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ABSTRACT

Active vision aims to equip computer vision methods with the ability to dynamically adjust the cap-
turing sensor’s viewpoint, position, or parameters in real time. This dynamic capability allows for
improving the accuracy of the perception process. However, training and evaluating an active vision
model often requires a large number of annotated images captured under different sensor and envi-
ronmental settings, in order to emulate actions like moving around, approaching, or moving away
from a person and thus effectively model the active perception dynamics. Obviously, collecting and
annotating such datasets is a challenging and expensive task. To overcome these limitations, this
paper introduces a synthetic image generation pipeline specifically designed to support active vision
tasks. The pipeline is developed using a highly realistic simulation framework based on Unity and
allows for the generation of images depicting humans, captured at varying view angles, distances,
illumination conditions, and backgrounds, supporting a wide range of different tasks. Two annotated
datasets, namely ActiveHuman and ActiveFace, are generated using the pipeline and the effectiveness
of the proposed approach is demonstrated by a solid use case that involves training and evaluating an
embedding-based active face recognizer. Furthermore, we demonstrate how the proposed generation
approach enables expanding existing active face recognition methods by training models that control
both the left/right movements, as well as the distance to a subject, leveraging the additional informa-
tion provided by ActiveFace dataset. To facilitate replication and encourage the use of the generated
datasets for training and evaluating other active vision approaches, the associated assets and the devel-
oped dataset generation pipeline is to become publicly available.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Active vision is a subfield of computer vision that draws in-
spiration from our ability to appropriately navigate our envi-
ronment to gain a better understanding of our surroundings. Its
objective is to enhance the efficiency of traditional computer
vision methods by enabling the capturing sensor(s), positioned
on an autonomous system, such as a robot, to dynamically ad-
just their viewing position, direction, or parameters in real-time.
This dynamic adaptation allows models to make more informed
decisions regarding the subject of interest. Active vision models
find applications in various computer and robotic vision tasks,
including face and object recognition/detection (Mahaur and
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Mishra, 2023; Luo et al., 2020), human pose estimation (Ku-
marapu and Mukherjee, 2021), and have demonstrated advan-
tages in terms of speed (Passalis and Tefas, 2020), and size of
models (Pan et al., 2021), as well as improved accuracy (Pas-
salis and Tefas, 2020; Pan et al., 2021; Kakaletsis and Niko-
laidis, 2023; Murali et al., 2022) compared to models employ-
ing a static approach.

Although there is a wealth of datasets containing a large
number of annotated images for various computer and robotic
vision tasks (Geiger et al., 2013; Sikder and Nahid, 2021),
datasets specifically designed for active vision problems are rel-
atively scarce. Training and evaluating an active vision model
often necessitates the use of a large number of annotated im-
ages captured under diverse sensor and environmental configu-
rations to grasp the dynamics underlying the active perception
process. However, collecting and annotating such datasets is a
challenging and expensive task. It involves not only providing
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carefully crafted ground truth annotations but also accurately
modeling the effect of various actions, e.g., the movement to-
wards or around a person. Two datasets that support active
vision tasks are the ModelNet dataset (Wu et al., 2015) and
the Active Vision dataset (Ammirato et al., 2017), both suit-
able for active object detection and recognition. The Model-
Net dataset encompasses over 150,000 3D CAD model images
from 161 object categories, captured at various angles. The
Active Vision Dataset comprises more than 30,000 RGBD real-
world images representing 15 different scenes, accompanied by
over 70,000 2D bounding box annotations. Regarding face de-
tection/recognition tasks, there have been instances where ac-
tive vision models were trained using smaller datasets, such
as the HPID dataset (Gourier et al., 2004) (Head Pose Image
Database). Nevertheless, existing datasets are relatively limited
in size and they often do not provide adequate data for sup-
porting training active vision pipelines for different tasks. For
instance, the HPID dataset contains only 2,790 facial images,
while it does not support training models that can control the
distance between the robot and a subject to be recognized, sig-
nificantly constraining the practical use of such models.

Recently, there have been attempts to create frameworks
for generating synthetic annotated datasets in computer and
robotic vision tasks, including active vision. Two examples are
BlenderProc (Denninger et al., 2019), an open-source extension
of Blender (Blender Foundation, 2018), and Nvisii (Morrical
et al., 2021). BlenderProc provides a flexible pipeline that can
generate realistic synthetic images with annotations. Nvisii, on
the other hand, allows the generation of realistic synthetic im-
ages with additional information like bounding boxes, segmen-
tation masks, and optical flow vectors. However, it’s worth not-
ing that these frameworks, despite offering visual realism, may
have specific limitations in terms of certain aspects of com-
puter vision or robotics-related simulation functionalities and
realism, as well as physics, when compared to more advanced
frameworks, such as Unity’s Perception package (Unity Tech-
nologies, 2020). For example, both BlenderProc and Nvisii do
not support domain randomization (which is critical for train-
ing and testing computer vision or robotics-related methods),
whereas BlenderProc does not generate keypoint annotations.
Another effective approach for training and testing active vi-
sion methods is the use of photorealistic simulators designed
for autonomous systems, robots, or embodied AI applications,
Habitat-Sim1 being a notable example. For instance, a real-time
active vision humanoid soccer robot was trained and evaluated
in a simulation environment by Khatibi et al. (Khatibi et al.,
2021) using deep reinforcement learning, demonstrating how
using a simulation environment can indeed be very effective in
active vision tasks. However, employing image/video datasets
within simulation environments can offer advantages during the
initial stages of algorithm development, as it simplifies the han-
dling of robot motion and provides a convenient platform for
training and testing such algorithms.

The main research question examined in this paper is whether
it is possible to develop realistic synthetic human-centric im-

1https://github.com/facebookresearch/habitat-sim

age generation pipelines specifically designed to support ac-
tive vision tasks, enabling capabilities that go beyond existing
datasets with minimal data collection and annotation effort. To
this end, we introduce a realistic synthetic human-centric image
generation pipeline, which is built using a modified version of
Unity’s Perception package (Unity Technologies, 2020), inte-
grated into a URP project. This allows the generation of images
captured around humans across a wide range of view angles,
distances, illumination conditions, and backgrounds (Fig. 1),
enabling training active perception models for different tasks.
To validate the effectiveness of the proposed pipeline we also
created two annotated datasets, ActiveHuman and ActiveFace.
Furthermore, we also employed ActiveFace dataset to apply
and considerably enhance an embedding-based active face rec-
ognizer (Passalis and Tefas, 2020), providing a realistic use case
that showcases the value of the generated datasets. Through
the proposed extension, we can perform active perception by
controlling two axes, i.e., controlling both the left/right move-
ments and the distance from a subject, surpassing the capabil-
ities of the initial method and attaining superior results. The
datasets, along with the associated assets and dataset genera-
tion pipeline, will be made publicly available2 in order to allow
anyone to seamlessly replicate them, as well as use the gener-
ated datasets for training and evaluating other active vision ap-
proaches. Therefore, the main contributions of this paper are as
follows:

(i) a realistic synthetic human-centric image generation
pipeline that enables training active perception models,

(ii) two human-centric annotated datasets generated using the
proposed approach covering a variety of different scenar-
ios and setups, as well as

(iii) a realistic use case that showcases the value of the gen-
erated dataset, i.e., employing the ActiveFace dataset to
considerably enhance an embedding-based active face
recognizer approach.

The rest of the paper is structured as follows. First, the
datasets are introduced in Section 2 along with a detailed de-
scription of their generation. Subsequently, the active vision
method used to evaluate the facial image dataset is presented
in Section 3, followed by an extensive experimental evaluation
provided in Section 4. Finally, conclusions are drawn in Section
5.

2. Datasets Description

The process of generating the first dataset, namely the Active-
Human dataset, can be outlined using a nested for-loop struc-
ture, illustrated in Algorithm 1. This algorithm iterates through
all possible combinations of environments (E), human models
(H), and lighting conditions (L). By varying the camera an-
gle and distance from the human subject, the algorithm cap-
tures different views. To construct the dataset, we utilized freely

2Public release under preparation, will be available by the time the review
process is completed.
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Fig. 1: Examples of generated RGB images.

available environmental assets and human models from sources
like the Unity Asset Store, Maximo, Turbosquid, as well as hu-
man models created using MakeHuman. The setup of the Unity
Perception package project enables easy addition of new envi-
ronments or human models without requiring modifications to
the scripts responsible for altering the environmental or sensor
configurations of each captured image (randomizer).

Algorithm 1 : Dataset generation procedure.

for each environment E in E do
for each human H inH do

for each lighting condition L in L do
for each camera position P from [1m − 4m] in incre-
ments of 0.5m do

for each camera angle Θ from [0 − 360] in incre-
ments of 10 degrees do

Capture and output images and metadata
end for

end for
end for

end for
end for

We captured 175, 428 images with dimensions 1600 × 900
for every valid combination of 8 environments, 33 human mod-

els, 4 lighting conditions, 7 camera distances 1m − 4m from
the subject in increments of 0.5m, and 36 camera angles around
the subject in 10 degrees increments. In each captured image,
the human subject is positioned at the center, as depicted in
Fig. 1. The objective was to imitate robot motion in all feasi-
ble and permissible locations surrounding a human, considering
various lighting conditions that simulate different times of the
day within realistic environments. These environments were
designed to resemble typical rooms such as living rooms, bed-
rooms, and kitchens, furnished with items like tables, chairs,
and beds. However, due to the presence of furniture, certain lo-
cations within a room were inaccessible to the camera-equipped
robot whose motion the dataset imitates. Consequently, the
dataset does not include images from such inaccessible loca-
tions that are occupied by furniture. In more detail, if the cam-
era collided/coincided with an object in the given environment
for a certain position P and angle Θ all combinations that in-
volved E, P and Θ were deemed invalid. Regarding humans,
out of the 33 used in the generation process, 17 are females (1
infant and 16 adults), while the remaining 16 are males (1 infant
and 15 adults).

The generated dataset, apart from the captured RGB images,
also contains their semantic instance segmentation masks, as
shown in Fig. 2, as well as, annotation files which are com-
prised of camera parameters, 2D bounding box, 3D bounding
box annotations of humans and selected objects/entities (chairs,
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Fig. 2: Examples of segmentation masks generated along with the dataset.

Fig. 3: Examples of 2D and 3D bounding boxes (top) as well as human body
key points (bottom).

tables, lamps, floor, ceiling, windows etc) for each captured
image. Key points annotations are also included for humans
(Fig. 3). Each object and human in the scene is labeled ac-
cordingly with its ID in order to have access to the 2D and 3D
coordinates of every visible entity of each captured image. The
key points annotations describe 18 body parts and their respec-
tive skeleton connections and are generated in the COCO for-
mat. In addition, a file consisting of definitions and color codes
(when applicable) for each annotation is also included. In this
way, the generated dataset can support a wide variety of differ-
ent (active) perception tasks, ranging from semantic scene seg-
mentation to human pose estimation. We have also generated a
face recognition-oriented version of this dataset, cropping only
the facial images from the generated dataset, aiming to support
specifically active face recognition tasks. Some examples of
the synthetic images contained in the facial dataset are shown
in Fig. 4. We call this version of the dataset ActiveFace to dis-
tinguish it from the full high resolution ActiveHuman dataset.

3. Active Face Recognition

In this Section we provide an active perception use case using
the proposedActiveFace dataset, building upon the embedding-
based active face recognition method presented in (Passalis and
Tefas, 2020). This method was shown to yield much better
recognition results than the ones achieved when using a static
perception approach, since it takes advantage of a robot’s abil-
ity to interact with its environment in order to get a more in-
formative view of the person’s face. We demonstrate how the

rich annotation and variety of data provided by the proposed
dataset, enables us to further extend this active perception ap-
proach, further improving its performance, e.g., by allowing to
perform control in additional axes. This is achieved with the
use of a trainable controller which, when given an image x(t) at
a time t, dictates the robot to move towards a certain direction
in order to acquire a new image which offers a better frontal
view of the person. The new image is given by:

x(t+1) = v(at, t), (1)

where v(·) denotes the current environment. The trainable con-
troller is represented as:

at = gθc (x
(t)), (2)

where θc denotes a set of trainable action parameters.
The model is comprised of two modules, the feature extrac-

tor model fθr (·), which learns discriminative embeddings of a
given face image, thus being able to separate the representa-
tions extracted from images that belong to different persons,
and the controller model gθc (·) which is responsible for learning
the best possible action that the robotic system should take next
in order to acquire a better view of a person’s face.

When an unseen image is given as input during the evalua-
tion process and the controller has given the appropriate control
commands to the robotic system, the id of the person is obtained
using the 1-nearest neighbor approach on a database that con-
tains frontal and nearly frontal facial images for every person.

Instead of using reinforcement learning when training the
controller, the model executes all possible control actions at
the same time and calculates the recognition accuracy of each
of the obtained images, improving learning efficiency (Passalis
and Tefas, 2020). The action that led to the lowest distance be-
tween the representation of the current face and the correct face
is retained and used to train the controller. The optimal action
when given an image xi and a correct image xp is given by:

d(a)
i = arg min

k∈0,1,2,...,n
|| f (xik) − f (xp)||2, (3)

where n is the total number of possible actions that the con-
troller can choose.

The loss function that the controller aims to minimize is
given by:

Lg =

N∑
i=1

Lx(gθc (xi), d
(a)
i ), (4)

where Lx represents the cross-entropy loss function. The fea-
ture extractor, on the other hand, aims to minimize the follow-
ing loss function:

L f =

N∑
i=1

N∑
j=1, j ̸=i

Le( fθr (xi), fθr (x j), di j), (5)

where the the binary variable di j ∈ {0, 1} denotes whether the i-
th face image belongs to the same person as the one depicted in
the j-th face image and Le is a loss that encourages the separa-
bility of different face embeddings. In this work we use the con-
trastive loss, as suggested in (Passalis and Tefas, 2020), which
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Fig. 4: Examples of images included in the ActiveFace datasset. Note that lower resolution images correspond to larger distances between the person and the camera.

is minimized when embeddings that belong to the same iden-
tity are as close as possible, while the representations of face
images that do not belong to the same person maintain at least
a distance of

√
m:

Le(yi, y j, di j) = di j||yi−y j||
2
2+(1−di j) max(0,m−||yi−y j||

2
2), (6)

where yi = fθr (xi) is the representation extracted from the face
recognition model and ||·||2 refers to the l2 norm of a vector. The
final loss of the model is given by the sum of (4) and (5):

L = Lg + L f (7)

The model uses the Adam optimization algorithm with initial
learning rates ηr = ηc = 10−3 for the feature extractor and con-
troller, respectively.

We also appropriately modified the aforementioned approach
to allow for an extra Front (i.e., towards the subject) move-
ment/action of 0.5m per move in order to take advantage of
the range of camera-subject distances provided by the dataset
generated in this work. The Left and Right actions dictate the
controller to move by 10 degrees either to the left or to the right,
respectively, on a circle centered at the human subject. Since
the classes involved in (4) are not balanced, different weights
were used for different classes. More specifically, the Stay ac-
tion was given a action weight of 0.01, while both the Left

and Right ones were given a weight of 1 and the Front was
weighted by 1.2.

Since the dataset does not contain, due to the existence of
furniture, images from every camera/robot position, it was ob-
served that the model was not always able to find an existing im-
age for every available action. As each environment had miss-
ing images at different camera distances and angles (i.e., for the
locations occupied by the furniture) and the model could learn
to avoid collisions for environments that do not require such ac-
tions, it was decided to not train the model for any image where
any of the left, right or front images are missing. During in-
ference, the controller chooses the best action that leads to an
image that exists. If for a given image there are no left, right or
front images the controller dictates the robotic system to stay
in place. In a real-world scenario, the controller would output
different actions, from most optimal to less optimal, until the
robotic system could move towards the best available spot.

4. Experimental Evaluation

Details for the experimental evaluation are provided in this
Section. First, the experimental setup that was used for train-
ing each model upon the ActiveFace dataset is presented. Then,
both the static (i.e. the approach that decides on the person’s
identity using the initial image) and the extended active vision
methods are evaluated using various configurations and the ex-
perimental results are discussed.

4.1. Experimental Setup

The active vision model was evaluated on both the entire Ac-
tiveFace face image dataset (Set 1) and on a subset (Set 2) of
the dataset containing only facial images with a pan range of
−90◦ to 90◦ (0◦ corresponds to frontal view). In both cases,
the training set consisted of 22 subjects, while the remaining
11 were used to evaluate the trained model. For those 11 sub-
jects, all the frontal and nearly frontal (−10◦ to 10◦) images at
1m distance away from the human, for every environment and
lighting condition, were added to the recogniser database, while
the remaining ones were used for testing the trained model, i.e.,
they were used as images captured at the starting location of
the robot. All images were resized to 96 × 96 and all exper-
iments were conducted 5 times using different random seeds
and the mean and standard deviation of their accuracy scores
was recorded. For each of Sets 1 and 2 both a static and an ac-
tive vision model were trained in order to evaluate the increase
in accuracy when using the latter method. It is expected that the
network will perform worse on the entire dataset (Set 1) com-
pared to its accuracy score on the −90◦ to 90◦ subset (Set 2),
since the model may not even detect a face for extreme pan val-
ues and large distances. The active model was first pretrained
without the control branch and then trained simultaneously on
both the feature extractor and the control branch.

The static vision model was trained for 5, 10, 20 and 30
epochs for both Set 1 and Set 2. The active model was trained
for 10 (5 for the feature extractor and 5 for both branches), 20
(10 for the feature extractor and 10 for both branches) and 30
(15 for the feature extractor and 15 for both branches) epochs
for both subsets. Moreover, the active vision model was eval-
uated for 30 control steps, which would essentially allow the
robotic system to move to any location in an environment. This
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way, the recognition accuracy ceiling of the model for both Sets
1 and 2 will be reached.

Finally, the active model was also trained and evaluated with-
out the addition of the extra Front action in order to demon-
strate how allowing the robotic system to move towards the
subject can result in an increase in inference performance. Note
that we use the DL networks and follow the hyper-parameters
proposed in (Passalis and Tefas, 2020), unless otherwise stated.

4.2. Evaluation Results
In this subsection, we provide the empirical evaluation of the

proposed method. First, we provide results for training both
static and active perception models. We also report results on
different points of the training curve (10, 20, and 30 epochs)
in order to provide a more complete evaluation. Then, we pro-
vide experimental results where we evaluate the impact of the
number of active perception control steps on the accuracy of the
models. Finally, we conclude this section by evaluating the im-
pact of the size of the training set on the accuracy of the models.

First, we compare the proposed method to both a static model
with the same architecture (“Static”), as well as to a more pow-
erful model (Inception-ResNet (v1) (Szegedy et al., 2017)) (ab-
breviated as “Static (Inception-ResNet)”). As a reminder, Set 1
represents the full ActiveFace dataset, while Set 2 denotes the
dataset with the reduced pan range. The experimental results
are reported in Table 1. Using the more powerful static model
leads to better results than the baseline architecture. However,
active perception leads to improved accuracy in both setups.
The proposed active perception agent (“Active (Proposed)”),
which can control the distance between the subject and the cam-
era, leads to overall best results, outperforming both the static
perception approaches as well as the simpler method proposed
in the literature (Passalis and Tefas, 2020) (“Active (1 axis)”). .

Table 1: Comparison between static perception and active perception models.
Face recognition accuracy mean and standard deviation are reported in both Set
1 and Set 2. All models were trained for 20 epochs.

Model Set 1 Set 2

Static 44.9 ± 2.4% 57.9 ± 2.9%
Static (Inception-ResNet) 46.4 ± 3.4% 65.1 ± 2.9%
Active (1 axis) 55.5 ± 1.9% 66.6 ± 6.8%
Active (Proposed) 69.2 ± 7.6% 79.1 ± 1.7%

Table 2: Static vision model evaluation at various points of the training process:
accuracy mean and standard deviation.

Model Set 1 Set 2

Static (5 epochs) 51.1 ± 4.2% 60.3 ± 1.5%
Static (10 epochs) 47.9 ± 4.2% 58.1 ± 3.5%
Static (20 epochs) 44.9 ± 2.4% 57.9 ± 2.9%
Static (30 epochs) 44.3 ± 2.2% 58.5 ± 2.8%

The evaluation results for different number of epochs are
shown in Tables 2, 3 and 4. Evaluation results for the static
model are presented in Table 2. Clearly, the models perform

Table 3: Active vision model evaluation with the additional Front move-
ment/action at various points of the training process: accuracy mean and stan-
dard deviation.

Model Set 1 Set 2

Active (10 epochs) 67.9 ± 6.8% 76.9 ± 6.5%
Active (20 epochs) 69.2 ± 7.6% 79.1 ± 1.7%
Active (30 epochs) 67.4 ± 8.6% 78.3 ± 6.8%

Table 4: Active vision model evaluation without the additional Front move-
ment/action at various points of the training process: accuracy mean and stan-
dard deviation.

Model Set 1 Set 2

Active (10 epochs) 60.3 ± 6.4% 66.4 ± 7.3%
Active (20 epochs) 55.5 ± 1.9% 66.6 ± 6.8%
Active (30 epochs) 59.1 ± 4.4% 72.1 ± 3.2%

best when trained for 5 epochs, reaching accuracy scores of
∼51.1% and ∼60.3% for Set 1 and Set 2, respectively. Increas-
ing the number of epochs seems to cause an overfit of the model
on the training data.

Again, once the active approach is employed, a substan-
tial increase in prediction accuracy can be observed for both
datasets by a maximum of ∼18.1% and ∼18.8%, respectively,
as seen in Table 3. Since we introduce more parameters, the
models can be trained for more epochs and seem to overfit when
the number of epochs is set to 30 (15 for the feature extractor
and 15 for both branches). Evidently, the ability to train the
robotic system to move within its environment in order to get
a more informative view of the subject, namely a view which
is closer to the frontal or nearly frontal views that the system
has learned to recognize, yields much better face recognition
results. Furthermore, once the controller’s Front movement is
removed (Table 4) the model is ∼8.9% and ∼7% less accurate
than the one with the additional Front action, when comparing
the highest recorded prediction accuracy scores of each respec-
tive conducted experiment.

This clearly demonstrates that allowing the model to move
in more directions, i.e., not only around but also towards the
subject, can further increase its ability to recognize faces.

Figure 5 depicts an example of how the control branch has
learned to change its viewpoint in order to get a better (more
closer and towards a frontal position) view of the person de-
picted in the original image, that is, the one obtained from the
initial robot location. The original image is obtained from point
a (starting position for the robot) and then the robot moves
along the depicted path until it reaches a frontal view of the
subject’s face at a distance of 1m (point h). We can observe
that, generally, at larger distances the controller prefers to make
a Front movement in order to move closer to the subject and,
thus, increase the captured facial image resolution. Once the
image is clear enough, it then makes either Left or Right

movements in order to move in front of the subject.
Furthermore, we evaluated the prediction accuracy of each

trained model as the number of allowed steps increased from
1 to 20 steps. Our hypothesis was that a well-trained model,
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Fig. 5: Example of control branch movements. Images from left to right correspond to the robot locations depicted on the diagram: (a) distance 3m, angle 180◦; (b)
distance 3m, angle 160◦; (c) distance 2.5m, angle 160◦; (d) distance 2m, angle 140◦; (e) distance 2m, angle 90◦; (f) distance 2m, angle 10◦; (g) distance 1.5m, angle
10◦; (h) distance 1m, angle 0◦.

(a) Average accuracy score when increasing maximum allowed control branch steps
(b) Average number of images that required n steps, where n = 1, 2, ..., 20, before making a
prediction.

Fig. 6: Evaluating the impact of number of control steps on average accuracy score (Fig. 6a), as well as showing the distribution of control steps needed in order to
acquire the best possible view (Fig. 6b).

neither underfitted nor overfitted, would reach a point where its
performance stagnates. This suggests that the model does not
need to take additional steps to obtain a better view of the sub-
ject’s face. Fig 6a illustrates the average prediction accuracy
of the model trained on Set 2 for 20 epochs, incorporating the
Front movement command per maximum allowed number of
steps. We can observe that the accuracy increases as the num-
ber of steps increases until reaching a plateau at n = 12. This
indicates that the active perception process converges and con-
sistently produces better results with a higher number of steps
up to a point, where the best view has been obtained.

Additionally, we recorded the average number of images that
required a certain number of steps (n = 1, 2, ..., 20) before the
active perception process stopped. Fig. 6b represents the per-
centage of images that needed a specific number of steps to
make a prediction for the same model. Most images required

5 steps, but the proportion of images requiring additional steps
decreased gradually. Notably, at 20 steps, the recorded percent-
age appears to increase. We identified that this occurs in some
cases where the controller reaches a frontal view of the subject’s
face but continues moving towards the left or right without stop-
ping. This suggests that the agent may not be robust enough to
consistently choose the Stay command when the robotic sys-
tem achieves a frontal view of the subject.

To highlight the importance of generating additional data for
active perception algorithms, we conducted additional exper-
iments to evaluate the impact of the volume of data used for
training on the accuracy of the final model. To this end, we
performed experiments using 5 persons (about 23% of the orig-
inal training set), 10 persons (about 45% of the original training
set), 15 persons (about 68% of the original training set) and 20
persons(about 91% of the original training set) in the training
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Table 5: Evaluating the impact of the size of the training dataset to the accu-
racy of the resulting models. “Static Perception“ refers to the regular static face
recognition setup, while “Active Perception” refers to the proposed active per-
ception approach that supports front movements.

% training data Static Perception Active Perception

23% (5 persons) 36.4 ± 2.8% 34.4 ± 1.2%
45% (10 persons) 43.5 ± 5.2% 47.5 ± 1.5%
68% (15 persons) 56.9 ± 1.8% 75.1 ± 3.1%
91% (20 persons) 57.7 ± 2.9% 78.5 ± 6.2%
100% (all persons) 57.9 ± 2.9% 79.1 ± 1.7%

set using both a static perception setup, as well as the proposed
active perception setup. For all the conducted experiments we
used the second set, in order to better demonstrate the impact
of the additional data included in the training set.

The experimental results are shown in Table 5. Several in-
teresting results can be drawn from these results. First, using
more training data increases face recognition accuracy in both
the static perception and active perception setups. Furthermore,
these results also demonstrate that using smaller training sets
can have a more profound negative effect on active perception
models since the initial accuracy for active perception is smaller
(about 36% for static perception and about 34% for active per-
ception when using 23% of the training dataset). However,
larger increases are observed in the accuracy of the active per-
ception model when additional training data are included, also
validating the value of the generated data when training active
perception models.

5. Conclusions

This paper introduced a publicly available synthetic and real-
istic data generation pipeline using Unity’s Perception package
for training and evaluating active vision methods. Two public
datasets were generated using this pipeline, comprising of high
resolution annotated images (instance segmentation masks, 2D
and 3D bounding boxes, human body keypoints) depicting hu-
mans in various environments, as well as cropped facial im-
ages extracted from the originally captured 1600× 900 images.
These facial images were then utilized to train and evaluate
both static and active vision embedding-based face recogniz-
ers, showcasing the significant improvement in prediction ac-
curacy achieved through the active approach compared to the
static model. Experimental results demonstrated a substantial
increase in recognition performance, with a maximum improve-
ment of approximately 18.8%. Moreover, we illustrated that
enabling the robotic system to move towards the subject, rather
than being limited to left or right movements on a circle as in
(Passalis and Tefas, 2020), led to better recognition accuracy,
with a maximum observed difference of around 8.9%.
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