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ABSTRACT

The increasing complexity of deep learning models led to the development of Knowledge Distilla-
tion (KD) approaches that enable us to transfer the knowledge between a very large network, called
teacher and a smaller and faster one, called student. However, as recent evidence suggests, using
powerful teachers often negatively impacts the e↵ectiveness of the distillation process. In this paper,
the reasons behind this apparent limitation are studied and an approach that transfers the knowledge
to smaller models more e�ciently is proposed. To this end, multiple highly specialized teachers are
employed, each one for a small set of skills, overcoming the aforementioned limitation, while also
achieving high distillation e�ciency by diversifying the ensemble. At the same time, the employed
ensemble is formulated in a unified structure, making it possible to simultaneously train multiple mo-
dels. The e↵ectiveness of the proposed method is demonstrated using three di↵erent image datasets,
leading to improved distillation performance, even when compared with powerful state-of-the-art en-
semble-based distillation methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Deep Learning (DL) models have evolved rapidly over the
recent years, leading to state-of-the-art performance. How-
ever, DL models typically require an immense amount of pa-
rameters, which leads to large and slow models. The advent
of powerful dedicated accelerators, e.g., Graphics Processing
Units (GPUs) (Chetlur et al., 2014) and Tensor Processing Units
(TPUs) (Jouppi et al., 2017), allowed the training of such enor-
mous models, as well as e↵ectively deploying them in many
applications. However, deploying DL models in mobile and
embedded settings, e.g., on mobile phones, robots, etc., still re-
mains especially challenging due to energy and computational
power constraints. These limitations fueled the interest of the
scientific community in developing a wide range of methods
for reducing the size and complexity of DL models and in-
creasing their speed, without reducing their accuracy. These
methods range from replacing computationally intensive oper-
ations (Cheng et al., 2015), pruning approaches (Srinivas and
Babu, 2015), quantizing the parameters of the models to reduce
memory requirements and increase inference speed and/or ap-
plying hashing methods (Wu et al., 2016; Peng and Chen, 2019;

⇤⇤Corresponding author: Tel.: +30-694-888-6792;
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Peng et al., 2019; Durmaz and Bilge, 2019), as well as devel-
oping faster and more lightweight architectures optimized for
inference (Iandola et al., 2016; Howard et al., 2017; Luo et al.,
2020).

Another very promising research direction is Knowledge
Distillation (KD) (Hinton et al., 2015; Romero et al., 2015;
Duan et al., 2019). KD works by employing a large, well
trained model, known as teacher, to guide the training process
of another lightweight model, known as student. In this way it
is possible to distill the knowledge encoded in the larger model
into a smaller and faster one. Also, note that compared to other
methods that aim at reducing the computational requirements
for a DL model, e.g., quantization or pruning, KD aims at in-
creasing the accuracy of an existing lightweight architecture.
This allows KD to be combined with virtually any of the exist-
ing methodologies for developing lightweight DL models and
further increasing their accuracy. In this way, it provides the
flexibility of choosing the exact size and architecture of the fi-
nal model that we want to deploy. The e↵ectiveness of KD
critically relies on the employed teacher model. For example,
having a less capable teacher will lead to less knowledge being
available to be transferred to the student, potentially limiting its
accuracy. At the same time, it has also been shown that when
powerful teachers are used, the distillation e�ciency can actu-
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ally
be

reduced
(M

irzadeh
etal.,2019).M

ore
pow

erfulteacher
m

odels
can

typically
generate

m
ore

confidentclassification
de-

cisions,leading
to

reduced
diversity,thus

explaining
their

ap-
parentfailure

to
e↵ectively

distilltheir
know

ledge.
Indeed,it

has
been

dem
onstrated

that
using

less
confident

teachers
can

im
prove

distillation
e�

ciency
(Panagiotatos

etal.,2019).
The

question
that

naturally
arises

from
the

previous
obser-

vation
is

w
hether

itis
possible

to
develop

a
pow

erfulteacher,
w

hich
is,atthe

sam
e

tim
e,capable

of
e↵ectively

transferring
itsknow

ledge
to

a
sm

allerstudentm
odel,w

hile
m

aintaining
its

ability
to

extractm
eaningfulrepresentations.

The
m

ain
contri-

bution
of

this
w

ork
is

to
propose

the
specializing

of
m

ultiple
teachers,each

to
a

lim
ited

range
ofskills,in

orderto
overcom

e
the

aforem
entioned

lim
itation.

Even
though

each
individual

teacherisconfidentin
itsow

n
sm

allsetofskills,thusachieving
high

accuracy
atthem

,the
ensem

ble’s
diversity

is
achieved

by
training

them
in

di↵erenttasks.
In

this
w

ay,m
ore

m
eaningful

representations
can

be
extracted.

N
ote

thatfor
the

purpose
of

thispaper,each
skillcorrespondsto

the
ability

to
recognize

one
category

(class)ofdata.H
ow

ever,this
is

w
ithoutloss

ofgene-
rality,since

the
proposed

m
ethod

can
be

also
applied

on
other

dom
ains,such

as
reinforcem

entlearning
(Teh

etal.,2017).
The

proposed
m

ethod
can

be
betterunderstood

by
consider-

ing
the

follow
ing

exam
ple.Training

a
pow

erfulteacherto
rec-

ognize
a

setof
classes

w
illprobably

lead
to

itconfidently
se-

lecting
the

correct
class

m
ost

of
the

tim
e.

H
ow

ever,
it

w
ill

notbe
able

to
recognize

sim
ilarities

betw
een

the
inputobject

and
the

rest
of

the
classes,

since
it

has
been

trained
to

sup-
press

the
rest

of
the

outputs.
Instead,

consider
an

ensem
ble

of
three

teachers,each
one

trained
in

a
disjointsetof

classes.
The

teacherthatis
responsible

forrecognizing
the

correctclass
w

illagain
be

confidentin
it.

The
other

tw
o,how

ever,despite
being

less
confident,w

illstillclassify
the

inputobject,accord-
ing

to
their

corresponding
classes.

In
this

w
ay,the

restof
the

teachers
w

illprovide
theiropinion

regarding
the

sim
ilarities

of
the

inputobjectto
the

classes
for

w
hich

they
are

responsible.
This

approach
e↵ectively

provides
a

w
ay

to
extractm

eaningful
representations

overthe
classes

athand,w
hile

atthe
sam

e
tim

e
em

ploying
pow

erfulteacherm
odels.Indeed,asitisexperim

en-
tally

dem
onstrated

using
three

di↵erentim
age

datasets,the
pro-

posed
m

ethod
leads

to
im

proved
distillation

perform
ance,even

w
hen

com
pared

w
ith

pow
erfulstate-of-the-artensem

ble-based
distillation

m
ethods.

The
restofthispaperisorganized

asfollow
s.First,Section

2
provides

a
brief

overview
of

related
distillation

m
ethods

and
highlights

the
key

di↵erences
betw

een
them

and
the

proposed
m

ethod.
Then,the

latter
is

analytically
derived

and
discussed

in
Section

3,w
hile

the
experim

entalevaluation
is

provided
in

Section
4.

Finally,conclusions
are

draw
n

and
future

w
ork

is
discussed

in
Section

5.

2
.

R
e
la

te
d

W
o
r
k

There
is

a
considerable

am
ountof

literature
aboutK

D
,de-

scribing
m

ultiple
w

ays
in

w
hich

itcan
be

perform
ed

and
dif-

ferentfields
w

herein
itcould

be
applied.

A
s

already
described

in
the

previous
Section,the

m
ain

m
otivation

for
applying

K
D

is
to

m
ore

e↵ectively
train

a
lightw

eightD
L

m
odel.

K
D

is
al-

w
aysperform

ed
betw

een
tw

o
m

odels,w
here

the
firstone

could
be

eithera
single

m
odeloreven

an
ensem

ble
ofm

odels.In
the

classicalapproach
(B

ucila
etal.,2006),the

m
ethod

utilizes
an

ensem
ble

to
labelunlabeled

data
thatare

then
used

to
train

a
neuralnetw

ork,thusm
im

icking
the

function
learned

by
the

en-
sem

ble
and

achieving
sim

ilaraccuracy.
This

process
w

as
then

extended
in

(H
inton

et
al.,

2015),
by

introducing
a

tem
pera-

ture
param

eter
in

the
probability

estim
ation

process,
in

order
to

extracta
m

ore
m

eaningfuldistribution
over

the
classes

for
the

inputsam
ples.

A
s

in
the

classicalapproach,the
extracted

distributions
are

used
to

train
the

studentm
odel.

This
sem

inal
approach,

w
hich

is
called

“K
now

ledge
D

istillation”,
inspired

m
any

subsequentapplications.

Indeed,K
D

has
been

used
for

m
any

other
purposes

besides
m

odelcom
pression.Papernotetal.(2015)have

discovered
that

w
e

can
address

security
issues

in
D

N
N

s
by

using
the

extracted
know

ledge
ofa

netw
ork

in
orderto

im
prove

itsow
n

tolerance
to

adversarialsam
ples.

U
sing

K
D

can
also

significantly
increase

the
speed

and
e↵ectiveness

of
a

m
odel’s

pre-training
process

(Tang
etal.,2015),providing

a
good

starting
pointatthe

op-
tim

ization
space

for
the

student.
R

usu
et

al.(2015)
success-

fully
transferred

the
policies

learned
by

large
D

eep
Q

-learning
netw

orks
to

sm
aller

ones.
M

ore
recentevidence

(C
hen

etal.,
2017;Lietal.,2018)

suggestthatK
D

can
also

be
e↵ectively

applied
fortransferring

the
know

ledge
ofobjectdetection

m
o-

dels,used
to

learn
from

noisy
sam

ples(Lietal.,2017),im
prove

the
perform

ance
oflow

-precision
netw

orks
(M

ishra
and

M
arr,

2017),
or

even
boost

self-supervised
learning,

allow
ing

us
to

use
di↵erentm

odels
forthe

pretextand
the

m
ain

task
(N

oroozi
etal.,2018).

The
large

num
ber

of
K

D
applications

highlights
the

im
portance

ofdeveloping
m

ore
e�

cientm
ethods

fortrans-
ferring

the
know

ledge
from

largerand
m

ore
com

plex
netw

orks
to

a
sm

aller
one,

an
area

on
w

hich
current

approaches
seem

to
be

adversely
a↵ected

by
the

capacity
gap

betw
een

the
m

o-
dels

(M
irzadeh

etal.,2019).

Severale↵orts
have

been
m

ade
to

im
prove

the
e�

ciency
of

K
D

.R
om

ero
etal.(2015)used

the
representations

ofinterm
e-

diate
layers

ofthe
learning

netw
orks

as
a

hint,in
orderto

assist
deep

and
thin

students
in

the
distillation

process.
Later,Zhang

etal.(2017)developed
a

new
fram

ew
ork

in
w

hich
the

student
learns

a
projection

of
the

know
ledge

of
a

teacher’s
interm

edi-
ate

layer,w
hile

being
trained

atthe
sam

e
tim

e.Zagoruyko
and

K
om

odakis
(2016);Song

etal.(2018)
com

bined
K

D
w

ith
the

attention
m

ethodology.
R

adosavovic
etal.(2018)

used
distil-

lation,in
order

to
transfer

know
ledge

from
data

and
notfrom

m
odels

in
an

om
ni-supervised

learning
task.

In
their

analysis,
Yang

etal.(2018)question
the

need
fora

m
ore

tolerantteacher,
instead

ofthe
m

ostaccurate
one.They

reportthatitism
ore

im
-

portantfor
a

teacher
to

produce
a

sm
ooth

distribution
over

its
predictions

and
conclude

thathigh
accuracy

w
ith

spiked
distri-

bution
ofconfidence

isnotthatim
portant,since

the
studentcan

be
m

ore
easily

over-fitted.
Lan

etal.(2018)
proposed

an
on-

line
distillation

fram
ew

ork
in

w
hich

the
teacherisbeing

trained
and

atthe
sam

e
tim

e
its

know
ledge

is
being

distilled
to

the
stu-

dent.Passalisand
Tefas(2018)extended

the
applicationsofK

D
to

representation
learning

tasks
through

a
Probabilistic

K
now

l-
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edge
Transfer(PK

T)fram
ew

ork.
Sim

ilarity
em

beddings
(Pas-

salis
and

Tefas,2019)
w

ere
also

proposed,w
hich

can
lead

to
m

ore
general,

unsupervised
K

T
and

can
have

m
any

applica-
tions,such

ascross-dom
ain

data
exploitation.Yuan

etal.(2019)
suggested

thatw
e

can
rem

ove
the

role
of

the
teacher

from
the

K
D

processand
develop

a
self-learning

student.Thisstudy
dif-

fersfrom
the

aforem
entioned

onesin
thatitaim

sto
im

prove
the

m
ethod

by
focusing

on
the

teacher,instead
offocusing

on
dis-

tillation
perse.Itshould

be
noted

thatm
ostofthese

approaches
can

be
readily

com
bined

w
ith

the
proposed

one
to

further
im

-
prove

distillation
perform

ance.
To

the
best

of
our

know
ledge,

this
is

the
first

w
ork

w
hich

em
ploys

an
e�

cient
unified

ensem
ble

of
diversified,

task-
specialized

m
odels

in
order

to
overcom

e
the

apparentine↵ec-
tiveness

of
distillation,w

hen
pow

erfulteachers
are

used.
Itis

w
orth

noting
thatH

inton
etal.(2015)m

entioned
in

theirw
ork

that
it

is
possible

to
create

specialized
teachers

by
utilizing

sm
aller

datasets
enriched

w
ith

m
ore

sam
ples

from
the

classes
oftheirspecialty,w

hich
also

requires
each

teacherto
be

sepa-
rately

trained.O
n

the
otherhand,the

proposed
m

ethod
em

ploys
an

e�
cientunified

ensem
ble

approach
thatallow

s
forthe

one-
step

training
of

the
w

hole
ensem

ble,w
ithoutthe

need
of

indi-
vidualdatasets.A

lso,Lan
etal.(2018)developed

a
fram

ew
ork

w
hich

allow
s

the
sim

ultaneous
training

ofallthe
teachers

in
an

ensem
ble.

H
ow

ever,teachers
are

unspecialized
and

trained
to

predictallthe
classes,reducing

the
diversity

of
the

m
odels

in
the

ensem
ble,w

hich
lim

its
the

e�
ciency

ofK
D

,as
also

exper-
im

entally
dem

onstrated
in

Section
4.

3
.

P
r
o
p

o
s
e
d

M
e
th

o
d

The
proposed

U
nified

Specialized
Teachers

Ensem
ble

m
e-

thod,abbreviated
as

U
STE,is

presented
in

this
Section.

The
K

D
processisbriefly

introduced
in

the
B

ackground
Subsection,

w
hile

the
proposed

m
ethod

is
analyzed

in
the

follow
ing

one.It
isw

orth
noting

thateven
though

the
proposed

m
ethod

hasbeen
com

bined
w

ith
the

plain
K

D
,m

ostof
the

m
ore

advanced
dis-

tillation
approaches

described
in

Section
2,can

also
be

used,
potentially

furtherincreasing
its

e↵ectiveness.

3.1.
Background

K
D

w
as

introduced
as

a
m

odel
com

pression
fram

ew
ork,

w
hich

eases
the

training
of

deep
netw

orks
by

follow
ing

a
student-teacher

paradigm
,

in
w

hich
the

student
is

trained
ac-

cording
to

a
softened

version
of

the
teacher’s

output
H

inton
et

al.(2015).
This

suggests
that

the
learned

know
ledge

of
a

teacher
netw

ork
is

hidden
in

the
soft

probabilities
of

its
pre-

dictions.
Therefore,

if
w

e
w

ere
to

teach
a

student
m

odel
the

w
ay

a
teacherm

odel“thinks”,itw
ould

be
usefulto

try
and

im
-

partthese
sim

ilarities
am

ong
the

classes
for

each
sam

ple
and

not
only

the
final

predictions.
In

order
to

e�
ciently

trans-
fer

the
know

ledge
encoded

in
the

sim
ilarity

am
ong

di↵erent
classes,H

inton
etal.(2015)also

introduced
a

tem
perature

pa-
ram

eterT
in

the
softm

ax
activation.Thisenablesusto

tune
the

fuzziness
ofclass

probability
estim

ations,rendering
the

output
probability

distribution
less

spiky.
M

ore
specifically,K

D
w

orksasfollow
s.Let{x

i |i
=

1,...,m}
be

a
setofm

training
sam

ples
w

ith
 

num
berofclasses,w

hile

the
notation

N
(·)2

R
 

is
used

to
refer

to
the

teacher
netw

ork
thatextracts

 
logits,one

for
each

class.
To

sim
plify

the
no-

tation,lij is
used

to
refer

to
the

j-th
logitfor

the
i-th

training
sam

ple.
Then,the

probability
for

the
j-th

class
for

the
corre-

sponding
sam

ple
is

estim
ated

as:

p
ij
=

exp(lij /T
)

P
 t=

1 exp(lit /T
) .

(1)

H
ighertem

peratures
w

illresultin
a

softerprobability
distribu-

tion,w
hile

low
ertem

peratures
w

illresultin
a

sharperprobabi-
lity

distribution.
W

hen
tuned

properly,tem
perature

allow
s

for
revealing

the
intra-class

sim
ilarities

foreach
sam

ple.
The

studentm
odel

f
W

(·),w
here

W
refers

to
its

trainable
pa-

ram
eters,can

be
trained

as
follow

s.The
softstudent’s

probabi-
lities

q
ij are

calculated
sim

ilarly
to

(1),w
hile

the
notation

ŷ
ij is

used
to

referto
the

regular(T
=

1)student’s
output.

Then,the
distillation

loss
is

defined
by

com
bining

the
regular

cross
en-

tropy
loss

w
ith

the
aforem

entioned
constraintof

“m
im

icking”
the

teacher’s
behavior:

L
K

D
=
�
�

mXi=
1

 
Xj=

1

p
ij log

q
ij �

(��
1)

mXi=
1

 
Xj=

1

y
ij log

ŷ
ij ,

(2)

w
here

y
i is

the
one-hotencoded

ground-truth
vector

for
the

i-
th

training
sam

ple
and
�
2

[0,1]
is

a
user-defined

param
eter

thatcontrolsthe
im

portance
ofdistillation

in
relation

to
norm

al
training

forthe
student.

3.2.
U

nified
Specialized

Teachers
Ensem

ble
The

proposed
m

ethod
w

orks
by

com
piling

an
ensem

ble
of

teacherm
odels,as

show
n

in
Fig.1.

Each
teacheris

trained
on

a
subsetofthe

available
classes,allow

ing
itto

be
highly

speci-
alized.

A
tthe

sam
e

tim
e,they

can
stillprovide

predictions
for

inputsam
ples

thatbelong
to

classes
outoftheirspecialization

field,diversifying
the

ensem
ble.

Furtherm
ore,instead

oftrain-
ing

each
m

odelseparately,a
unified

one-step
training

procedure
isem

ployed,significantly
reducing

the
com

putationalcom
plex-

ity.
A

s
a

result,this
approach

allow
s

forthe
perspective

ofthe
m

ostcertain
m

odelto
prevail,w

hile
atthe

sam
e

tim
e

perm
itting

a
m

ultitude
ofopinions,leading

to
richerdark

know
ledge.The

dom
inantteacheris

likely
to

be
one

ofthose
w

hose
specializa-

tion
relates

to
the

correctclass
and

therefore
enhances

its
spe-

cialization
ability

even
m

ore
through

the
training

process.A
s

a
result,w

e
believe

thatthe
distribution

of
the

unified
ensem

ble
w

illbe
m

ore
spiked

for
the

controversialclasses
and

m
ay

re-
quire

a
highertem

perature
to

transferknow
ledge

optim
ally,as

experim
entally

dem
onstrated

in
Subsection

4.2.
Let{N

k }
=
{N

1 ,N
2 ,...,N

D }be
the

setof
D

specialized
tea-

chers.
These

teachers
are

trained
on

the
w

hole
training

dataset
x

1 ,···,
x

m ,w
here

x
i denotesthe

i-th
training

sam
ple.A

lso,note
that

ground
truth

annotations
y

i ,
w

hich
are

one-hot-encoded
vectors,

also
exist

for
each

training
sam

ple
x

i ,
as

explained
in

the
previous

Subsection.
The

output
of

the
k-th

specia-
lized

teacherisdenoted
by

p
(k)
ij ,afterpassing

through
a

softm
ax

function.
A

pplying
the

softm
ax

function
individually

foreach
m

odelisessentialto
ensure

thattheiroutputisnorm
alized

prior
to

the
finalaggregation.

Furtherm
ore,note

thatthe
outputcan



4

1

Input data

...

M
odel N

M
odel 2

M
odel 1

...
m

2

softm
ax

softm
ax

softm
ax

MEANMEANMEAN ...

+
OUTPUT

Bucket 1

Bucket 2

Bucket N

Loss Fn W
’

Y 
true

W
’

W
’

F
ig

.
1

.
U

n
ifi

e
d

S
p

e
c
ia

liz
e
d

T
e
a

c
h

e
r
s

E
n

s
e
m

b
le

s
tr

u
c
tu

r
e
:

T
h

e
te

a
c
h

e
r

m
o

d
e
ls

b
e
c
o

m
e

s
e
p

a
r
a

te
b

r
a

n
c
h

e
s

o
f

a
la

r
g

e
u

n
ifi

e
d

n
e
tw

o
r
k

.
T

h
e

la
r
g

e
n

e
tw

o
r
k

r
e
c
e
iv

e
s

th
e

d
a

ta
a

s
a

n
in

p
u

t
a

n
d

d
is

tr
ib

u
te

s
th

e
m

in
e
v
e
r
y

te
a

c
h

e
r

N
k
.

S
u

b
s
e
q

u
e
n

tly
,

e
a

c
h

te
a

c
h

e
r

N
k

p
r
e
d

ic
ts

th
e

c
la

s
s
e
s

o
f

its
s
p

e
c
ia

liz
a

tio
n

fi
e
ld

,
a
lo

n
g

w
ith

a
n

e
x

tr
a

b
u

c
k

e
t

c
la

s
s
,

w
h

ic
h

r
e
p

r
e
s
e
n

ts
e
v
e
r
y

o
th

e
r

c
h

o
ic

e
,

u
n

r
e
la

te
d

to
its

s
p

e
c
ia

liz
a

tio
n

fi
e
ld

.
T

h
e

s
o

ftm
a

x
a

c
tiv

a
tio

n
fu

n
c
tio

n
is

th
e
n

a
p

p
lie

d
o
v
e
r

e
a

c
h

te
a

c
h

e
r
’s

o
u

tp
u

t
in

o
r
d

e
r

to
p

r
o

d
u

c
e

th
e

n
o

r
m

a
liz

e
d

p
r
o

b
a

b
ilitie

s
p

i .
A

t
th

is
p

o
in

t,
th

e
p

r
o

b
a

b
ilitie

s
o

f
th

e
id

e
n

tic
a

l
c
la

s
s
e
s

w
h

ic
h

h
a
v
e

b
e
e
n

c
h

o
s
e
n

to

b
e

o
v
e
r
la

p
p

e
d

,
a

r
e

a
v
e
r
a

g
e
d

.
F

in
a

lly
,

th
e

d
is

tin
c
t

p
r
o

b
a

b
ilitie

s
a

r
e

a
g

g
r
e
g

a
te

d
in

o
r
d

e
r

to
e
x

tr
a

c
t

th
e

fi
n

a
l

o
u

tp
u

t
d

is
tr

ib
u

tio
n

o
f

U
S

T
E

.

F
ig

.
2

.
A

n
in

d
iv

id
u

a
l

te
a

c
h

e
r

m
o

d
e
l.

N
o

te
th

a
t

a
n

e
x

tr
a

n
e
u

r
o

n
is

u
s
e
d

,

a
p

a
r
t

fr
o

m
th

o
s
e

u
tiliz

e
d

fo
r

th
e

r
c
la

s
s
e
s

th
e

m
o

d
e
l
p

r
e
d

ic
ts

.
T

h
is

“
b

u
c
k

e
t”

n
e
u

r
o

n
fa

c
ilita

te
s

th
e

e↵
e
c
tiv

e
tr

a
in

in
g

o
f

th
e

m
o

d
e
ls

w
ith

c
la

s
s
e
s

th
a

t
d

o

n
o

t
b

e
lo

n
g

in
th

e
ir

s
p

e
c
ia

liz
a

tio
n

,
i.e

.,
th

e
r
e
m

a
in

in
g
 
�

r
c
la

s
s
e
s
.

be
softened

using
the

appropriate
value

for
the

tem
perature

as
described

in
(1),ifneeded.

Each
specialized

teacher
predicts

a
subset

of
r
=
dK
 
/De

classes.The
param

eter
K

is
called

overlapping
factorand

con-
trolshow

m
any

tim
eseach

classw
illbe

predicted
by

a
di↵erent

teacher
N

k .
The

num
ber

of
tim

es
a

class
is

predicted
can

be
calculated

as:
K
=

D
r/ 

,assum
ing

thatK
 

m
od

D
=

0.
In

orderto
ensure

thatno
tw

o
m

odels
are

specialized
in

the
sam

e
classes,they

are
distributed

cyclically
overthe

ensem
ble.N

ote
thatK

should
be

setto
an

appropriate
value

so
thatm

odels
do

notpredictallthe
available

classes,i.e.,K
<

D
.

Furtherm
ore,

K
should

be
large

enough
to

ensure
thatm

odelsw
illnotpredict

one
single

class,i.e.,K
>
dD
/ e.Finally,

 
sets

denoted
w

ith
{⌦

(i)|i
=

1,..., }are
created,one

foreach
class,and

contain
K
2

[1,D
]⇢

N
indexes

thatindicate
w

hich
teachers

participate
in

the
prediction

ofclass
i.

Forexam
ple,

⌦
(2)
=
{1,4,5}sym

-
bolizes

thatthe
1-st,the

4-th
and

the
5-th

teachers
allpredict

class
2.

Each
teacheris

also
equipped

w
ith

an
extra

“bucket”
neuron

thatisresponsible
forgathering

the
predictionsofthe

rest
 
�

r
classes,as

show
n

in
Fig.2.

This
bucketneuron

can
be

used
to

train
each

teacherw
ith

data
thatbelong

to
classes

outofits
ex-

pertise.
A

notheradvantage
ofthis

m
ethod

is
thatw

e
can

train
all

the
teachers

sim
ultaneously

by
feed-forw

arding
and

back-
propagating

only
one

tim
e

through
the

resulting
unified

archi-
tecture.M

ore
specifically,the

finaloutputofthe
m

odeliscalcu-
lated

by
averaging

the
K

values
foreach

class,as
predicted

by
the

individualm
odels.

Therefore,the
finalensem

ble’s
proba-

bility
estim

ation
forthe

j-th
class

and
i-th

sam
ple

is
calculated

as:
p

ij
=

exp(a
ij /T

)
P
 l=

1 exp(a
il /T

) ,
(3)

w
here

a
ij
=

1D

Xt2
⌦

(j) p
(k)
tj
,

(4)

and
⌦

(j)denotes
the

setofteachers
thatpredictthe

j-th
class.

N
ote

that
p

(k)
tj

refers
to

the
neuron

of
the

k-th
teacher

thatpre-
dicts

the
j-th

class.
A

s
w

ith
regular

distillation,appropriately
tuning

the
tem

perature
for

the
ensem

ble’s
outputis

crucialto
ensure

that
the

output
distribution

w
ill

not
be

overly
spiked,

w
hich

can
negatively

im
pactthe

distillation
e�

ciency.
The

teacherensem
ble

m
odelisthen

directly
trained

in
a

uni-
fied,

one-step
fashion

to
m

inim
ize

the
regular

cross-entropy
loss:

L
t
=

DXi=
1

 
Xj=

1

y
ij log

ŷ
ij ,

(5)

w
here

ŷ
ij

refers
to

the
output

of
the

teacher
ensem

ble
w

ith
T
=

1.
N

ote
thatthe

w
hole

ensem
ble

can
be

directly
trained,

since
only

one
forw

ard
and

backw
ard

passisrequired
to

update
the

param
eters

ofallthe
em

ployed
m

odels.O
n

the
otherhand,

the
studentm

odelis
trained

to
m

inim
ize

the
com

bined
distil-

lation
lossL

s ,as
described

in
(2),w

here
the

teacherensem
ble

m
odelis

used
to

provide
the

training
targets.

The
A

dam
algo-

rithm
K

ingm
a

and
B

a
(2014),w

ith
the

defaulttraining
hyper-

param
eters,is

used
forthe

optim
ization

in
this

paper.N
ote

that



5

the
lossL

t is
m

inim
ized

by
updating

the
param

eters
ofthe

tea-
chers,w

hile
the

lossL
s is

m
inim

ized
by

updating
the

param
e-

ters
ofthe

student.

4
.

E
x
p

e
r
im

e
n

ta
l

E
v
a
lu

a
tio

n

First,the
datasets

used
for

evaluating
the

proposed
m

ethod
are

briefly
introduced,

along
w

ith
the

em
ployed

netw
ork

ar-
chitectures.

N
ext,the

evaluation
results

are
provided

and
dis-

cussed.

4.1.
D

atasets
and

Evaluation
Setup

The
proposed

m
ethod

w
asevaluated

using
three

di↵erentda-
tasets:C

IFA
R

-10,C
IFA

R
-100

K
rizhevsky

(2012)and
Fashion-

M
N

IST
X

iao
et

al.
(2017).

A
tuning

phase
w

as
perform

ed
forsetting

the
hyper-param

eters
described

below
,in

w
hich

the
m

ethods
depend

on,
to

ensure
that

the
best

perform
ance

w
as

achieved.
The

C
IFA

R
-10

datasetconsists
of

60,000
10-class

im
ages,

32
⇥

32
in

size
and

is
divided

into
50,000

training
data

and
10,000

test
data.

Five
teachers

that
consist

of
three

blocks
are

used.
Each

block
is

com
posed

of
tw

o
convolutional

lay-
ers

w
ith

the
sam

e
num

beroffilters,w
hich

are
doubled

on
each

consecutive
block

(32
/64
/128

filters).The
convolutionallayers

are
follow

ed
by

a
m

ax
pooling

and
am

ong
them

,
batch

nor-
m

alization
is

used.
A

fterevery
block,a

dropoutlayeris
used,

w
ith

an
increm

ented
probability

of
turning

a
neuron

o
↵

each
tim

e,w
hich

does
notexceed

50%
.A

llthe
convolutionallayers

are
being

l2
regularized.

In
order

to
introduce

som
e

diversity
am

ong
the

teachers,w
e

use
a

ReLU
activation

function
in

tw
o

m
odels

and
eLU

in
the

restofthem
C

levertetal.(2015),w
hile

atthe
sam

e
tim

e
w

e
fluctuate

the
w

eightdecay
(ranging

from
1e�

4
to

1e�
7)thatisused

forthe
l2 regularization.The

student
thatis

used,consists
oftw

o
blocks

and
w

as
builtfollow

ing
the

sam
e

m
ethodology.

The
C

IFA
R

-100
datasetconsistsof60,000

100-classim
ages,

32
⇥

32
in

size
and

is
divided

into
50,000

training
data

and
10,000

testdata.
For

the
C

IFA
R

-100,the
sam

e
architectures

w
ere

used
after

adding
one

additionalblock
(w

ith
256

filters).
Finally,the

Fashion-M
N

IST
datasetconsistsof60,000

10-class
im

ages,28⇥
28

in
size

and
isdivided

into
60,000

training
data

and
10,000

testdata.
For

the
experim

ents
conducted

w
ith

the
Fashion

M
N

IST
dataset,the

sam
e

architecture
w

ith
the

C
IFA

R
-

10
teachers/studentsw

asused,butonly
one

convolutionallayer
w

askeptperblock.A
llthe

m
odelsw

ere
trained

for150
epochs

using
a

learning
rate

of1e�
4,w

hich
w

as
scheduled

to
be

re-
duced,m

ultiplying
itby

0.4
foreach

8
consecutive

epochs
that

show
ed

no
im

provem
entin

the
3-rd

decim
alplace

and
a

m
ini-

m
um

possible
value

of5e�
6.A

m
ini-batch

of64
sam

plesw
as

used
forallthe

conducted
experim

ents.
The

baseline
accuracy

am
ong

the
di↵erenttrained

m
odels

is
reported

in
Table

1.
N

ote
thatapartfrom

the
accuracy

of
the

individualm
odels,the

ensem
ble

accuracy
is

also
reported.The

studentw
as

also
trained

norm
ally,using

the
sam

e
hyperparam

-
etersw

ith
the

teachers,in
orderto

com
pare

the
resultsw

ith
that

ofK
D

.In
orderto

transferthe
know

ledge,a
tem

perature
T
=

6
w

as
used

and
a
�
=

0.9
for

C
IFA

R
-10,

T
=

2
and
�
=

0.6

for
C

IFA
R

-100,T
=

8
and
�
=

0.6
for

Fashion-M
N

IST.The
know

ledge
w

as
transferred

for150
epochs,w

ith
a

learning
rate

of1e�
3,w

hich
w

asscheduled
to

be
halved,foreach

8
consec-

utive
epochs

thatshow
ed

no
im

provem
entin

the
3-rd

decim
al

pointand
a

m
inim

um
possible

value
of1e�

8.A
m

ini-batch
of

64
sam

ples
w

as
used.

The
proposed

m
ethod

w
as

also
com

pared
to

four
other

ap-
proaches:

1.
“B

est
Teacher”:

Five
individual

teacher
m

odels
w

ere
trained

and
the

bestof
them

w
as

used
to

perform
regular

K
D

to
the

studentm
odel.

2.
“Ensem

ble”:The
know

ledge
contained

in
an

ensem
ble

of
five

teachers
w

as
directly

transferred
to

the
studentm

odel
using

K
D

,afteraveraging
theiroutputpredictions.

3.
“U

nified
Ensem

ble”:
The

approach
proposed

in
(Lan

et
al.,

2018),
w

as
em

ployed
to

train
a

unified
ensem

ble
w

ith
unspecialized

teachers
and

then
the

know
ledge

w
as

transferred
from

this
ensem

ble
to

the
studentm

odel.

4.
“Specialized

Ensem
ble”

(“Special.
Ensem

ble”):
Train-

ing
individualspecialized

m
odelsusing

the
proposed

class
distribution

approach
(butw

ithoutusing
a

unified
m

odel
structure).

For
the

proposed
m

ethod
w

e
used

D
=

5
teachers,w

hile
the

replication
factorw

assetto
K
=

2.To
ensure

a
faircom

parison
betw

een
the

evaluated
m

ethods,the
sam

e
studentnetw

ork
w

as
used

forallthe
conducted

experim
ents

w
ith

the
sam

e
dataset.

4.2.
Experim

entalResults

The
evaluation

results
using

the
C

IFA
R

-10
dataset

are
re-

ported
in

Table
2

from
w

hich
severalconclusionscan

be
draw

n.
First,note

thatusing
plain

distillation
(“B

estTeacher”)indeed
im

proves
the

accuracy
of

the
student,increasing

itto
84.28%

from
82.19%

(baseline
student).

U
sing

the
ensem

ble
of

the
di↵erent

teachers
further

increases
the

classification
accuracy

to
84.90%

.
Q

uite
interestingly,em

ploying
a

unified
ensem

ble,
apartfrom

fastertraining,allow
sto

also
slightly

increase
the

ef-
fectiveness

ofthe
distillation

process.W
e

hypothesize
thatthis

happensdue
to

the
im

plicitdiversification
thatem

ergesthrough
the

training
process.Thatis,in

the
unified

ensem
ble,a

few
con-

fidentm
odels

are
enough

to
correctly

classify
an

inputsam
ple,

allow
ing

for
an

im
plicit

specialization
to

em
erge

am
ong

dif-
ferentm

odels.
M

oreover,w
hen

this
specialization

is
induced

explicitly,through
the

specialized
ensem

ble,accuracy
further

im
proves.

Finally,the
bestresults

are
acquired

w
hen

the
pro-

posed
U

STE
approach

is
em

ployed,outperform
ing

plain
distil-

lation
by

about2%
and

unified
ensem

ble
approach

by
about1%

(relative
increase).

Furtherm
ore,w

e
conducted

additionalexperim
ents

to
eval-

uate
the

e↵ectof
the

di↵erentensem
bling

strategies
thatw

ere
em

ployed.
The

experim
ental

results
are

reported
in

Table
3.

For
these

experim
ents

w
e

used
100

im
ages

of
the

C
IFA

R
-10

dataset
and

averaged
the

inference
tim

e
for

the
di↵erent

m
o-

dels.
A

n
interesting

observation
is

the
fact

that
the

proposed
U

STE
m

ethod
is

as
fast

as
the

other
m

ethods
even

though
it
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T
a

b
le

1
.

E
v
a

lu
a

tin
g

th
e

a
c
c
u

r
a

c
y

o
f

d
i↵

e
r
e
n

t
te

a
c
h

e
r
s
,

s
tu

d
e
n

t
a

n
d

e
n

s
e
m

b
lin

g
a

p
p

r
o

a
c
h

e
s

D
ataset

M
ethod

Student
Teacher1

Teacher2
Teacher3

Teacher4
Teacher5

Ensem
ble

U
nified

Ensem
ble

C
IFA

R
-10

82.19
84.17

84.45
83.72

85.65
85.63

87.10
84.47

C
IFA

R
-100

61.57
59.43

60.44
58.28

60.54
63.14

64.36
59.26

Fashion-M
N

IST
88.49

92.08
92.33

92.42
92.02

92.10
92.99

92.89

F
ig

.
3

.
E
↵

e
c
t

o
f

r
a

is
in

g
th

e
te

m
p

e
r
a

tu
r
e

w
ith

B
a

s
e
lin

e
a

n
d

U
S

T
E

in
F

a
s
h

io
n

-M
N

I
S

T

T
a

b
le

2
.
C

o
m

p
a

r
is

o
n

b
e
tw

e
e
n

d
i↵

e
r
e
n

t
d

is
tilla

tio
n

a
p

p
r
o

a
c
h

e
s

o
n

th
r
e
e

d
if-

fe
r
e
n

t
d

a
ta

s
e
ts

M
ethod

C
IFA

R
-10

C
IFA

R
-100

Fashion
M

N
IST

B
estTeacher

84.28%
64.61%

91.26%
Ensem

ble
84.90%

65.70%
91.75%

U
nified

Ensem
ble

85.03%
66.41%

92.00%

Special.Ensem
ble

85.43%
66.73%

92.70%
U

STE
8

5
.9

0
%

6
7

.1
4

%
9

3
.0

7
%

can
lead

to
m

ore
accurate

m
odels.Thisphenom

enon
can

be
ex-

plained,since
the

num
berofparam

eters
rem

ains
the

sam
e

and
the

m
ain

di↵erence
is

the
w

ay
thatthe

w
eights

are
distributed

to
di↵erent

subm
odels.

It
is

also
w

orth
noting

that
the

accu-
racy

achieved
by

the
em

ployed
architecture

is
low

er
than

the
state-of-the-art

m
odels

(H
uang

et
al.,2017).

H
ow

ever,
these

m
ore

com
plicated

m
odelsare

di�
cultto

deploy
in

m
ostm

obile
and

em
bedded

architectures,
e.g.,

N
V

ID
IA

Jetson-based
pro-

cessors,especially
w

hen
m

ultiple
D

L
m

odelsm
ustbe

executed
in

parallel
and

there
are

requirem
ents

for
real-tim

e
and

high
resolution

inference
(Tzelepiand

Tefas,2020).
In

these
cases,

thatoften
occurin

realdeploym
ents,the

proposed
m

ethod
can

provide
significantperform

ance
benefits

com
pared

to
the

rest
ofthe

evaluated
distillation

strategies.
Sim

ilarconclusions
can

be
draw

n
forthe

othertw
o

datasets
(C

IFA
R

-100
and

Fashion
M

N
IST).

For
exam

ple,
U

STE
im

-
proves

the
accuracy

by
2.8%

over
plain

distillation
and

about
1%

over
unified

ensem
ble

approach
for

C
IFA

R
-100

dataset.
These

results
once

again
confirm

thata
diversified

and
specia-

lized
teachers’ensem

ble
helpsto

transferknow
ledge

betterand

T
a

b
le

3
.

I
n

fe
r
e
n

c
e

tim
e

e
v
a

lu
a

tio
n

b
e
tw

e
e
n

d
i↵

e
r
e
n

t
e
n

s
e
m

b
lin

g
m

e
th

o
d

s

M
e
th

o
d

I
n

fe
r
e
n

c
e

T
im

e

Ensem
ble

0.036
s

U
nified

Ensem
ble

0.035
s

Specialized
Ensem

ble
0.032

s
Proposed

(U
STE)

0.032
s

thatunified
training

leadsto
betterresultsthan

training
the

m
o-

dels
individually.Itis

w
orth

noting
that,the

results
ofTable

1,
also

confirm
the

hypothesesreported
in

(Yang
etal.,2018),i.e.,

thatclassification
accuracy

is
notthe

m
ajorgoalofthe

teacher
netw

ork
w

hen
used

for
K

D
.Indeed,they

reportin
their

w
ork

that“..
although

this
harm

s
the

accuracy
ofthe

teacher
net-

w
ork,itindeed

provides
m

ore
room

for
the

studentnetw
ork(s),

and
eventually,the

students
are

better
than

those
educated

by
a

strictteacher.”.
The

proposed
m

ethod
builds

upon
these

ob-
servations,providing

e�
cientand

diversified
teachers

thatare
bettersuited

forthe
task

ofK
D

.
A

notherquestion
thatarisesisthe

e↵ectofthe
num

beroftea-
chers

used
to

transferthe
know

ledge
to

the
perform

ance
ofthe

em
ployed

m
ethod.Therefore,w

e
ran

the
sam

e
experim

entsus-
ing

3
and

7
teachers.The

experim
entalresultsforthree

di↵erent
datasets

and
num

bers
of

teachers
are

reported
in

Table
4.

The
num

ber
of

teachers
used

can
have

a
crucialrole

in
the

perfor-
m

ance
ofallthe

evaluated
m

ethods.
Increasing

the
num

berof
teachers

indeed
increases

the
e↵ectiveness

ofknow
ledge

trans-
fer.

H
ow

ever,aftera
certain

point,e.g.,around
5

teachers,the


