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Abstract

In this paper, we propose regularized lightweight deep convolutional neural net-

work models, capable of effectively operating in real-time on-drone for high-

resolution video input. Furthermore, we study the impact of hinge loss against

the cross entropy loss on the classification performance, mainly in binary classifi-

cation problems. Finally, we propose a novel regularization method motivated by

the Quadratic Mutual Information, in order to improve the generalization ability

of the utilized models. Extensive experiments on various binary classification

problems involved in autonomous systems are performed, indicating the effec-

tiveness of the proposed models. The experimental evaluation on four datasets

indicates that hinge loss is the optimal choice for binary classification problems,

considering lightweight deep models. Finally, the effectiveness of the proposed

regularizer in enhancing the generalization ability of the proposed models is also

validated.
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1. Introduction

Deep learning algorithms, [1, 2], and principally the deep Convolutional Neural

Networks (CNN), [3], have been established among the most effective research di-

rections in a wide range of computer vision tasks, [4], accomplishing outstanding

performance over previous shallow models. More specifically, deep CNNs have5

been successfully applied in image classification [5, 6], object detection [7, 8, 9]

and retrieval [10, 11, 12], visual tracking [13, 14], video captioning [15], and pose

estimation [16]. Deep CNNs owe their success to the availability of large anno-

tated datasets, and the Graphics Processing Units (GPUs) computational power

and affordability. Furthermore, apart from developing successful deep models10

towards the aforementioned computer vision tasks, another research direction

that flourishes during the recent few years while more efficient solutions are still

striving to emerge, is the development of lightweight models capable of operating

on devices with restricted computational resources such as mobile phones and

embedded systems, [17, 18].15

During the recent years, we have witnessed the successful introduction of

Unmanned Aerial Vehicles (UAV), widely known as drones, in the media and

entertainment industry. Drones have been applied in a wide spectrum of applica-

tions, ranging from entertainment to visual surveillance, rescue within the context

of natural disasters [19], and medical emergencies [20], while previous practices20

in media production are gradually displaced due to their capability of capturing

impressive aerial shots or shots of even inaccessible places. A major issue linked

with the rise of drones is the demand for developing models for various computer

vision tasks, able of both addressing the additional challenges of drone-captured

images (such as small object size, unconstrained pose variations, occlusion), and25

running on-drone, that is with restricted processing power.

Thus, in this work, we propose regularized lightweight deep CNN models for

various classification problems involved in autonomous systems, and more specif-

ically, we consider binary classification problems in the context of media coverage

of certain sport events (i.e. football match, bicycle race) by drones, allowing real-30
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time deployment for high resolution images. Furthermore, a key issue related to

drone usage and autonomy is the demand for increased safety, since a drone may

operate in vicinity of human crowds, and is potentially exposed to environmental

hazards or unforeseeable errors that render their emergency landing inevitable.

Hence, we also propose lightweight CNN models for crowd detection towards35

crowd avoidance. Finally, since face detection constitutes a primary step towards

recognition of a specific bicyclist, or football player, we also deal with face detec-

tion. Summarizing, in this work we train CNN models for bicycle, crowd, face,

football player detection in the context of media coverage of certain sport events

by drones. Our goal is to produce semantic heatmaps [21] by e.g. predicting for40

each location within the captured high-resolution scene the crowd presence. That

is, models with input of size either 32× 32× 3 or 64× 64× 3 which correspond to

the width, height, and number of color channels of the input image, are trained.

Then, test images are propagated to the network, and for every window 32 × 32

or 64 × 64 respectively the output of the network at the last convolutional layer45

is computed. An example of a crowd heatmap is provided in Fig. 1. Furthermore,

the above procedure is useful in the camera control problem, [22]. That is, the

semantic heatmaps for each of the aforementioned classification problems, aim

to aid the algorithm for controlling the drone’s camera for cinematography tasks

by sending error signals. We should emphasize that the capability of handling50

high resolution images is extremely important for the application, since objects

of interest in drone-captured images are of extremely small size, and thus image

resizing, which is used by almost all of the state-of-the-art visual content analy-

sis models (e.g. YOLO [9], SSD [8], etc.), would further shrink the object’s size,

rendering the detection impossible.55

Subsequently, since we deal with lightweight models which usually perform

worse than the more complex models, we aim at enhancing their performance.

Thus, one objective of this paper, is to extensively study the impact of hinge

loss against the cross entropy loss on the classification performance of binary

classification problems. Additionally, we also perform experiments on multi-class60

datasets.
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Figure 1: Crowded image and the corresponding predicted heatmap of crowd presence.

Finally, the third objective of this work is to propose a novel regularization

method in order to reduce overfitting and improve the generalization ability of the

utilized models. This is of considerable importance, in general, in deep learning,

since neural networks are prone to overfitting due to their high capacity. In this65

work, we propose the so-called Mutual Information (MI) regularizer. The proposed

regularizer is inspired by the Quadratic Mutual Information (QMI) measure [23],

which is a variant of the commonly used Mutual Information, an information-

theoretic measure of dependence between random variables. That is, apart from

the classification loss, we propose to attach an additional optimization criterion70

based on the QMI. Recently, QMI reformulated to produce a kernel dimensionality

reduction method under the Graph Embedding framework [24], while in [25] a

Probabilistic Knowledge Transfer method proposed exploiting the QMI. We should

note that the proposed regularization method is generic and can be applied in

several deep learning architectures for classification purposes.75

Over the past years, several regularization schemes have been proposed in

order to improve weak generalization ability in neural networks, extended from

common regularization methods, like the standard L1/L2 regularization which

penalize large weights during the network optimization, to Dropout [26] where

for each training sample, a randomly selected subset of the activations is set80

to zero in each epoch, and Dropconncet [27] that is a generalization of Dropout

which instead of activations, sets a randomly selected subset of weights within the

network to zero. Other earlier approaches include weight elimination, [28], and

Bayesian methods, [29]. From another angle of view, multitask-learning [30] has
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been employed as a way of enhancing the generalization ability of a model. For85

instance, techniques developed in semi-supervised learning were introduced in the

deep learning domain, in [31] . That is, an unsupervised regularizer is combined

with a supervised learner to perform semi-supervised learning. Furthermore, a

novel CNN architecture with a SVM classifier at every hidden layer is proposed

in [32]. This companion objective acts as a kind of feature regularization.90

Summing up, the objective of this paper is to develop lightweight models for

various classification tasks able to run in real time on-drone. We explore ways to

enhance the classification performance of the lightweight models, first by investi-

gating the effect of two widely used classification losses, that is the cross entropy

and hinge losses, on the classification performance, and second by proposing a95

novel regularizer motivated by the QMI criterion.

The main contribution of this work can be summarized as follows:

• We propose regularized lightweight deep CNN models for various classifi-

cation problems, capable of running in real-time on-drone.100

• We empirically study the impact of hinge loss against cross entropy loss in

binary classification problems and we argue that the hinge loss is better for

binary classification problems.

• We propose a novel regularizer based on the QMI criterion in order to

enhance the generalization ability of the utilized models.105

The remainder of the manuscript is structured as follows. The utilized CNN

architectures are described in Section 2. Section 3 presents the two compared loss

functions. Subsequently, the proposed MI regularizer is presented in Section 4.

The experiments, including the datasets description, the implementation details

and the experimental results, are provided in Section 5. Finally, the conclusions110

are drawn in Section 6.
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2. Lightweight CNN Models

In this Section, we provide the descriptions of the utilized architectures. A

principal target of the utilized architectures is to permit real-time (that is about

25 frames per second) deployment on-drone for high resolution images. We115

should emphasize that it is critical for the application to handle high resolution

images, since objects in drone-captured images are of extremely small size, and

thus image resizing in order to meet real-time deployment limits, would further

shrink the object of interest, rendering the detection impossible. Fig. 3 highlights

the demand for high resolution images. That is, an aerial image that contains120

bicycles (bicycles with bicyclists) is provided, Fig. 3a, and the resulting heatmaps

for input of various resolutions, i.e. 320×240, 480×360, 640×480, 1280×720,

and 1920×1080, utilizing a proposed model, Figs. 3d-3h. As it shown, as the

resolution increases, better performance can be accomplished. Furthermore, in

Figs. 3b and 3c, the predictions for the same input, are provided, utilizing two125

state-of-the-art detectors which have been trained to detect among other classes,

also persons and bicycles, that is YOLO v.2 [9] and Faster R-CNN [7], which

operate for input 608 × 608 and 1000 × 600 respectively. As it is shown, both

the state-of-the-art detectors perform poorly, while they also operate at much less

than real-time, as it is shown below. It is also noteworthy, that SSD [8] and SSD130

with MobileNets [17], which operate for input 300 × 300, as well as for input 512

× 512, fail to detect any bicycle.

Thus, we utilize two architectures consisting of only five convolutional layers,

by discarding the deepest layers and pruning filters of the widely used VGG-

16 model [6]. That is, the first four convolutional layers of the VGG-16 model135

are used with pruned filters, while the last convolutional layer consists of two

channels, each for a class, since we deal with binary classification problems. The

first model can run in real-time on-drone for 720p (1280×720) resolution image

and the second one can run in real-time for 1080p (1920×1080) resolution image.

Thus, the models are abbreviated as VGG-720p and VGG-1080p, respectively,140

based on this attribute. Details on kernel sizes and channels of each layer of the
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two architectures can be found in Table 1 and Table 2. The above descriptions

of models concern input of training images of size 32 × 32. For input of size

64 × 64, using same kernels and channels, we use appropriate stride and pooling

to achieve real-time deployment. Details on the utilized model architectures for145

both 32 × 32 and 64 × 64 input dimensions are depicted in Fig. 2.

The performance is evaluated on a low-power NVIDIA Jetson TX2 module

with 8GB of memory, which is a state of the art GPU used for on-board drone

perception. Furthermore, in order to accelerate the deployment speed and achieve

real-time deployment, the TensorRT1, deep learning inference optimizer is utilized.150

TensorRT is a library that optimizes deep learning models providing FP32 (default)

and FP16 optimizations for production deployments of various applications. In

Table 3, the detection speed in terms of frames per second (fps) is provided for

the two architectures and their corresponding image resolution on the NVIDIA

Jetson TX2 module without the utilization of the TensorRT optimizer, with the155

TensorRT on the default mode, as well as with TensorRT on the FP16 mode. As

it shown, TensorRT and in particular the FP16 mode significantly accelerates the

proposed models, achieving detection in-real time for high-resolution images.

Note that state-of-the-art detectors run at notably fewer fps on Jetson TX2,

and also for lower resolution input images. For example, SSD [8] runs at 6 fps,160

for input of size 300 × 300, SSD with MobileNets [17] runs at 12.4 fps for the

same input, and the Faster R-CNN [7] runs at 0.9 fps. Finally, YOLO v.2 [9]

runs at 10 fps for input of size 308 × 308, while it runs at 3.1 fps for input of

size 604 × 604 on the Jetson TX2 module. For fair comparisons, we also test the

performance of YOLO v.2 utilizing TensorRT, as we have observed and it is also165

reported in literature [33, 34] that YOLO is faster than SSD and Faster-RCNN.

Thus, utilizing the TensorRT optimizer YOLO v.2 runs at 7.8 fps for input of size

604 × 604, while further speed up is achieved with the FP16 mode up to 14.4 fps.

It is noteworthy that state-of-the-art detectors like YOLO, can not achieve real-

time detection on Jetson TX2, even utilizing the TensorRT optimizer, and also for170

1https://developer.nvidia.com/tensorrt
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Figure 2: Model architectures: The VGG-720p model is depicted in the upper part of the figure, while

the VGG-1080p model is depicted in the lower part of the figure. Details for input of size 32×32 are

printed in red for both the model architectures, while details for input of size 64×64 are printed in

blue.

considerably lower input resolution. Counterwise, the proposed models allow for

real-time deployment utilizing TensorRT even for input resolution 1080p.

3. Hinge Loss Versus Cross Entropy Loss

Cross entropy loss and hinge loss functions are probably the most widely

used loss functions in pattern classification. Support Vector Machines (SVM),175

[35], which use the hinge loss, constitute up to the present time a vivid research

field [36, 37]. SVMs, which are inherently binary classifiers, seek for the optimal

hyperplane which distinctly classifies the data samples, that is the hyperplane

which maximizes the margin between the two classes. Considering multi-class

classification problems several works have been proposed for formulating the180

SVM over multiple classes [38, 39, 40]. Amongst them, the earliest one and

probably the most common technique is the one-against-all (or one-against-rest),

which builds Nc one-against-all SVM models where Nc is the number of classes.
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(a) Test image

(b) YOLO v.2 Prediction for input of size 604×604

(c) Faster R-CNN Prediction for input of size 1000×600
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(d) Resulting heatmap for input of size 320×240, utilizing the proposed VGG-1080p model

(e) Resulting heatmap for input of size 480×360, utilizing the proposed VGG-1080p model

(f) Resulting heatmap for input of size 640×480, utilizing the proposed VGG-1080p model
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(g) Resulting heatmap for input of size 1280×720, utilizing the proposed VGG-1080p model

(h) Resulting heatmap for input of size 1920×1080, utilizing the proposed VGG-1080p model

Figure 3: An aerial high resolution image containing bicycles (3a), predictions utilizing the YOLO

v2 and the Faster R-CNN detectors (3b)-(3c), and the resulting heatmaps for various deployment

resolutions utilizing the proposed VGG-1080p model trained for bicycle detection (3d)-(3h).
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Layer Kernel Channels

conv1_1 3 × 3 16

conv1_2 3 × 3 16

conv2_1 3 × 3 24

conv2_2 3 × 3 16

conv_last 8 × 8 2

Table 1: VGG-720p

Layer Kernel Channels

conv1_1 3 × 3 8

conv1_2 3 × 3 8

conv2_1 3 × 3 6

conv2_2 3 × 3 6

conv_last 8 × 8 2

Table 2: VGG-1080p

input Model Jetson TX2 TensorRT-FP32 TensorRT-FP16

32×32 VGG-720p 10.1 18.1 26.3

32×32 VGG-1080p 12.3 16.9 25.7

64×64 VGG-720p 8.7 16.6 25

64×64 VGG-1080p 8.8 18.5 25.6

Table 3: Speed (fps)

For a set of N input images X = {Xi, i = 1, . . . ,N} we consider the corre-

sponding scores with respect to each class, ylast
i ∈ <Nc×1. In the typical case the185

classification layer is implemented using a fully connected layer - with number

of nodes equal to the number of classes - and the output is fed to the loss layer.

In our case, since the objective is to develop lightweight models, and hence we

propose fully convolutional architectures, instead of a fully connected layer, there

is a convolutional layer with number of channels equal to the number of classes190

and kernel with receptive field equal to the whole input volume.

Then, the hinge loss is defined as:

Lhinge =
1
N

N∑
i=1

Nc∑
j=1

max
(
0, 1 − δ{ci = j} ylast

i, j

)
, (1)

where ci ∈ [1, . . . ,Nc] indicates the correct class among the Nc classes, ylast
i, j indi-
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cates the score with respect to the j-th class for the i-th image, and

δ{condition} =

 1 , if condition

−1 , otherwise

In this work, we deal with binary classification problems. That is, Nc = 2.

Cross entropy loss or softmax classifier, is extensively used in deep learning

architectures [5, 6, 41], providing an intuitive output of normalized class proba-195

bilities. Instead of computing scores for each class, like the SVM classifer, the

softmax classifier computes the scores for each class, and then applies the soft-

max function [42] to transform them to a vector of values between zero and one

that sum to one, in order to be interpreted as class probabilities. Finally, the

classification process is realized using the cross entropy loss function.200

The cross entropy loss is defined as:

Lcross_entropy = −
1
N

N∑
i=1

Nc∑
j=1

li, jlog(pi, j), (2)

where Nc is the number of classes, li, j ∈ {0, 1} is a binary indicator that takes the

value 1 if the the sample i belongs to class j , and pi, j is the predicted softmax

probability the sample i to belong to class j. For a two-class classification problem

the cross entropy loss can be calculated as:205

Lcross_entropy_binary = −
1
N

N∑
i=1

(
lilog(pi) + (1 − li)log(1 − pi)

)
(3)

To the best of our knowledge, there is no other previous work extensively

investigating the impact of hinge loss against cross entropy loss on the classifica-

tion accuracy, with special emphasis to binary classification problems. Surveying

the relevant literature, we observe that the cross entropy loss is widely used in

deep CNNs for dealing with multi-class classification problems [5, 6, 41].210

On the other hand, in [43] the author first proposes to replace the softmax loss

layer (i.e. cross entropy loss), with a linear SVM layer. Particularly, the L2-SVM

objective [44] is utilized instead of the standard hinge loss. Experimental results

on MNIST-10 and CIFAR-10 datasets show that for some deep neural models, the

linear SVM layer is beneficial over the softmax loss one.215
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In [45] the authors provide comparisons among various classification losses,

including the cross entropy and hinge losses, for multi-class classification prob-

lems. The authors conclude that depending on the application of the deep model,

losses other than cross entropy loss are preferable. Subsequently, in [32], which is

a work with a different goal where a new CNN architecture with a SVM classifier220

at each hidden layer is proposed, we also observe that a CNN with SVM loss

layer outperforms the CNN with softmax loss layer in the MNIST-10 dataset.

Finally, studying the work presented in [46], and particularly in the Feature

Analysis section where an analysis of the discriminative information of each

layer is provided, apart from the stated observations on the importance of the225

model’s depth, some potentially interesting remarks arise. That is, we first observe

that in a dataset with comparatively few classes the SVM classifier outperforms

the softmax classifier, while in a similar dataset with much more classes, the

softmax classifier performs better. Furthermore, we see that in the first dataset

of fewer classes, the difference between the SVM classifier over the softmax is230

notably bigger in the less deep layer. Thus, this also enhances our motivation to

investigate the efficiency of hinge loss as compared to the cross entropy loss, since

a major objective of this work is to provide lightweight models with improved

performance.

In order to obtain real-time performance someone has to severely decrease235

the number of layers and the number of filters. Thus, the resulting lightweight

models are weaker than the heavier ones in terms of performance. In order to

improve their performance we should exploit the available losses and possible

regularizers that fit better to the specific tasks, which is binary classification with

limited computational resources.240

4. The Proposed MI Regularizer

In this paper, we propose a novel regularizer motivated by the Quadratic Mu-

tual Information [23]. Apart from the classification loss, we propose a regulariza-

tion loss derived from the so-called information potentials of the QMI. Thus, in
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this Section, we first introduce the Mutual Information and its quadratic variant,245

and then we present the proposed MI regularizer.

We assume a random variable Y representing the image representations of

the feature space generated by a specific deep neural layer. We also assume

a discrete-value variable C that represents the class labels. For each feature

represenation y there is a class label c. The MI measures dependence between250

random variables, first introduced by Shannon, [47]. That is, the MI measures

how much the uncertainty for the class label c is reduced by observing the feature

vector y. Let p(c) be the probability of observing the class label c, and p(y, c) the

probability density function of the corresponding joint distribution.

The MI between the two random variables is defined as:255

MI(Y,C) =
∑

c

∫
y

p(y, c) log
p(y, c)

p(y)P(c)
dy, (4)

where P(c) =
∫

y p(y, c)dy. MI can also be interpreted as a Kullback-Leibler diver-

gence between the joint probability density p(y, c) and the product of marginal

probabilities p(y) and P(c).

QMI is derived by replacing the Kullback-Leibler divergence by the quadratic260

divergence measure [23]. That is:

QMI(Y,C) =
∑

c

∫
y

(
p(y, c) − p(y)P(c)

)2dy. (5)

And thus, by expanding eq. (5) we arrive at the following equation:

QMI(Y,C) =
∑

c

∫
y

p(y, c)2dy+
∑

c

∫
y

p(y)2P(c)2dy−2
∑

c

∫
y

p(y, c)p(y)P(c)dy. (6)

The quantities appearing in eq. (6), are called information potentials and they

are defined as follows: VIN =
∑

c

∫
y p(y, c)2dy, VALL =

∑
c

∫
y p(y)2P(c)2dy, VBTW =∑

c

∫
y p(y, c)p(y)P(c)dy, and thus, the quadratic mutual information between the265

data samples and the corresponding class labels can be expressed as follows in

terms of the information potentials:

QMI = VIN + VALL − 2VBTW . (7)
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If we assume that there are Nc different classes, each of them consisting of Jp

samples, the class prior probability for the cp class is given as: P(cp) = Jp

N , where

N corresponds to the total number of samples. Kernel Density Estimation [48] can270

be used to estimate the joint density probability: p(y, cp) = 1
N

∑Jp

j=1 K(y, yp j;σ2),

for a symmetric kernel K, with width σ, where we use the notation yp j to refer

to the j-th sample of the p-th class, as well as the probability density of Y as

p(y) =
∑Jp

p=1 p(y, cp) = 1
N

∑N
j=1 K(y, y j;σ2).

Thus, eq. (7) is formulated as follows:275

VIN =
1

N2

Nc∑
p=1

Jp∑
k=1

Jp∑
l=1

K(ypk, ypl; 2σ2), (8)

VALL =
1

N2

( Nc∑
p=1

( Jp

N
)2) N∑

k=1

N∑
l=1

K(yk, yl; 2σ2), (9)

VBTW =
1

N2

Nc∑
p=1

Jp

N

Jp∑
j=1

N∑
k=1

K(yp j, yk; 2σ2). (10)

The kernel function K(yi, y j;σ2) expresses the similarity between two samples

i and j. There are several choices for the kernel function, [48]. For example,

in [23] the Gaussian kernel is used, while in [25] the authors utilize a cosine

similarity based kernel to avoid defining the width, in order to ensure that a

meaningful probability estimation is obtained, since finetuning the width of the280

kernel is not a straightforward task, [49]. In our experiments, we use as kernel

metric a Euclidean based similarity, which also absolves us from defining the

width of the kernel. Given two vectors yi, y j, the Gaussian kernel is defined as:

KG = exp
(
−
||yi − y j||

2
2

σ

)
. (11)

And the Euclidean-based similarity is defined as:

KED =
1

1 + ||yi − y j||
2
2
. (12)

The pairwise interactions described above between the samples can be inter-285

preted as follows:
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• VIN expresses the interactions between pairs of samples inside each class

• VALL expresses the interactions between all pairs of samples, regardless of

the class membership

• VBTW expresses the interactions between samples of each class against all290

other samples

Thus, motivated by the QMI, in this work we propose a novel regularizer

in order to enhance the generalization ability of a deep model. That is, apart

from the optimization criterion defined by the hinge loss function which aims at

separating the samples belonging to different classes, we propose an additional295

optimization criterion utilizing the information potential defined in eq. (7). We

assume that the hinge loss preserves the VBTW information potential which aims to

separate samples belonging to different classes. Then, our objective is to maximize

pairwise interactions between the samples described by the VIN + VALL quantities.

The derived joint optimization criterion defines an additional loss function, which300

is attached to the penultimate convolutional layer (that is the last convolutional

layer, before the one utilized for the classification task) and acts as regularizer to

the main classification objective.

LMI = −(VIN + VALL), (13)

where:

VIN =
1

N2

Nc∑
p=1

Jp∑
k=1

Jp∑
l=1

KED(ypk, ypl), (14)

and305

VALL =
1

N2

( Nc∑
p=1

( Jp

N
)2) N∑

k=1

N∑
l=1

KED(yk, yl). (15)

Considering binary classification problems the above optimization criteria can

be formulated as follows:

VIN =
1

N2

J1∑
k=1

J1∑
l=1

KED(y1k, y1l) +
1

N2

J2∑
k=1

J2∑
l=1

KED(y2k, y2l), (16)
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and

VALL =
1

N2

( J2
1 + J2

2

N2

) N∑
k=1

N∑
l=1

KED(yk, yl), (17)

The total loss for the network training is defined as:310

Ltotal = LHinge + ηLMI , (18)

where the parameter η ∈ [0, 1] controls the relative importance of LMI . We solve

the above optimization problem using gradient descent. We should note that the

proposed regularizer can be applied for the whole dataset, as well as in terms

of mini-batch training. In our experiments we utilize the mini-batch mode. We

should finally note that in the regularized training we utilize the hinge loss layer315

since, as we show, it performs steadily better than the cross entropy one in binary

classification problems, however the cross entropy loss could also be utilized.

5. Experiments

In this Section, we present the experiments conducted in order to evaluate

the impact of hinge loss against cross entropy loss in the classification perfor-320

mance, as well as the effectiveness of the proposed regularizer in improving the

classification performance. To this aim, we first performed experiments on six

datasets, four two-class datasets constructed for various classification problems

involved in the context of media coverage of specific sport events by drones, and

two multiple-class datasets. Subsequently, in order to evaluate the performance325

of the MI regularizer, we performed experiments on the aforementioned two-class

datasets. The descriptions of the utilized datasets are presented in the follow-

ing subsections. Two post-hoc Bonferroni tests conducted in order to evaluate

the statistical significance of the obtained results. Finally, qualitative results are

provided utilizing real world drone images for evaluating the performance of the330

proposed models trained with the MI regularizer. Throughout this work, we use

Test Accuracy (Classification Accuracy) to evaluate the proposed method. Each

experiment is repeated five times and we report the mean value and the standard

deviation, considering the maximum value of Test Accuracy for each experiment.
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The probabilistic factor is the random weight initialization. We also provide the335

curves of mean Test Accuracy.

5.1. Face

The dataset contains 70,000 train images of faces and equal number of train

images of non-faces, and a test set of 7,468 images. Images of faces have been

randomly selected from the AFLW [50], MTFL [51], and WIDER FACE [52]340

datasets. Input images are of size 32×32. Sample images of the constructed Face

dataset are presented in Fig. 4.

Figure 4: Sample images of the Face dataset.

5.2. Football Player

The Football Player dataset, [21] consists of 98,000 train images that contain

football players and non-football players, and a test set of 10,000 images. Input345

images are of size 32 × 32. Sample images of the Football Player dataset are

illustrated in Fig. 5.

Figure 5: Sample images of the Football Player dataset.

5.3. Crowd-Drone

The dataset contains 40,000 train images of crowded scenes and non-crowded

scenes, and 11,550 test images. Input images are of size 64 × 64. Sample images350
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of the constructed Crowd-Drone dataset are presented in Fig. 6.

Figure 6: Sample images of the Crowd-Drone dataset.

5.4. Bicycles

The Bicycles dataset, [21] contains 51,200 equally distributed train images of

bicycles (bicycle with bicyclist) and non-bicycles, and a test set of 10,000 images.

Input images are of size 64×64. Sample images of the constructed Bicycle dataset355

are presented in Fig. 7.

Figure 7: Sample images of the Bicycles dataset.

5.5. Street View House Numbers

The Street View House Numbers (SVHN) dataset, [53], obtained from house

numbers in Google Street View images. It contains 73,257 train images and

26,032 test images, divided into 10 classes, 1 for each digit from 0 to 9. Input360

images are of size 32 × 32 and sample images are provided in Fig. 8
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Figure 8: Sample images of the SVHN dataset.

5.6. Cifar-10

The Cifar-10 dataset, [54], consists of 60,000 images of size 32 × 32 divided

into 10 classes with 6,000 images per class. 50,000 images are used as the train

set and 10,000 images as the test set. Sample images of the Cifar-10 dataset are365

provided in Fig. 9

Figure 9: Sample images of the Cifar-10 dataset.

5.7. Implementation Details

All the experiments conducted using the Caffe Deep Learning framework [55].

We use the mini-batch gradient descent for the networks’ training. That is, an

update is performed for every mini-batch of Nb training samples. The learning370

rate is set to 10−3 and drops to 10−4 gradually, and the batch size is set to 256.

The momentum is 0.9. All the models are trained on an NVIDIA GeForce GTX

1080 with 8GB of GPU memory for 100 epochs, and can run in real-time when

deployed on an NVIDIA Jetson TX2. Regarding the parameter which controls

the importance of the regularization term of common regularizers, like L1 and375

L2, is usually set to 0.0005. In this work, the parameter η in (18) which controls

the relative importance of the proposed regularizer’s loss, is set to 0.001, since

we have seen that in most cases provides best performance. However we should
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note the proposed reularizer improves the performance for different values of

η, too. For example, in Table 4, we representatively provide the experimental380

results for various values of η, in the case of the Bicycles dataset, utilizing the

VGG-720p model. As we can see, the MI regularizer operates improvingly in

any case. The comparisons among hinge loss against cross entropy loss, as well

as only hinge loss against hinge loss & MI regularizer performed with the exact

same training settings. Note that we have set the learning rate to 10−3 (with385

drop policy) since it appears to be generally the most appropriate. However,

experiments also performed with various values of learning rate (LR). In Table 5,

we provide some indicative results in the Face dataset in terms of Test Accuracy,

where the superiority of hinge loss over cross entropy loss is verified for various

learning rates, while in Fig. 10 we present the corresponding mean Test Accuracy390

over the 100 epochs of training. Best results are printed in bold.

Training Approach η Test Accuracy

Only Hinge Loss - 0.9785 ± 0.0021

Hinge Loss & MI Regularizer 1 0.9814 ± 0.0015

Hinge Loss & MI Regularizer 0.1 0.9827 ± 0.0018

Hinge Loss & MI Regularizer 0.01 0.9836 ± 0.002

Hinge Loss & MI Regularizer 0.001 0.9884 ± 0.0011

Table 4: Bicycle Dataset - VGG-720p: Impact of parameter η in eq. (18)

LR Cross Entropy Loss Hinge Loss

LR = 10−3 - drop 0.9126 ± 0.0021 0.9273 ± 0.0036

LR = 10−4 - fixed 0.896 ± 0.0025 0.9197 ± 0.0046

LR = 10−4 - drop 0.8755 ± 0.004 0.9054 ± 0.0014

Table 5: Face Dataset - VGG-720p - Test Accuracy for various learning rates
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(c) Face: VGG-720p - LR =

10−4 - drop

Figure 10: Face Dataset - VGG-720p - Various learning rates

5.8. Experimental Results

In the first set of experiments, we evaluate the classification performance of

hinge loss against cross entropy loss. In Fig. 11 we provide the comparison of the

mean Test Accuracy of the hinge loss against cross entropy loss, utilizing both the395

proposed models for all the two-class datasets, that is the Face, Football Player,

Crowd-Drone, and Bicycles datasets. Furthermore, in Tables 8-11 we present the

mean value and the standard deviation of the Test Accuracy, for the two losses

under consideration. As we can observe the hinge loss is steadily superior over

the cross entropy loss.400

In Tables 6 and 7 we provide the corresponding evaluation results on the

SVHN and Cifar-10 datasets, for the proposed VGG-720p model. We should

note that the VGG-1080p architecture could not achieve remarkable classification

performance on the aforementioned multi-class datasets. As we can observe, the

cross entropy loss achieves marginally superior performance in the SVHN dataset,405

whilst the hinge loss outperforms the cross entropy one in the Cifar-10 dataset.

Thus, we could observe that the hinge loss is undoubtedly the optimal choice for

binary classification problems, considering lightweight deep models, however this

is not a safe claim in multi-class classification problems.

In the second set of experiments, we evaluate the proposed MI regularizer. In410

Tables 8-11 we present the mean value and the standard deviation of the Test Ac-

curacy, for the considered training approaches, that is utilizing only cross entropy
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loss, only hinge loss, and hinge loss with the proposed MI regularizer, utilizing

both the proposed models. Correspondingly, in Figs. 12-15 we illustrate the curves

of mean Test Accuracy of the only hinge loss training against hinge loss & MI415

regularized training. We can see in the demonstrated results, that the proposed

MI regularizer remarkably enhances the classification performance for both the

proposed model architectures on all the utilized datasets. In Table 12 we provide

representative comparisons against the common L1 and L2 regularizers on the

Bicycles dataset, utlizing the VGG-720p model. As we can see, the L2 regularizer420

marginally improves the performance and the L1 one harms the perfomance, while

the proposed MI regularizer achieves considerably better performance. Finally, it

is noteworthy that we have tested the performance of the proposed MI regularizer

on additional non-real-time models, where its effectiveness is further validated.

However, we do not include these experiments, since a principal target of this425

work is to provide real-time models.

Training Approach VGG-720p

Cross Entropy Loss 0.8987 ± 0.0019

Hinge Loss 0.8972 ± 0.0057

Table 6: SVHN-10 Dataset - Test Accuracy

Training Approach VGG-720p

Cross Entropy Loss 0.5801 ± 0.0161

Hinge Loss 0.5919 ± 0.016

Table 7: CIFAR-10 Dataset - Test Accuracy

In the third set of experiments, we conducted two post-hoc Bonferroni tests

[56], first for ranking the hinge loss and cross entropy loss for binary classification

problems and evaluating the statistical significance of the obtained results, and

second for ranking the proposed regularization method and the only hinge loss430

training and evaluating the statistical significance of the obtained results. The

Training Approach VGG-720p VGG-1080p

Only Cross Entropy Loss 0.9126 ± 0.0021 0.8738 ± 0.0052

Only Hinge Loss 0.9273 ± 0.0036 0.8841 ± 0.004

Hinge Loss & MI Regularizer 0.9292 ± 0.0048 0.8896 ± 0.0007

Table 8: Face Dataset - Test Accuracy
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(b) Face: VGG-1080p
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(c) Football Player: VGG-720p
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(d) Football Player: VGG-1080p
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(e) Crowd-Drone: VGG-720p
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(f) Crowd-Drone: VGG-1080p
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(g) Bicycles: VGG-720p
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(h) Bicycles: VGG-1080p

Figure 11: Cross Entropy Loss VS Hinge Loss
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Training Approach VGG-720p VGG-1080p

Only Cross Entropy Loss 0.9183 ± 0.0307 0.8897 ± 0.0747

Only Hinge Loss 0.9680 ± 0.0080 0.9568 ± 0.01

Hinge Loss & MI Regularizer 0.9813 ± 0.0027 0.9744 ± 0.01

Table 9: Football Player Dataset - Test Accuracy

Training Approach VGG-720p VGG-1080p

Only Cross Entropy Loss 0.9157 ± 0.0058 0.9030 ± 0.014

Only Hinge Loss 0.9334 ± 0.01 0.9194 ± 0.0082

Hinge Loss & MI Regularizer 0.9371 ± 0.0011 0.9303 ± 0.0076

Table 10: Crowd-Drone Dataset - Test Accuracy

Training Approach VGG-720p VGG-1080p

Only Cross Entropy Loss 0.9664 ± 0.001 0.9484 ± 0.0023

Only Hinge Loss 0.9785 ± 0.0021 0.9684 ± 0.0037

Hinge Loss & MI Regularizer 0.9884 ± 0.0011 0.9696 ± 0.0018

Table 11: Bicycle Dataset - Test Accuracy

Training Approach Test Accuracy

Only Hinge Loss 0.9785 ± 0.0021

Hinge Loss & MI Regularizer 0.9884 ± 0.0011

Hinge Loss & L1 Regularizer 0.9719 ± 0.0027

Hinge Loss & L2 Regularizer 0.9797 ± 0.001

Table 12: Bicycles Dataset - VGG-720p: Comparison against the common L1 and L2 regularizers
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(b) VGG-1080p

Figure 12: Face Dataset: MI Regularizer
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(b) VGG-1080p

Figure 13: Football Player Dataset: MI Regularizer
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(b) VGG-1080p

Figure 14: Crowd-Drone Dataset: MI Regularizer
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Figure 15: Bicycles Dataset: MI Regularizer

performance of two methods is significantly different, if the corresponding average

ranks over the datasets differ by at least the critical difference:

CD = qa

√
m(m + 1)

6D
, (19)

where m is the number of methods compared, D is the number of datasets and

critical values qα can be found in [56]. In our comparisons we set α = 0.05. The435

number of datasets is four in the performed tests. The compared methods are

two, that is the training using the hinge loss is compared with a control method

which is the training with cross entropy loss, and second the proposed regularizer

is compared with a control method which is the only hinge loss training approach.

The ranking results are illustrated in Figs. 16a and 16b, respectively. The vertical440

axis depicts the two methods, while the horizontal axis depicts the performance

ranking. The circles indicate the mean rank and the intervals around them indi-

cate the confidence interval as this is determined by the CD value. Overlapping

intervals between two methods indicate that there is not a statistically significant

difference between the corresponding ranks, while non-overlapping intervals indi-445

cate that the compared methods are significantly different. As we can observe, the

hinge loss is significantly different against cross entropy loss for binary classifica-

tion problems, as well as the proposed regularizer is significantly different against

the only hinge loss training approach. We should note that we representatively

present the performance utilizing the VGG-720p architecture, however identical450
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performance is achieved utilizing the VGG-1080p architecture.

0.5 1 1.5 2 2.5

Average Rank

Cross Entropy Loss

Hinge Loss

(a) Cross Entropy Loss vs Hinge Loss for Bi-

nary Classification

0.5 1 1.5 2 2.5

Average Rank

Only Hinge Loss

MI Regularizer

(b) MI regularizer vs Only Hinge Loss

Figure 16: Post-Hoc Bonferroni Tests

Finally, in the forth set of experiments, we compute heatmaps of the object’s

presence for the classification problems under consideration, so as to provide

some qualitative results for evaluating the effectiveness of the proposed real-time

models trained with the MI regularizer. Thus, considering high resolution images455

captured by drones, the heatmaps considering the tasks of bicycle, football player,

and crowd detection utilizing the proposed VGG-1080p models are computed.

Evaluation results provided in Fig. 17 indicate the efficiency of the proposed

models.

6. Conclusions460

In this paper, we proposed regularized lightweight CNN models for address-

ing various classification tasks (e.g. crowd detection, bicycle detection, etc.) able

to run in real-time on-drone. Second, in order to explore ways to enhance the

classification performance of the lightweight models, we extensively investigated

the impact of two widely used classification losses, that is the cross entropy465

and hinge losses, on the classification performance, considering binary classifi-

cation problems. Third, we proposed a novel regularizer motivated by the QMI,

the so-called MI regularizer. The performance was evaluated on four datasets.
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(a) Bicycle Detection

(b) Football Player Detection

(c) Crowd Detection

Figure 17: Heatmaps on real world drone images for specific detection problems utilizing the corre-

sponding proposed models.

The evaluation results indicate that hinge loss is undoubtedly the optimal choice

for binary classification problems, considering lightweight deep models. Further-470

more, the effectiveness of the proposed regularizer in enhancing the generalization

ability of the proposed models is also validated. Finally, even the proposed mod-

els can achieve significant performance in the considered two-class classification

problems, it can be observed in the experimental results that there is a drop per-

formance in more complex problems (i.e Cifar-10 dataset). Thus, future work will475
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consist on developing more efficient models, capable of efficiently addressing, in

terms of both speed and accuracy, more complicated problems under the consid-

ered computation and memory constraints. A first step towards this goal is to

investigate if we can incorporate established methodologies (e.g. skip connections

[41]) to our work.480
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