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Abstract

Deep Learning (DL) has provided powerful tools for visual information analysis. For example, Con-

volutional Neural Networks (CNNs) are excelling in complex and challenging image analysis tasks

by extracting meaningful feature vectors with high discriminative power. However, these powerful

feature vectors are crushed through the pooling layers of the network, that usually implement the

pooling operation in a less sophisticated manner. This can lead to significant information loss,

especially in cases where the informative content of the data is sequentially distributed over the

spatial or temporal dimension, e.g., videos, which often require extracting fine-grained temporal

information. A novel stateful recurrent pooling approach, that can overcome the aforementioned

limitations, is proposed in this paper. The proposed method is inspired by the well-known Bag-of-

Features (BoF) model, but employs a stateful trainable recurrent quantizer, instead of plain static

quantization, allowing for efficiently processing sequential data and encoding both their temporal,

as well as their spatial aspects. The effectiveness of the proposed Recurrent BoF model to en-

close spatio-temporal information compared to other competitive methods is demonstrated using

six different datasets and two different tasks.
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1. Introduction

A vast variety of visual information analysis techniques has been proposed in the field of com-

puter and robotics vision, as one of the most active and continuously expanding research fields. The

pipeline of a typical visual information analysis method consists of two fundamental information

processing steps: a) feature extraction, which typically extracts lower level information from small5

spatial or temporal segments of the data, and b) feature aggregation, which fuses the information

extracted during the previous step into a compact representation that can be used for various tasks,

e.g., classification, retrieval, etc. For example, handcrafted feature vectors can be used to describe

local image regions [1], while the set of the extracted features can be then aggregated into a more

compact representation using feature aggregation methods, such as the Bag-of-Feature model [2]10

and Vectors of Locally Aggregated Descriptors (VLAD) [3].

With the advent of deep learning (DL) these two steps were, to some extent, unified and replaced

with deep trainable feature extraction layers, e.g., convolutional layers, that are combined with naive

pooling operators, e.g., max or average pooling, to lower the complexity of the model and provide

translation invariance. Indeed, the outstanding performance of Convolutional Neural Networks15

(CNNs) in complex and challenging image analysis tasks, has confirmed their ability to extract

meaningful feature vectors with high discriminative power for a wide variety of different computer

vision tasks [1]. However, these powerful feature vectors are crushed through the pooling layers of

the network, that usually implement the pooling operation in a less sophisticated manner, often

leading to significant information loss, as further discussed in [4, 5]. This is even more evident20

in cases where the informative content of the data is sequentially distributed over the spatial or

temporal dimension, e.g., videos, which often require extracting fine-grained temporal information,

which is discarded by these pooling approaches.

The aforementioned limitations can be better understood through the following example. Con-

sider the task of activity recognition in videos, where the action of standing up must be distinguished25

from the action of sitting down. By employing a deep CNN, robust feature vectors can be extracted

from every video frame or a sequence of them. However, the pooling layers, as the weak point of

the network, dull the expressiveness of the extracted feature vectors and produce less discrimina-

tive representations by pooling over the time dimension. For example, assume that a sequence of

feature vectors are extracted from a given video instance of action sitting down. Let that sequence,30

notated as S1 = [a1,a2,a3], be composed of three feature vectors a1 = [0, 0, 1]T , a2 = [0, 1, 0]T ,
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and a3 = [1, 0, 0]T , which are the feature vectors that correspond to the sub-actions standing above

a chair, bending knees and sitting on a chair, respectively. Similarly, consider the same feature

vector sequence, but in reverse order, i.e., S2 = [a3,a2,a1], that represents a video instance of the

activity standing up. Also, let si denote the aggregated representation extracted for the i-th video.35

Note that when average or max pooling is applied over both sequences, then the same represen-

tation is extracted for both videos i.e., s1 = s2 = [maxi[ai]1,maxi[ai]2,maxi[ai]3]T = [1, 1, 1]T

for max pooling (where the notation [x]i is used to refer to the i-th element of vector x) or

s1 = s2 = 1
3

∑3
i=1 ai = [ 13 ,

1
3 ,

1
3 ]T for average pooling. Therefore, even though the employed CNN

was capable of perfectly recognizing the fundamental sub-actions from still frames, the resulting40

deep model cannot discriminate between the two actions due to the employed pooling layer. Based

on this observation, in this work we characterize the average and max pooling layers as weak pool-

ing layers, since they are not capable of capturing the fine-grained spatial or temporal interactions

between the feature vectors extracted from a given sequence. Note that in other cases, instead of

employing a pooling layer, the extracted feature map can be flattened to a vector and fed to the45

fully connected layer. However, this approach makes it impossible for the network to handle inputs

of arbitrary size, while it significantly reduces the invariance of the network to temporal or spatial

translations (the features must always arrive at the exact same moment or position).

Before delving into the details of the proposed pooling method that is capable of overcoming the

aforementioned limitations, it is worth revisiting a well-known feature aggregation model, the Bag-50

of-Features (BoF) model [2], also known as Bag-of-Visual-Words (BoVW). BoF has been extensively

used in a wide range of machine learning and computer vision problems [6, 7, 8]. Initially inspired

by the Bag-of-Words (BoW) model, which was designed for text analysis, BoF creates a constant-

length representation of a multimedia object, e.g., video, audio, time-series, etc., by compiling a

histogram over its quantized feature vectors. Assuming a set of objects is given, the usual framework55

of BoF is as follows:

1. At first, a feature extraction procedure takes place, where every input object is translated to

a set of feature vectors. This set defines the features space, where every object is projected

into.

2. A set of representative feature vectors is learned, which is known as dictionary or codebook.60

Every feature vector of the codebook is called codeword, while the learning process is called
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dictionary learning.

3. Every feature vector of an input object is quantized based on the learned codebook. This

step is referred as feature encoding or feature quantization.

4. A histogram is created by counting the number of feature vectors that were quantized to each65

codeword.

Following this pipeline, every object can be represented as a fixed-length histogram over the learned

codewords. The codewords/dictionary can be either learned using generative/reconstruction ap-

proaches [2, 9], or by employing discriminative dictionary learning methods [10, 11], which usually

better fit classification tasks. Note that BoF can be also combined with deep neural networks to70

provide more powerful trainable pooling layers that can better withstand distribution shifts, while

handling inputs of various sizes [12].

Despite the remarkable results in various tasks and the ability to handle variable size inputs,

the main drawback of BoF-based methods is the loss of spatial and temporal information, i.e. their

inability to capture the geometry of input data [13]. These drawbacks severely limit the ability of75

BoF to process temporal or sequential data, such as video data, since it is not capable of capturing

the temporal succession of events. Therefore, BoF-based methods are still considered as weak

pooling layers, since the quantization of feature vectors to codewords does not take into account

the features’ sequential order and thus the temporal information is entirely discarded. To overcome

this limitation, the quantization process should take into account the order in which the features80

arrive, allowing for forming temporal codewords that also capture the interrelation between the

feature vectors. As a result, a BoF method employing a stateful recurrent quantizer would be able

to quantize the vector a2 (bending knees) into a different codeword depending on whether it was

following the vector a1 (standing above a chair) or the vector a3 (sitting on a chair), allowing for

extracting a representation that can discriminate between the standing up action from the sitting85

down action.

In this paper, a novel stateful recurrent pooling approach that can overcome the aforementioned

limitations is proposed. The proposed method is inspired by the BoF model, but employs a stateful

trainable recurrent quantizer, instead of a plain static quantization approach. In this way, the

proposed method harness the power of a novel powerful recurrent quantization formulation in order90

to capture the temporal information of input data, which is crucial in classification tasks, such as
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activity recognition, while still maintaining all the advantages of the BoF model. The proposed

Recurrent BoF (abbreviated as “ReBoF”) layer is used between the last feature extraction layer

and the fully connected layer of a network. Therefore, instead of using weak pooling layers, the

extracted feature vectors are quantized to a number of codewords in a recurrent manner, enabling to95

encode the fine-grained temporal information contained in the original feature vectors. The resulting

network can be trained in an end-to-end fashion using plain gradient descent and back-propagation,

since the proposed ReBoF formulation is fully differentiable. This allows for building powerful deep

learning models for various visual information analysis tasks, as thoroughly demonstrated in this

paper. Furthermore, the proposed layer enables the network to operate with arbitrary sized inputs,100

while it can also reduce the size of the fully connected layer by extracting a compact, yet powerful

constant length representation. Finally, it is worth noting that ReBoF can be also used for encoding

the spatial information, instead of merely the temporal one. For example, the spatial information

encoded in the feature vectors extracted from static images can be encoded by manipulating the

extracted feature map as a sequence of feature vectors. This allows for overcoming one long-standing105

limitation of regular BoF formulation that led to the need of using complicated spatial segmentation

schemes [13].

The rest of the paper is structured as follows. In Section 2 the related work is presented and

compared to the proposed approach. Next, the ReBoF model is elaborately described in Section 3.

The experimental evaluation of ReBoF over six different datasets, along with comparisons to other110

related techniques, are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work

Over the years, Bag-of-Features has been a widely used method for image analysis tasks. Its

ability to provide better scale and position invariance of local keypoint features attracted significant

research attention [2]. Moreover, its capability to handle variable sized images made BoF a common115

choice in image classification and retrieval tasks. The remarkable results in these research areas

among with its simplicity motivated researchers to employ BoF in more complex tasks, such as video

activity recognition and video semantic retrieval [14, 15]. Video-based human activity recognition

consists one of the most challenging problems in computer vision community, that gains increasing

interest over the years. Early approaches were focused on crafting discriminative features to describe120

each activity, such as space-time trajectories of human joints [16]. This is not an easy task, since

5



the extracted low- or mid-level features must be robust to noise and intra-class variations, such

as viewpoint and illumination changes, different motion speeds, etc. Moreover, there are human

actions that are associated with specific objects or tools, e.g., cooking, hammering, etc., distinct

human poses, e.g., sitting, playing guitar, or executed in a distinguishing environment, e.g., surfing,125

playing tennis. These cases highlight the need for high-level descriptors that are also capable of

capturing the high-level semantic information of the video. The proposed ReBoF model goes beyond

these methods, since it not only provides an end-to-end trainable model that allows for extracting

representations tailored exactly to the task at hand, but it is also capable of modeling the temporal

information of the input feature streams.130

Previous efforts tried to tackle some of these issues by exploiting the ability of BoF to process

objects of various lengths and providing an orderless representation of the input local keypoint

features, extracted from RBG streams, optical flow and joint annotations. Feature descriptors, such

as HoG/HoF [17], and MBH [14], were used to perform feature extraction. Furthermore, Dollar et

al. proposed a feature extractor ensemble [18], which among with other local features, such as Dense135

Trajectories (DTs), improved Dense Trajectories (iDTs), Space Time Interest Points (STIPs), and

skeleton joint and body shape features [19], were combined with the BoF model to better capture

the spatio-temporal information of a video. However, these methods employed BoF just as a

post-processing step for aggregating the pre-computed features, while the selection of codewords is

usually performed in a fully unsupervised way, leading to less discriminative representations and140

restricting the accuracy of these approaches.

On the other hand, the abrupt expansion of DL in a variety of computer vision problems has

also been imported in activity recognition tasks [20, 21]. One of the initial approaches was to use

a neural network, which was pretrained on an image classification task, to extract features from

each frame and then merge them to classify the whole video [20]. Donahue et al. proposed to feed145

the features extracted from each frame to a recurrent layer composed of Long Short-Term Memory

(LSTM) units [22], allowing for encoding the temporal dimension of the sequence. Later, more

powerful methods employed convolutional networks with 3D kernels (C3D) [23, 24] or fused the

RGB frame-based features with features from a stack of optical flow frames, through a two-stream

network [25], allowing for effectively capturing the motion features of the video. Li et al. [26]150

proposed a deformable C3D network enhanced with an attention submodule in order to capture the

temporal and spatial irregularities of video streams. Current state-of-the-art methods use Inflated
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3D Convolutional (I3D) networks [21], that are capable of effectively combining both the RGB

and optical flow streams. In spite of the impressive results, all these methods use powerful feature

extractors combined with weak pooling layers.155

The limitations of these approaches led to the development of more advanced pooling layers.

Earlier works extended traditional feature aggregation methods into differentiable models that

can be combined with DL models and trained in an end-to-end fashion, e.g., Bag-of-Features was

extended to Neural BoF pooling [12], while Vector of Locally Aggregated Descriptors (VLAD)

was extended into NetVLAD pooling [27]. However, these approaches still suffer from the same160

limitations, since they fail to capture the temporal information contained in the input feature

stream. It is worth noting that even more advanced pooling approaches, such as attention-based

pooling [28], which dynamically adjusts the feature aggregation on each temporal segment, and

learnable pooling with context gating [29], cannot extract compact representations that can capture

the temporal information. More recently proposed methods attempt to overcome this limitation by165

further encoding the spatial information either by employing pyramid-based pooling schemes [30],

or by further extending the VLAD model to capture spatio-temporal information [31]. However,

these approaches either do not employ memory or use VLAD-based features of significantly higher

dimensionality compared to those typically used in BoF-based models. On the other hand, the

proposed method is capable of equipping BoF with memory (by employing a context-aware recurrent170

quantizer), overcoming all these limitations, while keeping the ability of the BoF model to extract

compact, yet discriminative, histogram-based representations.

This work aims to bridge the gap between earlier BoF approaches and the recently proposed DL

models by employing a powerful recurrent BoF formulation, which can be readily combined with

DL architectures, as well as effectively process sequential data. The proposed method manages to175

successfully adapt the BoF model to temporal tasks by overcoming the limitations of other recur-

rent models, e.g., LSTMs and GRUs, that often fail to correctly model the temporal information

extracted from videos, as also noted in [29]. It is worth noting that previous methods successfully

managed to combine neural networks with BoF, where the codewords are learned via end-to-end

training of the model [12]. However, they were mainly limited to image analysis problems, while180

suffering from spatial information loss, due to BoF layer architecture. Furthermore, it has been

shown that BoF can be modeled as a (stateless) recurrent neural network that simply sums over the

quantized features [32]. In contrast to these approaches, the proposed method employs a stateful
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recurrent quantizer that exploits the sequential nature of the extracted features. Therefore pro-

posed ReBoF model retains the valuable assets of BoF models, while, at the same time, it can185

effectively encode the spatio-temporal characteristics of the data. To the best of our knowledge,

ReBoF is the first method that provides a stateful recurrent BoF formulation, which can capture

the spatio-temporal dynamics of the data and be enclosed in a convolutional network, providing an

end-to-end trainable DL model for several visual information analysis tasks.

3. Proposed Method190

The proposed recurrent BoF model is analytically derived in Section 3.2, after briefly introducing

the standard Neural BoF model in Section 3.1. Then, the suggested methodology to apply ReBoF

in two use cases, i.e., video and image classification, is described in Section 3.3

3.1. Standard BoF

Assuming that a set X = {xi}Ni=1 of N objects is given, Ni feature vectors are extracted from195

each object and notated as xij ∈ RD(j = 1, ..., Ni), where D is the dimensionality of the feature

space. For example, for image classification tasks each of the N images is represented by feature

vectors extracted using a deep convolutional network or hand-crafted feature descriptors [1].

BoF aims to aggregate these extracted feature vectors into a fixed-length histogram. This is

achieved using a two-stage procedure, where during the first stage each feature vector is quantized200

using a predefined number of codewords and then, during the second stage, the Ni quantized

feature vectors of each object are accumulated to form the final histogram. Note that for the first

stage, a codebook V ∈ RNK×D must be employed, where NK is the number of codewords. This

codebook is usually learned by clustering all feature vectors into NK clusters [2]. Common clustering

algorithms, such as k-means, can be used in this step, with each centroid, vk ∈ RD(k = 1, ..., NK),205

corresponding to a codeword.

Several feature quantization approaches have been proposed [2, 12]. In this work, we focus on

a soft quantization approach that allows for learning the codebook using regular back-propagation,

along with the rest of the parameters of the model [12]. This can significantly improve the discrimi-

native power of the extracted representation, since the codebook is fined-tuned for the task at hand.

The feature vector xij , extracted from the i-th object, is quantized by measuring its similarity with
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each of the Nk codewords as following:

[dij ]k = exp

(
−‖vk − xij‖2

σ

)
∈ [0, 1], (1)

where σ controls the fuzziness of the quantization assignment (also known as the width of the

Gaussian kernel). Then, the fuzzy membership vector of each feature vector is obtained after

normalizing the observed similarities:

uij =
dij

‖dij‖1
∈ RNK . (2)

Finally, the normalized membership vectors are accumulated in a histogram for every object:

si =
1

Ni

Ni∑
j=1

uij ∈ RNK . (3)

Note that the histogram si has unit l1 norm, regardless the number of the extracted feature vectors,

and provides an aggregated representation of the feature vectors extracted from the corresponding

object. Then, the compiled histogram can be fed to a multilayer perceptron (MLP) to classify the

object or used in other tasks, such as regression or retrieval.210

3.2. Recurrent BoF

Note that the representation extracted using the standard BoF formulation described by (1),

(2) and (3) completely discards any spatial or temporal information encoded by the input feature

vectors. To overcome this limitation, BoF is extended by employing a recurrent stateful quantizer

that can capture and effectively encode the temporal information. Note that in case of sequential215

data, the feature vector xij corresponds to the j-th timestep of the i-th sequence. As we will

demonstrate in Subsection 3.3, this is without loss of generality, since the same approach can be

also used to capture part of the spatial information of the input.

Before deriving a recurrent quantization approach, it is worth revisiting the quantization pro-

cess involved in the BoF model from a probabilistic perspective. The probability of observing

each feature vector xij , given an input object xi, can be trivially estimated using Kernel Density

Estimation [9] as:

p(xij |xi) =

NK∑
k=1

[si]kK(xij ,vk) ∈ [0, 1], (4)
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where K(·) is a kernel function and the histogram (image-specific parameters) si ∈ RNK separately

adjust the density estimation. Then, the histogram can be calculated using a maximum likelihood

estimator:

si = arg max
s

Ni∑
j=1

log

(
NK∑
k=1

[s]kK(xij ,vk)

)
. (5)

It can be easily shown [9], that these parameters can be estimated as si =
1

Ni

∑Ni

j=1 uij , where

[uij ]k =
K(xij ,vk)∑NK

l=1K(x
(t)
ij ,vl)

∈ [0, 1], (6)

giving rise to the regular BoF with soft-assignments, as described in the previous subsection. This

formulation allows for replacing the Gaussian kernel used in (1), which requires tuning the width σ

of the kernel, with an easier to use hyperbolic kernel that involves no hyper-parameters. The main

reason for this choice is that the Gaussian kernel proved to be quite unstable, when employed in a

recurrent quantizer. On the other hand, the proposed hyperbolic-based formulation was significantly

stabler and easier to use. Therefore, a hyperbolic (sigmoid) kernel is used to compute the similarity

between each feature vector and the codewords:

[dij ]k = σ(xT
ijvk) ∈ R, (7)

where σ(x) = 1
1+exp(−x) is the logistic sigmoid function. Note that this formulation still ignores

the temporal information, since it provides no way to encode the current state of the quantizer.

Therefore, in order to take into account the temporal information the current state, as expressed

by the histogram compiled using the feature vectors fed to the network until the current time-step,

(7) is extended to:

dij = σ
(
Vxij + Vh(rij � si,j−1)

)
∈ RNK , (8)

where Vh ∈ RNK×NK is weight matrix that is used to transfer the gated histogram vector into

the quantization space and is learned during the training process, si,j−1 is the histogram extracted

from previous quantizations (states) and rij ∈ RNK is the output of a reset gate, introduced to

ensure the long-term stability of the model. The reset gate is inspired by the GRU model [33] and

is defined as:

rij = σ(Wrxij + Ursi,j−1) ∈ RNK , (9)

where Wr ∈ RNK×D and Ur ∈ RNK×NK are the weight matrices used to implement the reset gate.
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Then, similarly to standard BoF approach, the l1 normalized membership vector is computed

as in (2):

uij =
dij

‖dij‖1
. (10)

Note that in order to ensure that quantizer’s output is always a properly normalized membership

vector, the initial state si,0 is set equal to si,0 =
1

NK
1, where NK is the number of recurrent

codewords and 1 ∈ RNK is a vector of all ones. Hence, the fixed-length histogram is recurrently

updated as follows:

si,j = (1− zij)� si,j−1 + zij � uij ∈ RNK , (11)

where the update gate zij controls how much the current histogram, which also encodes the state

of the quantizer, will be updated and it is defined as:

zij = σ(Wzxij + Uzsi,j−1) ∈ RNK , (12)

where Wz ∈ RNK×D and Uz ∈ RNK×NK are parameters of the update gate. Finally, the total

histogram is compiled by averaging the intermediate state histograms as:

si =
1

Ni

Ni∑
j=1

si,j ∈ RNK . (13)

All the parameters of the ReBoF model can be learned using regular back-propagation. Note that220

ReBoF is capable of recursively processing the input feature vectors, while capturing their temporal

information. First, the feature vectors are quantized using the proposed recurrent stateful quantizer,

as described by (8) and (10). Then, the quantized vectors are used to appropriately update the

state of the quantizer, as given by (11), and finally compile the resulting histogram. It is worth

noting that ReBoF, similarly to all BoF-based models, is capable of processing varying-length input225

sequences.

The pipeline of the proposed ReBoF pooling method is summarized in Fig. 1. The input feature

vectors xij are first fed to the reset gate which controls how much the previous histogram si,j−1

will contribute to the quantization process. Note that recurrent connections are plotted in red

in Fig. 1. Then, the proposed recurrent quantizer is employed to extract the membership vector230

uij , which is then fed to the update gate. The update gate controls how much the previous

histogram will be updated based on the output of the recurrent quantizer uij and the previous

histogram si,j−1, leading to the updated histogram sij . The final histogram representation of an
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Figure 1: Pipeline of the proposed ReBoF pooling approach. Figure depicts the main information processing steps

involved in ReBoF. Red lines denote recurrent connections/information flow, while blue lines denote feed-forward

connections/information flow. Figure best viewed in color.

input object is obtained by incrementally accumulating the extracted histogram vectors into the

final one si ∈ RNK . It is worth noting that compared to other Neural BoF approaches [12], the235

proposed one is the first one that employs a recurrent quantizer by incorporating an additional

reset gate and update gate. The reset gate is used to equip the quantizer with (resetable) memory,

allowing for performing context-aware quantization, while the update gate allows for dynamically

updating the histogram only when appropriate (e.g., ignoring features that are not relevant to the

current context).240

3.3. Using Recurrent BoF for Visual Information Analysis Tasks

ReBoF can be directly used in any DL architecture without any modification between the last

feature extraction layer and the first fully connected one. The extracted representation si depends

only on the number of used codewords NK and, as a result, ReBoF is capable of processing inputs

of variable size without any modification. Three different ways to employ ReBoF in DL models245

are presented: a) video analysis using CNN frame-based feature extractors, b) image analysis using

CNNs and c) spatio-temporal video analysis.

ReBoF for video analysis: As presented in 3.2, the advantage of ReBoF is its ability to

capture the temporal information of sequential data. This can be readily exploited for tackling

challenging video analysis problems, e.g., activity recognition, video retrieval, etc. Assuming that250

every frame of the video is described by an extracted feature vector xij and that the i-th video

is composed of Ni frames, then ReBoF can be directly applied by feeding to it the sequence of
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Figure 2: Using Recurrent BoF for two different tasks: (a) video analysis and (b) image analysis

the frame-based feature vectors. This allows ReBoF to process videos of arbitrary duration, while

creating fixed-length compact representations of them. This process is illustrated in Fig. 2a, where

a feature vector is extracted from every frame of a video. Note that usually a high-dimensional255

tensor is first extracted from every video frame when convolutional feature extractors are used.

This tensor is first aggregated into a feature vector, using a frame-level pooling approach (ReBoF

can be also used for this task, as discussed below), and then the feature vectors sequence is fed into

the ReBoF model to extract a video-level compact representation. This representation can be then

used for the task at hand, e.g., classification.260

ReBoF for image analysis: Moreover, ReBoF can be utilized also for processing non-

sequential input data, while preserving crucial spatial information. For example, in case of image

classification, let X ∈ RW×H×C be the 3D feature map extracted from a CNN layer, with width,

height and number of channels equal to W , H and C respectively. Several ways to “scan” the image

can be employed to flatten the feature map into a set of vectors. In the simplest case considered in265

this paper, the image is scanned from up to down and left to right. Therefore, a total of Ni = W ·H

feature vectors are extracted from each image. Then, this flattened sequence of feature vectors can
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be fed into the ReBoF model. This process is illustrated in Fig. 2b. Note that since the feature

vectors are always produced following the same scanning pattern, the model can learn the spatial

interactions between the extracted feature vectors, effectively capturing the spatial information.270

ReBoF for spatio-temporal analysis: Finally, it is possible to combine two ReBoFs in order

to capture the spatio-temporal content of the input video. Similarly to the image analysis approach,

the first ReBoF model can be used to create a histogram for every video frame, i.e., perform the

frame-level pooling, as shown in Fig. 2b. Then, a time series of histograms is compiled and fed to

the second ReBoF that captures the temporal information of the video (as shown in Fig. 2a) and275

thus leads to a compact spatio-temporal representation that is subsequently fed to the classifier.

4. Experimental Evaluation

In this section the proposed ReBoF model is evaluated on six different datasets. The exper-

imental procedure along with the results are presented and discussed in the following two main

subsections. In the first one, the proposed method is validated over three video datasets for ac-280

tivity recognition, while in the second one, evaluation is conducted over three datasets for image

classification.

4.1. Video Activity Recognition

Datasets: The proposed ReBoF model is initially validated in 3 different video datasets for activity

recognition. The specific task was selected to demonstrate the ability of ReBoF to effectively capture285

the temporal dimension of video sequences, which is expected to contain essential information for

classification tasks.

The first dataset is the UTKinect-Action3D [34] that consists of 10 types of human activities in

indoor settings. Samples for each action are collected from 10 different people that perform every

activity two times. The demonstrated actions are: walk, sit down, stand up, pick up, carry, throw,290

push, pull, wave hands, and clap hands. For each video instance, three streams were recorded: RGB,

depth and skeleton joint locations. The RGB images were used for all of the conducted experiments.

Since there is no official training/testing split provided, a 50%-50% subject-based split strategy was

employed, i.e., the videos of the first five subjects were included in the training set and the rest

of them were used to form the testing set. Hence, a quite challenging setup was created, as the295

activities belonging in the testing set were performed from unseen subjects.

14



The second database is the well-known UCF101 dataset[35], that is widely used for bench-

marking action recognition models. The dataset contains 13, 320 action instances belonging in

101 classes, that can be grouped in five generic categories, namely: 1. Human-Object Interaction,

2. Body-Motion Only, 3. Human-Human Interaction, 4. Playing Musical Instruments, and 5. Sports.300

UCF101 also contains three different evaluation splits. For all the experiments conducted in this

paper, the first split was used.

We also created a challenging and more complex dataset based on the UCF101 to better demon-

strate the ability of the proposed method to capture the temporal dynamics of video data. To this

end, we compiled a dataset by mixing instances from different activities of the UCF101 dataset305

together. More specifically, 10 activities of UCF101 (split 1) were selected to be joined together.

Every action of this subset was joined with each one of the remaining, leading to 90 complex ac-

tions. One can further understand the significance of encoding the temporal information of these

instances by considering that a sample of action “A” combined with one of action “B” (let name

this complex activity class “AB”) must be separated from samples of complex activities from class310

“BA”. Note that “AB” and “BA” videos contain the same set of frames (for a specific instance of

“A” and “B”), but in a different order. A typical example of such two complex actions would be

the action sequences of “sitting to a chair” (AB) and “rising from a chair” (BA), where A is the

action of getting closer to the chair and B the action of actually being on the chair. A method

that does not capture the temporal information cannot discriminate between these two actions,315

since the videos would contain the same frames, but in the reverse order. Hence, 114 samples were

selected for each class, as this was the minimum number of instances contained in the selected

initial classes. The selected 10 action classes were the following: ApplyEyeMakeup, ApplyLipstick,

Billiards, BoxingPunchingBag, BoxingSpeedBag, Haircut, Hammering, TableTennisShot, TennisS-

wing, and Typing. These classes were selected to offer a challenging dataset of complex activities,320

where every primary action has familiar content with at least one of the rest. The i-th sample of

initial class “A” is combined with the i-th sample of initial class “B” and so on, leading to 7, 380

training and 2, 880 testing data equally balanced among the 90 classes. The compiled dataset is

called “Complex UCF” in the rest of this paper.

Evaluation Setup: The video analysis approach described in Subsection 3.3 was employed in order325

to evaluate the proposed method over the first two datasets. Every video instance was uniformly

sampled in time in order to extract a predefined number of frames, denoted by Nf . The number
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of extracted frames was set to Nf = 30 for the UTKinect-Action3D dataset and to Nf = 40

for the UCF101 dataset. Shorter videos were looped over as many times as necessary to ensure

that each video contains at least Nf frames, following the methodology described in the relevant330

literature [24].

Every frame was fed to an Inception V3 model [36], pretrained in ImageNet, and a feature

representation was extracted from each frame from the last average pooling layer of the network.

Therefore, every frame is represented by a 2048-dimensional feature vector, building a sequence of

Nf features for every video sample. This sequence is then fed to the ReBoF layer, which is followed335

by a fully connected layer block composed of two fully connected layers. The first one is composed

of 512 neurons using the ReLU activation function and dropout with rate of 0.5, while the output

(classification) layer has as many neurons as the classes of each dataset and employs the softmax

activation function. The cross-entropy loss is used during the training. The resulting network

was trained from scratch using the Adam optimizer and a learning rate of 10−5, apart from the340

pretrained feature extractors which were kept frozen. We also experimentally found out that scaling

the extracted histogram by NK improved the convergence of the proposed method, especially when

training the whole architecture from scratch. This scaling ensures that the gradients from the fully

connected layers will not diminish as they are back-propagated to the previous layers. For the

UTKinect-Action3D dataset the models were trained for 800 epochs, while for the UCF101, all345

models were trained for 50 epochs and the training/evaluation procedure was repeated 3 times.

The performance of the proposed method is compared with three other pooling methods, that

also use the exact same feature extraction and classification layer blocks (in order to ensure a fair

comparison). First, global average pooling over the temporal dimensions of the input sequence is

used in place of the proposed ReBoF layer. This method is called “Average Pooling” in the rest of350

this paper. For the second method, a recently proposed state-of-the-art variant of the BoF method

that is adapted for use with DL architectures, the Linear BoF [37], is employed. Furthermore, a

powerful recurrent aggregation model, the GRU [33], which is used to aggregate the features, while

also capturing the temporal dimension of the data, is also compared to the proposed method. To

ensure a fair comparison, we use the same number of codewords or hidden units for the Linear BoF355

or GRU model, respectively, as the number of codewords used in our method, except otherwise

stated.

A slightly different setup was used for the third dataset (Complex UCF101). A 16-frame sliding
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window, with overlap of 4 frames was applied on every activity instance of UCF101 dataset, creating

16-frame clips. A 3D ResneXt-101, pretrained on UCF101, as deployed in [24], was used for feature360

extraction. Every clip was then fed to the network and features were extracted from the last

average pooling layer of the network. After this step, every video clip is represented by a 2048-

dimensional vector. Note that contrary to the previous setup, feature vectors already enclose some

spatio-temporal information, since 3D convolutions were used during the feature extraction. Then,

for every activity instance of class “AB”, 16 sequential feature vectors were selected from each one365

of the classes “A” and “B”, starting from the beginning of the video. If a subsequence of features

is shorter, then it was looped over. The two subsequences were then stacked, forming a 32-length

sequence (Nf = 32) of feature vectors for the action “AB” of the ComplexUCF dataset.

Similar to the previous setup, the performance of ReBoF is compared to the “Average Pooling”,

”Linear BoF” and “GRU” methods. All methods share the same classification block as before and370

the networks were trained from scratch, excluding the weights of feature extractors which were

pretrained. In case of Average Pooling, the network was trained for 50 epochs, while in the rest,

the training process stopped when 99.9% accuracy was achieved in training set. The evaluation of

ReBoF and GRU methods is repeated 3 times and the mean accuracy and standard deviation on

the test set are reported.375

Experimental Results: The experimental evaluation for the UTKinect-Action3D dataset is pro-

vided in Table 1. The proposed method outperforms the other three evaluated methods, providing

the highest accuracy (54.64%) using 512 codewords. GRU also achieves its best accuracy (47.71%)

for the same number of codewords, while for the Linear BoF method the highest performance

(44.47%) is achieved for 256 codewords. Both ReBoF and GRU significantly outperform the Aver-380

age Pooling and Linear BoF methods, since they are capable of effectively modeling the temporal

dynamics of the input video sequences and distinguishing between similar activities, such as stand

up and sit down.

Moreover, in Fig. 3 the effect of using a wider range of codewords and number of GRU units in

the classification accuracy on the UTKinect-Action3D dataset is evaluated using the two methods385

that achieve the highest performance (GRU and ReBoF). In all cases, the proposed method leads

to higher accuracy compared to the GRU method. Furthermore, the proposed method allows for

reducing the size of the extracted representation, since it outperforms the best GRU model (512

units) using just 128 codewords. This allows for reducing the size of the extracted representation
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Table 1: UTKinect-Action3D Evaluation

Method # Codewords - GRU Units Test Accuracy (%)

Average Pooling - 40.83

Linear BoF 256 44.47

GRU 512 47.71

ReBoF 512 54.64

and, as a result, the number of parameters in the subsequent fully connected layer. Both methods390

achieve their best performance for 512-dimensional representations. After this point, the accuracy

for both models drops, mainly due to overfitting phenomena.

Similar conclusions can be drawn from the evaluation results on the UCF101 dataset, which

are reported in Table 2. The experiments were repeated three times and the mean accuracy and

standard deviation on the test set are reported. Even though UCF101 is a less challenging dataset,395

in terms of temporal dependence, the proposed method still outperforms the rest of the evaluated

methods, achieving the highest accuracy of 72.02% for 1024 codewords. The effect of using dif-

ferent number of codewords and recurrent units is also evaluated in Fig. 4. Again, the proposed

method outperforms the GRU method regardless the number of used codewords, while it achieves

comparable accuracy using 2 to 4 times smaller representations.400

Table 2: UCF101 Evaluation

Method # Codewords - GRU Units Test Accuracy (%)

Average Pooling - 70.32± 0.43

Linear BoF 1024 71.11± 0.35

GRU 2048 71.04± 0.20

ReBoF 1024 72.02± 0.68
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Figure 3: UTKinect-Action3D Evaluation: Effect of using different number of codewords/recurrent units for the

ReBoF and GRU methods

Figure 4: UCF101 Evaluation: Effect of using different number of codewords/recurrent units for the ReBoF and

GRU methods
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Next, the evaluation on the Complex UCF dataset is provided in Table 3. Note that the

Average Pooling and Linear BoF methods fail to overpass the 50% test accuracy barrier, since

“AB” activities cannot be distinguished from those of “BA”, due to discarding crucial temporal

information. Note that the Average Pooling and Linear BoF methods obtain significantly lower

accuracy on this dataset, since capturing the temporal information plays a less crucial role on the405

other two datasets, in which many videos that belong to certain actions can be categorized just by

one frame, leading to a smaller gap between the Average Pooling method and the ones that capture

the temporal information, i.e., GRU and ReBoF. Again, ReBoF achieves the highest accuracy equal

to 89.29% for 1024 codewords, outperforming the GRU method.

Table 3: Complex UCF101 Evaluation

Method # Codewords - GRU Units Test Accuracy (%)

Average Pooling - 48.95

Linear BoF 1024 43.88

GRU 512 88.86± 2.04

ReBoF 512 89.25± 1.08

GRU 1024 88.62± 1.02

ReBoF 1024 89.29± 0.89

Moreover, qualitative results on Complex UCF101 dataset are presented in Fig. 5 in order410

to further illustrate the ability of ReBoF to encode efficiently the temporal information of video

data. ReBoF is compared with the rest of the methods using the confidence scores for the top-

k (k = 1, 2, 3) predictions. The corresponding labels are reported for each prediction. Fig. 5

clearly demonstrates the inefficiency of Average Pooling and Linear BoF methods to distinguish the

combination of activities “TennisSwing + ApplyLipstick” (“AB”) from the inverted combination415

of activities “ApplyLipstick + TennisSwing” (“BA”), due to the complete loss of the temporal

information. GRU method presents to some extent better performance since the correct predicted

label is found on top-2 ranking. Yet, the model is overconfident over the wrong class, probably due

to the difficulty of distinguishing the second part (“ApplyLipstick”) of the complex action from a

similar one (“ApplyEyeMakeup”). On the other hand, the proposed ReBoF method is more robust420
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Target: TennisSwing+ApplyLipstick

Method top-1 top-2 top-3

Average Pooling
ApplyLipstick+TennisSwing ApplyEyeMakeup+TennisSwing TennisSwing+ApplyEyeMakeup

0.3215 0.2699 0.2521

Linear BoF
ApplyLipstick+TennisSwing’ ApplyEyeMakeup+TennisSwing TennisSwing+ApplyEyeMakeup

0.41984 0.2382 0.1537

GRU
TennisSwing+ApplyEyeMakeup TennisSwing+ApplyLipstick TableTennisShot+ApplyLipstick

0.5018 0.4034 0.0344

ReBoF
TennisSwing+ApplyLipstick TennisSwing+ApplyEyeMakeup ApplyEyeMakeup+TennisSwing

0.4776 0.4582 0.0103

Figure 5: Qualitative results on the Complex UCF101 dataset: For a given video sequence the first three top-k

(k = 1, 2, 3) prediction scores among with the corresponding predicted label are reported for each of the evaluated

methods. In the first column (top-1 results) red and green color is used to denote false and correct predictions,

respectively.

to such phenomena, more efficiently capturing the temporal details and managing to accurately

classify the input sample, contrary to rest of the methods. It should be also noted that the inverted

complex action “ApplyLipstick+TennisSwing” is not present in the first top-3 ranking and thus,

the confidence score for the specific class is at least lower than 0.01, signifying the effectiveness of

ReBoF’s recurrent quantizer to enclose the temporal characteristics of the video sequence.425

Finally, in Table 4 ReBoF is compared to other similar approaches reported in the literature on

UCF101 dataset. Activity recognition based on a single RGB frame of the video achieved 67.4%

accuracy across all three splits of UCF101. LRCN model presented in [22] improved the results by

employing an LSTM to capture the temporal information of the data. The “slow fusion” scheme

presented in [20] aimed to conceive the temporal information by applying a CNN network over a430

time window of the RGB stream, yet the reported results are lower compared to the case of single

frame network, failing to exploit the temporal information contained in the video input. On the

other hand, the proposed ReBoF formulation manages to effectively capture the spatial information

of video streams, outperforming the rest of the evaluated methods. It is worth noting that other

approaches that use C3D networks, such as the I3D network [21], can further boost the action435

recognition performance. However, these more powerful architectures usually also require using
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significantly larger datasets in order to be trained effectively and avoid over-fitting, as also demon-

strated in Table 4 (e.g., training 3D-ConvNets from scratch leads to lower recognition accuracy),

while at the same time these architectures also significantly increase the computational complexity

of the model compared to the proposed method.440

Table 4: Comparison with other methods on UCF101 (split 1)

Method Test Accuracy (%)

Single RGB frame (all splits) [22] 67.4

“Slow fusion” spatio-temporal ConvNet (all splits) [20] 65.4

Spatial LRCN (all splits) [22] 68.2

3D-ConvNet (trained from scratch) [33] 51.6

ReBoF 72.02

4.2. Image Classification

Datasets: ReBoF is also able to capture the spatial information of the extracted feature vectors, as

discussed in Section 3.3. To this end, ReBoF is also evaluated on three image datasets: the MNIST

database of handwritten digits (MNIST) [38], the Fashion MNIST database of fashion images [39],

and the CIFAR-10 database of color images with varying content [40].445

The MNIST dataset is widely used in the computer vision field and contains 60, 000 training and

10, 000 testing grayscale images of handwritten digits. The size of each image is 28× 28 pixels and

the data are distributed over 10 different classes, one for each digit (0 to 9). The Fashion MNIST

is an MNIST-like dataset that contains labeled fashion grayscale images. Similarly to MNIST, it

consists of 60, 000 training and 10, 000 testing images of size 28× 28 pixels. The CIFAR-10 dataset450

contains totally 60, 000 colour images of size 32 × 32 pixels. The dataset is separated in 50, 000

images for training and 10, 000 images for testing. Data are equally divided in 10 classes of various

generic categories, e.g., airplane, cat, ship, etc.

Evaluation Setup: The proposed method is evaluated in the aforementioned image datasets,

following the approach presented in Section 3.3. The ReBoF model is combined with a convolutional455

neural network, creating a model that consists of three main layer blocks: 1. a feature extraction

block, 2. a ReBoF layer, and 3. a classification layer block. The feature extraction block is composed
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of two convolutional sub-blocks. The first sub-block is composed of two convolutional layers that

use 32 3 × 3 filters, followed by a 2 × 2 max pooling layer. The second sub-block consists of two

additional convolutional layers that use 64 3 × 3 filters, followed by a 2 × 2 max pooling layer. In460

addition, dropout with rate 0.25 is applied to the input of second block. The output of the last

convolutional block is used to extract feature vectors for each image. The final feature map is

scanned from left to right and from top to bottom to extract feature vectors that are sequentially

fed to the ReBoF block, after applying dropout with rate of 0.25. The extracted features are

recurrently quantized in NK-dimensional vectors and accumulated in a NK-length histogram. The465

output of the ReBoF layer is then fed to the classification layer block that is composed of a hidden

fully connected layer with 512 neurons and an output layer with 10 neurons, while dropout with

rate of 0.2 and 0.5 is applied to the input of the first and second fully connected layers, respectively.

The ReLU activation function is used for all the hidden layers, while the network is trained to

minimize the cross-entropy loss. The network is trained from scratch in an end-to-end fashion for470

100 epochs using the Adam optimizer and learning rate equal to 0.001.

The proposed method is also compared to using an average pooling baseline, as well as to the

Linear BoF method, similarly to the activity recognition task. In the average pooling method,

the output of the employed feature extraction block is fed to a global average pooling layer and

then forwarded to the employed classification layer block. In this case, no dropout is applied to475

the feature extractor’s output. In the Linear BoF method, the ReBoF block is substituted by a

Linear BoF, while the rest of the network is kept the same to ensure a fair comparison between the

methods. Both networks were trained from scratch, using the same training parameters as in the

case of ReBoF.

Evaluation Results: The proposed method is compared with two other evaluated methods in480

Table 5. ReBoF outperforms both the Average Pooling and Linear BoF methods in all the evaluated

cases, regardless the used dataset. For the MNIST and Fashion MNIST datasets the highest

performance is achieved when 512 codewords are used, while for the CIFAR-10 dataset for 128

codewords. Similarly, for the Linear BoF method the best results for the MNIST dataset are

achieved when 64 codewords are employed, whereas in the case of Fashion MNIST and CIFAR-485

10 when 128 codewords are used. The performance improvements are marginal for the simpler

MNIST and Fashion MNIST datasets. However, significant accuracy improvements are observed

for the more complex CIFAR-10 dataset, confirming the ability of the proposed method to capture
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Table 5: Image classification evaluation

Method MNIST Fashion MNIST CIFAR-10

Average Pooling 99.44 92.80 79.71

Linear BoF 99.46 92.97 80.25

ReBoF 99.50 93.28 82.25

(Classification accuracy is reported (%))

the spatial information encoded in the extracted feature vectors. This is also confirmed in the results

reported in Fig. 6, where the effect of varying the number of codewords for the ReBoF method is490

examined. ReBoF achieves remarkable results in the MNIST and Fashion MNIST datasets, even

for a small number of codewords. It is worth noting that when a very large number of codewords

is used, i.e., 1024 or 2048, the accuracy begins to decrease due to overfitting. The effect of the

number of codewords on the model’s accuracy can be also clearly demonstrated for CIFAR-10,

which contains larger and more complex images. In this case, the best accuracy is achieved when495

128 codewords are used.

Also, the ability of ReBoF method to capture spatial patterns from images is further demon-

strated in Fig 7, where qualitative results are presented for the MNIST dataset. In case of Average

Pooling method, the prediction model is overconfident over the wrong digit in all of the three evalu-

ated cases. Linear BoF presents a more balanced distribution over the prediction scores, yet it also500

fails in some cases to classify the input image correctly. On the contrary, ReBoF, which is capable

of capturing the spatial information contained in the feature vector sequence extracted from each

MNIST digits, leads to the best results, accurately identifying each digit, while also providing the

highest confidence on the correct label.

5. Conclusions505

In this paper a novel Recurrent Bag-of-Features formulation has been proposed, designed to

effectively process sequential input data. ReBoF was inspired by the BoF model, but employs a

stateful trainable recurrent quantizer, instead of a plain static quantization approach. This enables

ReBoF to harness the power of a powerful recurrent quantizer that is able to capture the temporal
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Figure 6: Test accuracy (%) of ReBoF in three datasets for different number of codewords

Input Average Pooling Linear BoF ReBoF Ranking

8: 0.8842 8: 0.5824 2: 0.9848 top-1

2: 0.0654 2: 0.4172 8: 0.0134 top-2

9: 0.0483 9: 9.4e-05 0: 0.0008 top-3

2: 0.7978 2: 0.5845 7: 0.5897 top-1

7: 0.2014 7: 0.4151 2: 0.4097 top-2

3: 0.0003 0: 0.0001 3: 0.0003 top-3

4: 0.7532 9: 0.8120 9: 0.9273 top-1

9: 0.2467 4: 0.1879 4: 0.07226 top-2

8: 5.4e-05 8: 1.8e-05 7: 0.0002 top-3

Figure 7: Qualitative results on the MNIST dataset: Top-k predictions for k = 1, 2, 3 among with the corresponding

confidence scores are reported for the three evaluated methods. Correct and false predictions are denoted with green

and red color, respectively, in the first row (top-1 predictions) for each sample.
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information of input data, which is crucial in classification tasks, such as activity recognition, while510

still maintaining all the advantages of the BoF model. ReBoF can be directly used between the last

feature extraction layer and the fully connected layer of a network, while the resulting architecture

can be trained in an end-to-end fashion using back-propagation, allowing for building powerful deep

learning models for various visual information analysis tasks. The performance of ReBoF model was

extensively evaluated in various activity recognition tasks using three video datasets. In all cases,515

the proposed method outperformed the rest of the evaluated methods, demonstrating the ability of

ReBoF to capture the temporal information and increase the classification accuracy. Furthermore,

ReBoF is also capable of encoding the spatial information, as it was also demonstrated in image

classification tasks using three more datasets.

ReBoF opens several interesting future research directions. First, the proposed approach for520

activity recognition can be further enhanced by combining a ReBoF layer over the spatial dimen-

sion, followed by a ReBoF layer over the temporal dimension. In this way, the spatio-temporal

information can be more properly encoded by creating a space-time histogram, further improving

the performance over the applications presented in this paper. Second, ReBoF can be employed

to replace the intermediate weak pooling layers of CNNs, aiming to increase the accuracy of the525

models. Finally, employing the proposed method for other tasks, such as video retrieval and hash-

ing, is expected to boost the performance of existing methods by extracting compact, yet more

discriminative representations.
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