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ABSTRACT

The increasing complexity of deep learning models led to the development of Knowledge Distilla-
tion (KD) approaches that enable us to transfer the knowledge between a very large network, called
teacher and a smaller and faster one, called student. However, as recent evidence suggests, using
powerful teachers often negatively impacts the effectiveness of the distillation process. In this paper,
the reasons behind this apparent limitation are studied and an approach that transfers the knowledge
to smaller models more efficiently is proposed. To this end, multiple highly specialized teachers are
employed, each one for a small set of skills, overcoming the aforementioned limitation, while also
achieving high distillation efficiency by diversifying the ensemble. At the same time, the employed
ensemble is formulated in a unified structure, making it possible to simultaneously train multiple mo-
dels. The effectiveness of the proposed method is demonstrated using three different image datasets,
leading to improved distillation performance, even when compared with powerful state-of-the-art en-
semble-based distillation methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Deep Learning (DL) models have evolved rapidly over the
recent years, leading to state-of-the-art performance. How-
ever, DL models typically require an immense amount of pa-
rameters, which leads to large and slow models. The advent
of powerful dedicated accelerators, e.g., Graphics Processing
Units (GPUs) (Chetlur et al., 2014) and Tensor Processing Units
(TPUs) (Jouppi et al., 2017), allowed the training of such enor-
mous models, as well as effectively deploying them in many
applications. However, deploying DL models in mobile and
embedded settings, e.g., on mobile phones, robots, etc., still re-
mains especially challenging due to energy and computational
power constraints. These limitations fueled the interest of the
scientific community in developing a wide range of methods
for reducing the size and complexity of DL models and in-
creasing their speed, without reducing their accuracy. These
methods range from replacing computationally intensive oper-
ations (Cheng et al., 2015), pruning approaches (Srinivas and
Babu, 2015), quantizing the parameters of the models to reduce
memory requirements and increase inference speed and/or ap-
plying hashing methods (Wu et al., 2016; Peng and Chen, 2019;
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Peng et al., 2019; Durmaz and Bilge, 2019), as well as devel-
oping faster and more lightweight architectures optimized for
inference (Iandola et al., 2016; Howard et al., 2017; Luo et al.,
2020).

Another very promising research direction is Knowledge
Distillation (KD) (Hinton et al., 2015; Romero et al., 2015;
Duan et al., 2019). KD works by employing a large, well
trained model, known as teacher, to guide the training process
of another lightweight model, known as student. In this way it
is possible to distill the knowledge encoded in the larger model
into a smaller and faster one. Also, note that compared to other
methods that aim at reducing the computational requirements
for a DL model, e.g., quantization or pruning, KD aims at in-
creasing the accuracy of an existing lightweight architecture.
This allows KD to be combined with virtually any of the exist-
ing methodologies for developing lightweight DL models and
further increasing their accuracy. In this way, it provides the
flexibility of choosing the exact size and architecture of the fi-
nal model that we want to deploy. The effectiveness of KD
critically relies on the employed teacher model. For example,
having a less capable teacher will lead to less knowledge being
available to be transferred to the student, potentially limiting its
accuracy. At the same time, it has also been shown that when
powerful teachers are used, the distillation efficiency can actu-



ally be reduced (Mirzadeh et al., 2019). More powerful teacher
models can typically generate more confident classification de-
cisions, leading to reduced diversity, thus explaining their ap-
parent failure to effectively distill their knowledge. Indeed, it
has been demonstrated that using less confident teachers can
improve distillation efficiency (Panagiotatos et al., 2019).

The question that naturally arises from the previous obser-
vation is whether it is possible to develop a powerful teacher,
which is, at the same time, capable of effectively transferring
its knowledge to a smaller student model, while maintaining its
ability to extract meaningful representations. The main contri-
bution of this work is to propose the specializing of multiple
teachers, each to a limited range of skills, in order to overcome
the aforementioned limitation. Even though each individual
teacher is confident in its own small set of skills, thus achieving
high accuracy at them, the ensemble’s diversity is achieved by
training them in different tasks. In this way, more meaningful
representations can be extracted. Note that for the purpose of
this paper, each skill corresponds to the ability to recognize one
category (class) of data. However, this is without loss of gene-
rality, since the proposed method can be also applied on other
domains, such as reinforcement learning (Teh et al., 2017).

The proposed method can be better understood by consider-
ing the following example. Training a powerful teacher to rec-
ognize a set of classes will probably lead to it confidently se-
lecting the correct class most of the time. However, it will
not be able to recognize similarities between the input object
and the rest of the classes, since it has been trained to sup-
press the rest of the outputs. Instead, consider an ensemble
of three teachers, each one trained in a disjoint set of classes.
The teacher that is responsible for recognizing the correct class
will again be confident in it. The other two, however, despite
being less confident, will still classify the input object, accord-
ing to their corresponding classes. In this way, the rest of the
teachers will provide their opinion regarding the similarities of
the input object to the classes for which they are responsible.
This approach effectively provides a way to extract meaningful
representations over the classes at hand, while at the same time
employing powerful teacher models. Indeed, as it is experimen-
tally demonstrated using three different image datasets, the pro-
posed method leads to improved distillation performance, even
when compared with powerful state-of-the-art ensemble-based
distillation methods.

The rest of this paper is organized as follows. First, Section 2
provides a brief overview of related distillation methods and
highlights the key differences between them and the proposed
method. Then, the latter is analytically derived and discussed
in Section 3, while the experimental evaluation is provided in
Section 4. Finally, conclusions are drawn and future work is
discussed in Section 5.

2. Related Work

There is a considerable amount of literature about KD, de-
scribing multiple ways in which it can be performed and dif-
ferent fields wherein it could be applied. As already described
in the previous Section, the main motivation for applying KD
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is to more effectively train a lightweight DL model. KD is al-
ways performed between two models, where the first one could
be either a single model or even an ensemble of models. In the
classical approach (Bucila et al., 2006), the method utilizes an
ensemble to label unlabeled data that are then used to train a
neural network, thus mimicking the function learned by the en-
semble and achieving similar accuracy. This process was then
extended in (Hinton et al., 2015), by introducing a tempera-
ture parameter in the probability estimation process, in order
to extract a more meaningful distribution over the classes for
the input samples. As in the classical approach, the extracted
distributions are used to train the student model. This seminal
approach, which is called “Knowledge Distillation”, inspired
many subsequent applications.

Indeed, KD has been used for many other purposes besides
model compression. Papernot et al. (2015) have discovered that
we can address security issues in DNNs by using the extracted
knowledge of a network in order to improve its own tolerance to
adversarial samples. Using KD can also significantly increase
the speed and effectiveness of a model’s pre-training process
(Tang et al., 2015), providing a good starting point at the op-
timization space for the student. Rusu et al. (2015) success-
fully transferred the policies learned by large Deep Q-learning
networks to smaller ones. More recent evidence (Chen et al.,
2017; Li et al., 2018) suggest that KD can also be effectively
applied for transferring the knowledge of object detection mo-
dels, used to learn from noisy samples (Li et al., 2017), improve
the performance of low-precision networks (Mishra and Marr,
2017), or even boost self-supervised learning, allowing us to
use different models for the pretext and the main task (Noroozi
et al., 2018). The large number of KD applications highlights
the importance of developing more efficient methods for trans-
ferring the knowledge from larger and more complex networks
to a smaller one, an area on which current approaches seem
to be adversely affected by the capacity gap between the mo-
dels (Mirzadeh et al., 2019).

Several efforts have been made to improve the efficiency of
KD. Romero et al. (2015) used the representations of interme-
diate layers of the learning networks as a hint, in order to assist
deep and thin students in the distillation process. Later, Zhang
et al. (2017) developed a new framework in which the student
learns a projection of the knowledge of a teacher’s intermedi-
ate layer, while being trained at the same time. Zagoruyko and
Komodakis (2016); Song et al. (2018) combined KD with the
attention methodology. Radosavovic et al. (2018) used distil-
lation, in order to transfer knowledge from data and not from
models in an omni-supervised learning task. In their analysis,
Yang et al. (2018) question the need for a more tolerant teacher,
instead of the most accurate one. They report that it is more im-
portant for a teacher to produce a smooth distribution over its
predictions and conclude that high accuracy with spiked distri-
bution of confidence is not that important, since the student can
be more easily over-fitted. Lan et al. (2018) proposed an on-
line distillation framework in which the teacher is being trained
and at the same time its knowledge is being distilled to the stu-
dent. Passalis and Tefas (2018) extended the applications of KD
to representation learning tasks through a Probabilistic Knowl-



edge Transfer (PKT) framework. Similarity embeddings (Pas-
salis and Tefas, 2019) were also proposed, which can lead to
more general, unsupervised KT and can have many applica-
tions, such as cross-domain data exploitation. Yuan et al. (2019)
suggested that we can remove the role of the teacher from the
KD process and develop a self-learning student. This study dif-
fers from the aforementioned ones in that it aims to improve the
method by focusing on the teacher, instead of focusing on dis-
tillation per se. It should be noted that most of these approaches
can be readily combined with the proposed one to further im-
prove distillation performance.

To the best of our knowledge, this is the first work which
employs an efficient unified ensemble of diversified, task-
specialized models in order to overcome the apparent ineffec-
tiveness of distillation, when powerful teachers are used. It is
worth noting that Hinton et al. (2015) mentioned in their work
that it is possible to create specialized teachers by utilizing
smaller datasets enriched with more samples from the classes
of their specialty, which also requires each teacher to be sepa-
rately trained. On the other hand, the proposed method employs
an efficient unified ensemble approach that allows for the one-
step training of the whole ensemble, without the need of indi-
vidual datasets. Also, Lan et al. (2018) developed a framework
which allows the simultaneous training of all the teachers in an
ensemble. However, teachers are unspecialized and trained to
predict all the classes, reducing the diversity of the models in
the ensemble, which limits the efficiency of KD, as also exper-
imentally demonstrated in Section 4.

3. Proposed Method

The proposed Unified Specialized Teachers Ensemble me-
thod, abbreviated as USTE, is presented in this Section. The
KD process is briefly introduced in the Background Subsection,
while the proposed method is analyzed in the following one. It
is worth noting that even though the proposed method has been
combined with the plain KD, most of the more advanced dis-
tillation approaches described in Section 2, can also be used,
potentially further increasing its effectiveness.

3.1. Background

KD was introduced as a model compression framework,
which eases the training of deep networks by following a
student-teacher paradigm, in which the student is trained ac-
cording to a softened version of the teacher’s output Hinton
et al. (2015). This suggests that the learned knowledge of a
teacher network is hidden in the soft probabilities of its pre-
dictions. Therefore, if we were to teach a student model the
way a teacher model “thinks”, it would be useful to try and im-
part these similarities among the classes for each sample and
not only the final predictions. In order to efficiently trans-
fer the knowledge encoded in the similarity among different
classes, Hinton et al. (2015) also introduced a temperature pa-
rameter 7 in the softmax activation. This enables us to tune the
fuzziness of class probability estimations, rendering the output
probability distribution less spiky.

More specifically, KD works as follows. Let {x;|i = 1,...,m}
be a set of m training samples with ¥ number of classes, while
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the notation N(-) € RY is used to refer to the teacher network
that extracts ¥ logits, one for each class. To simplify the no-
tation, /;; is used to refer to the j-th logit for the i-th training
sample. Then, the probability for the j-th class for the corre-
sponding sample is estimated as:

pii = exp(l;;/T) n
;MH_@%Q:S.

Higher temperatures will result in a softer probability distribu-
tion, while lower temperatures will result in a sharper probabi-
lity distribution. When tuned properly, temperature allows for
revealing the intra-class similarities for each sample.

The student model fw(-), where W refers to its trainable pa-
rameters, can be trained as follows. The soft student’s probabi-
lities g;; are calculated similarly to (1), while the notation $;; is
used to refer to the regular (7T = 1) student’s output. Then, the
distillation loss is defined by combining the regular cross en-
tropy loss with the aforementioned constraint of “mimicking”
the teacher’s behavior:

m ¥ m ¥
.@Sn|\~MM3\._om§|§|CMME_om?_, @

i=1 j=1 i=1 j=1

where y; is the one-hot encoded ground-truth vector for the i-
th training sample and A € [0, 1] is a user-defined parameter
that controls the importance of distillation in relation to normal
training for the student.

3.2. Unified Specialized Teachers Ensemble

The proposed method works by compiling an ensemble of
teacher models, as shown in Fig. 1. Each teacher is trained on
a subset of the available classes, allowing it to be highly speci-
alized. At the same time, they can still provide predictions for
input samples that belong to classes out of their specialization
field, diversifying the ensemble. Furthermore, instead of train-
ing each model separately, a unified one-step training procedure
is employed, significantly reducing the computational complex-
ity. As a result, this approach allows for the perspective of the
most certain model to prevail, while at the same time permitting
a multitude of opinions, leading to richer dark knowledge. The
dominant teacher is likely to be one of those whose specializa-
tion relates to the correct class and therefore enhances its spe-
cialization ability even more through the training process. As a
result, we believe that the distribution of the unified ensemble
will be more spiked for the controversial classes and may re-
quire a higher temperature to transfer knowledge optimally, as
experimentally demonstrated in Subsection 4.2.

Let {Ny} = {N1, N,,...,Np} be the set of D specialized tea-
chers. These teachers are trained on the whole training dataset
X1, -, X;, Where X; denotes the i-th training sample. Also, note
that ground truth annotations y;, which are one-hot-encoded
vectors, also exist for each training sample x;, as explained
in the previous Subsection. The output of the k-th specia-
lized teacher is denoted by mmv, after passing through a softmax
function. Applying the softmax function individually for each
model is essential to ensure that their output is normalized prior
to the final aggregation. Furthermore, note that the output can
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Fig. 1. Unified Specialized Teachers Ensemble structure: The teacher models become separate branches of a large unified network. The large network
receives the data as an input and distributes them in every teacher Nix. Subsequently, each teacher Ny predicts the classes of its specialization field, along
with an extra bucket class, which represents every other choice, unrelated to its specialization field. The softmax activation function is then applied over
each teacher’s output in order to produce the normalized probabilities p;. At this point, the probabilities of the identical classes which have been chosen to
be overlapped, are averaged. Finally, the distinct probabilities are aggregated in order to extract the final output distribution of USTE.
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Fig. 2. An individual teacher model. Note that an extra neuron is used,
apart from those utilized for the r classes the model predicts. This “bucket”
neuron facilitates the effective training of the models with classes that do
not belong in their specialization, i.e., the remaining ¥ — r classes.

be softened using the appropriate value for the temperature as
described in (1), if needed.

Each specialized teacher predicts a subset of r = [KWY/D]
classes. The parameter K is called overlapping factor and con-
trols how many times each class will be predicted by a different
teacher N;. The number of times a class is predicted can be
calculated as: K = Dr/W, assuming that K'Y mod D = 0. In
order to ensure that no two models are specialized in the same
classes, they are distributed cyclically over the ensemble. Note
that K should be set to an appropriate value so that models do
not predict all the available classes, i.e., K < D. Furthermore,
K should be large enough to ensure that models will not predict
one single class, i.e., K > [D/Y]. Finally, ¥ sets denoted with
{Q®G)|i = 1,...,¥} are created, one for each class, and contain
K € [1, D] c Nindexes that indicate which teachers participate
in the prediction of class i. For example, Q(2) = {1,4,5} sym-
bolizes that the 1-st, the 4-th and the 5-th teachers all predict
class 2.

Each teacher is also equipped with an extra “bucket” neuron
that is responsible for gathering the predictions of the rest ¥ —r
classes, as shown in Fig. 2. This bucket neuron can be used to
train each teacher with data that belong to classes out of its ex-

pertise. Another advantage of this method is that we can train
all the teachers simultaneously by feed-forwarding and back-
propagating only one time through the resulting unified archi-
tecture. More specifically, the final output of the model is calcu-
lated by averaging the K values for each class, as predicted by
the individual models. Therefore, the final ensemble’s proba-
bility estimation for the j-th class and i-th sample is calculated

as: (@) T)
exp(a;;
Pij = _«|\ 3)
2o explai/T)
where {
— (k)
aij =5 M Pijo “
1€Q(j)
and Q(j) denotes the set of teachers that predict the j-th class.
Note that h@ refers to the neuron of the k-th teacher that pre-

dicts the k.-mm class. As with regular distillation, appropriately
tuning the temperature for the ensemble’s output is crucial to
ensure that the output distribution will not be overly spiked,
which can negatively impact the distillation efficiency.

The teacher ensemble model is then directly trained in a uni-
fied, one-step fashion to minimize the regular cross-entropy
loss:

hNH

Mo

¥
M yijlog i), )
i j=1
where §;; refers to the output of the teacher ensemble with
T = 1. Note that the whole ensemble can be directly trained,
since only one forward and backward pass is required to update
the parameters of all the employed models. On the other hand,
the student model is trained to minimize the combined distil-
lation loss L, as described in (2), where the teacher ensemble
model is used to provide the training targets. The Adam algo-
rithm Kingma and Ba (2014), with the default training hyper-
parameters, is used for the optimization in this paper. Note that



the loss £, is minimized by updating the parameters of the tea-
chers, while the loss £ is minimized by updating the parame-
ters of the student.

4. Experimental Evaluation

First, the datasets used for evaluating the proposed method
are briefly introduced, along with the employed network ar-
chitectures. Next, the evaluation results are provided and dis-
cussed.

4.1. Datasets and Evaluation Setup

The proposed method was evaluated using three different da-
tasets: CIFAR-10, CIFAR-100 Krizhevsky (2012) and Fashion-
MNIST Xiao et al. (2017). A tuning phase was performed
for setting the hyper-parameters described below, in which the
methods depend on, to ensure that the best performance was
achieved.

The CIFAR-10 dataset consists of 60,000 10-class images,
32 x 32 in size and is divided into 50,000 training data and
10,000 test data. Five teachers that consist of three blocks
are used. Each block is composed of two convolutional lay-
ers with the same number of filters, which are doubled on each
consecutive block (32/64/128 filters). The convolutional layers
are followed by a max pooling and among them, batch nor-
malization is used. After every block, a dropout layer is used,
with an incremented probability of turning a neuron off each
time, which does not exceed 50%. All the convolutional layers
are being /, regularized. In order to introduce some diversity
among the teachers, we use a ReLU activation function in two
models and eLU in the rest of them Clevert et al. (2015), while
at the same time we fluctuate the weight decay (ranging from
le—4to le—7) that is used for the /, regularization. The student
that is used, consists of two blocks and was built following the
same methodology.

The CIFAR-100 dataset consists of 60, 000 100-class images,
32 x 32 in size and is divided into 50,000 training data and
10,000 test data. For the CIFAR-100, the same architectures
were used after adding one additional block (with 256 filters).
Finally, the Fashion-MNIST dataset consists of 60, 000 10-class
images, 28 X 28 in size and is divided into 60, 000 training data
and 10, 000 test data. For the experiments conducted with the
Fashion MNIST dataset, the same architecture with the CIFAR-
10 teachers/students was used, but only one convolutional layer
was kept per block. All the models were trained for 150 epochs
using a learning rate of le — 4, which was scheduled to be re-
duced, multiplying it by 0.4 for each 8 consecutive epochs that
showed no improvement in the 3-rd decimal place and a mini-
mum possible value of 5¢ — 6. A mini-batch of 64 samples was
used for all the conducted experiments.

The baseline accuracy among the different trained models is
reported in Table 1. Note that apart from the accuracy of the
individual models, the ensemble accuracy is also reported. The
student was also trained normally, using the same hyperparam-
eters with the teachers, in order to compare the results with that
of KD. In order to transfer the knowledge, a temperature T = 6
was used and a 4 = 0.9 for CIFAR-10, 7 = 2 and 1 = 0.6
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for CIFAR-100, T = 8 and A = 0.6 for Fashion-MNIST. The
knowledge was transferred for 150 epochs, with a learning rate
of 1e — 3, which was scheduled to be halved, for each 8 consec-
utive epochs that showed no improvement in the 3-rd decimal
point and a minimum possible value of 1e — 8. A mini-batch of
64 samples was used.

The proposed method was also compared to four other ap-
proaches:

1. “Best Teacher”: Five individual teacher models were
trained and the best of them was used to perform regular
KD to the student model.

2. “Ensemble”: The knowledge contained in an ensemble of
five teachers was directly transferred to the student model
using KD, after averaging their output predictions.

3. “Unified Ensemble”: The approach proposed in (Lan
et al., 2018), was employed to train a unified ensemble
with unspecialized teachers and then the knowledge was
transferred from this ensemble to the student model.

4. “Specialized Ensemble” (“Special. Ensemble”): Train-
ing individual specialized models using the proposed class
distribution approach (but without using a unified model
structure).

For the proposed method we used D = 5 teachers, while the
replication factor was set to K = 2. To ensure a fair comparison
between the evaluated methods, the same student network was
used for all the conducted experiments with the same dataset.

4.2. Experimental Results

The evaluation results using the CIFAR-10 dataset are re-
ported in Table 2 from which several conclusions can be drawn.
First, note that using plain distillation (“Best Teacher”) indeed
improves the accuracy of the student, increasing it to 84.28%
from 82.19% (baseline student). Using the ensemble of the
different teachers further increases the classification accuracy
to 84.90%. Quite interestingly, employing a unified ensemble,
apart from faster training, allows to also slightly increase the ef-
fectiveness of the distillation process. We hypothesize that this
happens due to the implicit diversification that emerges through
the training process. That is, in the unified ensemble, a few con-
fident models are enough to correctly classify an input sample,
allowing for an implicit specialization to emerge among dif-
ferent models. Moreover, when this specialization is induced
explicitly, through the specialized ensemble, accuracy further
improves. Finally, the best results are acquired when the pro-
posed USTE approach is employed, outperforming plain distil-
lation by about 2% and unified ensemble approach by about 1%
(relative increase).

Furthermore, we conducted additional experiments to eval-
uate the effect of the different ensembling strategies that were
employed. The experimental results are reported in Table 3.
For these experiments we used 100 images of the CIFAR-10
dataset and averaged the inference time for the different mo-
dels. An interesting observation is the fact that the proposed
USTE method is as fast as the other methods even though it



Table 1. Evaluating the accuracy of different teachers, student and ensembling approaches

Dataset Method Student : Teacher 1  Teacher 2 Teacher3 Teacher4  Teacher 5 Ensemble  Unified Ensemble
CIFAR-10 82.19 84.17 84.45 83.72 85.65 85.63 87.10 84.47
CIFAR-100 61.57 59.43 60.44 58.28 60.54 63.14 64.36 59.26
Fashion-MNIST 88.49 92.08 92.33 92.42 92.02 92.10 92.99 92.89
Baseline T=3 VS T=8 USTE T=3VS T=8
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Fig. 3. Effect of raising the temperature with Baseline and USTE in Fashion-MNIST

Table 2. Comparison between different distillation approaches on three dif-
ferent datasets

Method CIFAR-10 | CIFAR-100 | Fashion MNIST
Best Teacher 84.28% 64.61% 91.26%
Ensemble 84.90% 65.70% 91.75%
Unified Ensemble 85.03% 66.41% 92.00%
Special. Ensemble 85.43% 66.73% 92.70%
USTE 85.90% 67.14% 93.07 %

can lead to more accurate models. This phenomenon can be ex-
plained, since the number of parameters remains the same and
the main difference is the way that the weights are distributed
to different submodels. It is also worth noting that the accu-
racy achieved by the employed architecture is lower than the
state-of-the-art models (Huang et al., 2017). However, these
more complicated models are difficult to deploy in most mobile
and embedded architectures, e.g., NVIDIA Jetson-based pro-
cessors, especially when multiple DL models must be executed
in parallel and there are requirements for real-time and high
resolution inference (Tzelepi and Tefas, 2020). In these cases,
that often occur in real deployments, the proposed method can
provide significant performance benefits compared to the rest
of the evaluated distillation strategies.

Similar conclusions can be drawn for the other two datasets
(CIFAR-100 and Fashion MNIST). For example, USTE im-
proves the accuracy by 2.8% over plain distillation and about
1% over unified ensemble approach for CIFAR-100 dataset.
These results once again confirm that a diversified and specia-
lized teachers’ ensemble helps to transfer knowledge better and

Table 3. Inference time evaluation between different ensembling methods

Method 7 Inference Time
Ensemble 0.036s
Unified Ensemble 0.035s
Specialized Ensemble 0.032s
Proposed (USTE) 0.032s

that unified training leads to better results than training the mo-
dels individually. It is worth noting that, the results of Table 1,
also confirm the hypotheses reported in (Yang et al., 2018), i.e.,
that classification accuracy is not the major goal of the teacher
network when used for KD. Indeed, they report in their work
that “.. although this harms the accuracy of the teacher net-
work, it indeed provides more room for the student network(s),
and eventually, the students are better than those educated by
a strict teacher.”. The proposed method builds upon these ob-
servations, providing efficient and diversified teachers that are
better suited for the task of KD.

Another question that arises is the effect of the number of tea-
chers used to transfer the knowledge to the performance of the
employed method. Therefore, we ran the same experiments us-
ing 3 and 7 teachers. The experimental results for three different
datasets and numbers of teachers are reported in Table 4. The
number of teachers used can have a crucial role in the perfor-
mance of all the evaluated methods. Increasing the number of
teachers indeed increases the effectiveness of knowledge trans-
fer. However, after a certain point, e.g., around 5 teachers, the



