase,  resulting  in  the  system's  autonomous  determination  of  the  correct 
 pick-and-place actions. 

 Figure 4.10.1:  PARTNR framework on an example task 

 Figure 4.10.2:  PARTNR Tool Demonstration for Robotic Pick-and-Place Task. Left: Input image to PARTNR 
 depicting initial task setup. Middle: Operator demonstration of the desired action. Right: Automated pick-and-place 

 action proposed by PARTNR after interactive training phase. This sequence illustrates the progressive autonomy of the 
 robotic system using PARTNR, which reduces the need for extensive pre-training by employing operator 

 demonstrations to rapidly refine the policy, thus enhancing trustworthiness and minimizing operator disruptions. 
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 5  Conclusions 

 D7.5  presents  the  work  of  integration  and  experimental  validation  of  the  OpenDR  toolkit  across 
 Agriculture,  Healthcare,  and  Agile  Production  domains  in  WP7.  The  evidence  presented  within 
 this  document,  supported  by  visual  documentation,  attests  to  the  efficacy  and  versatility  of  the 
 OpenDR toolkit. 

 As  industries  continue  to  embrace  automation  and  robotics,  the  achievements  outlined  in  this 
 report  pave  the  way  for  a  future  where  intelligent  robotic  solutions  play  a  central  role  in  enhancing 
 efficiency,  safety,  and  overall  operational  excellence.  Integrating  OpenDR  toolkits  into  practical 
 use  cases  sets  a  precedent  for  the  continued  evolution  of  robotics,  with  far-reaching  implications 
 for industries seeking to embrace the transformative power of automation. 


